

Contents

Guest editorial, Øystein Skogstad 1

Software quality, Øystein Skogstad 3

Software quality according to measurement theory,
Magne Jørgensen .. 12

Automation approach to software quality,
Arve Meisingset .. 17

The impact of software reuse on software quality,
Svein Hallsteinsen ... 23

The role of measurement in software and
software development, Tor Stålhane 30

Assessment-based software process improvement,
Tore Dybå ... 37

Reuse of software development experience
– a case study, Magne Jørgensen, Dag Sjøberg
and Reidar Conradi .. 48

An empirical study of the correlation between develop-
ment efficiency and software development tools,
Magne Jørgensen and Sigrid Steinholt Bygdås 54

Software process improvement through
software metrics – an ESSI project,
Hans Erik Stokke and Reidar Palmstrøm 62

Surviving software testing under time
and budget pressure, Hans Schaefer 66

Telektronikk

Volume 95 No. 1 – 1999
ISSN 0085-7130

Editor:
Ola Espvik
Tel: (+ 47) 63 84 88 83

Status section editor:
Per Hjalmar Lehne
Tel: (+ 47) 63 84 88 26

Editorial assistant:
Gunhild Luke
Tel: (+ 47) 63 84 86 52

Editorial office:
Telektronikk
Telenor AS, Telenor Research & Development
P.O. Box 83
N-2027 Kjeller, Norway
Tel: (+ 47) 63 84 84 00
Fax: (+ 47) 63 81 00 76
e-mail: telektronikk@fou.telenor.no

Editorial board:
Ole P Håkonsen, Senior Executive Vice President
Oddvar Hesjedal, Vice President, Research & Development
Bjørn Løken, Director

Graphic design:
Design Consult AS

Layout and illustrations:
Gunhild Luke, Britt Kjus, Åse Aardal
Telenor Research & Development

Feature

Special

User perception of European network tones,
Fergus McInnes, Donald Anderson,
Mark Schmidt and Mervyn Jack 105

Status

Introduction, Per Hjalmar Lehne 119

Security standardization in ISO, Øyvind Eilertsen ... 120

UTRA – the radio interface for UMTS,
Per Hjalmar Lehne ... 122

Quality by construction exemplified by TIMe
– The Integrated Methodology, Rolv Bræk,
Joe Gorman, Øystein Haugen, Geir Melby,
Birger Møller-Pedersen and Richard Sanders 73

Software in system perspective, Paul Holder 83

Implementing a quality measurement system
and the role of EIRUS, Jan Willems 86

Recommendations to improve the technical interface
between PNO and suppliers, Jan-Erik Kosberg,
Øystein Skogstad and Ola Espvik 92

Computers are used in a wide
variety of application areas. Their
correct operation is critical for
business success and even for
human safety. Developing or
selecting high quality software
products is therefore of prime
importance. When dealing with
software quality, there are two
basic problem areas: What spe-
cific actions should be made to
ensure software quality, as seen
from the user’s point of view?
How can we in an objective way
measure what degree (level) of
quality that has been achieved?
Through the various papers in this
issue of Telektronikk we look into
some topics discussed in the
software community today, in
relation to the two problem areas.
Comprehensive specification and
evaluation of a software product
is another key factor in ensuring
adequate quality. This can be
achieved by defining appropriate
quality characteristics, taking into account the purpose of a
software product.

A definition of software quality must bear upon the general
definition of quality: The totality of characteristics of an entity
that bear on its ability to satisfy stated and implied needs. For
the definition to be of any use, we must agree upon how quality
is measured. To be able to measure software product quality we
must have a framework for what to measure. Such a framework
is often called a software quality model – also enabling us to
measure software quality at early stages in the development
process. The ISO/IEC quality model is presented in one of the
papers to follow. Another paper argues that measurement theory
establishes such a framework.

It is believable that the number of errors made in a software
program increases with the length of the program. The number
of errors for a given application can be kept low by minimising
the program code developed for that application and reusing
generic program code that is tested through extensive use of
other applications. A theory of software quality by code
reduction requires a measure of program length or size relative
to the functionality provided by the program, a means to com-
pare the lengths of two programs providing the same function-
ality and techniques to remove application specific code. One
paper provides a possible approach to this problem.

The benefits of software reuse seem obvious. Building from
pre-built components means less work to develop a particular
application, leading to shorter time to market, fewer errors and
greater cost reductions. Extensive reuse is still not common
practice in the software industry, but over the last years we
have seen it successfully demonstrated on several occasions.

The software industry can improve only by understanding their
products and the processes that produce them. We need
measurements in software development to improve the develop-

ment process so that we can
increase product quality and thus
increase customer satisfaction.
How can we in a systematic way
learn from the errors that are made
during development, and improve
the situation in the next develop-
ment? One popular way of starting
a Software Process Improvement
(SPI) program is to do an assess-
ment.

Experimentation on a company
wide scale is often necessary to
understand the company’s specific
needs for Software Process Impro-
vement activities. Results from
such experiments are reported
from the companies – Telenor and
from NERA. One paper describes
how Telenor developed and imple-
mented processes, roles and tools
to achieve reuse experience, i.e.
organisational learning. Another
study reports on the reuse of
software development experience.

The challenges were: How can software development experi-
ence be efficiently shared between different development
teams? What types of experience are worth reusing? What is
the role of reuse of ‘local’ (context-dependent) experience com-
pared with more ‘global’ (best practice) experience?

There are few empirical studies on how CASE tools impact the
software development and maintenance efficiency. One paper
applies a method to evaluate four different CASE tools. Interest-
ing findings were that CASE tools had a strong and systematic
impact on the development and maintenance efficiency, i.e. the
choice of CASE tool is important.

NERA decided at the end of 1996 to start an improvement
project. They started making a generic GQM plan and measure-
ment plan for software development. Data were collected, and
some metrics were adjusted to make the definitions more app-
ropriate. The findings for measurements on the effectiveness of
verification and validation are presented in this issue. It should
be noted that the system devised for recording data made the
cost of this metrics collection insignificant.

Testing is essential for achieving quality software. However
good the development process, there is still a need to adapt the
system to overall needs. A pursuit of quality can improve the
technical characteristics of a software product. But quality is
not the only framework for making strategic market decision.
One paper discusses various test strategies, to optimise on qual-
ity as well as on the other factors considered important at com-
pany strategic level.

A very important basic to providing good quality of service to
the customers is the quality of the telecommunication products
that a PNO (Public Network Operator) buys from its suppliers.
In order to be able to assess the quality of such telecommuni-
cation products, a measurement system has to be in place. Such
a system should provide a general overview of product quality

1

Guest editorial
Ø Y S T E I N S K O G S T A D

Telektronikk 1.1999

and reliability, together with supplier process quality. A paper
presents the two quality measurement systems implemented in
Belgacom for a particular telecommunication product. The first
system contains in-process quality metrics that evaluate the
processes of the supplier mainly during the development phase
of the product. The second system contains measurements that
analyse the quality and reliability during the operational phase.
The paper also focuses on the role of EIRUS during the imple-
mentation of these quality measurement systems. The work
done in EIRUS is a very interesting case where a special interest
group of rather large companies have formed a common forum
for parts of their systematic quality assurance work.

Quality measurement is one aspect of interaction between a sup-
plier developing a software system and his customer. Other

aspects of the general technical interfaces between supplier and
customer are treated in a paper presenting results from a
EURESCOM project.

Our knowledge of how to handle software quality is substantial,
although far from complete. It is still a problem that important
software is developed and released without the expected level of
quality. A bigger problem is, however, that software production
too often misses utilizing the knowledge we do have about qual-
ity issues. Even so, by reading the papers of this Telektronikk
feature section, I hope you get a fair impression of the com-
plexities of a technology that in our time has emerged to have
an impact on the lives of every one of us.

2 Telektronikk 1.1999

1 An Introduction to
Software Quality

Software quality is a topic of interest for
both software developers and software
users. Over the years, the focus of soft-
ware quality has shifted. At least three
stages can be identified:

1. “The first ages”. During the first uses
of software, the problems of software
quality were felt by developers, and
professional users (the batch age).

2. “How do we do it?” The problems of
software quality very soon focused
down to the quest for methods for
developing quality software.

3. “How do we measure quality?” With
the casual software users we have
today, a need emerged to have a
method for controlled quality in the
dissemination of new products. This
need made objective software quality
measurements necessary.

1.1 The first ages

Over the years, several paradigms have
blended to constitute what we today
think of as software quality. During this
process, the term ‘software quality’ has
been given increasingly more precise
definitions. In the beginning it was used
more like a slogan, with no precise
meaning. A good example of this is the
well-known citation: “You can’t test
quality into a piece of software, you have
to build it in.” The origin of this slogan
can be found in a conference sponsored
by the NATO Science Committee in
1968 [1]. There it is stated:

“If you have your production group, it
must produce something, but the thing
to be produced has to be correct, ... I
am convinced that the quality of the
product can never be established after-
wards. Whether the correctness of a
piece of software can be guaranteed or
not depends greatly on the structure of
the thing made. This means that the
ability to convince users, or yourself,
that the product is good, is closely
intertwined with the design process
itself.”

This often-cited statement from Dijkstra
emerged in a discussion about the need to
distinguish between design and produc-
tion of software. The discovery of the
difference between design and produc-
tion was one of the first achievements in
the understanding of software quality.
Other important topics were:

• Programming concepts. Especially
structured programming [2] and the
concept of software module, which
was introduced in the early phases of
building a framework for software
quality [3]. These concepts are today
‘common knowledge’ for the skilled
programmer.

• Methods for achieving robustness in
software. This concept covers tech-
niques as different as self-checking
and fault-tolerant software. [4] pre-
sents early work in this area.

• Testing. The concept of testing in-
cludes system testing – as done by
the developing party, as well as accep-
tance testing – as done on behalf of the
product receiving party. In addition,
testing also covers module testing (or
debugging) as done by the (module)
producer, as described in [5].

1.2 How do we do it?

Over the years, attention shifted into this
issue: How do we build quality into a
software system? The answers to the
question on how to build good quality
software are numerous. These answers
have been topics for discussion in the
software community for years. An out-
line of the origins of software quality
would cover most of the research topics
that have been dealt with in the software
community over the last 30 years.
Among the most prominent topics are:

• Structured software design. An early
notion of this concept may be found in
[6]. A wide variety of software design
methods has emerged over the years.
An overview of some of the classical
methods may be found in [7]. Among
the most known classical methods we
can mention SASD (Structured Ana-
lysis and Structured Design (Your-
don)), SSA (Structured Systems Anal-
ysis (Gane&Sarson)) and SADT
(Structured Analysis and Design Tech-
nique). Over the years, much work has
also been performed to establish com-
plete methodologies, covering all
aspects of software development.
Today, software engineers use various
object-oriented methodologies. One
commonly used technique is OMT –
the Object Modelling Technique, see
[8].

• Data Structuring. A key element of
software design concerns structuring
of the data the program is working
upon. Several techniques have been
devised, from the structuring of data

records, see e.g. [9], via entity-rela-
tionship modelling [10] to today’s
object oriented techniques.

• Software engineering. Software en-
gineering as a term seems to have
come to light at the NATO conference
in 1968 [1]. The term may be defined
as: “The application of science and
mathematics by which the capabilities
of a computer equipment are made
useful to man via computer programs,
procedures and associated documenta-
tion” [11]. Software engineering as a
topic today is an umbrella topic that
covers all aspects of phased, or mile-
stone based software development
work. Included in the concept are of
course many ideas from project man-
agement, and quality assurance. In-
cluded is also ‘the art’ of establishing
work units for the various people en-
gaged in a development project – often
known as a Work Breakdown Struc-
ture.

• Methods for specification of require-
ments, see e.g. [12]. A more general
idea of the concept of specifications
can be found in [13]. Every skilled
practitioner today deems a specifica-
tion necessary. Without a requirements
specification and some knowledge of
what are the needs of the software
user, there is little hope of achieving
quality today. Elegance in program-
ming may be achieved, but that does
not imply quality.

• Formal methods for software speci-
fication. The representation of soft-
ware in its early stages by some mathe-
matical formalism allows more rigid
verification of the software [14] as
well as automated code generation.
The hopes brought forward by the for-
mal methods are that once the specifi-
cation is made and agreed upon, then
the programmer in his work will make
fewer errors with the programming of
the system.

• Verification and validation. V&V is
a most popular topic that blends the
topic of testing (of executable code)
with the topic of reviewing or inspect-
ing design specifications and other
documents. The IEEE standard [15]
has been heavily used in the software
community.

• Configuration Management. CM is
a recognised set of methods to assure
that people are working towards the
same goal, that changes are handled
in a systematic way, and that the right

3

Software quality
Ø Y S T E I N S K O G S T A D

Telektronikk 1.1999

[21]. The basis for the more modern
concepts can be found in [22].

• Quality improvement. The term
quality improvement is used today as
a collection of techniques for syste-
matic improvement of products and
processes. Often these techniques are
based on the use of measurements as
a means to understand the current situ-
ation, as well as a means to check
whether improvement goals are
reached. In the software community,
this topic is often highlighted as Soft-
ware Process Improvement [23].

• The concept of quality in general.
Software quality is but a special case
of quality. The concept of quality has
been around for some decades. It
started with industrialisation and
mass production around 1900. Over
the years, society has focused upon
quality control. Popular topics today
are quality assurance and quality
improvement techniques. The precise
meaning of quality management and
quality assurance can be found in [24].
Once these concepts were invented and
considered useful also for development
work, it was natural to start talking
about software quality assurance. The
ideas of software quality assurance are
presented in [25].

Once the trend towards standardisation
of software quality aspects had started, it
was only natural to start standardising
the way software quality should be
measured.

In this paper, we shall look at the status
of this standardisation work, including
the development of a software quality
model as well as concrete metrics that
make it possible to objectively measure
the quality of a given piece of software.

1.4 Quality factors

Over the years, the notion of different
factors as the constituents of software
quality has grown. In the start, reliability
was often considered the sole factor
when people were discussing software
quality. One of the reasons for this may
be the fact that many of the people en-
gaged in the discussions on software
quality were in their everyday work con-
cerned with the production of (or at least
the use of) computer operating systems.
Many of the early terms and notions of
software quality clearly come from the
operating system business. Problems and
questions relating more directly to the

human use of the software (as they can
be found today) evolved later. One
should remember that in these early days,
even the administrative data processing
systems were to a large extent batch sys-
tems, doing their work overnight, with
(hopefully) no human intervention. The
infamous two hours downtime in 40
years (from the production of #1 ESS
as mentioned in [1]) is one of the first
events where the quantitative factor reli-
ability is attributed to software.

Over the years one might say that the
software community has had a reason-
able success in defining methods that
may improve the quality of a software
system. One question does, however,
remain to be solved:

How should software quality really be
measured, in order to gain an objective
evidence of to what degree a software
system really is a quality product?

The remainder of this paper will give
some answers to that problem, through
an overview of the some of the relevant
standardisation work.

2 Definition

In the following pages we shall concen-
trate upon the modern definition and
metrication of the concept of software
product quality.

2.1 Definition of software
quality

A definition of software quality must
bear upon the general definition of qual-
ity [26]:

Quality: The totality of characteristics
of an entity that bear on its
ability to satisfy stated and
implied needs.

At this point, the following observations
should be made:

• A requirements specification of some
form is necessary, to have a descrip-
tion of the stated needs.

• The implied needs are often mani-
fested by the software system user,
through the use of the system.

Thus it can be observed that the needs
of the user should be described in the re-
quirements specification, to avoid bad
surprises when a new system is taken
into use.

4 Telektronikk 1.1999

version of a program is delivered to the
users. The IEEE standard [16] has set
the standard in this area.

• Human-machine relation (or mmi).
This area has a direct impact on how
the user will perceive the system. With
more widespread use of software in
applications directed towards the casual
user, as well as the use of software in
more complex operations, the user (or
operator) interface is important. No-
tions of methods for specification of
this interface can be found in e.g. [17].

• Human-human relation. Working
together on something as abstract as
software, and often in large projects,
may cause huge challenges to the
ability of people to co-operate. In addi-
tion to good system architecture and an
elaborate work breakdown structure
people need to interact on the same
piece of software. This interaction
includes observing the software from
different views; e.g. management
view, quality assurance view, and pro-
grammer peer view. Commenting on
the software unit (product) at hand has
been shown to be a most efficient way
to improve product quality. Common
techniques for this include technical
reviews, walkthroughs and inspections,
see [18] and [19].

• Cost-time estimation. Cost has, at
least intuitively, been considered as
an element of software quality. Thus,
techniques for cost estimation and cost
control have been discussed among
people concerned with software qual-
ity for some years, see [1]. Associated
with the cost problem has always been
the time problem: How long will the
development of this software really
last? One method in this area that has
achieved wide use is COCOMO [11].

1.3 How do we measure
quality?

After doing the very best in producing
good quality software, the need emerged
to find some objective way of measuring
the achievement. This need led to ex-
perimentation in the area of quality
measurements. As a consequence the
following research topics emerged:

• Measurements of software quality,
often called software metrics. The
basic metrics try to identify the proper-
ties of software structure that in some
way relate to quality. The best known
origins for this concept are [20] and

For the definition to be of any use, we
must agree upon how quality is to be
measured. To be able to measure soft-
ware product quality we must have a
framework for what is to be measured.
Such a framework is often called a soft-
ware quality model. The model needs to
take into account that we want to mea-
sure software quality as early as possible
in the development process. The model
must also help us perform standardised,
or commonly acceptable, measurements
of quality for software in use.

2.2 A software quality model

A quality model describes a set of quality
characteristics that characterise the prod-
uct and form the basis for the product
evaluation. Over the years, several qual-
ity models have been launched, e.g. [21]
and [22]. Today, a standardised model
exists, ISO/IEC 9126 [27]. This standard
is now under revision, in a joint effort by
IEC and ISO. ISO/IEC 9126 [28] defines
the quality characteristics as well as sub-
characteristics for software products.
Quality is categorised as a set of software
quality attributes. The attributes are di-
vided into six characteristics, which are
further sub-divided into subcharacteris-
tics (see the following sections for de-
tails). One important aspect of defining
a software quality model, is to include a
framework for the measurement of qual-
ity. Measurable subcharacteristics of
software quality are referred to as soft-
ware quality metrics.

The specification of a software quality
model must meet many goals, due to the
many situations where software quality is
an issue: development, acquisition, qual-
ity assurance, independent evaluation,
use, support, and maintenance. The
characteristics defined are meant to be
applicable to all types of roles and every
kind of software, including computer
programs and data contained in
firmware. The quality model can be used
to:

• Identify software requirements. In the
requirement for a specific attribute,
care should be taken to define how this
particular attribute is to be measured.

• Validate the completeness of a require-
ments definition. It may be wise to
have requirements covering all rele-
vant external attributes of the software
product.

• Identify software design objectives.
The design effort should be directed
at achieving the quality characteristics
that are the most valuable for the prod-
uct.

• Identify software testing objectives.
Part of the testing should be directed
at measuring the compliance to the
defined quality requirements.

• Identify quality assurance criteria.
The quality assurance effort should be
directed towards the greatest risks, and
the highest gains, when developing a
software product.

• Identify user acceptance criteria for a
completed software product. Without
user acceptance any software, elegant
though the code may be, cannot be
judged to be a quality product.

2.3 Characteristics

The ISO/IEC 9126 standard applies sev-
eral attributes in the characterisation of
software product quality. The used
attributes are categorised into six charac-
teristics as shown in Figure 1.

The six characteristics cover the key
aspects of how satisfied a software user
is likely to be. For different software
products different software characteris-
tics may be of different importance. For
instance, the system may be:

• A teller machine, used by hundreds of
casual users each day. For such sys-
tems Usability is of paramount impor-
tance. These users do not care about
Portability, nor about Maintainability.

On the other hand, the system respon-
sible personnel do care about Main-
tainability.

• An embedded telecom flight control
system used for the vital communica-
tion between dispatchers and aeroplane
cockpit personnel. We would surely
care a lot about the Reliability of their
system. But the personnel, as frequent
users of the system, and well trained in
the use, learn to live with systems with
less than perfect Usability.

Often, a customer achieves a software
system. The customer may act on behalf
of, or as a representative of many users.
In such cases it is important that the cus-
tomer is aware of the users’ needs. It is
also important that the customer is aware
of the various user roles. Often the user is
thought of as the ‘end user’, the person
using the software system for his own
purposes. But it should be noted that
there are other user roles. One other
important user role is the software main-
tenance person.

2.3.1 Definition of characteristics

The six basic quality characteristics are
defined in ISO/IEC 9126 [28]. The de-
finitions are shown in Table 1. The idea
at this level is to define each characteris-
tic as a capability of the software. We
can thus understand that the characteris-
tics are external attributes of the soft-
ware, that may be measured by observing
the software in use.

The overall quality is not defined as
some weighted function of these charac-
teristics. The characteristics are to be
understood in the sense of subdivisions,
or factors. For a particular application,
we can expect the characteristics to
be made measurable and appear in the
requirements specification, at least in
form of some objectives for the charac-
teristics.

5Telektronikk 1.1999

Software product quality

Reliability Usability Efficiency Maintainability PortabilityFunctionality

Figure 1 Software product quality characteristics

The definitions of the characteristics are
as shown in Table 1.

We see from the definitions that the
requirements for these characteristics
may differ for different applications. For
instance, the requirements for Portability
may wisely define to what environments
the porting might be done. The require-

ments may also put restrictions on lan-
guage constructs to be used, to make the
system as general (i.e. portable) as pos-
sible. The characteristics above are mea-
surable, if the measurement method is
decided upon. ISO/IEC has chosen to
describe the characteristics further, by
applying subcharacteristics to each char-
acteristic.

2.4 subcharacteristics

The division of the six product charac-
teristics into subcharacteristics as de-
scribed in [28] is shown in Figure 2.

Each of these subcharacteristics has their
own definition. These definitions are
given in the cited standard, and presented
in Appendix 1 of this paper.

2.5 Metrics

2.5.1 The choice of metrics

One important purpose of characteristics
and subcharacteristics, is to provide a
means to measure quality attributes of
a software system. One might agree that
the subcharacteristics might be easier
to refine to a measurable form, than the
characteristics. The measurable form of
a quality attribute is called a metric. Sub-
characteristics can be measured by

• Internal metrics. Internal metrics are
based on things that can be measured
by examining the software itself.
Examples of internal metrics are given
in ISO/IEC 9126-3 [29].

• External metrics. These are based upon
external system behaviour. Examples
of external metrics are given in ISO/
IEC 9126-2 [30].

It should be made clear that the metrics
to use in a specific delivery cannot be
directly extracted from these documents.
For a specific delivery the choice of met-
rics will be given by:

• The particular needs of the end user (or
customer specification);

6 Telektronikk 1.1999

Characteristic Definition

Functionality: The capability of the software product to provide functions,
which meet stated and implied needs when the software is
used under specified conditions.

Reliability: The capability of the software product to maintain a specified
level of performance when used under specified conditions

Usability: The capability of the software product to be understood,
learned, used and liked by the user, when used under spe-
cified conditions.

Efficiency: The capability of the software product to provide appropriate
performance, relative to the amount of resources used, under
stated conditions.

Maintainability: The capability of the software product to be modified. Modifica-
tions may include corrections, improvements or adaptation of
the software to changes in environment, and in requirements
and functional specifications.

Portability: The capability of the software product to be transferred from
one environment to another.

Table 1 Definition of characteristics

Suitability
Accuracy
Interoperability
Security
Compliance

Reliability Usability Efficiency Maintainability PortabilityFunctionality

Maturity
Fault
tolerance
Recoverability
Compliance

Understandability
Learnability
Operability
Attractiveness
Compliance

Time
behaviour
Resource
utilisation
Compliance

Analysability
Changeability
Stability
Testability
Compliance

Adaptability
Installability
Co-existence
Replaceability
Compliance

Figure 2 Subcharacteristics

• The specific software architecture that
planning is done for and the way this
architecture will help achieve the end
user’s quality needs;

• The specific design and the way the
design will help to achieve the end
user’s quality needs.

2.5.2 Internal metrics

Measurements can be performed by
inspection of the software without exe-
cuting it. Internal metrics can be applied
to non-executable software representa-
tions (such as a specification or source
code) during design and production.
When developing a software product the
intermediate products should be evalu-
ated using internal metrics. In addition
to inspection, measurements may also be
derived from simulated behaviour.

The internal metrics should indirectly
indicate that the required external quality
and quality in use might be achieved.
Internal metrics should provide the abil-
ity to evaluate software product quality,
and address quality issues before the
software product becomes executable.
The measurements of internal metrics use
numbers or frequencies of software com-
position elements that are observed dur-
ing the measurement task. Examples of
such composition elements are the con-
trol graph, data flow and state transition
representations. Documentation can also
be evaluated using internal metrics.

In [29], some 70 metrics are defined.
A typical example of an internal metric
may be Functional Implementation Cov-
erage defined as “The ratio between
Number of implemented functions con-
firmed in review and Number of require-
ments defined in requirements/ functional
specifications”. Fagan inspections [19]
can be used for this purpose.

Metrics are defined for all the six charac-
teristics of software quality. At this stage
of the standardisation work of defining
internal metrics, it is only natural that the
selection of metrics that are agreed upon
is still not complete. However, the work
proceeds to define metrics for all sub-
characteristics as well.

It should be noted that metrics based on
structural properties of the code or the
design, such as McCabes cyclomatic
number, fan-in/fan-out and the like, are
considered as structural properties of the
software. These structural properties are

not utilised in any of the quality charac-
teristics. The idea that these structural
properties may correlate with quality still
exists. It is also still a valid idea, as it is
evident that the possibility of making an
error in coding is greater if the code is
unnecessarily complex. Some of these
structural metrics do have the merit of
exposing bad code structures, especially
high code complexity. On the other hand,
code complexity relates strongly to prob-
lem complexity. For such reasons, and
because any causal relation between the
structural properties and quality charac-
teristics have not been established, the
standardisation community in general has
abandoned the idea of relating quality to
structural properties.

2.5.3 External metrics

Characteristics and subcharacteristics can
be measured externally to the extent that
a capability under study can be observed
by the execution of the software. Exter-
nal metrics use measures of a software
product derived from measures of the
behaviour of the system of which it is a
part, by testing or operating, and observ-
ing the executable software. Before
acquiring or using a software product,
the product should be evaluated using
metrics based on business objectives.
The business objectives should be related
to the use, exploitation and management
of the product in a specified organisa-
tional and technical environment. Ex-
ternal metrics do provide the ability to
evaluate software product quality during
testing or operation.

In [30] some 90 metrics are defined.
Metrics are defined for all the given
characteristics of software quality. The
definitions of the metrics are given in the
form “that can be observed during testing
or operation”. An example may be Func-
tional Implementation Completeness,
defined as: “The number of implemented
functions confirmed in software execu-
tion” relative to “The number of func-
tions described in specifications”.

At this stage of the work of defining
external metrics, it is only natural that the
selection of metrics agreed upon is still
not complete. However, work is proceed-
ing to define metrics for all subcharacter-
istics as well. The work will also proceed
to divide these metrics more formally
into ‘External’ metrics and ‘Quality in
use’ metrics.

2.5.4 Relation between internal
and external metrics

The levels of some internal metrics have
been found to correspond to variations in
the levels of some external metrics, so
that there is both an external aspect and
an internal aspect to most quality attri-
butes for software. For example, reli-
ability may be measured externally dur-
ing a trial of the software, by observing
the number of failures in a given period
of execution time. Reliability may also
be measured internally by inspecting the
detailed specifications and source code to
assess the level of fault tolerance.

The correlation between internal attri-
butes and external measures is never per-
fect, and the effect that a given internal
attribute has upon an associated external
measure will be determined by experi-
ence, and will depend on the particular
context in which the software is used.
This context should be mirrored in the
requirements specification for the soft-
ware.

When the software quality requirements
are defined, the software quality charac-
teristics or subcharacteristics that con-
tribute to the quality requirements should
be listed. Then the appropriate external
metrics and acceptable ranges should be
specified to quantify the quality criteria
that validate that the software will meet
the user needs. The internal quality
attributes of the software are defined and
specified afterwards. The internal quality
attributes are used as a quality control
mechanism to achieve the required ex-
ternal quality and the quality in use.
Appropriate internal metrics and accep-
table ranges are specified to quantify the
internal quality attributes so that they can
be used for validating that the inter-
mediate software representations meet
the internal quality specifications during
the development.

3 Quality in use

During the development of the standards
for software quality, it was felt necessary
to have some metrics to measure to what
extent the software product really met the
user needs and requirements. Such met-
rics are called quality in use metrics.
They measure the extent to which a prod-
uct meets the needs of specified users
with effectiveness, productivity, safety
and satisfaction. The measurements have
to be taken in a situation with specified
users, specified user goals and a specified

7Telektronikk 1.1999

context of use. Thus, evaluating quality
in use validates software quality in spe-
cific user-task scenarios. Quality in use
should be the user’s view of the quality
of the software, and is measured in terms
of the result of using the software, rather
than properties of the software itself.
Quality in use is the combined effect for
the user of all the software quality char-
acteristics.

The relationship of quality in use to the
other software quality characteristics
depends on the type of user:

• The end user for whom quality in use
is mainly a result of functionality, reli-
ability, usability and efficiency;

• The person maintaining the software
for whom quality in use is a result of
maintainability;

• The person porting the software for
whom quality in use is a result of
portability.

Quality in use has four characteristics as
shown in Figure 3.

Formally, the Quality in use characteris-
tic is defined as: The capability of the
software product to enable specified
users to achieve specified goals with
effectiveness, productivity, safety and
satisfaction, in specified contexts of use.
The different characteristics are defined
as shown in Table 2.

Also for Quality in Use Characteristics,
there are plans to establish metrics. For
the time being, this activity has still
much work to do. Some indications of
what may be the quality in use metrics

can today be found in [30]. An example
may be a metric called ‘Task effective-
ness’. This metric is defined as “The pro-
portion of task goals represented in the
output of task” multiplied with “The
degree to which the task goals repre-
sented in the output have been achieved”.

4 Product and Process

Through the use of metrics given in
ISO/IEC 9126, one is able to define
objective product evaluation criteria
that relate to the software product in
any representation. The quality model
defined covers all phases of software
development.

The metrics of ISO/IEC 9126 can be
used in conjunction with ISO/IEC 15504
[31], which is concerned with software
process assessment, to provide:

• A framework for software product
quality definition in the customer-sup-
plier process;

• Support for review, verification and a
framework quantitative quality evalua-
tion, in the support process;

• Support for setting organisational qual-
ity goals in the management process.

Measurement of quality may also be con-
sidered in conjunction with ISO/IEC
12207 [32], which is concerned with
the software life cycle, to provide:

• A framework for software quality
requirements definition in the primary
life cycle process;

• A support for review, verification and
validation in supporting life cycle pro-
cesses.

Furthermore, measurement of quality
may be considered in conjunction with
ISO/IEC 14598 [33]. This standard is
concerned with the process of evaluating
a software product, for example in con-
nection with acquiring it.

In addition, measurement must be con-
sidered in conjunction with ISO 9001
[24], which is concerned with the quality
assurance process, to provide:

• Support for setting quality goals;

• Support for design review, verification
and validation.

When a company masters all these
aspects of software quality, it is today in
line with the best companies world-wide.

8 Telektronikk 1.1999

Quality in use Definition and Notes
characteristic

Effectiveness: The capability of the software product to enable users to
achieve specified goals with accuracy and completeness in
a specified context of use.

Productivity: The capability of the software product to enable users to
expend appropriate amounts of resources in relation to the
effectiveness achieved in a specified context of use.
Relevant resources can include time, effort, materials or
financial cost.

Safety: The capability of the software product to achieve acceptable
levels of risk of harm to people, software, equipment or the
environment in a specified context of use.
Risks to safety are usually a result of deficiencies in the func-
tionality, reliability, usability or maintainability.

Satisfaction: The capability of the software product to satisfy users in a
specified context of use.
Psychometrically valid questionnaires can be used to obtain
reliable measures of satisfaction.

Table 2 Quality in use characteristics

Quality in use

ProductivityEffiectiveness Safety Satisfaction

Figure 3 Characteristics of quality in use

5 References

1 Naur, P, Randell, B (ed.). Software
engineering. Report on a conference
sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany,
1968.

2 Dahl, O-J, Dijkstra, E W, Hoare, C A
R. Structured programming. London,
Academic Press, 1972.

3 Parnas, D L. A technique for soft-
ware module specification with
examples. Comm. ACM, 15 (5),
330–336, 1972.

4 Hecht, H. Fault-tolerant software :
motivation and capabilities. In: Proc.
Symp. Computer Software Engineer-
ing. New York, Polytechnic Press,
1976.

5 Llewelyn, A I, Wickens, R F. The
testing of computer software. In:
Software engineering. Report on a
conference sponsored by the NATO
SCIENCE COMMITTEE, Garmisch,
Germany, 1968.

6 Randell, B. Towards a methodology
of computing systems design. In:
Software engineering report on a
conference sponsored by the Nato
Science Committee, Garmisch, Ger-
many, 1968, 204–208.

7 Peters, L J, Tripp, L L. Software
design representation schemes. In:
Proc. Symp. Computer Software En-
gineering. New York, Polytechnic
Press, 1976.

8 Rumbaugh, J et al. Object-oriented
modelling and design. Englewood
Cliffs, N.J., Prentice-Hall, 1991.

9 Bachman, C W. Data structure dia-
grams. Database : a quarterly news-
letter of SIGBDP, 1 (2), 4–10, 1969.

10 Chen, P P S. The entity-relationship
model : toward a unified view of
data. ACM Trans, Database systems,
1 (1), 9–36, 1976.

11 Boehm, B. Software engineering eco-
nomics. Englewood Cliffs, N.J.,
Prentice-Hall, 1981.

12 Meseke, D W. The data-processing
system performance requirements in
retrospect. Bell Syst. Tech. Journal,

Special Supplement: Safeguard
Data-Processing System. 1975.

13 Scharer, L. Pinpointing requirements.
Datamation, 27, 139–154, April 1981.

14 Hoare, C A R. An axiomatic basis for
computer programming. Comm.
ACM, 12 (10), 576–80, 1969.

15 IEEE. Standard for software verifica-
tion and validation plans. New York,
1986. (IEEE 1012.)

16 IEEE. Standard for configuration
management plans. New York, 1990.
(IEEE 828.)

17 Hearn, D, Baker, P. Computer
graphics. Englewood Cliffs, N.J.,
Prentice-Hall, 1986.

18 Freedman, D P, Weinberg, G M.
Handbook of walkthroughs, inspec-
tions and technical reviews. Boston,
Little, Brown, 1982.

19 Fagan, M E. Design and code inspec-
tions to reduce errors in program
development. IBM Systems Journal,
15 (3), 182–211, 1976.

20 Halstead, M H. Natural laws control-
ling algorithmic structure. ACM SIG-
PLAN Notices 7 (2), 1972. (See Ele-
ments of Software Science. Elsevier,
1978.)

21 Boehm, B et al. Characteristics of
software quality. Amsterdam, North
Holland, 1978.

22 McCall, J A, Cavano, J P. A frame-
work for the measurement of soft-
ware quality. In: Proceedings of the
Software Quality and Assurance
Workshop. New York, ACM, 1978,
133–139.

23 El Emam, K, Drouin, J-N, Melo, W.
SPICE : the theory and practice of
software process improvement and
capability determination. Los
Alamos, Calif., IEEE Computer
Society Press, 1998.

24 ISO. Quality systems. Model for
quality assurance in design, develop-
ment, production, installation and
servicing. Geneva, 1994. (ISO 9001.)

25 ISO. Quality management and qual-
ity assurance standards. Part 3 :
guidelines for the application of ISO

9001 to the development, supply and
maintenance of software. Geneva,
1992. (ISO 9000-3.)

26 ISO. Quality management and quality
assurance. Geneva, 1994. (ISO 8402.)

27 ISO. Software product evaluation :
quality characteristics and guides for
their use. Geneva, 1991. (ISO/IEC 9126.)

28 ISO. Information technology : soft-
ware product quality. Part 1 : quality
model 1998-06-26. Geneva, 1998.
(FCD 9126-1.2.)1)2)

29 ISO. Information technology : soft-
ware quality characteristics and met-
rics. Part 3 : internal metrics 1997-
05-07. Geneva, 1997. (WD 9126-
3.)3)

30 ISO. Information technology : soft-
ware quality characteristics and met-
rics. Part 2 : external metrics 1997-
07-28. Geneva, 1997. (PDTR 9126-
2.)4)

31 ISO. Information technology : soft-
ware process assessment. Geneva,
1996. (ISO/IEC PDTR 15504.)

32 ISO. Information technology : soft-
ware life cycle processes. Geneva,
1995. (ISO/IEC 12207.)

33 ISO. Information technology : soft-
ware product evaluation. Part 1 :
general overview. Geneva, 1998.
(ISO/IEC 14598-1.)

9Telektronikk 1.1999

1) Voting on this document ended on
26.10.1998. Although a majority may
vote in favour of the document, some
editorial comments may have to be
taken into account before 9126-1.2 is
submitted as an approved document.

2) ISO/IEC 9126 is planned to consist of
the following parts; 1: Quality models,
2: External Metrics, 3: Internal Met-
rics, 4: Quality in use metrics.

3) Voting on this document ended
01.09.1997. Although many nations
approved the document, there were a
substantial amount of comments to be
processed before issuing a new version
of the document.

4) Voting on this document ended on
11.11.1997. A restructuring of the doc-
ument is anticipated to separate more
formally between external metrics and
metrics for quality in use.

Appendix 1
Subcharacteristics
of software quality

A1 Functionality sub-
characteristics

The subcharacteristics of functionality
have the definitions shown in Table A1.

A2 Reliability sub-
characteristics

The subcharacteristics of reliability have
the definitions shown in Table A2.

A3 Usability

The subcharacteristics of usability have
the definitions shown in Table A3.

10 Telektronikk 1.1999

Reliability Definition
subcharacteristic

Maturity The capability of the software product to avoid failure as a result of faults in
the software.

Fault tolerance The capability of the software product to maintain a specified level of perfor-
mance in cases of software faults or of infringement of its specified interface.

Recoverability The capability of the software product to re-establish its level of performance
and recover the data directly affected in the case of a failure.

Compliance The capability of the software product to adhere to standards, conventions or
regulations relating to reliability.

Table A2 Reliability sucharacteristics

Usability Definition
subcharacteristic

Understandability The capability of the software product to enable the user to understand
whether the software is suitable, and how it can be used for particular tasks
and conditions of use.

Learnability The capability of the software product to enable the user to learn its application.

Operability The capability of the software product to enable the user to operate and
control it.

Attractiveness The capability of the software product to be liked by the user.

Compliance The capability of the software product to adhere to standards, conventions,
style guides or regulations relating to usability.

Table A3 Usability subcharacteristics

Functionality Definition
subcharacteristic

Suitability The capability of the software product to provide an appropriate set of functions
for specified tasks and user objectives.

Accuracy The capability of the software product to provide the right or agreed results or
effects.

Interoperability The capability of the software product to interact with one or more specified
systems.

Security The capability of the software product to protect information and data so that
unauthorised persons or systems cannot read or modify them and authorised
persons or systems are not denied access to them.

Compliance The capability of the software product to adhere to standards, conventions or
regulations in laws and similar prescriptions.

Table A1 Functionality subcharacteristics

11Telektronikk 1.1999

Efficiency Definition
subcharacteristic

Time behaviour The capability of the software product to provide appropriate response and
processing times and throughput rates when performing its function, under
stated conditions.

Resource The capability of the software product to use appropriate amounts and types of
utilisation resources when the software performs its function under stated conditions.

Compliance The capability of the software product to adhere to standards or conventions
relating to efficiency.

Table A4 Efficiency subcharacteristics

Maintainability Definition
subcharacteristic

Analysability The capability of the software product to be diagnosed for deficiencies or
causes of failures in the software, or for the parts to be modified to be identified.

Changeability The capability of the software product to enable a specified modification to be
implemented.

Stability The capability of the software product to minimise unexpected effects from
modifications of the software.

Testability The capability of the software product to enable modified software to be
validated.

Compliance The capability of the software product to adhere to standards or conventions
relating to maintainability.

Table A5 Maintainability subcharacteristics

Portability Definition
subcharacteristic

Adaptability The capability of the software product to be adapted for different specified
environments without applying actions or means other than those provided
for this purpose for the software considered.

Installability The capability of the software product to be installed in a specified environment.

Co-existence The capability of the software product to co-exist with other independent soft-
ware in a common environment sharing common resources.

Replaceability The capability of the software product to be used in place of another specified
software product for the same purpose in the same environment.

Compliance The capability of the software product to adhere to standards or conventions
relating to portability.

Table A6 Portability subcharacteristics

A4 Efficiency

The subcharacteristics of efficiency have
the definitions shown in Table A4.

A5 Maintainability

The sucharacteristics of Maintainability
have the definitions shown in Table A5.

A6 Portability

The subcharacteristics of portability have
the definitions shown in Table A6.

Øystein Skogstad (55) is Senior Scientist at SINTEF Tele-
com and Informatics, Trondheim. He is working with safety
issues relating to electronic railway signalling systems.
During his career he has also been engaged in research
activities in various other areas including reliability in
telecommunication switching, telecom network reliability,
software quality assurance and software engineering meth-
ods.

e-mail: Oystein.Skogstad@informatics.sintef.no

12 Telektronikk 1.1999

This paper analyses our ability to
measure software quality. The analysis
is based on the representational theory
of measurement. We analyse three
assumptions on software quality
measurement and recommend an
increased measurement focus on estab-
lishing empirical relational systems
(models of what we measure) in soft-
ware quality related work. Applying
measurement theory on the measure-
ment of software quality related prop-
erties means that we have a powerful
tool to understand what we measure,
what the meaningful operations on the
measured values are, and how to in-
terpret the results.

1 Introduction

Most of the software quality standards
and frameworks, such as ISO 9001/9000-
3, the Capability Maturity Model, [1],
ANSI/IEEE Std. 730-1989 and ESA
PSS-05-0 1991, require or recommend
measurement of software quality. Unfor-
tunately, there is a large gap between the
requirement that quality measurement
should be carried out and the guidelines
on how to carry out the measurements.
For example, the quality standard ISO
9000-3 Section 6.4.1 states that: “There
are currently no universally accepted
measures of software quality. ... The sup-
plier of software products should collect
and act on quantitative measures of the
quality of these software products.”

Here, ISO 9000-3 requires quality
measurement and at the same time
admits that there are no (universally)
accepted quality measures. In order not
to have contradicting requirements ISO
9000-3 (and other similar frameworks)
may have made one or more of the fol-
lowing assumptions:

A1: Although no universal software
quality measures exist, there are mean-
ingful quality measures for particular
environments.

A2: Widely accepted quality measures
will occur, when the software quality
measurement research becomes more
mature.

A3: Measurement of software quality
indicators (so-called quality factors) can
be measured and used to predict or in-
directly measure the software quality.

This paper analyses the validity of these
assumptions from the perspective of the
‘representational measurement theory’.

We give a brief introduction to measure-
ment theory in Section 2. In Section 3 we
apply the theory to formulate the neces-
sary preconditions for meaningful
measurement of software quality. Then,
in Section 4, we discuss whether com-
mon quality definitions enable meaning-
ful measurement of software quality.
Finally, in Section 5, we draw conclu-
sions about the validity of the assump-
tions A1-A3 and recommend actions
based on the analysis results.

1.1 Previous work on measure-
ment theory and software
quality

Possibly, the first paper on measurement
theory was written by Stevens [2] in
1946. In 1981, the first paper connecting
software measurement and measurement
theory was published, see DeMillo and
Liption [3]. The first real application of
measurement theory on software mea-
surement was, according to Melton [4],
not carried out before the late 1980s. In
the 1990s, there have been several soft-
ware measurement theory papers, mainly
on the evaluation of software complexity
measures, see for example Zuse [5] and
Fenton [6]. As far as we know, no paper
on measurement theory in depth analys-
ing software quality measurement has
been published.

2 A brief introduction to
measurement theory

When we measure length in metres and
weight in kilograms we do not reflect
much on what we do when we measure.
Measuring an attribute where we have a
common understanding of what we mea-
sure and accepted measurement methods,
this lack of reflection is not harmful.
When measuring software quality, how-
ever, we do not have an accepted under-
standing of what quality is, nor do we
have commonly accepted measures. For
this reason, we need a framework for
quality measurement reflections, such as
reflections on

• The preconditions for quality measure-
ment;

• How to analyse the meaningfulness of
quality measures; and

• How to interpret and use the measured
values.

We argue that measurement theory estab-
lishes such a framework.

2.1 Measurement theory
definitions

The following definitions were adapted
from Melton [4]:

Def. Empirical Relational system:
<E,{R1..Rn}>, where E is a set of entities
and R1..Rn the set of empirical relations
defined on E with respect to a given attri-
bute (for example, the attribute quality).

The empirical relational system is a
model of the ‘world’ and represents a
perspective on our knowledge about the
phenomenon to be measured. The model
should ensure agreement about the em-
pirical relations and enable measure-
ment. For example, to state that program
A has more modules than program B we
need a model of programs that enable us
to agree upon what a module is and how
to identify it.

Def. Formal (numerical) Relational
system: <N,{S1..Sn}>, where N is a set of
numerals or symbols, and S1..Sn the set
of numerical relations defined on N.

Def. Measure: M is a measure for
<E,{R1..Rn}> with respect to a given
attribute iff:

1. M: E → N

2. Ri(e1, e2, ... ek) ⇔ Si(M(e1), M(e2), ...
M(ek)), for all i.

Condition 1 says that a measure is a
mapping from entities to numbers or
symbols. Condition 2, the representation
condition, requires equivalence between
the empirical and the formal relations.

Def. Admissible transformation: Let M
be a measure, E a set of entities, N a set
of numerals and F a transformation
(mapping) from M(E) to N, i.e. F: M(E)
→ N. F is an admissible transformation
iff F(M(E)) is a measure.

In other words, an admissible transfor-
mation preserves the equivalence be-
tween the empirical relations and the
formal relations.

The definition of admissible transforma-
tions enables a classification of scales.

Software quality according to measurement theory
M A G N E J Ø R G E N S E N

13Telektronikk 1.1999

A common classification of scales is the
following:

Nominal scale: Admissible transforma-
tions are one-to-one mappings. The only
empirical relation possible is related to
‘equality’. Separating programs into
‘structured’ and ‘unstructured’ leads to
a nominal scale.

Ordinal scale: Admissible transforma-
tions are strictly increasing functions.
The empirical relations possible are re-
lated to ‘equality’ and ‘order’. Assigning
the values ‘high quality’, ‘medium qual-
ity’ and ‘low quality’ to software leads to
an ordinal scale.

Interval scale: Admissible transforma-
tions are of the type F(x) = ax + b, a > 0.
The empirical relations possible are re-
lated to ‘equality’, ‘order’ and ‘differ-
ence’. The temperature scale (in degrees
Celsius) is an interval scale.

Ratio scale: Admissible transformations
are of type F(x) = ax, a > 0. The empi-
rical relations possible are ‘equality’,
‘order’, ‘difference’ and ‘relative differ-
ence’. The length of programs measured
in lines of code forms a ratio scale.

Software quality should at least be mea-
surable on an ordinal scale, an interval
scale or a ratio scale. Otherwise, we
would not be able to state that software
A is ‘better’ than software B with respect
to quality, i.e. our intuition of what soft-
ware quality is would be strongly vio-
lated. In measurement theory terminol-
ogy this means that we should require
that the empirical relational system in-
cludes an accepted understanding of the
relation ‘higher quality than’.

The appropriateness of statistical and
mathematical methods to the measured
values is determined by the type of scale,
i.e. by the admissible transformations on
the scale values. For example, addition of
values are meaningful for values on an
interval or ratio scale, not on an ordinal
or nominal scale. This means, for exam-
ple, that ‘units of software quality’ must
be meaningful to calculate the mean soft-
ware quality.

There are diverging opinions on how
rigidly the scale prescriptions should be
interpreted, see Briand et al. [7] for an
overview.

3 Preconditions for the
measurement of soft-
ware quality

Depending on how we define software
quality, software quality may be directly
measured, indirectly measured or pre-
dicted. The preconditions for the differ-
ent measurement types differ. Below we
have applied measurement preconditions
on the measurement of software quality.

The preconditions for direct measure-
ment of software quality are that:

1 The empirical relational system of
software quality is established. In our
opinion, this means that, at least, we
should have a common understanding
of the relations ‘same quality as’ and
‘better quality than’.

2 A numerical or symbolic system with
equivalent formal relations to the
empirical quality relations is estab-
lished, for example the formal rela-
tions “=“ and “>“.

3 A measure (mapping) from the soft-
ware quality to numbers or symbols
is defined.

4 A measurement tool or method im-
plementing the measure must be
implemented.

The preconditions for indirect measure-
ment of software quality are that:

1 The preconditions for measurement
of the directly measured software attri-
butes are met.

2 A complete empirical connection be-
tween the directly measured attributes
and the indirectly measured software
quality is established. The connection
is in our case complete when all
aspects of the agreed understanding
of software quality can be determined
from the directly measured attributes.

3 The connection is accurately translated
into the formal relational system
(through a formula).

Predictions of software quality are simi-
lar to indirect measurement. The differ-
ence is that predictions do not require a
complete empirical connection or an
accurate translation into the formal rela-
tional system, i.e. all the empirical rela-
tions are not necessarily preserved into
the formal relational system. Notice the
difference between this definition and the
common use of the term. Commonly, the

meaning of predictions is limited to state-
ments about future events, for example
weather predictions. In measurement
theory, prediction is used about all
incomplete measurements, not neces-
sarily about future events; for example,
the prediction of the remaining number
of errors in a piece of software based on
the number of errors found in the system
test.

4 Common quality defini-
tions and measurement
theory

The most common types of software
quality definitions are, probably, the fol-
lowing three:

1 Quality is determined by a set of qual-
ity factors (see for example ISO 8402-
1986 and IEEE 610.12-1990).

2 Quality is determined by the user satis-
faction, see for example Deephouse
[8].

3 Quality is determined by the errors or
unexpected behaviour of the software,
see for example Carey [9] and Lanu-
bile [10].

These definitions seem to be based on a
similar ‘intuition’ of what software qual-
ity is. For example, they seem to share
the opinion that software quality is the
degree of meeting the user needs. The
difference may lay in whether they con-
sider user needs in the form of 1) re-
quirements and implied needs, 2) user
satisfaction, or 3) the level of incorrect
behaviour of the software. From the
viewpoint of measurement theory these
differences are significant, and lead to
different empirical relational systems.

Note that there are numerous other defi-
nitions and perspectives on (software)
quality, see for example Garvin [11] and
Dahlbom & Mathiassen [12] for classi-
fications and overviews.

4.1 Quality as a set of quality
factors

The most common definitions of soft-
ware quality in the quality standards are
variants of the ISO quality definition:
(ISO 8402-1986) The totality of features
and characteristics of a product or ser-
vice that bear on its ability to meet stated
or implied needs.

14 Telektronikk 1.1999

Examples of such “features and charac-
teristics” (quality factors) are efficiency,
flexibility, integrity, interoperability,
maintainability and portability.

The above type of definition has, among
other things, the following implications
for the empirical relational system of
software quality:

• The relation ‘better quality than’
should be interpreted as a better ability
to meet stated and implied needs.

• In order to measure and compare soft-
ware quality we need to formulate an
empirical connection between the
quality factors and the software quality
itself, i.e. software quality is indirectly
measured.

We will argue that the preconditions for
indirect measurement are very hard to
meet for this type of empirical relational
system for the following reasons:

• It is far from obvious that all the qual-
ity factors, for example maintain-
ability, are measurable. In our opinion,
some of the quality factors are just as
difficult to measure as the software
quality itself.

• As long as our understanding of soft-
ware quality is at an ‘intuitive’ level
and not explicitly formulated we will
not be able to establish a complete
empirical connection between the
quality factors and the software qual-
ity. For example: Assume that we
believe (or agree on) that the only rel-
evant quality factors are reliability and
usability, and that these quality factors
are measurable. We will probably not
always be able to agree on the total
impact on the quality of a decreased
usability together with (or perhaps
caused by) an increased reliability. In
other words, we have no complete con-
nection between quality and the quality
factors reliability and usability.

From a measurement theory viewpoint,
this means that the quality factor based
definitions do not enable measurement of
software quality. One might argue that
the quality factor definitions suggest a
measurement of quality factors in order
to predict the software quality. In this sit-
uation an accurate connection between
the quality factors and the software qual-
ity is not needed. On the other hand, in
order to have a meaningful prediction
system we still need an empirical rela-
tional system including an accepted
understanding of the relation ‘higher

quality than’, i.e. an accepted under-
standing of ‘a higher ability to meet user
needs’. Currently, such an empirical rela-
tional system does not exist.

4.2 Quality as user satisfaction

A common approach, for example by the
quality framework Total Quality Man-
agement (TQM), is to define or under-
stand software quality as the level of user
satisfaction. This understanding of soft-
ware quality has, among other things, the
following consequences for the empirical
relational system of software quality:

• There must be a commonly accepted
method of identifying the user satis-
faction;

• There must be a commonly accepted
meaning of the relations ‘same quality
as’ and ‘better quality than’ based on
user satisfaction

We may argue that this is possible
because:

• A method of identifying the user satis-
faction may be to ask them;

• ‘Same/higher quality than’ may be
understood as the same/higher propor-
tion of satisfied users.

In addition, a measure (mapping) from
software quality to numbers or symbols
can be the mapping from ‘empirical pro-
portions’ to ‘numerical proportions’ of
satisfied users. This measure preserves
the relation ‘higher quality than’.

The main problems with this type of soft-
ware quality measurement are, in our
opinion, that:

• The measured values do not always
correspond with the common intuition
of what software quality is. For ex-
ample, the user satisfaction (quality)
is not a characteristic of the software,
but of the user, i.e. the software quality
can change regardless of changes in
the software.

• Why call it software quality, when we
measure user satisfaction?

• How do we know that user A’s ‘very
satisfied’ means the same as user B’s
‘very satisfied’?

4.3 Software quality related
to errors

In spite of the high number of sophisti-
cated definitions of software quality, the
software industry seems to operationalise
software quality as the degree of errors in
the software, for example those errors
found by the end users. In order to com-
pare the quality of software with differ-
ent size the errors get divided by a
measure of the software size, frequently
the number of lines of code.

IEEE 1044-1993 defines an error
(anomaly) as any condition that departs
from the expected. The expectations may
be described in a document or be based
on other sources. To count (and cate-
gorise) errors we need to agree on how to
decide whether a condition is expected or
not, and whether a condition should be
counted as one or more errors. To some
extent, this seems to be possible. For
example, we could agree that only the
expectations specified in the requirement
specification and the obvious implica-
tions of the requirement specifications
should be counted as expectations.

Surprisingly, there is no commonly
accepted definition of lines of code.
There are, however, many company spe-
cific definitions which enable measure-
ment of lines of code. Lines of code is a
frequently criticised measure. The criti-
cism, however, has mainly been on the
use of lines of code in measurement of
productivity. From a measurement theo-
retical viewpoint lines of code is a valid
measure of the ‘physical’ length of the
source code of software.

Assuming that we accept that software
quality can be measured as errors divided
by software size, the relation ‘higher
quality than’ can, for example, be inter-
preted as a lower value of the ratio
‘errors/lines of code’.

A naïve use of these measures, i.e. not
distinguishing between different types of
errors, may give counter intuitive results.
For example, two cosmetic errors have a
stronger impact on the quality than one
serious error.

To avoid this counter intuitive result, a
classification of the errors in for example
severity of failure (see IEEE 1044-1993
for an overview of classifications) is
needed. This means that we need a com-
plete empirical connection between the
error categories and the software quality

15Telektronikk 1.1999

in order to measure quality, i.e. indirect
measurement. In practice, this type of
indirect measurement seems to be just
as difficult as the indirect measurement
through the quality factors.

5 Conclusions and rec-
ommendations

Based on the previous analyses, we now
examine the assumptions from Section 1:

A1: Although no universal software
quality measures exist, there are mean-
ingful quality measures for particular
environments.

In order to establish meaningful software
quality measures for particular environ-
ments and situations the involved persons
should have approximately the same
empirical relational system of software
quality. For example, the users may
decide that the only software characteris-
tic important for the quality is how much
the software decreases the error density
in registering customer orders. Assuming
a baseline error density the software
quality may be measured as the percent-
age decrease in error density. From a
measurement theory viewpoint this is an
example of valid measurement. It is, on
the other hand, an example of a label on
a measure that hides what is actually
being measured.

A lot of empirical studies on software
development and maintenance define
quality measures for particular environ-
ments (or applications), see for example
the quality measures of the Software
Engineering Laboratory for the NASA
Goddard environment described in Basili
& Selby [13]. The variation of the em-
pirical relational systems of software
quality in these studies is very high. An
example is Schneiderman [14] who uses
software quality as a label on a measure
of the ease of memorisation/recalling
program information.

For this reason, the reader of software
quality studies should always try to get
an understanding of the empirical rela-
tional system of a software quality mea-
sure before interpreting the results.

When there is no agreed understanding
of software quality, or only intuitive and
non-articulated connections between
what is measured and software quality,
the measurement is not a meaningful
quality measurement.

A2: Widely accepted quality measures
will occur when the software quality
measurement research becomes more
mature.

If we require that the empirical relational
system shall correspond with our intu-
itive understanding of software quality, it
is not likely that we will see widely
accepted measures of software quality.
This lack of ability to agree on the under-
standing of software quality has, in our
opinion, not much to do with the matu-
rity of the software measurement disci-
pline. Instead it has to do with the intrin-
sic difficulties of explicitly formulating
what we understand by the very complex
phenomenon ‘software quality’ and the
many different context and culture
dependent viewpoints on software
quality.

It is, of course, possible to ‘standardise’
on one or more viewpoints on software
quality – which has been done by many
international standards and frameworks
for software quality (see previous sec-
tions). Unfortunately, we may have to
choose between a vague quality defini-
tion, which does not describe a complete
empirical relational system enabling soft-
ware quality measurement, and a well-
described empirical relational system,
which does not correspond to the intu-
itive understanding of software quality.

The wish expressed in Price Waterhouse
[15] “... research should be undertaken
with a view to developing a workable
definition of software quality, and mea-
sures of quality ... that can be easily
implemented by software developers”
may therefore be hard to meet when aim-
ing at widely accepted quality measures.

A3: Measurement of software quality
indicators (so-called quality factors) can
be measured and used to predict or indi-
rectly measure the software quality.

The method of dividing a complex
characteristic into less complex charac-
teristics in order to indirectly measure the
complex characteristic is typical for
scientific work, and may have inspired
for example IEEE in their software qual-
ity factor work, see Schneidewind [16].
This type of indirect measurement is only
meaningful if an empirical connection
between the directly and the indirectly
measured characteristics is established.
This type of connection is, for example,
established for the indirect measurement
of ‘speed’ through the direct measure-

ment of ‘length’ per ‘time unit’. How-
ever, in spite of a lot of effort we have
not been able to agree on similar connec-
tions for software quality. Even worse,
it is not obvious that the most common
quality factors, such as maintainability
and user friendliness, are less complex
to measure than quality itself. As long
as we are unable to establish empirical
connections between the quality factors
and the quality itself, the quality factor
work may not be able to contribute much
to the work on software quality.

On the basis of the previous analysis, we
recommend that:

• Instead of trying to develop a widely
accepted software quality measure (or
set of quality factors) we should focus
on establishing empirical relational
systems and better measures for the
more measurable quality related prop-
erties of software, such as user satis-
faction or error density. Measurement
theory should be applied in order to
know what we measure and how to
interpret the results.

• The measures of software quality re-
lated attributes should not be called
software quality measures. For ex-
ample, to call a measure of error den-
sity a quality measure is unnecessary
and misleading.

• There should be an increased empirical
research and industry focus on the con-
nections between the different quality
related attributes. Measurement theory
should be consulted when describing
these connections. This way we may
be able to build better prediction sys-
tems for quality related attributes, such
as user satisfaction or reliability.

References

1 Paulk, C et al. The capability matu-
rity model : guidelines for improving
the software process. Reading,
Mass., Addison-Wesley, 1995.

2 Stevens, S. On the theory of scales of
measurement. Science, 103,
677–680, 1946.

3 DeMillo, R A, Liption, R J. Software
project forecasting. In: Software met-
rics. Perlis, A J et al. (eds.). Cam-
bridge, MA, MIT Press, 1981, 77–89.

4 Melton, A (ed). Software measure-
ment. London, International Thom-
son Computer Press, 1995.

16 Telektronikk 1.1999

5 Zuse, H. Software complexity : mea-
sures and methods. Amsterdam, de
Gruiter, 1990.

6 Fenton, N. Software measurement :
a necessary scientific basis. IEEE
Transactions on Software Engineer-
ing, 20 (3), 199–206, 1994.

7 Briand, L et al. On the application of
measurement theory in software en-
gineering. Empirical Software Engi-
neering, 1 (1), 1996.

8 Deephouse, C et al. The effects of
software processes on meeting tar-
gets and quality. In: Proceedings of
the Twenty-Eighth Hawaii Inter-
national Conference on System
Sciences, Hawaii, 1995, 4, 710–719.

9 Carey, D. Is “Software quality”
intrinsic, subjective or relational?
Software Engineering Notes, 21 (1),
74–75, 1996.

10 Lanubile, F, Visaggio, G. Evaluating
predicting quality models derived
from software measures : lessons
learned. University of Maryland,
Dept. of Computer Science, 1996.
(Technical report CS-TR-3606.)

11 Garvin, A. Competing on the eight
dimensions of quality. Harvard Busi-
ness Review, 65, Nov–Dec, 101–104,
1987.

12 Dahlbom, B, Mathiassen, L. Com-
puters in context. Oxford, NCC
Blackwells, 1995.

13 Basili, V R, Selby, R W. Calculation
and use of an environment’s charac-
teristic software metric set. In: Pro-
ceedings of the 8th Int. Conf. on Soft-
ware Engineering, London, 386–393,
1985.

14 Schneiderman, B. Measuring com-
puter program quality and compre-
hension. Int. J. Man-Machine Stud-
ies, 9, 465–478, 1977.

15 Price Waterhouse. Software quality
standards : the costs and benefits.
London, Price Waterhouse, 1988.

16 Schneidewind, N. Methodology for
validating software metrics. IEEE
Transactions on software engineer-
ing, 18 (5), 410–422, 1992.

Magne Jørgensen (34) received the Dr.Scient. degree in
informatics from the University of Oslo in 1994. From 1989
to 1998 he was a research scientist at Telenor Research,
and since 1995 an associate professor at the University of
Oslo. His research interests are in software engineering,
empirical studies and process improvement. Since 1998
he has been leader of a software development process
improvement group at Storebrand.

e-mail: magne.jorgensen@storebrand.no

This paper provides an approach to
increasing software quality by re-
ducing the amount of application spe-
cific code. A technique is provided to
measure the amount of code of a given
application, the amount of function-
ality provided by the application, and
to measure differences between various
implementations of the same applica-
tion. This technique leads to a focus on
parameterisation and management of
code by repository editing tools. We
have little experience on using the app-
roach outlined in this paper. Rather,
the paper summarises an approach
used by the author for comparison of
case tools [1] for large database appli-
cations back in 1991. The author does
not know the applicability of the app-
roach for other application areas; how-
ever, as even real time systems, e.g. for
telecommunications, become more data
centred, the approach may very well be
applicable. The approach is proposed
due to disbelief in the Mk II function
point approach – even if this approach
is developed for a related but some-
what different purpose. The use of the
in-house case tool DATRAN [2] in
Telenor has proved effective to remove
software errors by reducing applica-
tion specific code and moving generic
code to the tool. This way, the generic
code will be extensively tested in varied
usage, and will be untouched by the
application developers.

1 Overview and rationale

Suppose the number of errors made in a
software program is proportional to the
length of the symbolic code of the pro-
gram. The number of remaining faults in
the program is supposed to be exponen-
tially decreasing with the time spent to
identify and remove the errors. What is
then a good strategy to keep the number
of errors low for a given application?
This paper provides one approach to this
problem. The term error can here be
understood as any kind of misbehaviour
of the program, i.e. behaviour that is
detrimental to the usage of the program.

Errors can be identified by a programmer
inspecting, testing or by other means val-
idating the program. The existence of
errors can also be observed by end users
testing or using the program. Validation
need not be a focused activity, as error
detection can be like solving criminal
cases: The public is our best detective.
A large number of users on a varied set

of usages can be a secure – but not
always appropriate – means of identify-
ing errors. Each means of validation can
have a different efficiency; however, the
number of unidentified errors will hope-
fully decrease – maybe not monoton-
ously – as the time spent on validation
increases.

As the number of errors increases with
the length of the program and decreases
with the time spent on validation, the
number of errors for a given application
can be kept low by

1 Minimising the length of explicit pro-
gram code developed for that applica-
tion;

2 Reusing generic program code that is
tested through extensive use of other
applications.

The first item can be interpreted as a
goal, which can be achieved by the sec-
ond item as a means. Reuse of generic
program code can be obtained by use of
inheritance of object-oriented languages.
However, there are many other means to
reduce program length and to improve
program structure. Inheritance can be a
lazy approach to program length reduc-
tion without providing an appropriate
structure. [3] explains that in addition,
an appropriate software architecture is
needed to harvest the benefits. A theory
of software quality by code reduction
requires

1 A measure of program length or size
relative to the functionality provided
by this program;

2 A means to compare the lengths of
two programs providing the same
functionality;

3 Techniques to remove application
specific code.

For bullet 1 we need an understanding of
what is a program unit and what is a func-
tionality unit. These notions will be
addressed in section 2. Sub-section 2.3
provides a short presentation of Mk II
function points, and some of the criticism
to this approach. For bullet 2 we need an
approach for how to identify and compare
differences. The point here is that a to-
tality measure may provide too much
uncertainty to provide useful results,
while incremental comparisons of alterna-
tive programs for the same application can
provide a better understanding. This is
discussed in section 3. Section 4 provides
an overview of alternative techniques to

reduce program lengths, i.e. bullet 3. The
above discussion on inheritance relates to
this third topic.

2 Program and
functionality notions

2.1 Notions

The role of a software entity, of whatever
complexity, can be illustrated as in Fig-
ure 1a. The entity can be a statement, an
object, a module, a process, a function, a
system or other. This software entity we
call a program – independent of the com-
pleteness of the code making up this
entity.

The software entity prescribes the pro-
cessing of the input data, their constraints
and derivations of intermediate and final
output data. This is depicted in Figure 1b.

Output data may be derived directly from
input data or from intermediate data,
which again may be derived from other
intermediate data or input data. These
transformations are explicitly specified
by the program or implicitly prescribed
by the functioning of the compiler or by
references to other programs.

Input data instances can be inputted and
executed into output data instances. Each
data instance must comply with a per-
missible form generated from the pro-

17

Automation approach to software quality
A R V E M E I S I N G S E T

Telektronikk 1.1999

Program

Input Process Output

Compiler

Input Int.data Output

Program

Figure 1a Software prescribes the transformation
from input to output data

Figure 1b Software prescribes the mappings
from input to output data

gram by the compiler. The executor
process enforces this compliance and
prescribed derivations. See Figure 1c.

The executor controls that each data
instance has one of the permissible forms
and produces all prescribed derived data
instances from this data instance. We
imagine that the collection of all per-
missible and prescribed forms of data
is produced by the compiler. This collec-
tion is called the functionality of the
application system.

The functionality defines schemata
whose contents are homomorphic to the
instance data. This means that for each
data instance there is one form that is
identical to that data instance, for each
form there can be several instances;
instances include references between
instances. Each form is called a class rel-
ative to each of its data instances, and a
data item is called an instance relative to
its class.

A collection of instance data is called a
population relative to its schema, and
vice versa. A population together with its
schema is called an application system.
A schema separated from its population
is called a software system. The function-
ality of the schema expresses the inten-
tion of the application system, while the
data instances of the population express
the extension of the application system.

Note that in a real software environment,
the compiler may not precompile the

complete homomorphic schema of the
data instances. Frequently certain aspects
of the executor and compiler are exe-
cuted at run time. In an interpreter both
the executor and the compiler are exe-
cuted at run time.

The functionality of an application sys-
tem states the permissible inputs and out-
puts and the functional, i.e. many-to-one,
mappings from inputs to outputs. The
functionality does not include instruc-
tions to the executor on how to perform
its instructions. These execution aspects
are considered to be included in and
hidden by the executor.

For a given population we can imagine
several alternative schemata that provide
the permissible forms and derivations
exhibited in that population. Hence, the
functionality notion is so far not uniquely
defined. Therefore, we seek something
like a minimal schema for a given popu-
lation; however, we are hesitant to define
minimum in the strict sense, as we are
seeking the minimal schema for all per-
ceivable populations, which are defined
by the schema itself. Therefore, we may
compare alternative schema formula-
tions, compare their permissible popu-
lations and derivations, and find the
smallest schema if they are equivalent
with respect to the studied population;
but we may neither be able to find a
theoretical minimum nor define what
this means relative to something that can-
not be defined. See section 2.3 on task
dependent formulations.

Note that a schema prescribes the per-
missible data instances. A prescription of
a set of permissible data instances we call
a specification. Both data instances and
schema data are inscribed, i.e. written
down, while this paper does not discuss
description mappings from data to phe-
nomena denoted by the data. Many texts
frequently misuse the term description
and its synonym term ‘model’. These
terms should only be used in very rare
cases, and then with great care. See for
example [4].

2.2 Metrics

Automation degree (AD) is defined as the
ratio between functionality length (FL)
and program length (PL). These two
notions will be defined in the subsequent
text. The ratio can be any positive ration-
al number, i.e. both smaller and larger
than 1.

AD = FL / PL (1)

As the objective is to provide high
automation, the automation degree
should be made as large as possible, i.e.
the program length should be reduced for
a given functionality.

The length (PL) of a program we define
to be the number of word inscriptions of
that program. Constants, variables, func-
tion symbols, commands, operators, logi-
cal connectives and other reserved words
are counted as word inscriptions. Note
that if identical word inscriptions appear
several times, for example several addi-
tion operators in one statement, they are
counted as separate word inscriptions;
duplicates are considered significant.
Fields of tables and forms, icons and
lines of graphic interfaces, and dictated
words in sound are counted as word
inscriptions, as well. Finally, editing
commands, menu selections and clicks
on icons are counted as words – double
clicks are counted as (two letters of) one
word. The need to provide a general
technique which applies across various
presentation formats and media is one
reason for counting word inscriptions
rather than tokens or pixels/bits. The
count comprises only explicitly inputted
words, and not words provided from the
tools to the programmer, or otherwise
automatically generated code.

Some editing tools allow various input
sequences, resulting in different word
counts for the same program. The count
only applies for the sequence inputted in

18 Telektronikk 1.1999

Input Int.data Output
Input Int.data Output

Compiler

Input Int.data Output

Program

Functionality

Input Output

ExecutorData
instances

Schema

Population

Int.data

Figure 1c Transformation of data instances as prescribed
by the functionality of a system

the particular case. Thus, functionality
over program length can be improved
by finding a shorter editing sequence
for creating the same program. This is
particularly relevant when the program
is put in a database repository. Then vari-
ous overlapping views of the program
can be defined by selections, projections
and unions over the universal relation
(table) making up the program. Editing
may be done in any of these views. Care-
ful design, choice and use of views in the
best sequence can improve the ratio of
functionality over program length. Hence,
the word count is not only dependent on
the program itself, but on the particular
use of the editing tool provided to create
the program. Note that the viewing
mechanism allows presentation and read-
ing of many overlapping views whose
sum of word counts can be much larger
than the word count of the explicitly
inputted data.

The functionality of the application sys-
tem is defined by a collection of classes
and references between these classes that
are homomorphic to the data instances.
References [5], [6] and [7] define a lan-
guage satisfying the homomorphism
requirement. The functionality length
(FL) is measured by word count of all
classes of the functionality. The count
comprises the entire syntax tree of the
functionality, i.e. the number of object
classes and attribute group classes and
attribute classes and value classes and
reference classes, etc., as well as all
presentation forms, i.e. views, and their
syntax trees on various media, including
directives and commands on the pre-
sented data. Note that the count com-
prises all nodes of the data tree, and not
only the leaf nodes. Each permissible
individual full value is considered to be
a leaf node.

The language for expressing the func-
tionality – and most other languages –
will allow for stating the same fact in
various ways. Therefore, some kind of
normal form is needed for comparison of
word counts. This normal form is dic-
tated by the homomorphism requirement,
which implies that all functors, including
inheritance, type specification, operators
and connectives are executed into func-
tion values that are homomorphic to the
data instances. Hence, the inheritance
and type statements are not counted in
the functionality length, but are counted
in the program length. This way, inge-
nious use of various kinds of inheritance
and type statements are important, but

not the only means to improve the
automation degree.

The basic automation degree (AD)
expresses the ratio between the total
word counts of the functionality (FL) and
the actual program (PL) to provide this
functionality. Other indicators may be
more appropriate for practical usage. The
attribute automation degree (a-AD) dis-
regards the count of constant values of
the functionality (a-FL). In this case indi-
vidual attributes are considered to be
leaf nodes.

a-AD = a-FL / PL (2)

The kernel length (KL) measures the
number of words of the (application)
data schema [5], and does not count the
(external or internal) presentation forms
on various media or directives and com-
mands on the presented data. The kernel
automation degree (k-AD) measures the
ratio between the kernel length (KL) and
the total program length (PL).

k-AD = KL / PL (3)

The kernel scope can be combined with
the attribute level of detail, e.g. into the
attribute kernel automation degree.

ak-AD = a-KL / PL (4)

The object-reference length (or-KL)
counts the number of object classes and
references in the application schema,
excluding count of attribute groups,
attributes, values and behaviour specifi-
cation. The object-reference automation
degree (or-AD) measures the ratio
between the object-reference length
(or-KL) and the total program length
(PL).

or-AD = or-KL / PL (5)

The measures are becoming increasingly
more high level from (1) to (5). This
means a more inaccurate and easier
count.

2.3 Alternative metrics

Unadjusted Mk II function points (ftp)
[8] is defined as

ftp = k4(k1i + k2d + k3o), (6)

where i is the number of insert fields, i.e.
insert, modify or delete, d is the number
of object classes/entities, o the number of
output/read fields, and ki are proportion-
ality constants. ftp is a number that is
supposed to be proportional to the total

amount of development work, and the
ki-s are based on a suit of test cases. The
ftp-s are estimated per end user task and
summarised across all tasks to be sup-
ported by the software developed by
the project. The idea is that functionality
should be measured from the end user
perspective and not for a specific design.

There is a basic difference in the count-
ing of FL versus ftp. ftp is based on
counting of variable input fields, object
classes and output fields only. In FL,
headers – corresponding to object class
labels, attribute group labels, etc. – are
considered superior nodes of the data
values found in the data fields. Hence,
attribute classes, attribute group classes,
object classes and recursively superior
object classes are counted in the FL esti-
mate, and not only the leaf data value
fields of the generated screens as in ftp.

In FL estimation, each screen and each
screen definition is considered to make
up an entire syntax tree. The screen de-
finition is called an external schema [5].
The external schemata are created by
navigation through the syntax tree of the
application schema data structure. All
permissible presentation forms are de-
fined in the application schema. The
application schema can be split into
sublayers. The permissible presentation
forms to the end users are defined in the
external terminology schema [7].

We observe that while FL counts the
length of the entire syntax tree, ftp basi-
cally counts the number of variable fields
in the generated application only. The
FL syntax tree appears as variable fields
(both input and output) within the soft-
ware development environment, while
PL appears as input fields only in the
software development environment.

There are a number of other difficulties
with the ftp approach:

1 The constants, ki, are estimated for a
set of applications, methods and tools
used to develop these applications; the
constants and their relative sizes may
not be appropriate for other applica-
tions, methods and tools.

2 The tasks are assumed to exist in-
dependently of the design of the sys-
tem, however, this disregards the fact
that tasks are frequently created to
manage data; hence, data and tasks are
created interactively, and there may be
many alternative tasks to provide the
same management of data.

19Telektronikk 1.1999

3 The focus on tasks invariably leads to
tailoring the human-computer interface
functions to each task; this may lead to
a large set of simple functions rather
than a small set of generally applicable
functions.

4 Summation across tasks may lead to a
large function point estimate compared
to an estimate for a general query-by-
example like interface, which provides
more flexibility and power, but for
which ftp does not apply.

5 The use of object class count only does
not distinguish data structures having
different complexity. This shortcoming
may partly be accounted for by the i
and o numbers; however, the basic ftp
does not provide means to distinguish
different behaviour complexities.

6 During analysis and early develop-
ment, the designer should aim at har-
monising and reducing the number of
data classes, presentations and func-
tions; however, this would lead to
reducing the ftp and the estimated
efficiency, i.e. ftp per working hour.

7 Even if the ftp count is very detailed,
ftp per working hour gives no indica-
tion of what aspect of the total project
work – analysts, managers, program-
mers, users, tools, applications or other
aspects – caused the good or bad effi-
ciency.

8 Comparison of ftp per working hour
for different applications may not be
a very meaningful exercise; however,
it may be used as a crude indicator of
the development efficiency if it is fol-
lowed by more detailed analysis and
interpretation.

9 ftp may be used for estimating the
resources needed to undertake the
development work; however, this
implies that most of the analysis work
is done outside the project, which
means that the uncertainties and diffi-
culties are moved outside the project.

3 Measurements
and their usage

To count the number of words in a pro-
gram can provide a reasonably unique
result. However, the measurement can
become considerably more ill-defined
when measuring the length of a ‘pro-
gram’ created from a form filling or
graphic dialogue. Estimation of the
length of the functionality provided

by the program can be even harder
to overview and, therefore, uncertain.

We assume that the mean estimation devia-
tion is proportional to the estimated length.

∆PL = kPLPL (7)

∆FL = kFLFL (8)

∆AD = (FL ± ∆FL) / (PL ± ∆PL)
– FL / PL = FL / (PL ± ∆PL)
± ∆FL / (PL ± ∆PL) – FL / PL
≈ FL /(PL) ± ∆FL / (PL)
– FL / PL = ±∆FL / PL
if ∆PL << PL (9)

∆AD ≈ ±∆FL / PL == ±kFLFL / PL
= ± kFLAD if PL << PL (10)

∆AD = kADAD
≈ ± kFLAD if PL << PL (11)

If we compare lengths or automation
degrees of two separate programs, then
the estimation deviation becomes the
sum of the individual deviations.

∆(PL1 – PL2) = ∆PL1 + PL2 (12)

∆(FL1 – FL2) = ∆FL1 + FL2 (13)

∆(AD1 – AD2) = ∆AD1 + ∆AD2
if ∆PL1 << PL1
and if ∆PL2 << PL2 (14)

∆(AD1 – AD2) / (AD1 – AD2)
= (∆AD1 + ∆AD2) / (AD1 – AD2)
if ∆PL1 << PL1
and if ∆PL2 << PL2 (15)

For small differences (AD1 – AD2) the
estimation deviation (∆AD1 + ∆AD2)
will become large relative to the differ-
ence and make the comparison, i.e. the
difference estimate, invalid. Therefore,
we recommend the following approach:

1 Incremental comparisons. Lengths
should only be compared for different
programs implementing the same or
for overlapping applications.

2 White box. The major differences
between programs implementing the
same or overlapping applications
should be identified and compared
individually.

3 Automation impact. The total impact
of the use of the programs should be
estimated.

The incremental comparison in bullet 1
makes the comparison relevant, and en-
sures that only comparable programs are
compared. On the other side, Mk II func-

tion point is typically used to compare
development of unrelated applications.

The white box approach in bullet 2 en-
sures focus on major differences in the
implementation of the same application,
and provides estimates for these diffe-
rences only. This way, the deviation esti-
mates become proportional to the length
of the differences and not to the total
lengths. Bullet 2 is a white box approach,
where the differences must be identified
and understood before the estimates can
be made. Mk II function point is a black
box approach, which is used to compare
development efficiency of unrelated
applications.

The automation impact is studied in
bullet 3 and ensures that the total effects
of implementation differences are identi-
fied and estimated. This typically in-
volves a cost-benefit analysis, which
can be done in any traditional way, and
is outside the scope of this paper. Mk II
function point compares total develop-
ment projects, and not only the automa-
tion aspects. The problem with the Mk II
function point approach, as is the case
with measures on any social system, is
that the system tends to give you the
answers you want, but you do not know
what aspects of the system have been
affected. Mk II typically compares func-
tion point efficiency and not cost-benefit.

Having listed several difficulties with Mk
II function point analysis, some benefits
should be listed, as well: Mk II seems to
provide better estimates of project efforts
than expert estimates. There can be sev-
eral reasons for this result:

1 Mk II provides empirical and quantita-
tive results, which can be reused when
estimating new projects.

2 Mk II requires that the input-output
functionality and other aspects of the
project are carefully identified before
estimates can be made, this way pro-
viding better data for estimation.

3 The required early data collection may
lead to moving more analysis work
before project start than with other
approaches which incorporate the
uncertainties into the project.

4 Project workers may tend to deliver as
expected when Mk II function point
analysis is made and the estimation
results are known.

5 Mk II may lead to a certain task ori-
ented design, and may avoid data ori-

20 Telektronikk 1.1999

ented or tool oriented designs which
may involve more uncertainty.

6 Mk II is used for projects where it fits,
but is not used for other projects which
are more complex and uncertain, and
this way provides a biased result when
comparing total estimation accurateness.

4 Techniques to
remove errors

Techniques to modify program and func-
tionality lengths are application depen-
dent, as some program architectures are
appropriate for some applications and not
for others. This section provides some
application and implementation depen-
dent techniques to manipulate the
lengths, and hence the automation
degree of a program.

1 Unification of input-output. If input
and output data are provided at the
same medium, e.g. the human-com-
puter interface, they can be unified into
one common definition. Hence, an out-
put picture can be used for various
inputs by accepting editing of the data
fields. The unified picture will com-
prise one word inscription for the data
field and one for the permissions,
with the four value words read, insert,
modify and delete, altogether six word
inscriptions. If these functions were
separated into four different pictures,
three word inscriptions (two fields
and one permission value) would be
needed for each picture, giving twelve
word inscriptions altogether. The unifi-
cation provides the same functionality
by a reduction of this program piece
from twelve to six word inscriptions,
and improves the automation degree
for this program piece by a factor of
two.

2 Centralisation of data definitions.
Suppose an object class definition is
needed in four screen pictures and two
batch programs, altogether six presen-
tations. If the definition is centralised
into one application schema, the func-
tionality remains unchanged, while the
program length is reduced to one sixth
for this piece of code used to provide
the object class definition. Hence, the
automation degree is increased by a
factor of six.

3 Data-driven approach. A third genera-
tion language typically states instruc-
tions to the underlying machine, e.g.
to transform or move data from input
to the application, from the application

to the database, etc. In a data driven
approach, only the relationships
between external application and in-
ternal forms of data are stated in the
schemata in a repository. An applica-
tion independent executor transforms
and moves the data along these rela-
tions between all media without any
application dependent instructions, as
the instructions are built into the
generic executor. This way, the system
becomes parameter-driven by data in
the repository rather than by instruc-
tions. The total effect on program
length can become considerable.

4 Default implementation. Suppose the
application schema (in bullet 2) comes
in addition to the internal schema (of
the database). For the calculation we
assume that the application and in-
ternal schemata are identical, except
that the class labels are different.
Hence, for each word inscription in the
internal schema, there is an extra word
in the application schema, and an extra
word is needed to refer one way be-
tween the two. The internal schema
increases the program length by a fac-
tor of three. However, if the internal
schema is generated automatically
from the application schema, the total
automation degree is unchanged. The
very purpose of the internal schema is
to allow various implementations with-
out affecting the application. Also,
internal schemata can be used to define
various communication interfaces.

5 Distribution of internal data. There
can be several reasons for creating a
centralised application schema. Cen-
tralised definition (a) of user oriented
class labels (as in bullet 3) can be one
reason. If (b) a multi-valued attribute
group has to be stored in a separate
fixed-length record type, then a one-to-
many mapping to the internal schema
is needed. If (c) the application data
are stored in several databases or are
communicated to other systems, this
could be another reason for having a
centralised application schema – rather
than mapping directly from internal to
external schemata. Suppose (d) that
one class is stored in two databases
and is communicated to one other sys-
tem; this object class is presented in
four pictures. With the centralised
application schema one extra word
inscription is needed for the class
label, two for references to the internal
databases, and one for the reference to
the communication interface; alto-
gether four word inscriptions. In addi-

21Telektronikk 1.1999

Compiler

Input
Output

Program

Functionality

Input Output

Int.data

Int.data

Figure 2a Unification of input-output

Compiler

External
schema

Repository

Functionality

Input Output

Application
schema

Int.data

Figure 2b Centralisation of data definitions

Compiler

External
schema

Repository

Functionality

Input Output

Application
schema

Executor

Int.data

Figure 2c Data-driven approach

tion comes four references from the
pictures to the application schema,
which makes a total of eight word
inscriptions. Without the application
schema, references are needed from
each screen picture to both the internal
databases and the communication
interface, i.e. four times three make

twelve word inscriptions. We observe
that the centralisation of the applica-
tion schema has reduced the program
length from twelve to eight word
inscriptions, while the functionality
remains unchanged. For (e) an applica-
tion having few overlapping pictures,
the application schema can reduce the
automation degree. For an application
having a large fan-out to internal and
external schemata, the introduction of
an application schema can increase the
automation degree.

6 Default generation of layout. Many
Case tools include a screen painter,
and the screen fields are mapped to
the data definitions, typically in a
database schema. If layout and con-
tents of screens are separated, with a
mapping between them, this will triple
the program length for this aspect of
the system. However, if the layout is
generated automatically according to a
default presentation style, the program
length is reduced to the original length.
Also, if the presentation style is de-
fault, all the manipulation means can
be harmonised and common for all
these presentations. This can provide
much more functionality than provided
by a tailored layout design. In addition,
the designer can be freed from the

detailed layout design, which would
have required a greater program length
without improvement of the function-
ality.

7 Inheritance and type definitions. The
mapping from the application schema
to a contents schema (in bullet 5) is
already a sub-setting mechanism.
Therefore, inheritance between object
classes is not needed in most cases
where the contents schema notion is
provided. Rather, the inheritance is
replaced by an ordinary relationship
between the ‘subclass’ and the ‘super-
class’, and they are both instantiated
separately. The contents schema can
then present information from both.
The subclass notion of object classes
can reduce the program length, but
provides less overview and flexibility
than the relationship notion combined
with the contents schema view mecha-
nism. Therefore, the minimum length
should not always be strived for. At
the attribute level, however, use of
common data types is the only practi-
cal and most efficient means to define
common value sets. Note also that
encapsulation of attributes within
object classes is not appropriate when
wanting to make selection and projec-
tion via a contents schema. Behaviour
definitions should be provided subor-
dinate to data object classes, but can

be split on object behaviour, attribute
behaviour, value behaviour etc., and
should not be centralised to object
classes only. The dispersal of be-
haviour to where it belongs reduces the
need for references between behaviour
specifications and the affected data.

References

1 Meisingset A. Økonomiske effekter
ved bruk av systemutviklingsverktøy.
Kjeller, Telenor R&D, 1991. (R&D
report R 18/91.)

2 Nordlund C. The DATRAN and
DIMAN tools. Telektronikk, 89 (2/3),
104–109, 1993.

3 Lauesen S. Real-life object oriented
systems. IEEE Software, 15 (2),
76–83, 1998.

4 Meisingset A. Three perspectives on
information systems architecture.
Telektronikk, 94 (1), 32–38, 1998.

5 ITU. Data oriented human-machine
interface specification technique :
scope, approach and reference model.
Geneva, 1993. (ITU-T Recommenda-
tion Z.352, 03/93.)

6 ITU. Draft recommendation Z.35x
and appendices to draft recommen-
dations. Geneva, 1992. (CCITT
COM X-R 12.)

7 Meisingset, A. The HMI specification
technique. Kjeller, Telenor R&D,
1996. (R&D report N 54/96.)

8 Jørgensen, M, Bygdås, S S, Lunde, T.
Efficiency evaluation of CASE tools :
method and results. Kjeller, Telenor
R&D, 1995. (R&D report R 38/95.)

22 Telektronikk 1.1999

Compiler

External
schema

Repository
Application

schema

Executor

Functionality

External
schema

Internal
schema

Application
schema

Figure 2d Default implementation

Compiler

Repository

Functionality

Contents
schema

Application
schema

Internal
schema

Layout
schema

Contents
schema

Application
schema

Figure 2e Default generation of layout

Arve Meisingset (50) is Senior Research Scientist at
Telenor R&D. He is currently working on information sys-
tems planning, formal aspects of human-computer inter-
faces and middleware standardisation. He is ITU-T SG10
Vice Chairman and the Telenor ITU-T technical co-ordina-
tor.

e-mail: arve.meisingset@fou.telenor.no

Building software from standard re-
usable parts is supposed to bring about
significant improvements in terms of
increased productivity, shorter time to
market and better quality. However, to
achieve the necessary degree of reuse
to see such effects, new software engi-
neering practices are required. In this
article we discuss how increased reuse
and the software engineering practices
required to make it happen influence
software quality. We conclude that
positive effects on many aspects of
software quality are to be expected
and present some experience data
backing this conclusion.

1 Introduction

Software reuse is an approach to the
building of software based on extensive
use of common prebuilt components.
This principle has been adopted by many
other industries, generally leading to
cheaper and better products, and it is
now slowly making its way into the
software industry.

The benefits of reuse seem obvious.
Firstly, building from pre-built compo-
nents means there is less work to do to
develop a particular application, leading
to shorter time to market. Secondly, since
the cost of developing the components
can be shared by many applications, one
must expect significant cost reductions.
Thirdly, since major parts of a new
system have already been tested and
debugged in other systems, one should
expect better quality.

At the time of writing, extensive reuse is
still not common practice in the software
industry, but over the last 10 to 15 years
we have seen many examples of success-
ful attempts to adopt this approach. Some
companies have achieved more that 80 %
reuse in typical new applications, and in
parallel with this have more than doubled
their productivity and halved time-to-
market and error density1).

This article discusses the impact of soft-
ware reuse on the quality of software
products. First we give a brief introduc-
tion to what reuse oriented software

development means, and introduce our
definition of software quality. Then we
present and substantiate common beliefs
regarding the effect of software reuse on
software quality. Finally we look for con-
firmation of those beliefs in the experi-
ence gathered by companies who have
successfully adopted software reuse.

2 Software reuse

Software reuse is widely recognised as
one of the major sources of cost savings
in the software industry in the next few
decades. Figure 1, presented by Barry
Boehm at the STARS conference in
1991, predicts the relative importance of
the three major sources of expected sav-
ings in software development:

• Working faster (due to better tools);

• Working smarter (due to better pro-
cesses for software development and
better control over the processes by
estimation, planning, assessment and
improvement);

• Work avoidance (due to increased
reuse).

The baseline total is the expected expen-
diture without any improvement in soft-
ware development technology.

This optimistic view about the benefits of
reuse is reflected also by Capers Jones,
author of many articles and books about
software quality and productivity and
software development process improve-
ment. In [1] he states that:

“Full software reusability programs
tend to have the highest return on in-
vestment of any technology since soft-
ware began (about $30.00 returned for
every $1.00 invested)”.

Such claims have led to high expecta-
tions towards reuse and the literature
does report many success stories. How-
ever, there appears to be many failure
stories as well, although these are seldom
published. Therefore the adoption of
reuse by the software industry is slower
than one might expect considering the
expected benefits.

The reason is that although the basic idea
of software reuse is simple, making it
work in a given organisation seems to be
more complex than anticipated initially,
and requires extensive changes in the
entire software engineering process as
well as mastering enabling technologies
[2, 11]. Some of the issues involved are
briefly discussed below.

Ad hoc reuse: This simplest form of
reuse happens when developers copy
arbitrary code parts from existing sys-
tems and insert them in a new system,
possibly after some modification to make
them fit. In addition to code, require-
ments specifications, design specifica-
tions, test specifications and user docu-
mentation, or generally any work product
from the development process, can be
reused in the same way.

Some programmers are very good at
exploiting own work in this way, but

23

The impact of software reuse on software quality
S V E I N H A L L S T E I N S E N

Telektronikk 1.1999

1) We will use the term software industry
in this article although many will
claim that software building is more
craft than industry. Figure 1 Projected software development cost savings

60

50

40

30

20

10

0

1992 1996 2000 2004 2008

-Tools

-Process

-Reuse

Baseline total

Cost savings
through

few are able to reuse other people’s
work. Another major shortcoming of ad
hoc reuse is that there is no recording of
the connection between the origin and
the reused copy. Thus, there is no notion
of common parts and therefore no possi-
bility to share maintenance and evolution
costs.

An extreme form of ad hoc reuse is when
the entire system is copied, that is the
new system is made by modifying an
existing one. This has been quite success-
ful in some cases but the weaknesses de-
scribed above persist.

Component reuse: This is a more so-
phisticated approach, where the parts that
are being reused are identifiable and well
defined units with a common source that
are shared by the systems in which they
are used. Thus, common evolution and
maintenance become possible.

This approach goes hand in hand with the
idea of modular design, such that existing
systems really contain components in the
sense described above. Components that
are believed to be reusable are extracted
from their mother systems and collected
in libraries with appropriate search facili-
ties to ease retrieval of suitable compo-
nents.

Unfortunately, these efforts did not
always bring about the expected level of
reuse. Much attention was devoted to
sophisticated classification and search
schemes, but the problem rather seemed
to be that most components harvested as
described above were not suited for
reuse. They typically suffered from poor
quality, poor documentation and lack of
generality and reuse was therefore not
found worth while.

Reusable components: This led to the
idea of reusable components, that is com-
ponents built explicitly for reuse, with
sufficient generality and quality that they
would be found useful and worth reusing
in many applications and documentation
made explicitly to support ease of reuse.
However, to build a good set of such
components turned out to be rather diffi-
cult.

Firstly there is the problem of finding out
which components to build, that is to
identify the recurring sub-problems that
occur often enough to justify a reusable
solution. There is of course a number of
fairly fundamental things like commonly
used data types, algorithms and user

interface elements, that are not too hard
to identify. Although such components
make up a significant part of any applica-
tion, the major part and the most difficult
part to build, is usually that part that
deals with the problem domain specific
issues.

Secondly there is the problem of defining
stable and flexible interfaces to the com-
ponents, both in terms of provided and
required resources, that will make the
component easy to integrate into differ-
ent future systems.

Domain analysis: Domain analysis has
proved to be a valuable tool to identify
and specify domain specific components.
Domain analysis in this context means
to analyse an entire problem or business
domain, typically the domain for which a
company wants to make applications, in
order to improve domain knowledge and
to make it explicit in the form of abstract
models. Important issues are to capture
commonality and variation of the needs
of the users in that domain and how this
will evolve over time. The idea is that
equipped with this higher level of
domain knowledge, it will be possible
to identify and build truly reusable com-
ponents for the domain [13].

Standardised architecture: Easy inte-
gration of components into different sys-
tems require a certain level of agreement
on the interface to basic services such as
persistence, distribution, communication,
concurrency, transactions, exception han-
dling, etc., which many components will
depend on. Therefore a standardised and
stable architecture seems to be necessary
to ensure true reusability of components.

In-house standards may work for own
components, but for use of third party
components to become viable, more
widely accepted standards are necessary.
At present we see the emergence of sev-
eral such standards, the most noteworthy
being OMG’s CORBA, Microsoft’s Ac-
tiveX and Sun’s Enterprise Java Beans,
that are believed to pave the way for an
extensive component industry.

Domain Specific Application Frame-
works: The combination of a standard
architecture and a set of domain specific
components are usually termed a domain
specific application framework. In well-
understood and stable domains, this
approach may yield very high degrees
of reuse.

Standardised domain models: In some
domains that represent major markets
for the software industry, for instance
accounting and finance, commerce, and
health care, there are also attempts to
standardise domain models and inter-
faces to domain components. Both OMG
and Microsoft, among others, are work-
ing on such standards and this is ex-
pected to further stimulate the growth
of a component industry.

Reuse oriented process and organisa-
tion: A different kind of obstacle to the
success of reuse has been that traditional
software development process and organ-
isation models do not really encourage
reuse. Reuse introduces new tasks and
responsibilities into the software de-
velopment business, for instance domain
analysis, component development and
component library management, and
therefore requires new process and
organisation models. These tasks tend to
transcend individual projects and need to
be managed and funded from a wider and
longer-term perspective. What is required
may be resembled with business process
reengineering, applied to the business of
software development [12].

The new way of business is more com-
plex than before and therefore seems to
require a higher level of process maturity
than what is common practice in the soft-
ware industry.

It appears that the companies that have
obtained the best results with respect to
reuse are those that have been willing to
put up the necessary up-front investment
to resolve all these issues and that have
had patience to wait for the benefits to
appear.

3 Quality

Software quality is normally defined in
relation to a set of generally desirable
properties that a software product may
have, for instance

• absence of failure;

• satisfaction of user needs;

• ease of learning and using;

• ease of maintenance;

• easy of evolution;

• performance;

• scalability.

24 Telektronikk 1.1999

Traditionally, the common understanding
of quality has been that the better the
product scores with respect to such prop-
erties the better the quality. Our concern
in this article is to investigate how such
typical quality attributes will be affected
by transition to more reuse oriented soft-
ware engineering practices.

4 Expected effect
on quality

Based on the presentation of reuse given
above it is possible to reason about how
this way to build software will influence
typical quality attributes.

Absence of failure: As explained in Sec-
tion 2 reusable components have to be
built according to a higher quality stan-
dard than what is normal for one-shot
software. Otherwise it is unlikely that
they will be reused at all. In addition,
successful components will have matured
through several previous reuses. Thus,
one must expect that the error density in
reused parts is significantly lower than in
custom-built parts. With reuse rates be-
tween 50 and 80 %, which is commonly
achieved in successful reuse programs,
one must therefore expect a significant
effect on the error density in the total
application.

Satisfies user needs: Domain analysis is
supposed to lead to better understanding
of the user needs of a domain, and this
is likely to lead to systems that better
match the needs of the users.

Easy to learn and to use: The above
argument pertains to the ease of learning
and using as well. Domain analysis will
lead to consistent mental models that the
user interface can build upon, making it
easier for the user to understand and pre-
dict how the system will behave in differ-
ent situations. Reuse of user interface
elements will contribute in the same
direction by enforcing a common look
and feel between different systems.

Ease of maintenance and evolution:
A system built to a large extent from re-
usable components is bound to have a
clear component structure with well
defined and well documented interfaces,
which is generally accepted to be good
for making changes. Another property of
reusable components that plays an impor-
tant role in this context is that they are
often built to handle the variability of the
domain, both between different users and

over time. Therefore components will
often already be prepared to support an
evolutionary change. Finally there is the
effect of shared maintenance. When an
error is detected in a reusable component,
its correction will potentially benefit a
number of systems.

Performance: When it comes to perfor-
mance there are two conflicting argu-
ments: On the one hand, the need for
generality in reusable components may
lead to performance problems. This is
often used as an argument against reuse
in domains where performance is particu-
larly important. On the other hand, more
effort can be put into optimisation and
tuning of reusable components than can
normally be done in one-shot software
development, since the cost can be
shared between many uses of the com-
ponent. Which will be the dominating
effect will depend on the domain and
the circumstances.

5 Experienced effect
on quality

In this section we present some examples
of software reuse programs that have col-
lected data about the effects of reuse, and
discuss their findings in light of the
above arguments.

5.1 Experience at NASA

At the NASA Goddard Space Flight Cen-
ter (GSFC) a reuse program was carried
out and monitored over a period of
almost 10 years in their Software Engin-
eering Laboratory (SEL). This lab de-
velops ground based flight support soft-
ware for space flights. At the same time
they co-operate with the University of
Maryland on an advanced software pro-
cess improvement program. The reuse
program was one of several process
improvement experiments carried out
at SEL in this period, and metrics were
collected systematically.

The observed trend in quality, cost and
reuse in the NASA/GSFC reuse program
as presented by Frank McGarry at a sem-
inar at the European Software Institute in
October 1994 is shown in Figure 1.

The figure compares data from a group
of projects from the first half of the pro-
gram with data from a comparable group
of projects from the second half. In the
first period, from 1985 to 1989, the typi-
cal percentage of reuse was around 20 %.
In the same period the cost of developing
a typical system in terms of effort was
around 750 staff months, and the average
number of errors per KLOC was around 9.

In the second period, from 1990 to 1993,
a typical reuse percentage of 80 % was

25Telektronikk 1.1999

Figure 2 NASA/GSFC quality, cost and reuse data

10

8

6

4

2

0

100

80

60

40

20

0

800

600

400

200

0

85-89 90-93 85-89 90-93 85-89 90-93

H

A

L

A

Quality
(errors/KLOC)

System cost
(staff months)

Reuse
(percentage)

achieved. In the same period the average
cost of developing a system had dropped
to 210 staff months and the error density
had dropped to 2 errors per KLOC.

The data were collected from 7–8 similar
systems in each time period. This does
not provide any proof that reuse was the
major contributor to these improvements,
but other improvements, e.g. changes in
tools (CASE) and process (Cleanroom),
were introduced and measured in the
same period, and neither gave more than
limited improvements [2].

5.2 Experience at HP

Hewlett-Packard have staged several
successful reuse programs. Experience
from two of them is presented in [3].

The first reuse program took place within
the Manufacturing Productivity depart-
ment of HP’s Software Technology Divi-
sion, which produces large-application
software for manufacturing resource
planning. The program started in 1993
and is still going.

The second program was initiated within
the San Diego Technical Graphics Divi-
sion, which develops, enhances and
maintains firmware for plotters and print-
ers. It started in 1987 and continues to
the present.

The data collected was analysed and both
quantitative and qualitative aspects of the
reuse programs were estimated. As a part
of this assessment, data on the improve-
ment of quality, productivity and time-to-
market were analysed and documented as
reproduced in Table 1.

The conclusion drawn by the author for
these products is that because software
is reused multiple times, the defect fixes
from each reuse accumulate, resulting in
higher quality. Furthermore, reuse im-

proves productivity by reducing the
amount of time and labour needed to
develop and maintain a software product.

5.3 Experience at AT&T

AT&T have had several positive experi-
ences with reuse programs. One of them
produced a domain architecture and re-
usable components for telephone opera-
tion support systems named BaseWorX
[4]. It started in 1987 when it was rea-
lised that many variants of this kind of
system had been implemented over the
years and that there seemed to be a big
potential for reuse in the domain. The
first two years were spent designing a
reusable architecture and a set of large-
scale components conforming to this
architecture. Then this was matured
through pilot use in two projects. In 1993
the reusable assets were used by over 70
projects and a separate support organisa-
tion had been set up to act as owners and
maintainers of the reusable architecture
and components and to provide training
and a help desk for the reusers.

The reusing projects achieved reuse rates
ranging from 40 % to 92 %, and typical
development time dropped from 12–20
months to 6–12 months. Overall the divi-
sion estimated a cost saving of at least
12 %, after allowing for the cost of de-
veloping and supporting the reusable
components.

BaseWorX was productised for still
wider use, but unfortunately we do not
have cost benefit data for the remainder
of the life cycle.

5.4 “Laboratory experiment” at
the University of Maryland

In [5], Basili et al. report on an experi-
ment with 8 development teams develop-
ing the same application in the same type

of environment with the same technol-
ogy, but with varying degree of reuse.
Data was collected from these develop-
ment efforts in order to investigate the
effect of reuse.

The development environment was C++.
The application was a system for man-
aging home video rental, to be used by
home video rental shops. This applica-
tion was chosen in order to ensure that
familiarity with the application domain
was equally distributed among the teams.
Several relevant libraries of reusable
components were available to the teams,
but the teams were free to make use of
them or not. The teams consisted of
students with reasonable experience in
software development, and care was
taken to ensure that overall capabilities
of the teams were about the same.

The findings in this experiment are
summarised below:

• Reuse rates ranged from close to
zero % to close to 50 %;

• High reuse projects (reuse rates be-
tween 40 and 50 %) exhibited a pro-
ductivity twice as high as that ex-
hibited by the low reuse projects
(reuse rates close to 0 %);

• The error density observed in the high
reuse projects was about one third of
that observed in low reuse projects;

• Rework was much lower in high reuse
projects than in the low reuse projects.
This appeared to be primarily due to
fewer errors. There was no statistically
significant indication that errors were
easier to find and repair.

5.5 Modern PC software

Anyone who has used a recent Windows
or Apple PC will probably have noticed
the common look and feel of most appli-
cations. For instance, window frames
look the same, corresponding informa-
tion is in the same place, menu and tool-
bars look and behave similarly and can
be configured in the same way. Also the
same functionality is often offered by
several applications. For instance brows-
ing your file catalogue is the same
whether you do it from within the text
processor or the spreadsheet application,
and if you want to make a drawing in
your document, you can invoke a draw-
ing tool inside the text processor that
works exactly like the standalone draw-
ing application.

26 Telektronikk 1.1999

Organisation Manufacturing Productivity Technical Graphics

Quality 51 % defect reduction 24 % defect reduction

Productivity 57 % increase 40 % increase

Time-to-market Data not available 42 % reduction

Table 1 Effect of reuse on quality, productivity and time-to-market

This is all mainly due to reuse. Apple
pioneered the idea of a standard user
interface tool kit. Microsoft is following
with VBX, OCX and ActiveX technolo-
gies (basically new names for improved
versions of the same thing). ActiveX
includes both user interface standards,
reusable user interface components and
component middleware that supports the
integration of these components with
own components to form complete appli-
cations. Both Microsoft and many third
parties provide components, and this is
probably the first example of a commer-
cial market for reusable components.

Unfortunately there is little data available
from the application of this technology,
but the effect on ease of use and ease of
learning seems obvious.

Provida, which is a Norwegian company
delivering banking software, has de-
veloped an applications framework for
client applications based on ActiveX
technology. These applications typically
run on standard PCs and support differ-
ent tasks in the bank while providing
access to the legacy mainframe based
central banking system. The system is
still in the pilot phase, but initial results
indicate that a 50–80 % cost reduction
compared to development from scratch
is achievable.

5.6 Summing up

The data on the effect of increased reuse
on productivity, time-to-market and qual-
ity are summarised in Table 2. Despite
considerable variation, it appears that
there is a clear correlation between reuse
rate and both productivity and error rate.
Increasing the reuse rate from close to
zero to close to 50 %, a 50 % increase in
productivity and halving of the error rate
will not be unusual. For the time-to-mar-
ket we only have data from one program,
showing a decrease of about 40 %. These
results support our hypothesis that in-
creased reuse leads to fewer errors.

In addition to these quantitative results,
there are also some less precise observa-
tions. HP Manufacturing Productivity
claims that reuse eases the maintenance
burden and supports product enhance-
ments, but without quantifying the effect.
The Bull Workflow project in SER
reports better ability to cope with re-
quirement changes due to the built-in
generality of the reused components.

These statements we take as backing for
the expected effect on ease of mainten-
ance and ease of evolution.

Finally, the experience with user inter-
faces on modern PCs confirms our hypo-
thesis regarding the positive effect of
reuse on the ease of learning and using.

There are two factors that may explain
the variation in achievements between
the different projects. Firstly these results
have been obtained in different contexts:
in different application domains, in dif-
ferent markets, using different develop-
ment environments, and applying differ-
ent reuse approaches. Secondly there is
the inherent difficulty in measuring the
achievements in software projects and
the lack of standardised metrics. For
instance, the numbers reproduced here
have been produced in several different
ways:

• In HP Manufacturing Productivity and
HP Technical Graphics one compares
the productivity and error rate in the
entire product (including reused parts)
with the productivity and error rate in
the parts that were developed new.

• In NASA and the other HP firmware
division one compares the productivity
and reuse rate at the beginning and end
of a period where a significant increase
in reuse rate has been achieved, but

where also other improvements are
likely to have had an effect.

• In the laboratory experiment at Mary-
land University one compares the
results achieved by different teams
developing similar applications with
different reuse rates.

It seems likely that the remarkably good
results in NASA and the HP firmware
division are due to the influence of other
improvements in addition to reuse.

6 What does it cost

Normally there is cost associated with
quality improvements. In one way, this is
not the case in connection with reuse,
since the quality benefits normally come
hand in hand with productivity improve-
ments and reductions in time-to-market
that lead to significant cost reductions.

On the other hand, an up-front invest-
ment and serious commitment are re-
quired to bring about the level of reuse
necessary to experience the benefits
described above in an initially non reuse
oriented development organisation.

Data concerning costs and achieved sav-
ings are summarised in Table 3. In addi-
tion to data from the reuse programs pre-
sented above, we have also included data

27Telektronikk 1.1999

Reuse rate Reuse rate Productivity Time-to-market Reduction
before (%) after (%) increase (%) reduction (%) in error rate

NASA 20 80 3002) 70

HP Man. Prod. 0 68 57 51

HP Technical 0 32 40 42 24
Graphics

Other HP 5 80 400
firmware div.

Lab. exp. at 0–10 40–50 225 65
Maryland Univ.

AT&T 0 40–92 50

Table 2 Summary of data on effect of reuse on productivity, time-to-market and quality

2) Derived from system cost, assuming that the system size has been stable in the period of observation.

from the US Federal Aviation Adminis-
tration’s Advanced Automation Systems
project reported in [6] (labelled Air Traf-
fic Control in the table), from a menu and
forms management system written in
Ada reported in [7] (labelled Ada Menu
and Forms in the table), and from a few
projects reported in the SER experience
report [8].3)

The most obvious observation to make
from these data is probably that there is
considerable variation:

• The return on investment for the ob-
served reuse effort ranges from 180 %
to more than 400 %. The break-even
point ranges from 2 to 6 years. How-
ever, around 2–3 years seem to be
more common than 6 years.

• The cost to develop reusable compo-
nents ranges from 10 % extra to sev-
eral hundred percent extra compared to
the cost of developing the same com-
ponent without considering reuse.

• The cost to integrate a reusable com-
ponent compared to the cost of de-
veloping the needed functionality
from scratch ranges from 5 % to 60 %.

Concerning return on investment, there is
still a big gap to the 30 to 1 level pre-
dicted by Capers Jones. A possible ex-
planation is that the data we have are all
extracted rather early in the life cycle of
the reuse programs, and therefore start-
up costs are still dominating, and the full
reuse potential of the developed reusable
work products has not yet been exploited.
It is worth while noting that the highest
return on investment was observed in the
program with the longest period of obser-
vation.

7 Conclusion

In this article we have argued that the
growing adoption of reuse by the soft-
ware industry that is currently taking
place, will lead to better quality software.
This is partly a direct effect of the added
maturity that new systems inherit from
the well-proven components they are
built from, and partly an effect of the
changes in software engineering prac-
tices necessary to succeed with reuse.

We have tried to back our arguments
by experience data, but as usual when
attempting to assess software engineering

technology, there is little data available
[10], and the investigations that have
been carried out have generally focused
on demonstrating cost reductions and re-
duced time-to-market rather than quality
improvements.

The experience data we have been able to
find seem to back the common belief that
increased software reuse will lead to soft-
ware products with fewer errors. The
data indicate that as reuse becomes com-
mon practice, systems where more than
50 % of the code is made up of reused
components will be common, and these
systems are likely to have less than half
as many errors as similar systems de-
veloped from scratch.

There is also some basis for believing
that they will be easier to maintain and
evolve and easier to learn and use.

To make the picture even brighter these
benefits come together with substantial
cost savings and reductions in time-to-
market.

Considering the return on investment
achieved by the companies that have
succeeded with software reuse, one may
ask why something as profitable as soft-
ware reuse is not already common prac-
tice in the industry. The answer seems to
be that a number of unforeseen obstacles
have turned up, having to do both with
technological and managerial/organisa-
tional aspects, that have hampered wide-
spread adoption of reuse. It is only for
the last 5 to 10 years that one has started
to fully understand the full impact of
converting a software development
organisation to a reuse oriented mode
of working.

References

1 Jones, C. Becoming “Best in Class” :
the path to software excellence. From
the Knowledge Base of the Software
Productivity Research WWW Server,
http://www.spr.com.

2 Karlsson, E A (ed.). Software reuse :
a holistic approach. Chichester,
Wiley, 1995. (Series in Software
Based Systems.)

3 Lim, W C. Effects of reuse on qual-
ity, productivity and economics.
IEEE Software, 11 (5), 23–30, 1994.

28 Telektronikk 1.1999

3) SER (Software Evolution and Reuse)
was an ESPRIT project that followed
up the deployment of software evolu-
tion and reuse technology developed in
earlier ESPRIT projects and collected
practical experience with this technol-
ogy.

Source Period of Return on Break-even Cost to Cost to
observation investment year dev. RCs reuse

(years) (%) (%) (%)

HP Man. Prod. 83-92 410 2nd

HP Technical 87-94 216 6th 111 19
Graphics

Air Traffic 200 10 to 20
Control

Ada Menu and 120 to 480 10 to 63
Forms

Bull Workflow 91–94 130 5 to 10

Ericsson Radar 93–95 180 2nd 110–130 5 to 25

Ericsson Telecom 2nd 140 35

Table 3 Summary of Reuse cost and benefit data

4 Beck, R P et al. Architectures for
large scale reuse. AT&T Technical
Journal, 71 (1), 34–45, 1992.

5 Basili, V R et al. How reuse influ-
ences productivity in object-oriented
systems. Communications of the
ACM, 39 (10), 104–116, 1996.

6 Margono, J, Lindsey, L. Software
reuse in the air traffic control ad-
vances automation system. In: Pro-
ceedings of the Software Reengineer-
ing and Reuse Conference. Washing-
ton, DC, National Inst. for Software
Quality and Productivity, 1991.

7 Favaro, J. What price reusability. In:
Proceedings of the First Symposium
on Environments and Tools for Ada.
New York, ACM, 115–124, 1990.

8 Hallsteinsen, S, Paci, M (eds.). Ex-
perience in Software Evolution and
Reuse : Twelve Real World Projects.
Research Reports ESPRIT, SER vol.
1, Springer-Verlag, 1997.

9 Bennett, K. Legacy systems : copy-
ing with success. IEEE Software, 12
(1), 19–23, 1995.

10 Fenton, N et al. Science and sub-
stance : a challenge to software en-
gineers. IEEE Software, 11 (4),
86–95, 1994.

11 Frakes,W B, Isoda, S. Success fac-
tors for systematic reuse. IEEE Soft-
ware, 11 (5), 14–19, 1994.

12 Jacobson, I et. al. Software reuse
architecture, process and organiza-
tion for business success. New York,
ACM Press, 1997.

13 Hewlett Packard and Matra Marconi
Space and Cap Gemini Innovation.
Domain analysis method. October
1993. (Proteus Deliverable D3.2A.)

29Telektronikk 1.1999

Svein Hallsteinsen (51) is Research Scientist at SINTEF
Telecom and Informatics, where he has been involved in
research and technology transfer in the field of software
engineering. His research interests include Software Re-
use, Domain Analysis, Object Oriented Modelling, Software
Architectures and Component Based Software Engineer-
ing. He is currently acting as technical coordinator of
Magma, a project led by PROFF aiming to introduce soft-
ware reuse and component based software engineering
to Norwegian off-the-shelf software vendors.
e-mail: Svein.Hallsteinsen@informatics.sintef.no

30 Telektronikk 1.1999

Why do we need
measurement

The goal of the software industry – as
any other industry – is to deliver products
and services to the market. This must be
done at a price that the customer accepts
as reasonable and at a quality that the
customer wants. One of the main
characteristics of the market is that it
changes, not by itself but through com-
petition among those who provide the
goods that are sold. The changes will
not happen at the same time for all indu-
stries, but only when the players can no
longer expand in any other way. The
main results of this competition are lower
prices and higher quality – not because
the producers want it to be this way, but
because it is the only way in which they
can survive.

The software industry – like any other
industry – can improve only in one way:
by understanding the product and the
process that produces it. Thus, we can
define the first goal of software measure-
ment.

In addition to this long-term need, we
also need measurement in order to agree
on the quality of a delivered product. The
time when the customer watched the
flashing lights in awe is gone forever.
The customers now want quality, and
as a result of this we need to be able to
establish a common ground for specify-
ing, developing and accepting a software
product with an agreed quality.

Even though we accept the ISO defini-
tion of quality as the product’s degree
of satisfying the customer’s needs and
expectations, we need something more
concrete when we start to write a contract
and develop a software system. The defi-
nition given in the standard ISO 9126 is
a good starting point although it concen-
trates on the product and leaves out
important factors such as price, time of
delivery and quality of service. Thus, our
second need is

The rest of this article will focus on the
following ideas:

• What are the challenges when we want
to improve the software process and
the product quality through the use of
measurement?

• How can we meet these challenges
– what can we do and who will do it.

• What has been done up till now –
national and international experiences.

• Where do we go from here – the future
for Norwegian software industry.

The challenges

“You cannot understand what you cannot
measure”, said Lord Kelvin. Some un-
known but probably frustrated software
engineer has made the addendum “You
cannot measure what you cannot under-
stand”. Both views contain some truth
and all work in understanding the soft-
ware process and aspects of software
quality must relate to both.

The main problem with the idea of the
need to measure to understand is simply
“What shall we measure to understand
what?” To take a practical example:
Given that we want to understand the
reason why there are so many errors in a
software system, what should we mea-
sure? The suggestions have been – and
still are – legion. The suggestions for
software metrics are almost endless, from
number of code lines via McCabe’s
cyclomatic number to Halstead’s soft-
ware science. Unfortunately, none of this
has brought us any nearer a good under-
standing of anything. The reason for this
lies in the approach taken. The research
has often moved along the following
lines:

1 Get some inspiration and define a set
of software metrics.

2 Collect the software metrics and the
product characteristic that it is sup-
posed to predict, for instance number
of errors.

3 Do some statistical analyses – mostly
regression analyses although other,
more sophisticated methods such as
principal component analyses, have
also been tried.

4 Look at the results and claim that any
metric that correlates with the charac-
teristic that we want to predict is – ipso
facto – caused by whatever this soft-
ware metric measures.

Statisticians call this particular brand of
research “shotgun statistics” and consider
it a waste of resources. In addition, it
lacks one important component, namely
control over or measurement of the influ-
ence of the environment – both the pro-
ject’s environment and the company’s
environment in general.

Some solutions

All sound science has started out with the
practitioners. The approach has always
been to start with the observations and
knowledge of the practitioners, then to
systematise their experience, deduce a
hypothesis and then collect data in order
to accept or reject the hypothesis. As a
part of this, it has also been considered
important to agree on important defini-
tions in order to have a common vocabu-
lary and a common frame of reference.
There are several important lessons for
software engineering here:

• By starting with the practitioners, we
make sure that all or most of the avail-
able knowledge is included – or at
least considered – when we start to
build our models.

• By starting with formulation of hypo-
thesis, we get a data collection process
that is goal driven and thus easy to
motivate.

• When we reject or accept a hypothesis,
we always increase the available body
of knowledge.

In this way we are able to accumulate
knowledge and models, share them and
discuss them with colleagues – in short:
create a real software science, or at least
a basis for one.

However, one last obstacle has to be sur-
mounted – the fact that software engin-
eering is not a natural science in line with
chemistry or physics. Software is de-
veloped by people. In some sense, this
is part of the environment problem since
the strong dependence on the software
engineer’s skills, experience and knowl-
edge makes it difficult to do repeatable
experiments. This means that we must in
some way include the vast body of
knowledge already available in psychol-
ogy and sociology. Without this, we are

The role of measurement in software
and software development
T O R S T Å L H A N E

We need measurement in software
development to improve the de-
velopment process so that we can
increase product quality and thus
increase customer satisfaction.

We need measurement on software
so that we can understand and
agree on product quality.

31Telektronikk 1.1999

missing an important component of soft-
ware engineering and our understanding
will forever be incomplete. Even if we
cannot model the developers, we need to
consider them in our model, for instance
as a source of variance or uncertainty.

To sum up, we need to embark on the
following program:

1 Collect the available expert knowledge
from the software development com-
munity.

2 Define terms in order to improve com-
munication.

3 Formulate hypotheses based on avail-
able knowledge and experiences.

4 Collect data, perform statistical tests
and accept or reject the hypotheses.

5 Incorporate this knowledge into an
agreed body of knowledge.

6 Use the body of knowledge to build
models that can be used to predict the
effect of changes to a development
process concerning cost, lead time and
product quality.

Do we really need all this? The answer
is “Yes”. Today, the software industry
does not even have an agreed definition
of productivity. Considering this, it can-
not come as a surprise that we have prob-
lems when we discuss if a certain tool
or method has increased productivity.

What has been done

Even though much of what has been
done in the past can be criticised, the sit-
uation is not all bad. In the last ten years,
several research communities have come
up with important ideas – the ami pro-
ject, the GQM method for data collec-
tion, more interaction with other indu-
stries, especially related to the TQM con-
cepts, better knowledge of how to run
experiments in an industrial setting, and
so on. Unfortunately, the experience
gained through the design of experiments
(DoE) and the work of Tagushi has large-
ly been ignored by the software industry
up till now. The same goes for G. Box’
work on analyses of non-repeatable ex-
periments.

The EU initiative, ESSI, has been one of
the main driving forces in introducing
measurement into software development
and improvement in Europe. The ESSI
projects – PIEs – have enabled the com-

mission to collect a large amount of data,
measurement and experience that some-
day will hopefully serve as a basis for
real research on software processes and
software quality.

Below, we have summed up some of the
results that we consider to be important
from some improvement work we have
done ourselves. We will describe three
experiments, the reason why the experi-
ment was performed, the strategy used
for data collection and analyses and the
most important results as seen from the
point of view of the software industry.
The three experiments can be summa-
rised as follows:

1 A survey of 100 Norwegian companies
where the persons responsible for soft-
ware procurement were asked to rank a
set of product and service quality char-
acteristics on a five point scale;

2 Analyses of data from integration and
system tests from a telecom product in
order to see which factors influenced
the number of faults in a software
component at the time of delivery;

3 Analyses of data from an experiment
with traditional development versus
object-oriented development. The
important questions were whether
object-oriented development leads to
fewer errors and a more efficient error
correction process.

The PROFF project

The PROFF project was a joint under-
taking by several Norwegian software
producers. The goal of the project was to
improve quality and productivity within
this industrial segment. The project had
a subproject catering to product quality
estimation and control, to a large degree
based on ISO 9126. One of the things
that we needed to find out at an early
stage was how customers ranked the
quality characteristics of the ISO model.
In order to find out, we performed a sur-
vey of 100 Norwegian companies. After
having been contacted on the telephone,
they received a questionnaire where they
were required to give a score to each ISO
9126 product quality factor. In addition,
we included a set of service quality fac-
tors, adapted form an early version of the
ISO standard for service quality – ISO
4100. The analysis was performed by
first ranking the results and then applying
Friedman statistics to the ranks. The
results were significant at the 5 % level.

Overall results

Each responder ranked a set of factors
on a scale from 1 (not important) to 5
(highly important). First of all, we looked
at the overall score, i.e. the ranking of the
factors that we got when pooling together
the responses from all price and product
categories. The score for each factor was
computed as the average of the scores for
all criteria related to this factor. This
gave the results shown in Table 1.

When looking at the results of this survey
we found some rather surprising results
– at least they surprised us. The most im-
portant finding was that the three most
important determinants in a buy / no buy
situation was service responsiveness, ser-
vice capacity and product reliability – in
that order.

If we split up the data set according to
type of product, we got the results shown
in Table 2.

In all cases, the producer service respon-
siveness and service capacity are consid-
ered to be the most important factors,
while product maintainability and porta-
bility are considered to be the least
important ones. The only product factor
that consistently scores high is product
reliability.

Factor Score

Service responsiveness 2.81

Service capacity 2.74

Product reliability 2.71

Service efficiency 2.65

Product functionality 2.60

Service confidence 2.60

Product usability 2.57

Product efficiency 2.46

Product portability 2.05

Product maintainability 1.89

Table 1 Scores for all product categories
pooled together

32 Telektronikk 1.1999

Statistical method used

We based the tests for the hypotheses on
the Friedman statistics, described below.
The method can be described by using
Table 3.

Each category is given a rank score in the
range 1 to 3 – 1 for the most important
and 3 for the least important. If one of
the categories consistently receive the
best score, the rank sum for this column
will be close to N, while a category that
is consistently given bad scores will have
a rank sum close to 3N. If there are no
differences, the score for all the columns
will tend to be equal. The formula below
is used to compute the Friedman rank
statistics. Let N be the number of rows in
the table. Let s be the number of cate-
gories (columns). We can then compute
the Friedman statistics Q as follows:

The (s–1)/2-term is the expected score in
the case that all observations – rankings –
were completely random. The Q-value
thus measures the difference between the
expected and the observed scores. As an
approximation, we have that Q is Chi-
square distributed with s–1 degrees of
freedom. We will reject a hypothesis of
no inter-column difference on the α-level
if Q > c, where c is the α-percentile in
the Chi-square distribution with s–1
degrees of freedom.

As an example on the use of Friedman’s
statistics, we can show the effect of prod-

uct price on the ranking of the product
and service quality factors, see Table 4.
We have used three price categories –
category 1, 2 and 3. The number in
parenthesis below each category is the
number of responses that fall in this cate-
gory. For each price category, we have
used the following lay-out: score / line
rank column rank

For instance, for the factor ‘Product func-
tionality’ we have a score of 0.60, line
rank equal 3 since this is the lowest score
on this line and a column rank of 5 since
this is the fifth lowest score in this col-
umn. As score values, we are here using
the portion of respondents that have
given the factor the highest rank. Thus, a
score of 0.6 means that 60 % of our
respondents have given that factor a rank
of 5.

If we compute the Q-statistics according
to the formula above, we get Q = 7.4.
With an α-value of 0.05, we find that we
can reject the hypothesis of no differ-
ence. A quick glance at the table also
shows that the requirements on product
and service quality are much lower for
the products in the lowest price category.

Summing up

The message from the marketplace was
loud and clear – ‘Service matters’. What
was probably more important, the results
mentioned above plus the rest of the
results from the same survey, all fol-
lowed nicely from simple economic
arguments. For us, this was the most
important result since it indicates that
all categories of customers – large and
small – behave in an economically
rationalistic manner. Or in other words
– once you understand your customer’s
economy, you can deduce his prefe-
rences.

The SISU project

The goal of the SISU project was to
improve quality and productivity in soft-
ware development, mainly for the tele-
com industry. It was co-financed by parts
of the Norwegian telecom industry and
the Norwegian research council. A prob-
lem that interested one of the participat-
ing companies was “What characterises
a component that has many errors at inte-
gration and systems test?” In order to
answer this question, we did as follows:

Factor COTS (36) Standardized Customized
software and tailored

packages (27) software (19)

Product functionality 2.55 2.65 2.62

Product reliability 2.65 2.77 2.74

Product usability 2.67 2.47 2.54

Product efficiency 2.47 2.35 2.58

Product maintainability 1.68 1.94 2.32

Product portability 2.01 2.04 2.09

Service confidence 2.55 2.59 2.67

Service efficiency 2.64 2.67 2.61

Service capacity 2.69 2.74 2.84

Service responsiveness 2.82 2.83 2.76

Table 2 Scores according to product category

Factor Category 1 Category 2 Category 3

F1 R11 R21 R31

: : : :

FN R1N R2N R3N

Rank sum R1. R2. R3.

Table 3 Example of Friedman’s rank statistics

Q =
12N

s(s + 1)

s∑
i=1

[
Ri. −

1

2
(s − 1)

]2

Ri. =

N∑

j=1

Ri,j

33Telektronikk 1.1999

1 We performed interviews with all
developers in the division that was
involved in the product under con-
sideration.

2 Based on the interviews, we identified
a set of possible influence parameters
for the number of errors.

3 These possible influences were trans-
formed into statistical hypotheses
which could be tested in a standard
way, based on the collected data.

The result was to be used to focus the test
and inspection efforts. Thus, instead of
distributing the verification and validation
effort uniformly over all components, the
company decided to use more effort on
the components already flagged as poten-
tial troublemakers. We will in this paper
only look at a few of these hypotheses.
We have selected the following:

• Ha: SDL blocks which have been
changed many times before will have
more errors during integration and sys-
tems tests.

• Hb: SDL blocks which are given a
high subjective complexity score will
have more errors during integration
and systems tests.

• Hc: The SDL blocks with many states
in the SDL state machine will have

more errors than those with few states
will.

In order to test these hypotheses we used
two statistical methods, namely ANOVA
for Ha and Hb, and linear regression for Hc.

The ANOVA analysis is simply a ques-
tion of the source of variance. We split
the data set into two blocks according to
some criterion and split the variance into
two components: the within-block and
between-block variances. If the between-
block variance is significantly larger than
the within-block variance, we will claim
that there is an influence from the factor
used as a basis for the data splitting. The
statistical interference is based on the
following relations between the sums of

squares of, say X and Y and the number
of elements in the sums. For X we have:

For Y, we have correspondingly:

In addition, we have the following statis-
tical relationship:

and we can use the F-statistics to check if
there really is a difference between the
two SS (Sum of Squares). In addition to
the F-value, we get a number called the
p-value, which tells us how likely it is
that we could have got the observed F-
value if the values were chosen at ran-
dom. Thus, a small p-value is good – the
question is “How small?” Statisticians
have for convenience usually used p-val-
ues from 0.10 to 0.05.

For Ha – SDL blocks with many changes
– we got FN,M = 10.25 and p = 0.000
which is quite good. In addition, it is
interesting to plot the intervals where the
observations fall for the three categories
– levels. Level 1 means low change traf-
fic, level 2 means medium change traffic
and level 3 means high change traffic.
This is shown in the plot in Box 1.

The corresponding results for Hb – SDL
blocks with high complexity – are as fol-
lows: FM,N = 1.20 and p = 0.315. Again
the plot is quite informative, see Box 2.

It is now straightforward to see that
splitting the data set according to earlier
change traffic will reduce the variance

SSX / N
SSY / M

~ FN,M

SSY = y j − Y()2

j=1

M

∑

SSX = xi − X()2

i=1

N

∑
Factor Price Price Price

category category category
1 (20) 2 (22) 3 (42)

Product functionality 0.62 / 3 5 0.79 / 1 2 0.73 / 2 5.5

Product reliability 0.60 / 3 6 0.82 / 1 1 0.77 / 2 2

Product usability 0.70 / 1 2 0.60 / 3 7 0.64 / 2 8

Product efficiency 0.43 / 3 8 0.57 / 1 8 0.51 / 2 9

Product maintainability 0.33 / 2 9.5 0.38 / 1 9.5 0.07 / 3 10

Product portability 0.33 / 3 9.5 0.38 / 2 9.5 0.76 / 1 3.5

Service confidence 0.65 / 3 3 0.67 / 2 6 0.76 / 1 3.5

Service efficiency 0.59 / 3 7 0.72 / 2 4 0.73 / 1 5.5

Service capacity 0.75 / 3 1 0.77 / 2 3 0.81 / 1 1

Service responsiveness 0.64 / 3 4 0.71 / 1 5 0.69 / 2 7

Average line rank 2.7 – 1.6 – 1.7 –

Table 4 Scores according to price category

Level N Mean StDev ---------+---------+---------+------

1 21 4.190 4.412 (---*---)

2 6 12.667 11.587 (-------*------)

3 6 22.500 16.550 (-------*------)

---------+---------+---------+------

Pooled StDev = 9.000 10 20 30

Box 1 Plot for Ha – SDL blocks

34 Telektronikk 1.1999

and that the probability that this change
in variance due to random variations is
less than 0.04 %. We will thus accept
hypotheses Ha.

The probability of getting the observed
variance reduction by splitting the data
set according to the subjective complex-
ity due to random variations is fairly
large – more than 31 %. Thus, we will
reject Hb.

Since we will use linear regression for
Hc we first did a test for normal distribu-
tion of the number of code lines – LOC.
We plotted the data in a normal-plot and
used the Ryan-Joiner test for normality.
As can be seen form the plot in Figure 1
we got an R-value of 0.97 and a p-value
of 0.05, which is satisfactory for this use.

The linear regression analyses gave the
following result:

sum-SDL
= - 3.37 + 0.00190 LOC – 0.0093 N-Op

+ 0.718 N-grs + 0.176 N-tilst

Again it is instructive to look at the p-
values. A small p-value means that the
sum-SDL value probably is influenced
by this coefficient, while a large p-value
means that any connection probably is a
coincidence.

For the constant term, the p-value is
0.369, for the LOC term, the p-value is
0.092, for the N-Op term (number of
operators) the p-value is 0.902, for the
N-grs (number of interfaces) term, the
p-value is 0.240 and for the N-tilst (num-
ber of states) term, the p-value is 0.050.

In order to see if the hypothesis holds, we
will look at the t-statistics for the vari-
ables used in the regression analyses.
Only LOC and number of states (N-tilst)
have p-values that are below 10 %. The
reduction in variance that is caused by
the model is definitely significant – the
p-value is again less than 0.0004. How-
ever, the adjusted R2 is only 0.47. Thus,
we have only explained 47 % of the data
variation. The rest must stem from other
factors than the ones included here.

In order to check the model, we also
computed the residual plots. A residual
is the difference between the value ob-
served and the value predicted by the
estimated or proposed model. A residual
plot will show the structure – or lack
thereof – for the differences between
the model and the observations.

From the plots in Figure 2 we see that the
model is reasonable due to the following
observations:

1 The residual chart indicates that there
is no systematic difference in the resid-
uals according to the observation num-
ber.

2 The residual histogram indicates that
the residuals are spread around zero in
a symmetric way.

However, there are also two worries:

1 The rather bad normality, as indicated
by the far from linear normal plot – top
left diagram;

2 The residual plot seems to indicate that
the residuals increase with the number
of SDL errors. Especially the right-
most four data points give some cause
for worry – bottom right diagram.

Everything considered we should keep
the model but look more into the reasons
for the two above-mentioned points of
concern. This implies that during inspec-
tions and testing we should be especially
alerted when we consider modules with
many states and/or many code lines. In
addition, further experiments are needed
in order to find the sources of the rest of
data variation – 53 %. We have already
ruled out some factors, like the number
of operators and the number of interfaces
in a module. Most likely, the source of
the missing variation is variation in the
development process.

The QARI project

The QARI project is an ESSI process
improvement experiment (PIE) project.
The company involved is planning to
start using object-oriented development
and had a list of benefits that they hoped
to reap from this. One of these benefits
is a reduction in the portion of serious
errors inserted into the system. The
strategy from a statistician’s point of
view is clear:

1 Identify a project that is developed by
the use of traditional methods, but oth-
erwise similar to the new project,

Level N Mean StDev ----------+---------+---------+------

1 6 2.67 1.97 (-------------*------------)

2 19 10.26 13.01 (-------*------)

3 8 11.00 10.16 (-----------*----------)

----------+---------+---------+------

Pooled StDev = 11.24 0.0 7.0 14.0

Box 2 Plot for Hb – SDL blocks

.999

.99

.95

.80

.50

.20

.05

.01

.001

0 1000 2000 3000 4000 5000 6000 7000
LOC

P
ro

ba
bi

lit
y

Figure 1 Normal Probability Plot

35Telektronikk 1.1999

developed by using object-oriented
development;

2 Take all reported errors in both pro-
jects – in this case products – and
assign a seriousness score to each
error;

3 Perform a Chi-square test on the data
to see if there is any difference in the
data.

Table 5 shows some of the data col-
lected. The data shows how failures are
distributed according to seriousness in
two projects, where we have used tradi-
tional and object-oriented development
methods respectively.

There is one statistical hitch with these
data – the Chi-square test uses an app-
roximation that does not hold if we have
too few observations – less than five –
in one or more of the table cells. Thus,
we need to combine the data for the two
most serious categories. This data combi-
nation gives us Table 6.

The Chi-square test computes the differ-
ence between what we should have seen
if the distribution of errors over serious-

Failure category Traditional Object-Oriented Sum Fractions
1 is most serious development development (pi)

1 11 1 12 0.08

2 3 36 39 0.25

3 30 31 61 0.40

4 22 19 41 0.27

Sum errors (N) 66 87 153 1.00

Table 5 Number of failures per category for O-O and traditional development

Failure category Traditional Object-Oriented Sum Fractions
1 is most serious development development (pi)

1,2 14 37 51 0.33

3 30 31 61 0.40

4 22 19 41 0.27

Sum errors (N) 66 87 153 1.00

Table 6 Number of failures per category fo O-O and traditional development
– categories 1 and 2 are combined

Normal Plot of Residuals I Chart of Residuals

Histogram of Residuals Residuals vs. Fits

-2 -1 0 1 2
Normal Score

20

10

0

-10

15

10

5

0
-15 -10 -5 0 5 10 15 20

Residual

R
es

id
ua

l
F

re
qu

en
cy

0 10 20 30

UCL=25.59

X=0.000

LCL=25.59

30

20

10

0

-10

-20

-30

20

10

0

10

0 10 20 30 40 50

R
es

id
ua

l
R

es
id

ua
l

Figure 2 Residual Model Diagnostics

Observation Number

Fit

LCL=-25.59

36 Telektronikk 1.1999

ness scores was the same in both cases
and what we really observe. The test
value is computed as follows:

The terms Ni are found directly in the
table. The Npi terms are computed by
multiplying the total number of errors for
each project by the percentage of errors
for each category. Thus, for category 1,2
we should expect 66 * 0.33 for tradition-
al development and 87 * 0.33 for object-
oriented development. The result of the
Chi-square test as performed by Minitab
is as shown in Table 7 – expected counts
are printed below observed counts.

From the definition, we find that ChiSq
= 2.909 + 2.207 + 0.516 + 0.392 + 1.052
+ 0.798 = 7.874 and the p-value is 0.020.
There is thus a 2 % probability that the
observed difference is due to random
variations in the observed data.

What will we make of this result? The
statistics cannot help us here. The object-
oriented development has more class 1
and 2 errors than expected while the
inverse is the case for traditional
methods. On the other hand, we had to
combine the data from the most serious
and the second most serious categories
in order to perform the test and there is
really much fewer serious errors reported
in the project with object-oriented de-
velopment. There are two lessons to be
learnt from this:

1 Although the statistics can provide us
with significance levels, we need to
use common sense when we interpret
the results.

2 Many statistical tests build on one or
more assumptions. These assumptions
must be checked and adhered to and
this can lead to data sets that no longer
can be used to test what we are really
looking for.

Where do we go
from here

First and foremost, we need to focus each
experiment on a limited part of the de-
velopment process. In order to get sound
models, we can use two approaches:

• We can build on statistical analyses
alone, which requires a large amount
of experimental data. In order to obtain
a large amount of data, we need to
focus on a process that is performed
several times and with a large variation
in types of participants.

• We can combine experimental data
and expert knowledge. There are sev-
eral ways to do this – parametric Bayes
and non-parametric Bayes are proba-
bly the two best known.

We can also use expert knowledge to get
more information out of each experi-
ment, for instance by using experience
on which parameters influence which
results. Such knowledge will for instance
help us make more focused experiments.

Inspection and testing are activities that
could provide interesting starting points.
If we choose inspection, important ques-
tions could concern which parameters
influence the effectiveness of inspec-
tions, for instance measured as the per-
centage of errors found during inspec-
tion. Among the parameters to be con-
sidered are:

• Preparation time;

• Use or no use of checklists;

• Amount of application knowledge
among the participants;

• Time spent in meetings;

• Size and complexity of the document.

Similar sets of interesting parameters can
be defined for other subprocesses. Based
on sound scientific methods and engin-
eering knowledge, we could then build
a library of subprocess models that again
could be combined into project specific
development processes through the use
of QFD or any similar method.

In addition, we must remember always to
include the project’s environment in our
measurements. As a result of this, we
need a common, documented way of de-
scribing a project environment. In this
way, we can identify what is similar and
what is different when we want to com-
pare projects, both inside a company and
between companies. ITUF’s working
group on project management has done
an important first effort, but much is left
to be done before we have a common
starting point.

On the top level, we need to understand
important relations like which parameters
influence which project and product
characteristics. This is for instance
important for project planning and trade-
offs as well as for developing a product
that is delivered on time and satisfies the
customer’s needs and expectations.

Category Traditional Object-oriented Sum
development development

14 37

1,2 22.00 29.00 51

30 31

3 26.31 34.69 61

22 19

4 17.69 23.31 41

Total 66 87 153

Table 7 Expected versus observed number of failures
per failure category

Tor Stålhane (55) finalized his studies in electrical en-
gineering at the Norwegian University of Science and
Technology in 1969 and worked with compiler develop-
ment and maintenance until 1985. After completing his
Ph.D. in statistics in 1988 he returned to SINTEF, where
he has been working on software reliability and safety as
well as software process improvement. In addition to his
job at SINTEF he is a professor in computer science at the
Stavanger Polytechnic.

e-mail: tor.stalhane@informatics.sintef.no

Q =
∑

i

(Ni − piN)
2

piN

The software engineering community
is increasingly more focused on the
potential benefits of software process
assessment and software process
improvement. In this paper, we pre-
sent an overview of the general prin-
ciples behind the use of process assess-
ments and how to use such assessments
within the context of software process
improvement.

Introduction

One popular way of starting a software
process improvement program is to do an
assessment. In this paper we focus on the
use of such assessments within the con-
text of process improvement, addressing
the following issues:

• The basic principles of software pro-
cess assessment, reliability and validity
issues, and key factors for success;

• General principles for assessment-
based software process improvement;

• Presentation of the IDEAL model and
ISO/IEC 15504 methodology for pro-
cess improvement, including a brief
comparison of these two models;

• Key factors for success in software
process improvement, specifically
as seen from the SPICE-project;

• Strengths and limitations of assess-
ment-driven software process improve-
ment.

What is process
assessment?

The history of assessment-driven soft-
ware process improvement dates back to
the 1980s when two key initiatives were
undertaken by the military in the US and
in the UK. Both of these initiatives had
as their objective to improve the selec-
tion criteria for potential software con-
tractors, in order to reduce the risks asso-
ciated with software projects and im-
prove the quality of the delivered soft-
ware. The US initiative resulted in the
Capability Maturity Model (CMM) for
software [1, 2, 3], and the UK initiative
resulted in the emerging ISO/IEC 15504
standard for software process assessment
[4]. ISO/IEC 15504 is also known as
SPICE – the name of the project develop-
ing the standard.

Over the last years, several assessment
models have emerged in the software

industry, and there is a range of possible
assessment models that one can choose
from. In addition to the CMM for soft-
ware and ISO/IEC 15504, further ex-
amples of such models are ISO 9001,
9000-3, TickIT, European Quality
Award, Bootstrap, Trillium, and ISO/
IEC 12207. It is outside the scope of this
paper, however, to discuss all of these
models in detail; hence, we limit our-
selves to the issues underlying assess-
ment-driven software process improve-
ment in general. These general principles
will be exemplified by the IDEAL model
[5] and the informative framework for
software process improvement in the
emerging standard for software process
assessment [6].

According to ISO, process assessment is
“a disciplined evaluation of an organiza-
tion’s software processes against a model
compatible with the reference model”
[7]. In this definition, process is defined
as “a set of interrelated activities, which
transform inputs into outputs”, where the
term “activities” also covers the use of
resources [7, 8].

Process assessment can be used in two
principal contexts [9], as shown in Figure
1, and described below.

1 Process improvement – with the objec-
tive of understanding the state of the

organization’s own processes for pro-
cess improvement;

2 Process capability determination –
with the objective of determining the
suitability of another organization’s
processes for a particular contract or
class of contracts.

In this paper, we concentrate on the first
of these two contexts – software process
improvement. The role of assessment in
this context is to provide a means of cha-
racterizing the current practices within
the organization, and analyze the result-
ing strengths and weaknesses in terms of
the organization’s business needs. These
analyses, then, should lead to clear prior-
ities for improvement actions to enhance
the capabilities of the software process.

Usually, an assessment method includes:

a) A reference model for processes, prac-
tices and capability levels;

b)A measurement framework for mea-
suring an objective attribute or charac-
teristic of a practice or work product
that supports the judgement of the per-
formance of, or capability of, an im-
plemented process;

c) An assessment instrument (e.g. ques-
tionnaire) to assist the assessor in
evaluating the performance or capa-
bility of processes and in handling

37

Assessment-based software process improvement
T O R E D Y B Å

Telektronikk 1.1999

Capability
Determination

Process

Process
Improvement

Process
Assessment

Motivates

Leads toLeads to

Is
examined
by Identifies

capability
and risk of

Identifies
changes to

Figure 1 The use of software process assessment [7]

assessment data and recording the
assessment results;

d)A clear mechanism to present the
results.

All assessment models give a reference
point of current strengths and opportu-
nities. However, the reference point is
someone else’s ideal model – of software
development and improvement. These
models do not necessarily fit into your
organization and how you think about
software development and software pro-
cess improvement. The choice of an
assessment model, therefore, is most
likely to influence your improvement
philosophy. Consequently, you should
consider if the underlying reference
model matches your organization’s idea
of an ideal process for developing prod-
ucts for your customers.

Assessment principles

General principles

There are several references in the litera-
ture that suggest general principles for
assessments, e.g. [1, 10, 11, 12, 13, 14,
15, 16].

Generally, an assessment model is based
on the principle that the capability of a
process can be assessed by demonstrating
the achievement of certain process
attributes. These attributes are measured
against a defined set of criteria for “good
software engineering practice”, which is
defined in the respective reference mod-
els.

The key objective for all types of assess-
ments, however, is to uncover the prob-
lems of an organization, prioritizing their
relative importance, and to agree on a
way to fix them.

Overview of the
assessment process

General guidelines for performing an
assessment are given in e.g. [1, 11, 12,
16]. Specific principles and guidelines
for performing CMM-based assessments
are given in [17] and for ISO/IEC 15504
conformant assessments in [15].

Typically, however, an assessment pro-
cess consists of the following four broad
phases [18]:

1 Preparing the assessment. The key
task in this phase is to prepare the
input to the assessment. This includes
defining the scope and goal of the
assessment, the organizational unit and
the set of processes to be assessed, and
the process instances to be assessed.

2 Gathering the data. In this phase, the
chosen process instances are investi-
gated against the assessment model.
Data gathering will often be performed
through interviews and/or discussions
with the people concerned with the
process, and through the examination
of relevant documents. Other forms of
data gathering, however, may include
the use of automated tools, or collect-
ing data in a (semi-) continuous way.

The data gathering activities probe on
both what is done in terms of activities
and work products, and on how well it
is done in terms of process effective-
ness or capability.

3 Analyzing the data. In this phase, rat-
ings are assigned to the process
instances and the assessment output is
prepared. The assessment model’s rat-
ing scale defines what to rate and the
scale of values. The collected data is
analyzed against the definitions of the
attributes in the assessment model, and
the evidence and justifications for the
ratings are recorded.

Reliability and validity issues in the
rating process are of prime importance
in major decisions regarding improve-
ment actions based on assessment.
This is dealt with in later sections of
this paper.

The formal output of an assessment
varies according to the chosen assess-
ment model. CMM, for example,
measures organizational maturity;
consequently, the output of a CMM
assessment is a maturity level.
ISO/IEC 15504, on the other hand,

measures process capability. There-
fore, the output of an ISO/IEC 15504
assessment is a set of process profiles
that can be presented in a number of
ways.

For the purpose of process improve-
ment, the assessment output is used
to identify the current situation, high-
lighting its strengths, weaknesses,
risks, and opportunities for improve-
ment. Furthermore, the output feeds
into the improvement cycle of plan-
ning and prioritizing improvement
actions, implementing the improve-
ment plans, monitoring the results, and
taking further improvement actions.

4 Feeding back the results. Feedback is
important to gain both management
buy-in and commitment from software
developers. The feedback from an
assessment may vary, however, de-
pending on the nature and purpose of
the assessment and on any agreements
reached about the dissemination and
use of the results. Feedback and re-
porting may take the form of formal
written reports, presentations to one
or more groups, or simply informal,
verbal communication.

Reliability and validity
issues in performing
assessments

Reliability

Both CMM and SPICE conformant
assessments are measurement proce-
dures, for which reliability is of prime
concern. In this context, reliability refers
to the consistency and stability of a score
from a measurement scale.

Numerous methods are available for
assessing the reliability of a measurement
scale. However, the types of reliability

38 Telektronikk 1.1999

Assessment Models Required
Assessment
Sessions
Required One Two

One Split-Half Alternate-Form (immediate)
Internal Consistency

Two Test-Retest Alternate-Form (delayed)

Table 1 Classification of reliability estimation methods

computed in actual practice are relatively
few, and they are summarized in Table 1
in terms of the different techniques for
measuring reliability in relation to the
number of assessment models or pro-
cedures required and the number of
assessment sessions required. A brief de-
scription of these methods are made below
(for a more detailed treatment see [19]).

Since all types of reliability are con-
cerned with the degree of consistency or
agreement between two independently
derived sets of scores, they can all be
expressed in terms of a correlation co-
efficient, which expresses the degree of
correspondence, or relationship, between
two sets of scores. The absolute value of
the correlation coefficient can range from
0 to 1.0, with 1.0 perfectly reliable and 0
perfectly unreliable. A perfectly reliable
measure is seldom attainable, but one
should strive for the best measures
possible. There are no rules available
for what constitutes a reliable measure.
However, Nunnally [20] has suggested
the following minimum standards:

• 0.7 is used for exploratory research;

• 0.8 is used for basic research;

• 0.9 or better is used in applied settings
where important decisions will be
made with respect to specific test
scores.

According to these recommendations, an
assessment instrument that is being used
for decisions with respect to process
improvement priorities should constitute
coefficients of 0.9 or higher.

Test-retest reliability

In order to estimate reliability with this
method, we must assess an organiza-
tion’s software processes at two different
times using the exact same assessment
procedure. The reliability coefficient for
the test-retest method is simply the corre-
lation between the scores obtained on the
two assessments. Retest reliability shows
the extent to which scores on an assess-
ment can be generalized over different
occasions, that is, the higher the relia-
bility, the less susceptible the scores are
to random daily changes in the condition
of the organization or of the assessors.
The error variance in this case corre-
sponds to the random fluctuations of
performance from one assessment to
the other.

Alternate-form reliability

The important difference between the
test-retest and the alternate-form methods
is in the assessment procedure itself. In
the former, the same instrument and pro-
cedure is used; in the latter, a different
but equivalent procedure is used. This
can be achieved, e.g. by using two differ-
ent assessment instruments or by using
two assessment teams, with or without a
time interval. Most common is the use of
a time interval of about two weeks, much
like the test-retest method.

The correlation between the scores ob-
tained on the two forms represents the
reliability coefficient of the test. It will
be noted that such a reliability coefficient
is a measure of both temporal stability
and consistency of response to different
assessment procedures. This coefficient
thus combines two types of reliability. If
the two forms are administered in imme-
diate succession, the resulting correlation
shows reliability across forms only, not
across occasions. The error variance in
this case represents fluctuations in per-
formance from one assessment to an-
other, but not fluctuations over time.

Split-half reliability

Split-half reliability is accomplished by
splitting a multi-item assessment instru-
ment in half and then correlating the
results of the scores in the first half with
those in the second half. Split-half relia-
bility thus provides a measure of con-
sistency with regard to content sampling.
Temporal stability of the assessment does
not enter into such reliability, because
only one assessment session is involved.
It should be noted, however, that this cor-
relation actually gives the reliability of
only a half-assessment. In both test-retest
and alternate-form reliability, on the
other hand, each score is based on the
full number of items in the assessment
instrument.

The effect that lengthening or shortening
an assessment instrument will have on its
coefficient can be estimated by means of
the Spearman-Brown formula [20]. Other
things being equal, this formula shows
that the longer the instrument, the more
reliable it will be. Lengthening an instru-
ment, however, will increase only its
consistency in terms of content sampling,
not its stability over time.

Internal consistency

In essence, the internal consistency tech-
nique computes the mean reliability co-
efficient estimates for all possible ways
of splitting a set of items in half. This
presumably results in a better estimate of
reliability. This interitem consistency is
influenced by two sources of error vari-
ance: 1) content sampling (as in alter-
nate-form and split-half reliability); and
2) heterogeneity of the behavior domain
sampled. The more homogeneous the
domain, the higher the interitem consis-
tency. By far the most commonly used
internal consistency estimate is Cron-
bach’s coefficient alpha [21].

Although there has been a general con-
cern with the reliability of assessments,
there is a very limited number of reports
in the literature on the results of evaluat-
ing the reliability of software process
assessments using the internal consis-
tency method [22]. The most extensive
program of research in this area has been
conducted in the context of the SPICE
trials.

Bollinger and McGowan [23] questioned
the “statistical reliability” of the algo-
rithm used to calculate the maturity level
of an organization. Humphrey and Curtis
[24] replied to this critique by quoting a
Cronbach alpha figure of 0.9 for the level
2 and level 3 questions of the 1987 SEI
Maturity Questionnaire [25]. However,
they omit the details of the study.

El Emam and Madhavji [26] developed a
maturity assessment instrument for the
following dimensions of maturity: a)
process and product standardization,
b) project management, c) tool usage,
and d) organization. For each of the four
dimensions, the Cronbach alpha was
computed in the range of 0.8–0.9, which
is consistent with the reliability coeffi-
cient reported [24].

Fusaro, El Emam and Smith [27] present
results of an empirical evaluation of the
reliability of the 1987 SEI maturity ques-
tionnaire and the SPICE version 1 capa-
bility dimension. The results of the study
show that both full-length instruments
have reliability coefficients above 0.9.
Furthermore, a recent study by [28]
evaluates the internal consistency of
ISO/IEC PDTR 15504. This study con-
firms the results of Fusaro, El Emam and
Smith [27], indicating that the internal
consistency of SPICE version 2 did not
suffer any deterioration.

39Telektronikk 1.1999

These reliability studies indicate that
both the 1987 SEI maturity questionnaire
and the ISO/IEC PDTR 15504 both have
sufficiently high internal consistency to
be usable in practice.

Validity

For a scale to be valid, it must also be
reliable. Validity is differentiated from
reliability in that the former relates to
accuracy while the latter relates to con-
sistency. An assessment instrument is
valid if it does what it is supposed to do
and measures what it is supposed to mea-
sure. If such an instrument is not valid, it
is of little use because it is not measuring
or doing what it is supposed to be doing.
In other word, process assessment valid-
ity could be defined as “what the assess-
ment measures and how well it does so”.

In the context of assessment-driven soft-
ware process improvement, the validity
concern could be expressed by the ques-
tion: “Are [model X] conformant assess-
ments actually measuring the effective-
ness of [organization Y]’s software de-
velopment processes”.

Fundamentally, all procedures for deter-
mining the validity of an assessment are
concerned with the relationships between
the assessment results and other indepen-
dently observable facts about the be-
havior characteristics under considera-
tion. For process assessment, there are
three basic types of validity of measure-
ment that we must be concerned with.
These validity concerns are outlined in
Table 2 and are discussed next (for a
more detailed treatment see [19]).

Content validity

Content validity has to do with the
degree to which the scale items represent
the domain of the concept under study.
Essentially, procedures for content vali-
dation involve the systematic examina-
tion of the measurement instrument to
determine whether it covers a representa-
tive sample of the behavior domain to be
measured.

Software process assessment is based on
the idea of “best practice”. Therefore,
expert judgement is important to ensure
that the assessment procedures are at
least perceived to measure software best
practice [29]. Furthermore, it is necessary
that the assessment instruments include
items that adequately sample from the
content domain.

Criterion validity

Criterion-related validity has to do with
the degree to which the scale under study
is able to predict a variable that is desig-
nated a criterion, i.e. the effectiveness of
an assessment in predicting the organiza-
tion’s software process performance. The
criterion measure against which the
assessment is validated may be obtained
at approximately the same time as the
assessment or after a stated interval.

There are two general subtypes of crite-
rion validity, which are differentiated on
the basis of the time relations between
assessment and criterion: predictive and
concurrent validation. Predictive valida-
tion is the extent to which a future level
of some criterion variable can be pre-
dicted by a current assessment. Here,
the emphasis is primarily on the criterion
(predicted) variable rather than the

measured variable. Efforts at empirically
investigating the predictive validity of
software process assessment are reported
in e.g. [30, 31], and the SPICE trial
reports [32, 33].

Similar to predictive validity, concurrent
validity is largely criterion-oriented, with
the only major difference being the time
dimension. With concurrent validity, the
measure of the predictor and criterion
variables is made at about the same point
in time; i.e. concurrent validation is rele-
vant to assessments employed for diag-
nosis of existing status, rather than pre-
diction of future outcomes.

Construct validity

Construct validity is the degree to which
the measurement scale represents and
acts like the concept being measured,
in other words, the extent to which the
assessment may be said to measure a
theoretical construct or trait. Construct
validation has focused attention on the
role of theory in test construction and on
the need to formulate hypotheses that can
be proved or disproved in the validation
process.

Assessment
success factors

In order for process assessment to be
successful, reliability and validity are
necessary but by no means sufficient
conditions. Humphrey [11] identified a
competent team, sound leadership, and
a cooperative organization as the basic
requirements for successful process
assessments.

Furthermore, the SPICE project identi-
fied the following assessment success
factors [15, 34]:

• Commitment. The commitment of the
assessment team to the objectives they
have established for the assessment is
fundamentally important to ensure that
these objectives are met. This commit-
ment requires that the necessary
resources, time, and personnel are
made available to undertake the assess-
ment.

• Motivation. Management attitudes and
the data collection methods have a sig-
nificant influence on the outcome of an
assessment. Therefore, the assessment
should be focused on the software pro-
cess, rather than on the people imple-
menting the process. Providing feed-

40 Telektronikk 1.1999

Types of Validity Definitions

Content validity The degree to which the items in the assessment instrument
represent the domain or universe of the processes under
study.

Criterion validity The degree to which the assessment instrument is able to
predict a variable that is designated a criterion.

Construct validity The degree to which the assessment instrument represents
and acts like the processes being measured.

Table 2 Three basic types of validity in process assessment

back and maintaining an atmosphere
that encourages open discussion, with-
out blaming individuals, about prelimi-
nary findings is essential to get mean-
ingful assessment outputs.

• Confidentiality. Respect for the con-
fidentiality of sources of information
and documentation gathered during the
assessment is essential to secure that
information. Therefore, it is important
that adequate controls are in place to
handle, and protect, such information.

• Relevance. The members of the orga-
nizational unit being assessed should
believe that the assessment will result
in benefits that are relevant to their
needs. It is the software developers
that are the principal source of knowl-
edge and experience about the process;
thus, they are in the best position to
identify potential weaknesses and rele-
vance for performing the work.

• Credibility. The organizational mem-
bers must believe that the assessment
will deliver a result that is objective
and representative of the assessment
scope. Therefore, it is important that
all parties are confident that the assess-
ment team has adequate experience in
performing assessments, an adequate
understanding of the organizational
unit and its business, and sufficient
impartiality.

However, assessment alone does not cre-
ate improvement. It just makes it possible
and supports it. Therefore, to have effect
beyond mere exploration, the assessment
must be directed toward action. In this
context, assessments can only be con-
sidered successful if they contribute to
successful process improvements.

Using assessments
to guide software
process improvement

General principles

Process improvement is a complex
undertaking that involves management
issues, people issues, culture values,
quality improvement techniques, and
change management techniques. By
choosing a ready-made assessment
model as the instrument for prioritizing
improvement actions, one is also choos-
ing an underlying philosophy on these
issues. As an example, choosing between

CMM and ISO/IEC 15504 assessments
means choosing between a focus on
organizational maturity versus a focus on
process capability, respectively.

The SPICE project built on the following
general principles of improvement when
they developed the guide for software
process improvement [6]:

• Software process improvement is
based on process assessment results
and process effectiveness measures.

• Software process assessment produces
a current process capability profile,
which may be compared with a target
profile based on the organization’s
needs and business goals.

• Process effectiveness measures help
identify and prioritize improvement
actions that support organizations in
meeting their needs and business
goals, and in achieving software pro-
cess goals.

• Software process improvement is a
continuous process. Improvement
goals identified and agreed within
the organization are realized through
multiple cycles of planning, imple-
menting and monitoring activities.

• Improvement actions identified within
a process improvement program are
implemented as process improvement
projects.

• Metrics are used for monitoring the
improvement process in order to indi-
cate progress and to make necessary
adjustments.

• Software process assessment may be
repeated in order to confirm that the
improvements have been achieved.

• Mitigation of risk is a component of
process improvement and should be
addressed from two viewpoints: 1) the
risk inherent in the current situation,
and 2) the risk of failure in the im-
provement initiative.

Hence, the aim of assessment-based soft-
ware process improvement is to use both
the organization’s needs and business
goals, and industry norms and bench-
marks as the main stimuli for process
improvement. For the majority of soft-
ware companies, however, this is often
easier said than done.

CMM-Based Appraisal for
Internal Process Improvement
(CBA IPI)

The CBA IPI method is a diagnostic tool,
aimed at identifying the strengths and
weaknesses of an organization’s current
software processes related to the CMM.
Furthermore, to prioritize software
improvement plans, focusing on the most
beneficial software improvements, given
the current level of maturity and the busi-
ness goals of the organization [17, 35].

The method is an assessment of an orga-
nization’s software process capability
by a trained group of professionals who
work as a team to generate findings and
ratings relative to the CMM key process
areas within the assessment scope. The
findings are generated from data col-
lected from questionnaires, document
reviews, presentations, and in-depth
interviews with middle managers, project
leaders, and software practitioners.

The CBA IPI method supports the diag-
nostic phase in a cycle of ongoing im-
provement, and it has two primary goals:

• To support, enable, and encourage an
organization’s commitment to software
process improvement;

• To provide an accurate picture of the
strengths and weaknesses of the orga-
nization’s current software process,
using the CMM as a reference model,
and to identify key process areas for
improvement.

In the next section we shall take a closer
look at this cycle, which the SEI has
named IDEAL.

The IDEAL model

The SEI’s recommended framework for
software process improvement is the
IDEAL model [5] shown in Figure 2.
The IDEAL model was developed in
order to present a consistent view of the
activities of an improvement program
based on transitioning the CMM into an
organization’s practice [36]. The IDEAL
approach consists of the following five
phases [37]:

I Initiating Laying the groundwork
for a successful improve-
ment effort.

D Diagnosing Determining where you
are relative to where you
want to be.

41Telektronikk 1.1999

E Establishing Planning the specifics of
how you will reach your
destination.

A Acting Doing the work accord-
ing to the plan.

L Learning Learning from the experi-
ence and improving your
ability to adopt new tech-
nologies in the future.

A brief description of the five phases is
made below.

The initiating phase

Critical groundwork is completed during
the initiating phase. The business reasons
for undertaking the effort are clearly
articulated. The effort’s contributions to
business goals and objectives are iden-
tified, as are its relationships with the

organization’s other work. The support
of critical managers is secured, and
resources are allocated on an order-of-
magnitude basis. Finally, an infrastruc-
ture for managing implementation details
is put in place.

The activities of the initiating phase are
critical. If they are done completely and
well, subsequent activities can proceed
with minimal disruption. If, however,
they are done poorly, incompletely, or
haphazardly, then time, effort, and
resources will be wasted in subsequent
phases.

The diagnosing phase

The diagnosing phase builds upon the
initiating phase to develop a more com-
plete understanding of the improvement
work. During the diagnosing phase two

charac-
terizations

of the or-
ganization

are developed:
the current state

of the organization
and the desired future

state.
Characterizing these

two states are done by using
the CMM for software and the CBA

IPI. These organizational states are
then used to develop an approach for
improving business practices.

The establishing phase

The purpose of the establishing phase is
to develop a detailed work plan, with
priorities set that reflect the recommen-
dations made during the diagnosing
phase. An approach is then developed
that honors and factors in the priorities.
Finally, specific actions, milestones, de-
liverables, and responsibilities are incor-
porated into an action plan.

The acting phase

The activities of the acting phase help an
organization implement the work that has
been conceptualized and planned in the
previous three phases. These activities
will typically consume more calendar
time and more resources than all of the
other phases combined.

42 Telektronikk 1.1999

Stimulus
for

Change

Set
Context

Build
Sponsor-

ship

Charter
Infrastructure

Characterize
Current &

Desired States

Develop
Recommen-

dations

Set
Priorities Develop

Approach

Plan
Actions

Create
Solution

Pilot/Test
Solution

Refine
Solution

Implement
Solution

Analyze
and

Validate
Propose
Future
Actions

Learning

Acting

Establishing

Diagnosing

Initiating

Figure 2 The IDEAL v1.1 model [35]

The learning phase

The learning phase completes the im-
provement cycle. One of the goals of the
IDEAL model is to continuously improve
the ability to implement change. In the
learning phase, the entire IDEAL experi-
ence is reviewed to determine what was
accomplished, whether the effort accom-
plished the intended goals, and how the
organization can implement change more
effectively and/or efficiently in the
future. This requires that records must
be kept throughout the IDEAL cycle with
this phase in mind.

The ISO/IEC 15504
framework for software
process improvement

Part 7 of the ISO/IEC 15504 document
set provides guidance on how to prepare
for and use the results of an assessment
for the purpose of process improvement.

Figure 3 illustrates the cycle for continu-
ous software process improvement using
[6]. A description of the steps in this
cycle is made below [6, 38].

Examine the organization’s
needs and business goals

The first step of the improvement cycle
starts with a recognition of the organiza-
tion’s needs and business goals. The
objectives of process improvement is
then identified and described in terms of
e.g. quality, time to market, cost and cus-
tomer satisfaction. Finally, these objec-
tives direct the choice and priorities of
the processes to be assessed, the defini-
tion of improvement targets and ulti-
mately the identification of the most
effective improvement actions.

43Telektronikk 1.1999

Improvements in
organizational unit´s

software process

1.
Examine

organization´s
needs

7.
Sustain

improvement
gains

8.
Monitor

performance

2.
Initiate process
improvement

3.
Prepare and

conduct process
assessment

4.
Analyze results

and derive
action plan

5.
Implement

improvements

6.
Confirm

improvementsIdentified
scope and
priorities

Implemented
improvements

Approved action plan

Organization´s
needs

SPI request

Institutionalized
improvements

Improvement
initiation

Preliminary
PIP plan

Assessment
request Current

assessed capability

Validated
improvement

results

Re-assessment
request

Analyzed
re-assessment

results

Assessment
results

PIP plan

Target capability
profile

Industrial
benchmarks

Practice
descriptions

Figure 3 ISO/IEC TR 15504-7 software process
improvement steps [4]

Initiate process improvement

This step emphasizes the need to con-
sider a process improvement program
(PIP) as a project in its own right that
is planned and managed accordingly.
Furthermore, a PIP plan should be pro-
duced, including the improvement goals,
the improvement scope, an outline of all
improvement steps, the identification
of key roles, the allocation of adequate
resources, and the establishment of
appropriate milestones and review points.

Prepare for and conduct
a process assessment

This step provides guidance on how to
define the assessment inputs needed to
carry out an ISO/IEC 15504-conformant
assessment. In particular, the choice of a
qualified assessor, the definition of a
detailed purpose statement, and the iden-
tification of an appropriate assessment
scope are all important issues to be con-
sidered. The assessment is initiated using
the prepared assessment input, and it
delivers the results as an assessment out-
put consisting of the current process pro-
file, the assessment record, and addition-
al information for process improvement.

Analyze assessment output
and derive action plan

In this step, information collected during
the assessment is analyzed in the light of
the organization’s needs. Improvement
areas are identified and prioritized, based
on risks related either to not improving
an area or to incurring in a failure of spe-
cific improvement actions. Targets for
improvement should be quantified for
each improvement area, including either
target values for process effectiveness,
target capability profiles, or a combina-
tion of the two. Specific actions should
be developed to meet the quantified
targets. The set of agreed actions should
be documented as the process improve-
ment action plan, which is a tactical plan
that should be integrated with the process
improvement program plan originally
developed at a strategic level.

Implement improvements

In this step, specific process improve-
ment projects should be initiated, each
concerned with implementing one or
more process improvement actions. A
detailed implementation plan should be
developed for each project. Finally, the
process improvement projects should be

monitored against the process improve-
ment project plan.

Confirm improvements

When the process improvement project
has been completed, management should
be involved both to approve the results
and to evaluate whether or not the orga-
nization’s needs have been met. If, after
improvement actions have been taken,
measurements show that process goals
and improvement targets have not been
achieved, it may be desirable to redefine
the improvement project by returning to
an earlier step in the improvement cycle.
Risks should be reevaluated to confirm
that they remain acceptable.

Sustain improvement gains

After process improvements have been
confirmed, all those for whom it is appli-
cable should use the improved software
process. Management is required to mon-
itor the institutionalization of the
improved process and to give encourage-
ment when necessary. Responsibilities
for monitoring should be defined, as well
as how the monitoring will be done, e.g.
by using appropriate effectiveness mea-
surements.

Monitor performance

In the final step of the model, the per-
formance of the organization’s software
process should be continuously moni-
tored, and new process improvement

projects should be selected and imple-
mented as part of a continuing process
improvement program, since additional
improvements are always possible.

Contrasting the IDEAL and
ISO/IEC 15504 improvement
models

Clearly, there is a strong correlation be-
tween the IDEAL model and the ISO/
IEC 15504 model for software process
improvement, although some issues in
IDEAL are not covered in ISO/IEC
15504 and vice versa. The levels of detail
differ significantly: Chapter 5 in part 7 of
ISO/IEC 15504 is about 12 pages long,
and the IDEAL is a handbook over 200
pages long.

Recognizing that there is a limit to the
amount of detail the emerging standard
can cover, it was important to the ISO
working group not to presume specific
organizational structures and manage-
ment philosophies [38].

Apart from the level of detail, the biggest
difference between the IDEAL and
ISO/IEC 15504 improvement models
is in the architecture of the assessment
model. One of the objectives of the
ISO/IEC effort was to create a way of
measuring process capability, while
avoiding a specific approach to improve-
ment such as the CMM’s maturity levels.
ISO/IEC selected an approach to measure
the implementation and institutionaliza-
tion of specific processes, that is, a pro-

44 Telektronikk 1.1999

1. Alignment with the business strategy and goals.

2. Consensus and buy-in from all stakeholders.

3. Senior and middle management support

4. Dedicated resource to manage the implementation and coordinate the process
improvement activities.

5. Sensitivity to the organizational context.

6. Management of change.

7. Prioritization of actions.

8. Creation of the support infrastructure.

9. Monitoring the results of software process improvement.

10. Learning from the feedback results.

Table 3 Ingredients for successful software process improvement (Zahran, 1998)

cess measurement rather than an organi-
zation measurement. Using this app-
roach, maturity levels can be viewed as
sets of process profiles. Thus, whereas
the CMM addresses organizations,
ISO/IEC 15504 addresses processes.

The biggest similarity is that both models
have an emphasis on continuous process
improvement, thus representing two
varieties of the Plan-Do-Check-Act
cycle, developed by Dr. Walter Shewhart
in the 1920s [39].

Key factors for success
in software process
improvement

At present, there are few empirical
studies investigating the key factors for
success in software process improve-
ment. Despite this fact, most of the litera-
ture is full of advice regarding factors
that should be taken into consideration
to ensure the success of software process
improvement efforts. Empirical studies
related to the CMM and ISO/IEC 15504
can be found in e.g. [4, 40, 33, 41].

ISO/IEC 15504 highlight cultural and
management issues as fundamental to
succeed with software process improve-
ment and organizational change. The
following cultural issues were identified
[6]:

• Management commitment, responsi-
bility and leadership;

• Shared values, attitudes and behavior;

• Process improvement goals and moti-
vation;

• Communication and teamwork;

• Recognition and award system;

• Education and training.

Furthermore, the following management
issues were identified [6]:

• Organizational principles for process
improvement;

• Planning for process improvement;

• Measurement of process improvement;

• Reviewing of process improvement
activities.

It is, however, outside the scope of this
article to elaborate on these issues; nev-
ertheless, in Table 3 we provide a list of
some critical factors which, according to

Zahran [16], represent essential ingredi-
ents for successful implementation of
software process improvement.

Strengths and limitations
of assessment-driven
improvement

As already described, an assessment pro-
vides ratings based on conformance with
a reference model. However, software
process improvements can hardly be
claimed unless process effectiveness is
closely related to the specific circum-
stances, needs, and business goals of the
organization. Since organizations are
unique and have unique circumstances,
the choice of process effectiveness mea-
sures will differ between different orga-
nizations. This, then, raises the question
of the applicability of models such as
CMM and ISO/IEC 15504 that are based
on the positivistic presumption of a uni-
versal ‘best practice’ and the ‘one best
way’. This can be contrasted with the use
of models such as QIP [42], with the sup-
port of GQM [49] and EF [44], which are
more concerned with the contingent char-
acteristics of the individual organization
[45].

Furthermore, both the CMM and
ISO/IEC 15504 have their roots in total
quality concepts developed by ‘gurus’
like Shewhart (1931), Deming (1982),
Juran (1988) and Crosby (1979), and
their principle of statistical control.
Humphrey (1989) put the case for the
need for statistical control of the software
development process, arguing that a pro-
cess under statistical control can achieve
consistently better results only by im-
proving the process. Moreover, he argued
that “If the process is not under statistical
control, sustained progress is not possible
until it is”. The concept of statistical con-
trol, however, is not of much help for
most small and medium sized companies,
developing only one project at a time,
and consequently having too few data
sets to base decisions on.

As for CMM, its authors make it clear
that it was developed for use with large,
government funded types of projects [1].
It can be tailored and the documentation
to do so is available from the SEI [46].
However, the process of tailoring is itself
so complex and resource demanding that
it will most likely put off most small and
medium sized organizations.

Despite these problems, assessment mod-
els can, nevertheless, be useful in that
they provide a common language for
organizational problems and a vision of
what the organization could be like in the
future. They can also help organizations
evaluate themselves and assist in setting
improvement priorities.

Conclusions

In this paper, we have presented an
overview of software process assessment
within the context of software process
improvement. The crucial point is never
to forget why process improvement is
important. Assessment models such as
ISO/IEC TR 15504 and CMM can be of
valuable help to improve an organiza-
tion’s software processes. However, the
achievement of a maturity level should
be a measure of improvement, not the
goal of improvement. A certificate on the
wall does not necessarily mean that the
processes actually being performed are
efficient or conforming to the standard.

To remain competitive, software organi-
zations must not only keep pace with the
rapid technological evolution; it must
also focus attention on the organization’s
ability to deal with change. What matters
most, however, are the business needs
and business goals of the improvement
effort, the impact on cost, cycle time,
productivity, quality, and – most impor-
tantly – customer satisfaction.

In short, we would like to conclude with
a five hundred year old advice, which is
equally important today:

“Whoever desires constant success
must change his conduct with the
times”.

Niccolò Machiavelli,
The Discourses, III

References

1 Paulk, M C et al. The capability
maturity model : guidelines for
improving the software process.
Reading, MA, Addison-Wesley,
1995.

2 Paulk, M C et al. Capability maturity
model for software, version 1.1. Pitts-
burgh, PA, Software Engineering
Institute, 1993. (Technical Report
CMU/SEI-93-TR-24.)

45Telektronikk 1.1999

3 Paulk, M C et al. Key practices of the
capability maturity model, version
1.1. Pittsburgh, PA, Software Engi-
neering Institute, 1993. (Technical
Report CMU/SEI-93-TR-25.)

4 El Emam, K, Drouin, J-N, Melo, W
(eds.). SPICE : the theory and prac-
tice of software process improvement
and capability determination. Los
Alamitos, CA, IEEE Computer So-
ciety Press, 1998.

5 McFeeley, B. IDEAL : a user’s guide
for software process improvement.
Pittsburgh, PA, Software Engineer-
ing Institute, 1996. Handbook
CMU/SEI-96-HB-01.

6 ISO. Information technology : soft-
ware process assessment. Part 7 :
guide for use in process improve-
ment. Geneva, 1998. (ISO/IEC TR
15504-7.)

7 ISO. Information technology : soft-
ware process assessment. Part 9 :
vocabulary. Geneva, 1998. (ISO/IEC
TR 15504-9.)

8 ISO. Quality management and qual-
ity assurance : vocabulary. Geneva,
1994. (ISO 8402.)

9 ISO. Information technology : soft-
ware process assessment. Part 1 :
concepts and introductory guide.
Geneva, 1998. (ISO/IEC TR 15504-
1.)

10 Pressman, R S. Making software en-
gineering happen : a guide for insti-
tuting the technology. Englewood
Cliffs, CA, Prentice Hall, 1988.

11 Humphrey, W S. Managing the soft-
ware process. Reading, MA, Addi-
son-Wesley, 1989.

12 Humphrey, W S. Managing technical
people : innovation, teamwork, and
the software process. Reading, MA,
Addison-Wesley, 1997.

13 Olsen, T, Humphrey, W S, Kitson, D.
Conducting SEI-assisted software
process assessments. Pittsburgh, PA,
Software Engineering Institute, 1989.
(Technical Report CMU/SEI-89-TR-
07.)

14 Kuvaja, P et al. Software process
assessment and improvement : the

BOOTSTRAP approach. Oxford,
Blackwell, 1994.

15 ISO. Information technology : soft-
ware process assessment. Part 4 :
guide to performing assessments.
Geneva, 1998. (ISO/IEC TR 15504-
4.)

16 Zahran, S. Software process improve-
ment : practical guidelines for busi-
ness success. Harlow, Addison-Wes-
ley, 1998.

17 Dunaway, D K, Masters, S. CMM-
based appraisal for internal process
improvement (CBA IPI) : method
description. Pittsburgh, PA, Software
Engineering Institute, 1996. (Techni-
cal Report CMU/SEI-96-TR-007.)

18 Rout, T P, Simms, P G. Introduction
to the SPICE documents and archi-
tecture. In: SPICE : The Theory and
Practice of Software Process Im-
provement and Capability Determi-
nation. El Emam, Drouin and Melo
(eds.). Los Alamitos, CA, IEEE
Computer Society Press, 1998.

19 Anastasi, A, Urbina, S. Psychological
testing. Upper Saddle River, NJ,
Prentice-Hall, 1997.

20 Nunnally, J C. Psychometric theory.
New York, McGraw-Hill, 1978.

21 Cronbach, L. Coefficient alpha and the
internal consistency of tests. Psycho-
metrica, 16, 297–334, 1951.

22 Goldenson, D R et al. Empirical
studies of software process assess-
ment methods. Freiburg, Frauenhofer
Institute for Experimental Software
Engineering, 1997. (Technical Report
ISERN-97-09.)

23 Bollinger, T, McGowan, C. A critical
look at software capability evalua-
tions. IEEE Software, 8 (4), 25–41,
1991.

24 Humphrey, W S, Curtis, B. Com-
ments on ‘A Critical Look’. IEEE
Software, 8 (4), 42–46, 1991.

25 Humphrey, W S, Sweet, W. A
method for assessing the software
engineering capability of contrac-
tors. Pittsburgh, PA, Software En-
gineering Institute, 1987. (Technical
Report CMU/SEI-87-TR-23.)

26 El Emam, K, Madhavji, N H. The
reliability of measuring organization-
al maturity. Software Process Im-
provement and Practice, 1 (1), 3–25,
1995.

27 Fusaro, P K, El Emam, K, Smith, B.
The internal consistency of the 1987
SEI maturity questionnaire and the
SPICE capability dimension.
Freiburg, Frauenhofer Institute for
Experimental Software Engineering,
1997. (Technical Report ISERN-97-
01.)

28 El Emam, K. The internal con-
sistency of the ISO/IEC 15504 soft-
ware process capability scale.
Freiburg, Frauenhofer Institute for
Experimental Software Engineering,
1998. (Technical Report ISERN-98-
06.)

29 El Emam, K, Goldenson, D R.
SPICE : an empiricist’s perspective.
In: Proceedings of the Second IEEE
International Software Engineering
Standards Symposium, August 1995.
Los Alamitos, CA, IEEE Computer
Science Press, 1995, 84–97.

30 Herbsleb, J et al. Benefits of CMM-
based software process improvement
: initial results. Pittsburgh, PA, Soft-
ware Engineering Institute, 1994.
(Technical Report CMU/SEI-94-TR-
13.)

31 El Emam, K, Goldenson, D R. An
empirical evaluation of the prospec-
tive international SPICE standard.
Software Process Improvement and
Practice, 2 (2), 123–148, 1996.

32 SPICE. Phase 1 Trials Interim
Report, Version 1.00. 15 July, 1998.

33 SPICE. Phase 2 Trials Interim
Report, Version 1.00. 17 June, 1998.

34 Coletta, A. Process assessment using
SPICE : the assessment activities. In:
SPICE : The Theory and Practice of
Software Process Improvement and
Capability Determination. El Emam,
Drouin and Melo (eds.). Los Alami-
tos, CA, IEEE Computer Society
Press, 1998.

35 Basque, R. CBA IPI : How to build
software process improvement suc-
cess in the evaluation phase? IEEE
TCSE Software Process Newsletter,
(5), Winter, 1996.

46 Telektronikk 1.1999

36 Peterson, B. Software Engineering
Institute. Software Process Improve-
ment and Practice, Pilot Issue, 1995.

37 Gremba, J, Myers, C. The IDEAL
model : a practical guide for im-
provement. Bridge, (3), 1997.

38 Jansen, P, Sanders, J. Guidelines for
process improvement. In: SPICE :
The Theory and Practice of Software
Process Improvement and Capability
Determination. El Emam, Drouin and
Melo (eds.). Los Alamitos, CA, IEEE
Computer Society Press, 1998.

39 Deming, W E. Out of the crisis.
Cambridge, MA, Cambridge Univer-
sity Press, 1986.

40 El Emam, K et al. Success or failure?
Modeling the likelihood of software
process improvement. Freiburg,
International Software Engineering
Research Network, 1998. (Technical
Report ISERN-98-15.)

41 Goldenson, D R, Herbsleb, J. After
the appraisal : a systematic survey
of process improvement, its benefits,
and factors that influence success.
Pittsburgh, PA, Software Engineer-
ing Institute, 1995. (Technical
Report, CMU/SEI-95-TR-009.)

42 Basili, V R et al. The software en-
gineering laboratory : an operational
software experience factory. In: Pro-
ceedings of the 14th International
Conference on Software Engineering.
New York, ACM, 1992.

43 Basili, V R, Weiss, D. A methodol-
ogy for collecting valid software
engineering data. IEEE Transactions
on Software Engineering, 10 (6),
728–38, 1984.

44 Basili, V R. Software development : a
paradigm for the future. In: Proceed-
ings of the 13th Annual International
Computer Software & Applications
Conference (COMPSAC). Los Alami-
tos, CA, IEEE Computer Society
Press, 1989, 471–485.

45 Dybå, T, Skogstad, Ø. Measurement-
based software process improvement.
Telektronikk, 93 (1), 73–82, 1997.

46 Ginsberg, M, Quinn, L. Process tai-
loring and the software capability
maturity model. Pittsburgh, PA, Soft-
ware Engineering Institute, 1995.
(Technical Report CMU/SEI-94-TR-
024.)

47Telektronikk 1.1999

Tore Dybå (37) is Research Scientist at SINTEF Telecom
and Informatics. He holds a Master’s Degree in Computer
Science and Telematics from the Norwegian Institute of
Technology in 1986. Tore Dybå is also Research Fellow in
Computer Science at the Norwegian University of Science
and Technology working on a Ph.D. thesis on Software
Process Improvement and Organizational Learning.

e-mail: Tore.Dyba@informatics.sintef.no

48 Telektronikk 1.1999

In this paper we describe how Telenor
Telecom Software (TTS) developed
and implemented processes, roles and
tools to achieve reuse of estimation and
risk management experience, i.e. orga-
nizational learning. The results from
the case study include:

• The development and introduction
of an experience database integrated
with the software development pro-
cess – offering relevant experience
‘just in time’;

• Examples of types of experience use-
ful for software developers;

• Recommendations on how to collect,
package and distribute experience;

• Experience on roles and process to
support reuse of software develop-
ment experience.

1 Introduction

The reported case study on reuse of soft-
ware development experience was car-
ried out in 1997–1998, supported by the
national research project SPIQ (Software
Process Improvement for better Quality).
Among other things, the case study was
motivated by the following challenges:

1 How can software development ex-
perience be efficiently shared between
different development teams?

2 What types of experience are worth
reusing?

3 What is the role of reuse of ‘local’
(context-dependent) experience com-
pared with more ‘global’ (best prac-
tice) experience?

Our approach and results to help meeting
these challenges, we believe, can be use-
ful for other organizations facing similar
challenges.

The remainder of the paper is organized
as follows. Section 1.1 describes the
research project SPIQ. Section 1.2 de-
scribes the organization studied. Section
2 describes and argues for approach
chosen. Section 3 describes the results.
Section 4 describes related work. Section
5 concludes, summarizes and suggests
further work.

1.1 Software Process Improve-
ment for better Quality (SPIQ)

In April 1997, following a pre-project in
1996, the software process improvement

project SPIQ was started. The program is
sponsored by the Research Council of
Norway (NFR) for at least three years.
Its main goal is to

“... increase the competitiveness and
profitability of Norwegian IT industry
through systematic and continuous
process improvement ...”

The SPIQ project is based on the soft-
ware process improvement principles of
‘Total Quality Management’, see for
example [1], and the ‘Quality Improve-
ment Paradigm’, see for example [2]. An
important aspect of SPIQ is that it pro-
vides a means for the academia and the
software industry to meet and discuss
software improvement experiences and
research results.

The work described in this paper has
benefited from SPIQ in at least three
ways:

1 The experience database design and
results were discussed at the SPIQ
meetings;

2 SPIQ has provided valuable research
support;

3 SPIQ has financed parts of the Telenor
Telecom Software’s (TTS’) internal
work on ‘reuse of experience’.

See http://www.fw.no/spiq/ for more
information on SPIQ.

1.2 The organization

TTS is split into five geographical loca-
tions and has more than 400 employees,
most of them software developers. In
other words, reuse of software develop-
ment experience is an important but not
trivial task. In 1995–1996 the company
went through a ‘Business Process Re-
engineering’, see [3], resulting in a well
documented, standardized software
development process. The process
descriptions and documents are available
to all employees through the Intranet
using an Internet browser.

The software development process used
by the developers is called ‘solution
delivery’ and is based on incremental
delivery of software functionality in so-
called ‘time-boxes’. Each ‘time-box’
lasts 3–6 month, which provides good
conditions for experience reuse, at least
compared with organizations with a
waterfall development model leading
to projects with cycles of 1–2 years.

The organization includes several
support teams (development tool support
team, measurement and estimation
support team, test support team, quality
team, etc.) for the development and
maintenance processes. These teams
turned out to be very important in the
implementation of the process changes
and collecting experience.

A recent, informal, in-house assessment
(carried out by one of the authors of this
paper) of the company, in accordance
with the CMM framework, gave maturity
levels on different key process areas be-
tween 2 and 4, i.e. TTS is a reasonably
mature software development organiza-
tion.

The company’s software development
process prescribes several steps moti-
vated by the need for reuse of develop-
ment experience: Each project should
1) be measured according to a measure-
ment model, and 2) deliver an experience
report when completed. The ‘Measure-
ment and Estimation Team’ was allo-
cated to carry out the measurements and
the ‘Quality Team’ was the receiver of
the experience reports.

We found that the project measurement
and the experience reporting were to
some extent carried out. However, there
were not much systematic use of the
information to improve the process. This
observation was a major motive for our
focus on reuse of experience in TTS.

2 The approach

Our approach can be characterized as
action science [4], which is a typical
research method when studying indus-
trial software development. Action
science has advantages as well as disad-
vantages. The advantages are, for ex-
ample, that action science may be the
most efficient way to get:

• In-depth knowledge of software de-
velopment organizations. This belief
is e.g. supported by the learning model
of [5], which focuses on the role of
collecting concrete and context-depen-
dent experience to support the learning
process. According to this learning
model only the lower levels of knowl-
edge is context-independent and rule-
based. In order to achieve higher levels
of knowledge (being an expert) lots of
context-dependent experience (local
experience) has to be collected. Our
observations support this learning

Reuse of software development experience
– a case study
M A G N E J Ø R G E N S E N , D A G S J Ø B E R G A N D R E I D A R C O N R A D I

49Telektronikk 1.1999

model. For example, while inexperi-
enced project leaders asked for rule
based methods regarding risk manage-
ment, more experienced project
leaders were more interested in how
other projects had carried out their
risk management activities.

• Representative and realistic informa-
tion on how terms and models impor-
tant for meaningful reuse of experience
are used. For example, when we co-
operated with the projected leaders on
estimation of effort, we found a variety
of interpretations of the term ‘effort
estimate’. This variety clearly reduced
the potential for reuse of the effort esti-
mation experience and data. Three
major types of interpretations were
found: Estimated effort means a) ‘most
likely effort’; b) ‘the effort with the
probability of 50 % not to exceed’
(median); or c) ‘the most likely effort
+ a (project dependent) risk buffer’.

Disadvantages of action science are, on
the other hand, that:

• Action science studies are not carried
out as strict experiments with control
of the variables. Thus, a formal cause-
effect relationship between the actions
and the results cannot be established.
In particular, the mixing of the partici-
pation and observer role makes objec-
tive analyses difficult. In addition, it is
unlikely that anyone will (be able to)
repeat the study to validate our ob-
servations.

• There is no available observational
language or theory to remove subjec-
tivity and bias in the description of the
observations. See for example the dis-
cussion of how the expectations impact
the observational language in [6] – i.e.
there is a danger of ‘theory loaded
observations’.

It is important to be aware of these dis-
advantages, but it should not stop anyone
from carrying out studies like ours.
Currently, action science (or similar
methods) seems to be the only practical
way of achieving in-depth ‘real-world’
results about software improvement. We
believe, however, that more quantitative
and experimental research on software
processes should be the long-term goal
of the software improvement research,
leading to more general and objective
knowledge. A more general discussion
and comparison of research methods,
particularly the role of case studies, can
be found in [7].

Stimulated by the work at NASA-Soft-
ware Engineering Laboratory on Experi-
ence Factory, see for example [8], and
the opportunities we had at TTS, we
started a search for ‘pilots’ where reuse
of experience would improve the de-
velopment process. Based on an informal
analysis of the availability of informa-
tion, availability of resources, time, prob-
ability of success, estimated cost and
benefit, we decided to focus on the fol-
lowing two topics within the software
development process:

• Estimation of software development
effort;

• Risk management.

A brief analysis gave that in order to
support reuse of estimation and risk man-
agement experience, there was a need for

• An experience reuse process, including
new or modified role descriptions;

• A supporting tool (the experience
database);

• Allocated experience reuse resources,
both for implementing the experience
reuse processes and for administrating
the experience database.

3 The results

This section describes the work and some
of the results achieved in the period
Spring 1997 – Spring 1998. The organi-
zation continues to focus on experience
reuse, i.e. the results and products are to
some extent preliminary.

3.1 Manifestation of
experience

During the requirement analysis we soon
discovered that the manifestation of ex-
perience can and should take many forms
to be useful to the developers, such as:

• Quantitative and qualitative informa-
tion that can be stored in traditional
databases;

• General tools implementing or based
on ‘best practice’ within the organiza-
tion;

• Rule based systems (expert systems)
reflecting expert experience and
knowledge;

• Pointers to people with useful experi-
ence (this may be the only way of ‘rep-
resenting’ experience that cannot be
articulated, i.e. tacit knowledge);

• Process descriptions on different levels
and with different degrees of context
dependence.

In addition, it was considered important
that the experience database (the tool
enabling the access to the stored experi-
ence) was available to all the developers
at a low cost, integrated with the quality
system, easy to use and easy to maintain.

3.2 Technical platform

The technical platform chosen to meet
these requirements was based on

• The organization’s own Intranet. This
made the experience database avail-
able to all the developers and well inte-
grated with the organization’s quality
system;

• A user interface based on a web-
browser with links to experience of
different types. This removed the
need for local installation;

• An ‘experience database’ based on
tables of data, spreadsheets, documents
and rules implemented in executable
programs, i.e. no traditional database.

Further, we decided to integrate the ex-
perience reuse support with the organiza-
tion’s process descriptions, i.e. from the
relevant steps in the process descriptions
we had links to useful information and
tools in the experience database. The idea
was to offer useful experience ‘just in time’.

3.3 Reuse of effort estimation
experience

The effort estimation experience we
offered was of the following types
(linked to the relevant process steps):

3.3.1 Determine the
appropriate estimation
model and process

An ‘expert system’ recommending one or
more estimation models was developed
based on the collection and analysis of
the experience of the organization’s esti-
mation experts. Following an analysis of
whether formalized effort estimation is
recommended or not, the expert system
asks the user to answer nine questions.
A simplified description of the questions
and some implications of different an-
swers are indicated in Table 1. The esti-
mation models are briefly described in
Section 3.3.2. This expert system uses,

50 Telektronikk 1.1999

in addition to the answers from the users,
empirical data from TTS on the accuracy
of the different estimation models, see
Table 2, and the quality of the relevant
historical data, i.e. a high degree of orga-
nizational dependent experience.

3.3.2 Estimate effort

Depending on estimation model, differ-
ent types of experience data are avail-
able. Among others, the following esti-
mation models and planning tools were
supported by the experience database:

a) MarkII Function Point Analysis
(MkII FPA), see [9]. We improved and
extended an existing spreadsheet imple-
menting the MkII FPA estimation model.
This estimation model takes as main
input the estimated size of the function-
ality to be developed in function points.

Earlier we had analyzed data from more
than 30 software development projects
regarding how different variables, such
as use of CASE tool, had had an impact
on the development productivity, see
[10]. This study indicated that the choice
of development environment explained
most of the productivity variance. Now
we provided the estimator with historical
data on previous projects similar to the
current project. Table 3 shows some of
the historical information that the estima-
tor could make use of. The productivity
is measured as UFP/w-h, unadjusted
function points per work hour. Notice
that the estimator has to predict a pro-
ductivity category for his project, i.e.
expert knowledge is still required.

b) A bottom up, task and risk based esti-
mation model was developed. This esti-
mation model was supported with ex-
perience in the form of lists of ‘tasks to
remember’ and suggestions on the effort
distribution between the phases.
Currently, there is ongoing work on how
to improve the collection and reuse of
historical data to support this bottom-up,
task and risk based estimation model,
see [11]. We labeled this model ROPD
(the Norwegian acronym for Risk
Based Division into Sub-tasks).

c) A risk analysis tool integrated in the
estimation tools (or to be used sepa-
rately) was developed. The risk analysis
tool contains risk models, textual advice
and guidelines based on previous experi-
ence. The content varies from a simple
(but useful) checklist of tasks and risk
factors to more sophisticated probability

(beta-distribution) based risk models.
Typically, the content was based on gen-
eral frameworks and models, then
adapted to the organization’s needs
according to expert knowledge and ex-
perience. This tool resulted in a proba-
bility based effort estimate and predic-
tions such as “there is an 80 % proba-
bility of not exceeding 3000 w-h of effort”.

It turned out that this type of probability
based predictions were essential to intro-
duce the distinction between planned
and estimated effort in the organization.
Similar to the results in [12] we found
that probability based estimation had
a positive impact on the realism in the
effort estimates. Finally, pointers to the
human estimation experts were provided.

Question Examples of implication

1) Will there be a high degree of YES: FPA (function point analysis) based
infrastructure development and/or estimation is not recommended.
complex algorithms?

2) Is the project context significantly YES: Previous experience (collected
different from previous TTS-projects? productivity data) will not be of much use.

Normally, this excludes the use of FPA.

3) Are most of the requirements NO: The work intensive estimation models
described? ROPD (risk based, bottom-up estimation)

and FPA are not worth the effort.

4) Is a data model available? NO: The simplified FPA version (useful
when developing an early estimate)
cannot be used.

5) Does the delivery consist of many YES: FPA may not be useful.
small, not logically connected
changes/modules?

6) Will the effort to complete the NO: FPA may require too much effort.
project probably take more than
six months?

7) Is the project willing to spend 1–2 NO: ROPD or simplified FPA may be too
man-days of effort for small projects work intensive.
(less than 12 man-months) and
2–4 man-days for larger projects?

8) Will developers with experience NO: ROPD requires a division of tasks into
from similar projects be available sub-tasks, i.e. without experience from
when estimating the effort? similar projects ROPD can hardly be used.

9) Will there be more than five YES: If none of the standard estimation
deliveries similar to this one? models are recommended, a tailored

estimation model should be developed.

Table 1

Estimation model TTS historical accuracy of model (average)

Full Function Point Analysis +/- 15 % (mean magnitude of error)

Simplified Function Point Analysis +/- 30 % (mean magnitude of error)

ROPD +/- 20 % (mean magnitude of error)

Table 2

51Telektronikk 1.1999

3.4 Reuse of risk management
experience

Similar to the estimation support we
linked our experience database to the risk
management process. The experience
database offers support through several
tools to identify, analyze and manage
software project risks. We interviewed
several experienced project leaders in the
organization to get the most relevant risk
factors and the most relevant methods to
reduce and control the risks. In addition,
data from quality revisions were used to
tailor the risk management support.

Based on the collected information we
developed:

• A ‘TTS best practice’ risk manage-
ment process (extensions to the exist-
ing development process);

• A tool to identify, assess and store
risk factors, and suggestions on how
to reduce or control the risks;

• A tool to visualize the risk exposure
over time.

In many ways, what we did was to col-
lect only a small fraction of the organiza-
tion’s knowledge about risk manage-
ment. To become a learning organization
the organization will need to continu-
ously collect and distribute experience,
i.e. new roles and a changed process are
needed. Since systematic experience
reuse in risk management has a short
history in TTS, we found that we needed
to start small in order to understand what
sort of risk experience would be useful to
collect.

3.5 Roles and process

The studies and results described earlier
in this paper resulted in the identification
of needs for new roles and an increased
focus on the implementation of the de-
velopment process.

Roles

• An ‘experience database administra-
tor’ (a ‘gardener’) responsible for the
availability and usability of the ex-
perience to be reused. This role may
be split into two roles dividing the
responsibility into a technical admini-
strator and a content administrator. We
suggest that the ‘gardener’ should be a
part of the software process improve-
ment team of the organization.

• Several ‘process analysts’ responsible
for analysis of information from each
sub-process, such as the estimating
process, the project management pro-
cess or the testing process. The ‘pro-
cess analysts’ is responsible for
collecting and analyzing relevant
information from completed projects
and to generalize, tailor and package
the useful experience.

• A network of ‘support teams’ teaching
and guiding the project leaders and
members how to properly reuse the
experience within each sub-process/
topic.

• A process owner for the experience
reuse process.

Notice the distinction between role and
person. In a small organization a small
team or (at least in theory) one single
person may fill all these roles. Based on
our experience at TTS, a critical mini-
mum central effort to enable substantial
reuse of estimation and risk management
experience seems to be 2–3 man-years to
fill the roles above.

Process

When we started our study, the organiza-
tion did collect project data and it was
mandatory to write experience reports,
i.e. the process description had elements
of experience reuse. However, the col-
lected information was not systematically
used to improve the processes. In other

words, the process (or even more, the
implementation of the process) had not
had enough focus on the use of the col-
lected information. Looking at other case
studies of software process improvement,
see for example [13], this seems to be a
typical problem leading to graveyards of
data and unused documents. In our opin-
ion, this is a situation even worse than
the situation where no data is collected
and no reports written, and there is prob-
ably no more efficient way of destroying
the respect for a measurement and expe-
rience report.

We believe that the current process
description of TTS is sufficient to enable
experience reuse, given sufficient
resource to fill the experience reuse roles
described earlier. For a more general
experience reuse process and organiza-
tion, see [8].

3.6 Benefits

An underlying initial hypothesis on ex-
perience reuse is, of course, that it has a
long term benefit higher than the costs.
Currently, we are not in the situation to
decide whether this is true or not. We
cannot validate the hypothesis, partly
because it is too early, and partly because
it is difficult to isolate the impact of our
work from the impact of other parallel
process improvement initiatives. How-
ever, even without a formal impact study
we believe to see the following results of
the experience reuse work:

• Improved estimation accuracy and
more widespread use of the estimation
models;

• An increased focus on experience
based risk management in the projects;

• An acceptance in the organization for
the need to collect and share experi-
ence.

Batch-development Low prod. Medium prod. High prod. Turbo prod.

Cobol environment 0.05 UFP/w-h 0.10 UFP/w-h 0.20 UFP/w-h 0.30 FP/w-h

Powerbuilder environment 0.15 UFP/w-h 0.25 UFP/w-h 0.50 UFP/w-h 0.70 UFP/w-h

On-line development Low prod. Medium prod. High prod. Turbo prod.

Cobol environment 0.07 UFP/w-h 0.15 UFP/w-h 0.20 UFP/w-h 0.30 UFP/w-h

Powerbuilder environment 0.20 UFP/w-h 0.35 UFP/w-h 0.70 UFP/w-h 1.00 UFP/w-h

Table 3

52 Telektronikk 1.1999

In addition, we have made a number of
interesting observations increasing the
probability of successful reuse of ex-
perience in TTS, such as:

• Currently, the experience reports
written by the projects were of little
use to other projects. This may indicate
that without a clear model on how the
experience will be reused, there is a
great danger of reporting and collect-
ing useless information.

• The mere focus on reuse of experience
had a positive impact on the ‘improve-
ment culture’ in the organization. It
would have been very interesting to
carry out controlled experiments on
how different actions impact the soft-
ware improvement culture. An experi-
mental design similar to the one de-
scribed in ‘Goals and performance in
computer programming’ [14] may be
appropriate.

4 Related work

The Experience Factory or EF [15, 16]
is a framework for reuse of software life
cycle experiences and products. EF relies
on the Quality Improvement Paradigm
[17] for continuous and goal-oriented
process improvement, resembling the
Shewhart/Deming Plan-Do-Check-Act
cycle [18].

The EF framework prescribes an im-
provement organization inside a com-
pany, a kind of ‘extended quality depart-
ment’. This implies the “logical separa-
tion of project development (performed
by the Project Organization) from the
systematic learning and packaging of
reusable experiences (performed by the
Experience Factory)” [16]. The PER-
FECT EF framework extends this model
by adding a third organizational compo-
nent: the Sponsoring Organization, which
uses the EF for strategic purposes [19].

Within the EF framework, the NASA-
Software Engineering Laboratory with its
275 developers has collected information
about 150 projects in the period 1976 –
1996. The purpose is to record the
effects of various software technologies
(methods, tools, programming languages,
QA techniques, etc.). However, NASA
represents a special kind of stable and
resourceful organization. It is a challenge
to apply the EF ideas outside of NASA,
i.e. to downscale it to companies with
typically 10–30 developers, and where
the EF roles are partly being played by

the developers themselves. More applica-
tions of the EF framework in other con-
texts are therefore needed, see e.g. [19].
Our case study is a contribution in that
respect.

5 Conclusions
“... (improvement) requires continual
accumulation of evaluated experi-
ences, in a form that can be effectively
understood and modified, sorted in a
repository of integrated experience
models, that can be accessed/modified
to meet the needs of the current pro-
ject.” [15]

In the introduction (Section 1) we asked
the following questions:

1 How can software development ex-
perience be efficiently shared between
different development teams?

2 What types of experience is worth re-
using?

3 What is the role of reuse of ‘local’
(context-dependent) experience com-
pared with more ‘global’ (best prac-
tice) experience?

Through our study we have contributed
to the answers, but cannot claim to have
the answers. Our main contribution may
have been to give an in-depth example
of how the questions/challenges were
approached by TTS.

TTS has introduced a standardized de-
velopment process documented on the
web and made the processes available for
all the software developers through the
organization’s Intranet. In many ways,
this opens new possibilities for software
development organizations. We have
found that software development experi-
ence efficiently can be linked to the pro-
cess steps and made available to all the
developers in a very flexible way. How-
ever, the main challenges regarding
becoming a learning organization and
reusing experience is not the technology.
We found that a lot of ‘trial and error’
and pragmatism is needed to find the use-
ful experience and ways to formulate and
spread this experience.

We found it useful to be very pragmatic
regarding the manifestation of experi-
ence. For example, a very useful infor-
mation in our experience database was
the links to the experts having the re-
quired experience. Regarding the role
of local (organization dependent) ex-

perience vs. best practice experience we
found that the local experience made the
best practice processes significantly more
useful. In other words, optimal use of
best practice processes seems to require
collection and reuse of more local ex-
perience.

Achieving a learning organization is a
formidable task. Senge claims that the
following five disciplines are essential to
creating learning organizations: personal
mastery, mental models, shared visions,
team learning and systems thinking [20].
An experience database like the one we
have designed and implemented in TTS
can serve as a basis for activities in-
volved in all five disciplines. An ex-
perience database is also a useful means
to agree on a common understanding
of the current situation. “An accurate,
insightful view of current reality is as
important as a clear vision.” [20]

Future work will address the major issue
of how projects (contexts) should be
characterized so that experiences col-
lected in one project (context) are
applicable to another project (context).
How can we judge whether a project is
sufficiently similar to (a subset of) the
projects for which we have experience?
The approaches described in [16] will be
taken as a starting point.

Acknowledgments

The authors wish to thank the TTS
employees Pål Woje, Geir Ove Espås,
Majeed Hosseiney, Oddmar Aasebø and
Tor Larsen for their enthusiasm and contri-
bution to the work described in this paper.

References

1 Deming, W E. Out of the crisis. MIT
Center for Advanced Engineering
Study, Cambridge, MA, MIT Press,
1986.

2 Basili, V R. Quantitative evaluation
of software engineering methodol-
ogy. In: Proceedings of the First Pan
Pacific Computer Conference, Mel-
bourne, Australia, 1985.

3 Hammer, M. Beyond reengineering.
NY, Harper Collins, 1996.

4 Argyris, C et al. Action science : con-
cepts, methods and skills for research
and intervention. San Francisco, CA,
Joosey-Bass, 1985.

53Telektronikk 1.1999

5 Dreyfus, H, Dreyfus, S. Mind over
machine : the power of human intu-
ition and expertise in the era of the
computer. NY, Free Press, 1986.

6 Goodman, N. The structure of app-
earance. Cambridge, Mass., Harvard
University Press, 1951.

7 Flyvebjerg, B. Rationalitet og magt :
det konkretes videnskap (bind I).
Copenhagen, Akademisk Forlag,
1991.

8 Basili, V R et al. The software en-
gineering laboratory : an operational
software experience factory. In: Pro-
ceeding of the 14th international
conference in software engineering,
Melbourne, 1992, 370–381.

9 Symons, C R. Software sizing and
estimating, MkII FPA. NY, Wiley,
1993.

10 Jørgensen, M. Empirical evaluation of
CASE tool efficiency. In: Proc. Sixth
Int. Conf. on applications of Software
Measurement, Orlando, 1995,
207–230.

11 Schrader, T. A bottom-up project cost
estimation method using historic data
and a standardized work breakdown
structure. Trondheim, The Norwe-
gian University of Science and Tech-
nology, 1998. (Project Report.)

12 Conolly, T, Dean, D. Decomposed
versus holistic estimates of effort
required for software writing tasks.
Management Science, 43 (7),
1029–1045, 1997.

13 Cusumano, M A, Selby, R W.
Microsoft secrets. London, Harper
Collins Business, 1996. ISBN
0006387780.

14 Weinberg, G, Shulman, E. Goals and
performance in computer program-
ming. Human Factors, 16, 1974.

15 Basili, V R. The experience factory
and its relationship to other improve-
ment paradigms. In: I Sommerville
and M Paul (eds.). Proc. From
ESEC’93, 4th European Software
Engineering Conference, Garmisch-
Partenkirchen, Germany, September
1993. Springer-Verlag, 1993, 68–83.
(Lecture Notes in Computer Science
717.)

16 Basili, V, Briand, L, Thomas, W.
Domain analysis for the reuse of soft-
ware development experiences. In:
Proc. of the 19th Annual Software
Engineering Workshop, NASA/
GSFC, Greenbelt, MD, 1994.

17 Basili, V R, Rombach, H D. The
TAME project : towards improve-
ment-oriented software environ-
ments. IEEE Transactions on Soft-
ware Engineering, 14 (6), 758–773,
1988.

18 Deming, W E. Quality, productivity,
and competitive position. Cambridge,
Mass., Massachusetts Institute of
Technology Center for Advanced
Engineering Study, 1982.

19 PERFECT Consortium. PIA Experi-
ence Factory, The PEF Model.
ESPRIT Project 9090, D-BL-PEF-2-
PERFECT9090, 1996.

20 Senge, P M. The fifth discipline : the
art and practice of the learning orga-
nization. Currency/Doubleday, 1995.

Magne Jørgensen (34) received his Dr.Scient. degree in
informatics from the University of Oslo in 1994. From 1989
to 1998 he was a research scientist at Telenor Research,
and since 1995 an associate professor at the University of
Oslo. His research interests are in software engineering,
empirical studies and process improvement. Since 1998 he
has been leader of a software development process im-
provement group at Storebrand.

e-mail: magne.jorgensen@storebrand.no

Dag Sjøberg (38) received his Ph.D. in computing science
from the Univ. of Glasgow in 1993. From 1993 to 1995 he
held a post-doc scholarship at the Univ. of Oslo funded by
the Research Council of Norway. Since 1995 he has been
an associate professor at the Univ. of Oslo. From 1985 to
1989 he worked as a system developer and group leader at
the Norwegian State Hospital and Statistics Norway. His
research interests are software engineering, empirical
studies, process improvement and object-oriented technology.

e-mail: Dag.Sjoberg@ifi.uio.no

Reidar Conradi received his Ph.D. in computer science
from the Norwegian University of Science and Technology
(NTNU) in 1976. From 1972 to 1975 he worked at SINTEF
as a researcher. Since 1975 he has been assistant professor
at NTNU and a full professor since 1985. He has participated
in many national and EU projects and chaired several work-
shops. His research interests are in software engineering,
object-oriented methods and software reuse, distributed
systems, software evolution and configuration manage-
ment, software quality and software process improvement.
e-mail: Reidar.Conradi@idi.ntnu.no

54 Telektronikk 1.1999

There are many opinions and claims
about how CASE tools impact the soft-
ware development and maintenance
efficiency, but few empirical studies.
In this paper we describe a method for
CASE tool efficiency evaluation, apply
the method to evaluate four different
CASE tools, and report the findings.
Interesting findings were, for example,
that:

• The CASE tools had a strong and
systematic impact on the develop-
ment and maintenance efficiency,
i.e. the choice of CASE tool is im-
portant.

• The impact of the CASE tools on the
maintenance efficiency was larger
than the impact of the CASE tools
on the development efficiency.

• A high development efficiency was
not always followed by a high main-
tenance efficiency.

There have been surprisingly few empiri-
cal studies evaluating CASE tools1), see
[1] for an overview. In addition, most of
the studies carried out have focused on
subjective measures of the developer’s
perceptions, such as the study reported in
[2], rather than on objective measures of
completed systems developed and main-
tained by professional software develop-
ers. For this reason, the software man-
agers have not had much support from
the software research when comparing
CASE tool efficiency.

In this paper we describe the method and
the results of a study comparing CASE
tools, applying objective measures on
completed, medium large, administrative
software applications. The paper is
organised as follows:

• Section 1 describes the evaluation
method and relates it to the general
evaluation process model described
in the standard IEEE Recommended
Practice for the Evaluation and Selec-
tion of CASE Tools [3];

• Section 2 reports the results of the
evaluation;

• Section 3 discusses the quality and
generality of the evaluation method;
and

• Section 4 concludes and summarises
the contributions.

1 The evaluation method

The CASE tool evaluation activity de-
scribed in the evaluation process model
of [3] comprises the following five steps:

1 Prepare an evaluation task definition
statement. This statement should
include: a) the purpose of the evalua-
tion, b) the scope of the evaluation, c)
explicitly stated assumptions and con-
straints of the evaluation, and d) a de-
scription of the evaluation activities.

2 Select and define the evaluation crite-
ria. The criteria should be reviewed to
ensure consistency with the task de-
finition statement.

3 Select the CASE tools to be evaluated.

4 Collect the data.

5 Evaluate the CASE tools relative to the
criteria, and report the results.

Section 1.1 – 1.4 describes how we
carried out Step 1 – 4.

1.1 Task definition statement

The two main purposes of the CASE tool
evaluation were:

• To develop and validate a method for
the evaluation of how CASE tools
impact software development and
maintenance2) efficiency. The method
should be based on simple, objective
and easy to interpret measures;

• To study the impact of a few selected
CASE tools on software development
and maintenance efficiency.

The method we describe is based on
the framework described in the general
evaluation framework ‘IEEE Recom-
mended Practice for the Evaluation and
Selection of CASE Tools’ [3]. The main
value we add to this framework is the

measures and techniques for evaluating
the development and maintenance effi-
ciency of CASE tools, and an empirical
validation of these measures and tech-
niques. In a total evaluation of a CASE
tool, the IEEE framework can be applied
for the issues not addressed in our method.

The scope of the evaluation can be
described as:

• Only CASE tools currently present in
the organisation subject to our study,
Telenor, were evaluated.

• Only medium sized development pro-
jects were studied (on average approx.
3 man-years of effort).

• All the studied projects were develop-
ing administrative applications con-
nected to a database.

• All the development projects had at
least one developer with some pre-
vious experience with the use of the
CASE tool. We did not try to estimate
the degree of experience and skill of
the developers. Instead, in accordance
with the MkII FP method [4], we
asked experienced developers to esti-
mate the impact of any inexperience in
use of the CASE tool on the efficiency.
These estimates are part of the ENV
factor in Table 2, Section 1.3.

• The evaluation is focused on the de-
velopment and maintenance efficiency.
Other criteria, such as vendor stability,
application usability and hardware cri-
teria, are important in a selection of a
CASE tool, but are not part of the
evaluation described in this paper.

The main critical assumptions and limit-
ing constraints were:

• It is assumed that the similarity of the
CASE tool supported development and
maintenance projects enables a mean-
ingful comparison of the CASE tools.
This assumption is discussed in Sec-
tion 3.

• It is assumed that the measures and
techniques described in Section 1.2
are meaningful, for example that MkII
Function Points is a meaningful mea-
sure of the user functionality produced.
This assumption is discussed in Sec-
tion 3.

• We had a limited number of available
personnel time for evaluation activi-
ties. This constraint had the impact that
an in-depth study collecting data from
a high number of randomly selected
development and maintenance projects

An empirical study of the correlation between
development efficiency and software development tools
M A G N E J Ø R G E N S E N A N D S I G R I D S T E I N H O L T B Y G D Å S

1) Definition: A software tool that aids
in software engineering activities, in-
cluding but not limited to requirements
analysis and tracing, software design,
code production, testing, document
generation, quality assurance, configu-
ration management, and project man-
agement [3].

2) In this study we define software main-
tenance according to [5] as the pro-
cess of modifying existing operational
software while leaving its primary
functions intact, i.e. major function-
ality changes on existing software are
considered to be software development.

55Telektronikk 1.1999

was not possible to carry out. We had
to choose between a superficial study
of many projects or an in-depth study
of a few (ten) projects. The latter
option was chosen.

The evaluation activities were:

1 Identify simple, objective and easily
interpretable measures of development
and maintenance efficiency, see Sec-
tion 1.2.

2 Decide on CASE tools and the CASE
tool supported projects to study. De-
scribe the main characteristics of the
CASE tools and the projects, see Sec-
tion 1.3.

3 Identify a data collection approach
leading to high quality data. Document
the approach in order to make the data
collection process repeatable and the
findings interpretable. The data collec-
tion approach is described in Section
1.4.

4 Collect the data.

5 Based on the collected data, analyse
how the CASE tool impacts the effi-
ciency.

6 Discuss the analysis results with the
tool and project experts.

7 Analyse the quality of the evaluation,
see Section 3.

8 Report the results, see Section 2 and
Section 3.

1.2 The evaluation criteria

This section describes the measures and
techniques applied in the measurement of
the development (Section 1.2.1) and the
maintenance (Section 1.2.2) efficiency.

1.2.1 Development efficiency
measures

The development efficiency measures
were based on the MkII Function Point
(MkII FP) Analysis, as described in [4, 6
and 8], together with the measures Effort
(E), Time (T) and Lines Of Code (LOC).
The variables are described below:

• MkII Function Points measure the size
of the applications in terms of its user
required functionality. In spite of the
similarities between Albrecht FP and
Mk II FP, there is no simple relation-
ship between these two functionality
measures. This is, among others,
caused by the different views on what
Function Points are supposed to

measure. While Symons [4] relates his
MkII FP to the effort necessary to
develop the functionality, Albrecth [8]
relates his FP to the value of the func-
tionality. The necessary steps to calcu-
late the Unadjusted MkII Function
Points (UFP) are (very briefly):

1 Define the system boundary, i.e. the
border between the measured system
and its users.

2 Identify and categorise the entities
into primary (business information)
and non-primary entities.

3 Identify the logical business transac-
tions, i.e. the lowest level business
processes supported by the system.

4 Count the input types (I), output
types(O) and the entity references
(E) for each logical transaction.

5 UFP = 0.58 * I + 1.66 * E + 0.26
* O. (The constants in this formula
are based on an empirical study, see
[4], and indicate the development
effort relationship when developing
“input-functionality”, “data pro-
cessing” and “output-function-
ality”. For example, an underlying
assumption is that one unit “input-
functionality” requires more than
twice as much effort compared to
one unit “output-functionality”.)

• Effort (development) is a measure of
the total effort in man-hours spent on a
development or maintenance project,
from the requirement phase to the
installation phase, including user par-
ticipation in the requirement and test
phases.

• Effort (maintenance) is a measure of
the estimated effort (average case) in
man-hours to solve a specified main-
tenance task (a benchmark task). The
effort estimate should include require-
ment analysis, design, implementation,
inspections and tests. Administration,
installation and documentation work
were, due to the small size of the
benchmark task, not included in our
study.

• Time is a measure of the total calendar
time on the development project, from
the requirement phase to the installa-
tion phase.

• Lines of Code is a measure of the num-
ber of physical lines of source code
written by a developer/maintainer, i.e.
generated lines of code or comments
were not counted. Reused code was
only counted if there were major

changes on the reused code. All source
code was counted, inclusive the physi-
cal lines of code written in CASE tool
forms (tool screens). Menu selections,
navigation etc., were not counted.

Based on these variables we defined the
following measures:

• UDE: UFP / E
(Unadjusted Development Efficiency
= Unadjusted Function Points / Effort)

• ADE: UDE * AF
(Adjusted Development Efficiency
= Unadjusted Development Efficiency
* Adjustment Factor, AF is defined
below)

• WE: LOC / UFP
(Work Expansion = Lines of Code
/ Unadjusted Function Points)

• WA: UFP / LOC
(Work Avoidance = Unadjusted Func-
tion Points / Lines of Code)

• WS: LOC / E
(Work Speed = Lines of Code / Effort)

• TP: E / T
(Time Pressure = Effort / Time)

Note that UDE = WA * WS, i.e. the
Unadjusted Development Efficiency,
equals Work Avoidance * Work Speed.
This relation enables us to analyse
whether a relatively high development
efficiency is caused by a high Work
Speed or a high Work Avoidance, or
a combination of both.

In order to enable a fair comparison
of the development efficiency between
the different development projects, the
Unadjusted Development Efficiency
(UDE) may get adjusted (i.e. multiplied)
with a number of standardised factors to
get the Adjusted Development Efficiency
(ADE). The inputs to the Adjustment
Factor (AF) are briefly described below.
A more detailed description can be found
in [6].

AF = TCA * B * CF * ENV, where:

• TCA is the Technical Complexity
Adjustments. TCA intends to measure
the impact of the non-functionality
software requirements on the effi-
ciency. TCA is a value between 0.65
and 1.35 and the value is determined
through the answers on 19 questions.

• B is the Batch-factor. B is based on the
assumption that batch functionality on
average requires 50 % more effort to
develop, i.e. B = (UFP on-line + 1.5

56 Telektronikk 1.1999

* UFP batch) / (UFP on-line + UFP
batch). B is therefore a value between
1.0 (pure on-line) and 1.5 (pure batch).

• CF is the Change factor. CF is based
on the assumption that change of exist-
ing functionality on average requires
twice as much effort as development
of new functionality, i.e. CF = (UFP
new + 2 * UFP changed) / (UFP new
+ UFP changed). CF is therefore a
value between 1.0 and 2.0.

• ENV is the Environmental factor.
ENV intends to measure the impact of
the environment factors on the produc-
tivity. ENV includes the developer’s
own estimates on the impacts of the
factors 1) system size (system to be
developed is significantly larger than
any other previously developed by the
organisation or project manager or
team); 2) problem structure (for ex-
ample, ‘re-implementation of an exist-
ing well-documented system’ or ‘geo-
graphically distributed project mem-
bers’; and 3) technology (for example,
‘first use of new method and tools’).
ENV is a value between 0.66 and
approx. 3.2. More about ENV in [6].

Consequently, the AF is between 0.43
and 13.0. However, the projects we
studied had a much narrower interval;
between 0.8 and 2.1.

The measure Work Expansion (WE)
measures how many lines of code the
developers on average must write to
create an MkII Function Point. WE is de-
fined the same way as Language Level,
see for example [9]. A low WE means, in
this context, that the combination of tool
and language enables a high work avoid-
ance (WA), i.e. less lines of code has to
be written in order to produce the func-
tionality.

Work Speed (WS) measures how fast in
LOC per work-hour the developers work.
WS is impacted by how easily lines of
code are developed and/or changed, how
appropriate the development method is,
the efficiency of the CASE tool debugger,
etc.

Time Pressure (TP) measures the effort
in person-year per elapsed calendar-year.
It is supposed to indicate the time
pressure of the project. Time pressure
is an important information when com-
paring the efficiency of different pro-
jects. It is clear, for example, that a pro-
ject with one developer working one year
on average will have a higher develop-

ment efficiency compared to ten de-
velopers each working one month, given
the same conditions.

1.2.2 Maintenance efficiency
measures

The Function Point based development
efficiency measures may also be applic-
able for measurement of the maintenance
efficiency, and a set of rules for counting
the size of changes is included in the
MkII FP standard [7]. However, we be-
lieve that the measures based on Func-
tion Points are more meaningful for the
measurement of created functionality of
a (medium/large) software application
than for the measurement of small
change oriented tasks. One reason for
our belief is exemplified in Section 3.1,
where a maintenance task with four times
as many MkII Function Points did not
require more than 50 % additional effort.
In other words, MkII Function Points
may be a good measure of the effort-re-
lated user required functionality, but not
of the effort-related functionality of small
change oriented tasks.

For this reason, we developed a simple
technique for determining the mainte-
nance efficiency: ‘The Software Mainte-
nance Benchmark Task Technique’. The
technique is described below. The tech-
nique assumes that the CASE tools to be
evaluated, and a number of comparable
applications developed applying these
tools, have been selected.

The Software Maintenance Benchmark
Task Technique

1 Determine the common characteristics
of the applications maintained apply-
ing the CASE tools. In our study, all of
the applications were connected to a
database and had screens for user input
and output.

2 Develop typical maintenance tasks (the
benchmark maintenance tasks) which
are meaningful to carry out on all the
applications, i.e. maintenance tasks
based on the common application
characteristics from step 1. Appendix
1 outlines the specification of the
seven benchmark tasks used in our
study.

3 For each of the selected applications,
ask experienced maintainers to esti-
mate the average effort needed and the
average LOC to be written to solve the
task. It would, of course, be even
better to ask the maintainers to carry
out the maintenance tasks and then

measure the effort and LOC. However,
this may not be possible in a profes-
sional maintenance environment.

4 Compare and analyse the estimates
for each benchmark task. The analysis
will benefit from a comparison be-
tween the maintenance efficiency
results and the development efficiency
results.

Although this approach is simple we
have not seen similar approaches to
evaluate the maintenance efficiency. As
opposed to traditional ‘maintainability
metrics’, see [10] for an overview, our
technique is based on the assumption that
maintainability is not a characteristic of
the application alone, but of the applica-
tion, the tools and the maintenance tasks
to be carried out.

Our main indicators of maintenance effi-
ciency are the sum of estimated effort
and the sum of the estimated size for the
maintenance tasks on an application. In
addition, we measure the work speed for
maintenance tasks. Note that the work
speed for the maintenance tasks uses
another definition of effort (including
less activities), and is not directly com-
parable with the development work
speed.

• MBTE: Maintenance Benchmark Task
Effort = Σ Effort on the benchmark
tasks;

• MBTS: Maintenance Benchmark Task
Size = Σ Lines of Code spent to solve
the benchmark tasks;

• WS: Work Speed (maintenance)
= MBTS / MBTE.

Comparing the maintenance efficiency of
two CASE tools, the CASE tool with the
lowest estimated effort on the benchmark
tasks will have the highest maintenance
efficiency.

1.3 CASE tools evaluated and
applications studied

We evaluated four different CASE tools.
A description of some of the main char-
acteristics of the CASE tools, the way
they were used by the studied organisa-
tion, is given in Table 1.

Ten software development projects were
selected. We believe that the develop-
ment projects are relatively similar, but
there were, of course, some differences
complicating the comparison. Table 2

57Telektronikk 1.1999

contains a selection of development pro-
ject characteristics.

All the projects developed administrative
applications connected to a database. The
distribution of the frequency of projects
using different types of tools was a result
of practical considerations.

1.4 The data collection

In order to get high quality data, the data
were collected using interviews with the
developers and studies of the applica-
tions, not questionnaires. We collected
data from ten development projects and
performed the maintenance benchmark
test on seven applications, and spent in
total about 25 man-days on the data
collection.

If the quality of the project log system is
not very high, we believe this amount of
effort is necessary in order to collect high
quality data. Data collected through
questionnaires, we believe, may not have
the required quality, see [11] for quality
problems of questionnaire based software
studies. We experienced, for example,
that a meaningful and consistent collec-
tion of the effort spent on the develop-
ment (including the user participation)
required a lot of phone-calls, discussions
and expert judgements.

2 The results

This section contains an overview of the
development and maintenance efficiency
results, see Table 3, and a more detailed
description of the results on the develop-
ment project level, see Table 4. A de-
scription of the measures can be found
in Section 1.2.

The number of measured projects is not
very high and not significant from a sta-
tistical point of view. Nevertheless, we
believe that the results in Tables 2 and 3
indicate that:

• The Tool A supported projects had a
low work avoidance, and a medium/
high work speed. This led to the lowest
development and maintenance effi-
ciency (i.e. the highest MBTE). The
time pressure is higher than for most of
the other projects, which may have de-
creased the efficiency.

• The Tool B supported project had a
high work avoidance, but the lowest
work speed. This led to a medium
development efficiency, and the sec-
ond highest maintenance efficiency.
Time pressure is medium.

• The Tool C supported projects had the
highest work avoidance and a high
work speed for both development and
maintenance. This led, with distance,
to the best development and mainte-
nance efficiency. Time pressure is
lower than for the other projects,
which may have increased the effi-
ciency.

• The Tool D supported projects had a
low work avoidance but a high work

speed. This led to a relatively high
development efficiency, but to a low
maintenance efficiency. Time pressure
is medium.

• The relative difference between the
highest and the lowest maintenance
efficiency (1:13) was higher than the
relative difference between the highest
and lowest adjusted development effi-
ciency (1:4). This indicates that it may
be even more important to focus on the
maintenance efficiency than the de-
velopment efficiency when evaluating
CASE tools.

Table 4 contains the development and
maintenance efficiency data for each of
the ten projects. The value n.m. (not
measured) means that, for practical
reasons, we were unable to collect the
data necessary to calculate the value.

In addition to the above data, we mea-
sured the UDE and the ADE on a Cobol
development project. The Cobol project,
which may be considered as a baseline

CASE Tool Tool A Tool B Tool C Tool D

Informal A fourth A data A modern A modern
description generation oriented object data

language tool tool oriented tool oriented tool

Platform MVS MVS Windows-clients Unix or Windows-
application application + Unix appli- clients + Unix
servers servers cation servers application servers

Database Network Network Relational Relational
type

Generated Application Application code, Application code, Screens, db-
by the tool code and screens, db-schema screens, db-schema schema, and

screens and system doc. and system doc. system doc.

Phases Mainly Design and Mainly Design and
supported implementation implementation implementation implementation

Architecture Mainframe- 3-schema3), Client-server 3-schema, client-
of developed terminal mainframe- with presentation server with pre-
application terminal and parts of sentation and parts

application logic of application
on client logic on client

User interface Character- Character- Windows- Windows or
of developed based based based character-
application based

Main Tool specific Tool specific Tool specific Tool specific
languages4) 4GL + Cobol data oriented object oriented data oriented

+ Easytrive language language language + C
+ Cobol + SAS + SQL + SQL

Table 1 Overview of the CASE tools

3) See [12].
4) Frequently, the tool specific language

does not meet all development needs,
and external languages are needed.
This row lists the tool specific and
external programming languages typi-
cally included in a development pro-
ject in the organisation applying the
CASE tool.

58 Telektronikk 1.1999

project, had a lower UDE (0.08) than all
the other projects, but was just as good as
the Tool A projects on the ADE (0.20).
The so-called industry standard of Mk II

UDE is, according to [6], for systems of
more than 1150 FP applying 4GL 0.087
UFP/work-hour. This means that Tool C
enabled a development efficiency on

Development project 1 2 3 4 5 6 7 8 9 10

CASE Tool Tool A Tool B Tool C Tool D

Size5) [UFP] 1050 931 390 698 1631 1377 627 501 1180 150

Tech. Comp. Adj. (TCA) 0.88 0.99 0.90 0.87 0.88 0.87 0.85 0.87 0.87 0.92

Batch Factor (B) 1.01 1.15 1.02 1.05 1.00 1.03 1.08 1.01 1.00 1.06

Change Factor (CF) 1.00 1.00 1.66 1.00 1.00 1.00 1.49 1.00 1.00 1.75

Env. Factors (ENV) 1.52 1.37 0.80 0.92 0.92 1.16 1.57 1.10 0.99 1.13

AF=TCA*B*CF*ENV 1.35 1.57 1.22 0.84 0.81 1.04 2.14 0.97 0.86 1.93

Time Pressure (TP) 2.9 4.3 2.1 0.7 2.0 1.6 3.6 1.0 3.6 1.7

Size [LOC] 40000 33000 4800 10000 6050 11000 42000 10040 32000 4000

Effort [work-hour] 8900 6446 1800 887 1850 1520 3775 1219 1886 1850

Table 2 Overview of the development projects

5) Size of development project in MkII Unadjusted Function Points. Note that this size is not necessarily the size of the application
subject to the development project. Some of the development projects were either developing a new version of an existing software
application (Development projects 3, 7 and 10) or a subsystem of a large software application (Development project 2).

CASE Tool Tool A Tool B Tool C Tool D

Mean Unadjusted Development Efficiency 0.13 0.22 0.86 0.32
(UDE) [UFP / work-hours]

Mean Adjusted Development Efficiency (ADE) 0.20 0.26 0.77 0.37
[UFP * Adjustment Factor / work-hours]

Mean Maintenance Benchmark Task Effort6) 71.5 21 5.5 59.5
(MBTE) Task 1-7 [work-hours]

Mean development Work Expansion (WE) 36.8 12.3 8.7 35.2
[LOC / UFP]

Mean development Work Avoidance (WA) 0.03 0.08 0.12 0.03
[UFP / LOC]

Mean development Work Speed (WS) 4.8 2.7 7.3 9.8
[LOC / work-hours]

Mean Maintenance Benchmark Task Size 1100 82 69 405
(MBTS) Task 1-7, [LOC]

Mean maintenance Work Speed (WS) 15.3 3.9 11.9 9.7
[LOC / work-hours]

Mean development Time Pressure (TP) 3.6 2.1 1.4 2.5
[effort work-months / time calendar months]

Table 3 Overview of results

6) A low MBTE corresponds to a high maintenance efficiency, and vice versa.

average 10 times higher than ‘industry
average’ for 4GL.

Interesting findings analysing the data in
Table 4 were:

• The projects supported by Tool D had
a high variance in the development
efficiency. This variance may be
caused by the high degree of change of
functionality of the two projects with
the lowest development efficiency
(Project 7 and 10). Tool D supported
projects had a relatively low maintain-
ability, and a high degree of change
makes the development projects more
similar to maintenance projects.

• In some cases, the development (UDE,
ADE) and maintenance efficiency
(MBTE) varied a lot for projects
applying the same CASE tool. This
variance is however much lower than
the variance between the projects
applying different tools.

• The project supported by Tool B had
a much better maintenance efficiency
than we would expect from the de-
velopment efficiency. The situation
is reversed for Tool D, i.e. it is not
always possible to derive the mainte-
nance efficiency of a CASE tool from
the development efficiency.

• It seems that a high work avoidance
(WA) is a fairly good indication of
a high maintenance efficiency (low
MBTE). It was on the other hand diffi-
cult to conclude on the maintenance
efficiency from observations of the
development Work Speed (WS). For

59Telektronikk 1.1999

example, the high Work Speed of Tool
D supported projects may have been
caused by the development of a lot of
redundant code (‘copy and paste’-phi-
losophy stimulated by Tool D), which
in turn leads to a low maintainability.
The low Work Speed of Tool B sup-
ported projects may be caused by a
result of a low redundancy degree,
which in turn may lead to a high
maintenance efficiency.

• There is a lower (linear) correlation
between the adjustment factor (AF)
and the work avoidance (WA) (Corr =
0.6, p = 0.03), than between AF and
the work speed (WS) (Corr = 0.7, p =
0.005). This (together with our knowl-
edge of the projects) indicate that the
work avoidance is less impacted by
difficulties in the project environment,
or complex non-functionality require-
ments than the work speed.

3 Discussion of the
method

In this section we discuss:

• The use of MkII function points
(Section 3.1);

• The use of software maintenance
benchmark tasks (Section 3.2).

3.1 The development
efficiency measures

The MkII Function Point method can,
among other things, be criticised for:

1 Oversimplification of the concept of
functionality to a formula based on the
input, output and entities part of the
‘logical transactions’7).

2 Subjectively measurement of software
functionality. (Different persons may,
for example, find different ‘logical
transactions’.)

3 Adjustment factors based on unvali-
dated assumptions.

Comments to 1: There were indications
that the Function Points, in some cases,
did not correlate well with our intuition
of functionality nor the effort required to
develop the functionality. For example,
both Maintenance Benchmark Tasks 1
and 2, see Appendix 1, developed a new
user screen containing data from only
one object class. The only important dif-
ference was that while Task 1 specified
a read-only user screen, Task 2 specified
a read, insert, update and delete user
screen. MkII FP analysis of the specifica-
tions gave that the size of Task 1 is 3.8
UFP (1 log. transaction) and Task 2 is

15.9 UFP (4 log. transactions). Accord-
ing to the MkII FP estimation method,
the effort to solve Task 2 should be
approx. four times greater than for Task
1. The estimates we collected, however,
showed that none of the projects believed
that the effort was more than twice as
great. In fact, all the projects supported
by Tool B and Tool C believed that the
extra effort concerned with Task 2 was
less than 50 %!

The proportion of read-only user screen
compared to read, insert, update and
delete user screens were rather similar
in the development projects we studied.
This shortcoming may, therefore, not be
serious for our comparison. In addition,
even with all the shortcomings the Func-
tion Point Method may have, it seems to
be one of the better technology indepen-
dent methods of measuring software size.

Comments to 2: Several studies, such as
[13] and [14], indicate a rather small dif-
ference in the size measured by different
persons within the same organisation. In
our study, one of the authors participated
in all the Function Point measurements to
assure consistency in counting.

Comments to 3: The adjustment factors
may be the weakest point of the Function
Point method. Many of the underlying
assumptions, such as the assumption that
changes take twice as much effort as
development of new functionality, are

CASE tool Tool A Tool B Tool C Tool D

Dev. project 1 2 3 4 5 6 7 8 9 10

UDE 0.12 0.14 0.22 0.79 0.88 0.91 0.17 0.41 0.63 0.08

ADE 0.16 0.23 0.26 0.66 0.71 0.94 0.36 0.40 0.54 0.16

MBTE 71 72 21 n.m. 2.0 9.0 n.m n.m. 35 84

Dev. WE 38.1 35.4 12.3 14.3 3.7 8.0 67.0 20.0 27.1 26.7

Dev. WA 0.03 0.03 0.08 0.07 0.27 0.13 0.02 0.05 0.04 0.04

Dev. WS 4.5 5.1 2.7 11.3 3.3 7.2 11.1 8.9 17.0 2.2

MBTS n.m. 1100 82 n.m. 22 115 n.m. n.m. 580 230

Maint. WS n.m. 15.3 3.9 n.m. 11.0 12.8 n.m. n.m. 16.6 2.7

TP 2.9 4.3 2.1 0.7 2.0 1.6 3.6 1.0 3.6 1.7

Table 4 Development and maintenance efficiency data for each of the projects

(Dev. = Development, UDE = Unadjusted Development Efficiency, ADE = Adjusted Development Efficiency, MBTE = Maintenance Benchmark Task Effort
(Tasks 1-7), WE = Work Expansion, WA = Work Avoidance, WS = Work Speed, MBTS = Maintenance Benchmark Task Size (Tasks 1-7), Maint. = Main-
tenance, TP = Time Pressure)

7) Logical transactions are (simplified)
the lowest level business processes
supported by the system.

60 Telektronikk 1.1999

poorly validated. In addition, it is highly
disputable if the project members objec-
tively are able to isolate and accurately
estimate the impact of particular environ-
mental factors on the development effi-
ciency. On the other hand, who could
develop better estimates of the impact
of the project environments?

3.2 The maintenance efficiency
measures

Techniques, based on maintenance
benchmark tasks, measuring the mainte-
nance efficiency have, as far as we know,
not been published before. We had a pos-
itive experience with the technique and
consider it to have several advantages
compared to other ways of assessing
maintenance efficiency/maintainability:

• It is a very direct way of assessing the
maintenance efficiency, i.e. the inter-
pretation is relatively simple.

• Effort on real-world tasks is measured,
not, the much more abstract maintain-
ability.

• Maintainability becomes a characteris-
tic of the software relative to typical
maintenance tasks (and to the main-
tainers carrying them out).

There are pros and cons connected with
the use of estimated effort compared to
actual effort. Estimated effort can pro-
vide the average case for the mainte-
nance task, while actual effort may be
influenced by untypical circumstances.
On the other hand, actual effort is more
objective than estimated effort.

The generality of the results applying the
technique depends a lot on how repre-
sentative the tasks are. In our study, the
types of tasks we found meaningful for
all the studied applications were con-
cerned with user screens and database
changes. This means that our mainte-
nance efficiency results are mainly valid
for those types of tasks, not for more
domain specific tasks.

4 Conclusions and
contributions

We believe that the output of our evalua-
tion method provides useful and impor-
tant information when selecting and/or
evaluating CASE tools.

Our methodological contributions to the
current state of CASE tool evaluation
methods are:

• Validation of the usefulness of Func-
tion Point based efficiency measures
on real development data; and

• A new approach of assessing the main-
tenance efficiency, based on software
maintenance benchmark tasks.

In the evaluation of four different CASE
tools currently in use by Telenor our
results suggest that the CASE tools have
a strong impact on both the development
and (even more) on the maintenance effi-
ciency.

An efficiency ranking of the evaluated
CASE tools based on both the develop-
ment and maintenance efficiency and the
degree of work avoidance may, based on
our results, look like this:

1 Tool C;
2 Tool B and Tool D;
3 Tool A.

This ranking is directly derived from the
efficiency results in Table 3 with one
exception: The shared second rank of
Tool B and Tool D. The main reason for
this is that while the Tool B projects had
the highest maintenance efficiency, the
Tool D projects had the highest develop-
ment efficiency.

The differences we have measured in
development efficiency and in mainte-
nance efficiency are, in some cases, sur-
prisingly large. For example, the differ-
ence in the adjusted development effi-
ciency between the Tool C and the Tool
A projects was 1:4 and the difference
in maintenance efficiency 1:13. This
strongly indicates that the choice of
CASE tool really matters!

Several of our results contribute to an
increased knowledge of CASE tools. For
example, that:

• Some CASE tools (for example Tool
D) may lead to a relatively high de-
velopment efficiency, but to a rela-
tively low maintenance efficiency, i.e.
an evaluation of CASE tools should
analyse the development and the main-
tenance efficiency. Most evaluation
reports and research papers only look
at the development efficiency.

• A high work avoidance seems to be a
good indicator of high maintenance
efficiency.

• The work avoidance seems to be more
independent of extraordinary develop-
ment conditions than the work speed,
i.e. a more robust measure of the
CASE tool efficiency.

Acknowledgements

The authors wish to thank Dag Sjøberg
(University of Oslo), Arne Maus (Uni-
versity of Oslo), Paul Fagerli (Telenor)
and the Telenor employees assisting in
the collection of the data.

References:

1 Coupe, R T. A critique of the
methods for measuring the impact of
CASE software. European journal of
information systems, 3 (1), 28–36,
1994.

2 Norman, R J, Nunamaker, J F Jr.
CASE productivity perceptions of
software engineering professionals.
Communications of the ACM, 32 (9),
1102–1108, 1989.

3 IEEE. IEEE recommended practice
for the evaluation and selection of
CASE tools. 1992. (IEEE Std 1209.)

4 Symons, C R. Function point ana-
lysis : difficulties and improvements.
IEEE transactions on software
engineering, 14 (1), 2–11, 1988.

5 Boehm, B W. Software engineering
economics. NJ, Prentice-Hall, 1981.
ISBN 0-13-874160-00-7.

6 Drummond, I. Estimating with MkII
function point analysis. London,
CCTA, 1992. ISBN 0 11 330578 8.

7 UFPUG (United Kingdom Function
Point User Group). Mark II function
point analysis counting practices
manual. 1994. Version 1.1 (draft).

8 Albrecht, A J, Gaffney, J E Jr. Soft-
ware function, source lines of code,
and development effort prediction : a
software science validation. IEEE
transactions on software engineer-
ing, 9 (6), 639–648, 1983.

9 Jones, C. Applied software measure-
ment, assuring productivity and qual-
ity. New York, McGraw Hill, 1991.
ISBN 0 07 032813 7.

61Telektronikk 1.1999

10 Zuse, H. Software complexity, mea-
sures and methods. Berlin, Walter de
Gruyter, 1991. ISBN 3 11 12226-X.

11 Jørgensen, M. The quality of ques-
tionnaire based software maintenance
studies. ACM SIGSOFT, Software
Engineering Notes, 20 (1), 71–73,
1995.

12 Tsichritzis, D and Klug, A (eds.).
The ANSI/X3/SPARC DBMS frame-
work. Information systems, 3,
173–191, 1978.

13 Kemerer, C. Reliability of function
points measurement : a field experi-
ment. Communications of the ACM,
36, 85–97, 1993.

14 Low, G, Jeffery, R D. Function
points in the estimation and evalua-
tion of the software process. IEEE
transactions on software engineer-
ing, 16, 64–71, 1990.

15 Nosek, J T, Palvia, P. Software main-
tenance management : changes in the
last decade. Journal of software
maintenance, 2, 157–174, 1990.

Appendix 1 Outline of the
Maintenance Benchmark
Tasks

General task requirements:

• The maintenance work should not
change the usability, the quality or the
maintainability of the application. This
means, for example, that an appropri-
ate error handling and error message
due to incorrect user input must be
provided for each task.

• Changes should follow the common
practice with respect to how user
screens and reports are designed.

• The effort estimates should include
requirement analysis, design, imple-
mentation, inspections, documentation
and tests (but not installation). Admin-
istration/management work should not
be included.

• The effort required to insert data in
created tables should not be counted.

Data collected:

• Estimated effort (average case).

• Estimated physical Lines Of Code
written by the maintainer to solve the

task (average case). Lines of Code
should be interpreted as the not
weighted sum of lines inserted, up-
dated and deleted, comments not in-
cluded.

The tasks:

Type I: New user screens

Task 1: Development of a new, read-
only, user screen with data from an exist-
ing database table (or object class) with 5
attribute types.

Task 2: Extension of Task 1. Instead of
read-only, the user screen should enable
read, insert, update and delete operations.

Task 3: Development of a new read-only
screen with data from Table X (5
attribute types, X.1 to X.5) and Table Y.
Table X has to be created, Table Y exists
and has 3 attribute types (Y.1 to Y.3).
There is a foreign key from X.4 to Y.1.
The new user screen should present the
attributes in the following sequence: X.1,
X.2, X.3, Y.2, Y.3, X.5.

Type II: Change of user screens

Task 4: Given a typical read, insert,
update and delete user screen, swap
the position of two columns.

Task 5: Given a typical read, insert up-
date and delete user screen containing 5
attribute types (columns) from Table X.
Extend Table X and the user screen with
one attribute type/column. The new
attribute type/column should be possible
to read, insert, update and delete.

Type III: Change of control logic

Task 6: Given a typical user input field
on a screen. Change the correct value
interval from [a, d] to [a, b] U [c, d]. The
now incorrect instances present in the
database (incorrect according to the new
interval specification) should be marked.

Type IV: Change of domains

Task 7: Three user screens contain a col-
umn with data from attribute type Tx.
Change the domain of Tx from numeric
to characters. The attribute type is not
included in any numerical calculations.

Magne Jørgensen (34) received the Dr.Scient. degree in
informatics from the University of Oslo in 1994. From 1989
to 1998 he was a research scientist at Telenor Research,
and since 1995 an associate professor at the University of
Oslo. His research interests are in software engineering,
empirical studies and process improvement. Since 1998
he has been leader of a software development process
improvement group at Storebrand.

e-mail: magne.jorgensen@storebrand.no

Sigrid Steinholt Bygdås (34) has been employed by
Telenor R&D as Research Scientist since 1992. She has
been working with models and methods for systems plan-
ning, system development and CASE tool evaluation. Her
current interests are Java and middleware technologies
for the Internet.

e-mail: sigrid.bygdas@fou.telenor.no

62 Telektronikk 1.1999

The goal of the project was to identify
good and effective metrics to measure
the software development and main-
tenance process. We started by making
a generic GQM plan and measurement
plan for software development at
TeleScada, with help from SINTEF
and TeleScada’s developers. From the
baseline project we collected data,
and adjusted some metrics so the
definitions of those metrics were more
accurate. In this article we present the
findings from our measurement on the
effectiveness of verification and valida-
tion.

Introduction

In the early eighties Nera (then EB Nera)
decided to start development of a
Telecommunication Management Net-
work (TMN) system. This system con-
centrated on surveillance of Nera’s radio
link equipment, but marked analysis
showed that to stay in business, the sys-
tem had to support other manufacturers’
equipment also. The business unit
TeleScada was then created.

Today TeleScada is Nera TMN AS and is
one of the leaders in providing non-pro-
prietary Telecommunication Manage-
ment Network systems.

As this market and product grew, the
complexity of the product grew as well.
This was handled in the beginning. How-

ever, at the end of 1996, the development
manager and the manager team at Nera
TMN were concerned with quality issues
regarding the product, and the effective-
ness of the development process. They
therefore decided to start an improve-
ment project with the goal to improve
this effectiveness.

All presented statistics in this article are
collected during or right after the review
process. By the review process, we mean
the walk-through of the documents or the
code by two or more persons (usually
there are 3 or 4 persons). During this
walk-through we use checklists and a
form where we collect the necessary
data. The metrics are collected as one
page of the review report. This review
report is archived after a copy of the met-
rics form is sent to the ‘Telmet mailbox’.
Up until today these metrics have been
punched into a database by the QA-man-
ager, but this will change so that each
project manager will do this job for his or
her project. The analysis will still be car-
ried out by the QA-manager together
with the management team of the com-
pany.

The database for these metrics is de-
veloped as an in-house application. To
enter one form takes approximately one
minute. To produce a preliminary ana-
lysis report from this system on one
project takes approximately 15 minutes.
So the cost of this metrics collection is
insignificant.

The ESSI project

In 1996 we applied for a research grant
from the EU Commission’s ESSI pro-
gram and got it. During 1996 we worked
closely with a team from SINTEF to
identify the various metrics that we were
going to use, and how best to measure
these. The team from SINTEF had good
experience with the use of the GQM sys-
tem, and it turned out to be a good solu-
tion for us as well.

The GQM system is not part of this
article so for a deeper understanding of
this system, see [1]. In short, the GQM
system is a system where the goal defini-
tion has a set of questions that identify
a set of metrics. The metrics are the an-
swers to the questions. We defined four
goals, but settled on just two for our
experimentation. This article will con-
centrate on just one, effectiveness of ver-
ification and validation.

Experience from first
baseline project

During 1996 Nera TMN undertook what
was probably one of our biggest develop-
ment and engineering projects yet. The
project was a total Telecommunication
Management Network system for a
Swedish company, which is one of Swe-
den’s largest telecommunication compa-
nies. We decided to make this project our
first baseline project (referred to as the
baseline A project from now on).

During the fall of 1996 and through
1997, the main effort went into collecting
and analysing metrics from the baseline
A project. The collection was done
mainly by Nera TMN, and we were ad-
vised by SINTEF in the analysis, just
to make sure that the analysis was not
coloured by our opinions and paradigms.

The analysis of the baseline A project
showed several anomalies, and this is a
short list of our issues:

1 There is no correlation between the
preparation time and the number of
remarks found in the review. See Fig-
ure 1.

2 The size (volume) of the document is
not correlated with the time needed to
do the review. See Figure 2.

3 There is no significant difference be-
tween cost of review per page if the
review is planned or not. See Figure 3.

Software process improvement through software metrics
– an ESSI project
H A N S E R I K S T O K K E A N D R E I D A R P A L M S T R Ø M

Figure 1 Remarks per page vs. preparation time for the first baseline project (A)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

R
em

ar
ks

 p
er

 p
ag

e

Preparation time [hour]

63Telektronikk 1.1999

4 The cost of the review does not de-
crease when the lead time for review
increases. See Figure 4.

The following analysis found that the
preparation time was very low or non
existent. The decision was therefore to
increase the preparation time for the next
baseline project and see what happened.
The preparation time was brought into
focus and the participants in this experi-
ment were instructed to use at least four
minutes per page. (One code page was
defined to be 50 lines of code.)

Experience from the sec-
ond baseline project

In 1997 we started a similar project to the
first baseline project. This time it was a
Norwegian telecommunication company,
which signed a contract for development
and delivery of a Telecommunication
Management System. Since this was a
similar project to the first baseline pro-
ject (A), we decided to make this our sec-
ond baseline project. This project will be
referred to as the baseline B project from
now on.

The first analysis of the baseline B pro-
ject showed the following related to the
issues of the first baseline project:

1 There is now a correlation (small but
significant) between preparation time
and the number of remarks found. See
Figure 5.

2 There is now a correlation (this one is
small also) between the size (volume)
of the review and the time needed to
perform the review. See Figure 6.

3 There is no significant difference be-
tween cost of review per page if the
review is planned or not. See Figure 7.

4 The cost of the review decreases with
increased lead time for reviews. See
Figure 8.

As can be seen, issue 3 is the same for
both systems (more on this later), but the
situation for the rest of the issues has
changed. From this (even though this is
a rather small sample) we can conclude:

• The preparation time seems to have
some effect on the number of remarks
found, the correlation between size of
the review and the time needed to per-
form the review, and the total cost of
the review.

• The number of remarks seems to be
affected directly.

Figure 2 Relationship between cost (time needed) and review volume for the first
baseline project (A)

Figure 3 Scatter plot of cost for planned and unplanned reviews for the first
baseline project (A)

Figure 4 Relationship between cost and lead time for the first baseline project (A)

18

16

14

12

10

8

6

4

2

0

C
os

t [
ho

ur
s]

Review Volume [Pages]

10 20 30 40 50 60 70 80

Cost vs. Volume

12

10

8

6

4

2

0

C
os

t [
ho

ur
s]

Planned

Not planned

C
os

t [
ho

ur
s]

12

10

8

6

4

2

0
0 2 4 6 8 10 12 14 16

Lead time [days]

Lead time vs. Cost

64 Telektronikk 1.1999

• The correlation of size vs. time needed
and the total cost of the review seems
to be indirectly affected.

• Changing the preparation time does
not produce a significant difference
between reviews that are planned and
reviews that are not planned.

To get more clear and precise measure-
ments, these measurements must be
taken on several other projects as well,
with different preparation time. This is
necessary in order to see the importance
of the preparation time in our develop-
ment process.

Why is there no significant difference
between cost of review per page if the
review is planned or not? There can be
several reasons for this:

1 Our hypothesis may be wrong. It says
that if a review is properly planned, the
cost of the review would be less than
for a review that is not planned.

2 The sample may be too small so that
the difference does not become signifi-
cant.

3 Maybe large critical documents are
properly planned and the small and
less critical ones are not. This will
give an abnormal distribution of the
samples and our analysis method will
not spot this.

4 There may be no difference between
planned and unplanned reviews re-
garding the cost.

There may be even more reasons why
there is no difference between planned
and unplanned reviews. Our action at
this point is to begin experimenting and
doing a deeper analysis of this particular
problem, to see if we can find the real
reason. Currently we have no conclusion
for this deviation from our hypothesis –
we can only guess. What we will pursue
to begin with is item number 3 on the
reason list, and in the coming months
we will try to design experiments to see
if we are correct or not.

Our experiences with this
measurement system

The measurement system that was estab-
lished has served us well regarding
effective collection and analysis of the
metrics. The GQM plan has also given
us a good way to establish good metrics
with measurable goals.

Figure 5 Remarks per page vs. preparation time for the second baseline project (B)

Figure 6 Relationship between cost (time needed) and review volume for the sec-
ond baseline project (B)

Figure 7 Scatter plot of cost for planned and unplanned reviews for the
second baseline project (B)

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 8

Preparation time hours

Remarks per page vs. Preparation time

R
em

ar
ks

 p
er

 p
ag

e

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80

Cost vs Volume

C
os

t [
ho

ur
s]

Review Volume Pages]

50

40

30

20

10

0

C
os

t [
ho

ur
s]

Planned

Not planned

65Telektronikk 1.1999

Up until today, we have registered some
improvements on our development pro-
cess, and these metrics will be used even
more in the future for our improvement
programs.

As can be seen from our results, even a
minor adjustment gives very good results.

Collection and analysis
of data

In the beginning we collected the data
using simple forms that were sent to a
mailbox. The owner of this mailbox took
the form and punched this data into a
spreadsheet (Excel). When we had a
large enough sample (we decided that
we needed at least 10 measurements), we
started doing the analysis. This was (and
is) an easy way of starting the collection
and analysis process. The reason for this
is that it is simple and easy. The chang-
ing of metrics and methods of analysis
can be done relatively fast. But there is a
downside to this as well, as we dis-
covered. This becomes apparent when
the analysis must be carried out on a reg-
ular basis. Then this process is too
time consuming.

The solution to the problem was to
implement the analysis process in a
database. (We ported the collection pro-
cess as well into the same database, but
this is not necessary.) The implementa-
tion is time consuming, but it saves a lot
of time on the analysis. When we did the
analysis in Excel we used one to two
days for each analysis. Today we use just
15 minutes. This means that today we
can do a weekly analysis on a specific
project if we want to.

Conclusion

The time we invested in this measure-
ment system was time well spent. Cur-
rently we have some improvements on
our development process, and we know
that we will be getting even more in the
future.

Reference

1 Pulford, K, Kuntzmann-Combelles,
A, Shirlaw, S. A quantitative app-
roach to software management : the
ami handbook. Wokingham, Addi-
son-Wesley, 1996. ISBN 0-201-
87746-5.

Figure 8 Relationship between cost and lead time for the second baseline project (B)

Hans Erik Stokke (29) is QA-Manager at Nera TMN AS.
He received his M.Sc. from the Norwegian Institute of
Technology, and has experience from quality assurance
(software and hardware), working on quality assurance of
the development of large scale telecommunication man-
agement systems for network operators and service pro-
viders.

e-mail: hes@ts.nera.no

Reidar Palmstrøm (40) is SW Development Manager at
Nera TMN AS, and has experience from SW develop-
ment management of large scale telecommunication man-
agement systems for network operators and
service providers.

e-mail: rp@ts.nera.no

C
os

t [
ho

ur
s]

50

40

30

20

10

0
0 1 2 3 4 5 6 7

Lead time [days]

Lead time vs. Cost

66 Telektronikk 1.1999

Testing is the planning and execution of
test cases. The goal is to get information
about the quality of the system, by runn-
ing a set of test cases, and by comparing
the expected output with the real output.
In this paper, ‘testing’ denotes the test
execution phase. This phase is often
called ‘the testing phase’. The problem
is often that everything else, which is to
be done before the testing, is delayed.
This leads to the test execution being put
under severe time and budget pressure.
We therefore need a prioritization strat-
egy in order to do the best possible job
with limited resources.

Which part of the system requires most
attention? There is no unique answer, and
decisions about what to test have to be
risk-based. There is a relationship be-
tween the cost of testing and the cost of
defects, and there are other choices to be
made. This paper presents some app-
roaches for how to survive the bad game
of testing under pressure.

Disclaimer: The ideas in this paper are
not intended to be used with safety criti-
cal software. Some of the ideas may be
useful in that area, but due consideration
is necessary.

The scenario is as follows: You are the
test manager. You made a plan and a
budget for testing. Your plans were, as
far as you know, reasonable and well
founded. When testing time approaches,
the product is not ready, some of your
testers are not available, or the budget is
just cut. You can argue against these cuts
and argue for more time or whatever, but
that doesn’t always help. You have to do
what you can with a smaller budget and
time frame. Resigning is no issue. You
have to test the product as well as pos-
sible, and you have to make it work
reasonably well after release. How to
survive?

There are several approaches, using
different techniques and attacking differ-
ent aspects of the testing process. All of
them aim at finding as many defects as
possible, and as serious defects as pos-
sible, before product release. Different
chapters of this paper show the idea.
At the end of the paper, some ideas are
given that should help to prevent the
pressured scenario mentioned before.

In this paper we are talking about the
higher levels of testing: Integration and
system test. We assume the basic level of
testing every program has been done by

the programmers. We also assume the
programs and their designs have been
reviewed in some way. Still, most of the
ideas in this paper are applicable if no-
thing has been done before you take over
as the test leader. It is easier, however, if
you know some facts from earlier quality
control activities such as design and code
reviews and unit testing.

1 The bad game

You will lose the game anyway, by bad
testing, or by requiring more time to test.
By doing bad testing you will be the
scapegoat for lack of quality. By doing
reasonable testing you will be the scape-
goat for the late release.

How to get out of the game?

You need some creative solution, namely
you have to change the game. You need
to inform management about the impos-
sible task you have, in such a way that
they understand. You need to present
alternatives. They need a product going
out of the door, but they also need to
understand the risk.

One strategy is to find the right quality
level. Not all products need to be free
of defects. Not every function needs to
work. Sometimes, you have options to
do a lot about lowering product quality.
This means you can cut down testing in
less important areas.

Another strategy is priority: Tests should
find the most important defects first.
Most important means often “in the most
important functions”. These functions
can be found by analyzing how every
function supports the mission, and check-
ing which functions are critical and
which are not. But you can also test more
where you expect more defects. Finding
the worst areas in the product soon and
testing them more will give you more
defects. If you find too many serious
problems, management will often be
motivated to give you more time and
resources. Most of this paper will deal
with a combination of most important
and worst areas priority.

A third strategy is to make testing
cheaper in general. One major issue here
is automation of test execution. But be
cautious: Automation can be expensive,
especially if you have never done it
before or if you do it wrong! However,
experienced companies are able to auto-

mate test execution with no overhead
compared to manual testing.

A fourth strategy is to get someone else
to pay. Typically, this someone else is
the customer. You release a lousy prod-
uct and the customer finds the defects for
you. Many companies have applied this.
For the customer this game is horrible, as
he has no alternative. But it remains to be
discussed if this is a good strategy for
long term success. So the someone else
should be another department in your
company, not the testers. You may
require the product to fulfil certain entry
criteria before you test. Entry criteria can
include certain reviews being done, a cer-
tain test coverage in unit testing, and a
certain level of reliability. The problem
is: you need to have high level support to
be able to enforce this. Entry criteria tend
to be skipped if the project gets under
pressure.

The last strategy is prevention, but that
only pays off in the next project, when
you, as the test manager, are involved
right from the project start.

2 Understanding
necessary quality lev-
els

Software is embedded in the larger, more
complex business world. Quality must be
considered in that context (see ref. [8]).

The relentless pursuit of quality can dra-
matically improve the technical charac-
teristics of a software product. In some
applications – medical instruments, air-
navigation systems, and many defense-
related systems – the need to provide a
certain level of quality is beyond debate.
But is quality really the only or most
important framework for strategic deci-
sion making in the commercial market-
place?

Quality thinking fails to address many of
the fundamental issues that most affect
a company’s long-term competitive and
financial performance. The real issue is
which quality will produce the best
financial performance. Quality metrics
per se, such as performance measures or
defect rates, do not relate to economy. It
is in general unknown whether customers
will pay higher prices for more quality.
In our industry, we must always take into
account the rapid evolution of the soft-
ware’s underlying technology and the

Surviving software testing under time and budget pressure
H A N S S C H A E F E R

67Telektronikk 1.1999

relatively short life cycle of our products.
The speed of a product, for example, is
not quite interesting when hardware
speed doubles every two years. Other
qualities have grown in their importance.

From a strategic perspective, we should
evaluate all investments in quality with
respect to their contribution to building
a competitive advantage. There are two
primary drivers of competitive advantage
– lower production costs and product dif-
ferentiation (the ability to set a premium
price for a product because it offers a
meaningful advantage over its competi-
tors).

Quality in itself can mean more reuse and
less maintenance. But will it be so much
better than someone else’s software?
Will customers pay for this? The main
factor in getting a higher price will often
be product differentiation. Quality in
general does not provide many options
for that.

Beware of fanaticism! Language like
total quality, and zero defects may have
its place in pep talks – but once it is
taken seriously and literally, we are
in trouble.

Sometimes, quality is a prerequisite.
Especially in the safety critical field, a
certain level of quality control is neces-
sary to participate in the market at all.
However, in such projects you will not
often find yourself in the trouble this
paper is dealing with.

Many who implement a quality program
these days focus on customer satisfac-
tion. Surely, they reason, happier cus-
tomers must lead directly to higher prof-
its. This is not necessarily the case. There
are four possible scenarios, in which the
value offered to the customer may be
more aligned or less aligned with the
economic benefits received by the com-
pany.

Scenario 1. Satisfied customers mirror
the company’s financial gains. In
1990, Microsoft introduced Windows
3.0, which was enormously successful
with its satisfied users and enormously
profitable for the company. This is a
typical scenario for a completely new
product which customers perceive as
high value for money.

Scenario 2. The value offered to cus-
tomers is greater than the return on
investment made by the company. The
product includes new functions or

properties which have been expensive
to create. However, the price paid does
not recover this. This is the typical
case of all the “whistles and bells”
added to an otherwise useful software
product. But the customers only want
to pay for what is useful for them. See
[13] for an example.

Scenario 3. The product offers more
value than customers will pay for. An
advanced product is not always as pop-
ular as a less advanced product for a
lesser price. Even at the same price,
the less advanced product may be
more popular, because of easier learn-
ing and usage.

Scenario 4. Declining customer satis-
faction matches a decline in the com-
pany’s fortunes. Examples include the
fall of Norsk Data, and the decline of
Digital Equipment.

To sum up: You have to be sure which
quality strategy you want to choose,
which qualities and functions are impor-
tant. Less defects do not always mean
more profit! You have to research how
quality and financial performance inter-
act. Examples of such approaches
include the concept of Return on Quality
used in corporations such as AT&T [9].
ROQ evaluates prospective quality
improvements against their ability to also
improve financial performance. Be also
aware of approaches like Value Based
management. Avoid to fanatically pursue
quality for its own sake. Thus, more test
is not always needed to ensure product
success!

3 Priority in testing: Most
important and worst
parts of the product

Testing is always a sample. You can
never test everything, and you can
always find more to test. Thus you will
always need to make decisions about
what to test and what not to test, what to
do more or less. The general goal is to
find the worst defects first, and to find
as many such defects as possible. This
means the defects must be important.
A way to assure this is finding the most
important functional areas and product
properties. Finding as many defects as
possible can be improved by testing more
in bad areas of the product. This means
you need to know where to expect more
defects.

When dealing with all the factors we
look at, the result will always be a list of
functions and properties with an asso-
ciated importance. In order to make the
final analysis as easy as possible, we
express all the factors in a scale from 0
to 5. Five points are given for ‘most
important’ or ‘worst’, or generally for
something which we want to test more,
0 points is given to areas where we do
not see it important to include them in
the testing effort. The details of the com-
putation are given later.

3.1 What is important?

You need to know the most important
areas of the product. In this section, a
way to prioritize this is described. The
ideas presented here are not the only
valid ones. In every product, there may
be other factors playing a role, but the
factors given here have been valuable
in several projects.

Important areas can either be functions or
functional groups, or properties such as
performance, capacity, security, etc. The
result of this analysis is a list of functions
and properties that need attention. I am
concentrating here on sorting functions
into more or less important areas. The
approach, however, is flexible and can
accommodate other ideas.

Major factors to look at include:

• Critical areas (cost and consequences
of failure)

You have to analyze the use of the
software within its overall environ-
ment. Analyze the ways the software
may fail. Find the possible conse-
quences of such failure modes, or at
least the worst ones. Take into account
redundancy, backup facilities and pos-
sible manual check of software output
by users, operators or analysts. Soft-
ware that is directly coupled to a pro-
cess it controls is more critical than
software whose output is manually
reviewed before use. If software con-
trols a process, this process itself
should be analyzed. The inertia and
stability of the process itself may make
certain failures less interesting.

Output that is immediately needed dur-
ing working hours is more critical than
output which could be sent hours or
days later. On the other hand, if large
volumes of data to be sent by mail are
wrong, just the cost of re-mailing may
be horrible.

68 Telektronikk 1.1999

A possible hierarchy is the following:

A failure would be catastrophic

The problem would cause the com-
puter to stop, maybe even take down
things in the environment (stop the
whole country, business or product).
Such failures may deal with large
financial losses or even damage to
human life.

A failure would be damaging

The program may not stop, but
data may be lost or corrupted, or
functionality may be lost until the
program or computer is restarted.

A failure would be hindering

The user is forced to work around to
do more difficult actions to reach the
same results.

A failure would be annoying

The problem does not affect func-
tionality, but rather makes the prod-
uct less appealing to the user or cus-
tomer.

• Visible areas

The visible areas are areas where many
users will experience a failure if some-
thing goes wrong. Users do not only
include the operators sitting at a termi-
nal, but also final users looking at
reports, invoices, or the like, or de-
pendent on the service delivered by the
product which includes the software.

A factor to take into account here is
the forgiveness of the users, i.e. their
tolerance against any problem. It re-
lates to the importance of different
qualities, see above.

Software intended for untrained or
naïve users, especially software in-
tended for use by the general public,
needs careful attention to the user
interface. Robustness will also be
a major concern. Software which
directly interacts with hardware, in-
dustrial processes, networks, etc. will
be vulnerable to external effects like
hardware failure, noisy data, timing
problems, etc. This kind of software
needs thorough validation, verification
and retesting in case of environment
changes.

• Most used areas

Some functions may be used every
day, other functions only a few times.
Some functions may be used by many,
some by few users. Give priority to the
functions used often and heavily. The

number of transactions per day may be
an idea for helping to find priorities.

A possibility to prioritize down some
areas is to cut out functionality which
will only be used once per quarter,
half-year or year. Such functionality
may be tested after release, before its
first use.

Sometimes this analysis is not quite
obvious. In process control systems,
for example, certain functionality may
be invisible from the outside. It may
be helpful to analyze the design of the
complete system.

A possible hierarchy is outlined here
(from [3]):

Unavoidable

An area of the product that most
users will come in contact with dur-
ing an average usage session (e.g.
start-ups, printing, saving).

Frequent

An area of the product that most
users will come in contact with
eventually, but maybe not during
every session.

Occasional

An area of the product that an aver-
age user may never visit, but that
deals with functions a more serious
or experienced user will need occa-
sionally.

Rare

An area of the product which most
users will never visit, which is
visited only if users do very uncom-
mon steps of action. Critical failures,
however, are still of interest.

An alternative method to use for picking
important requirements is described in [1].

3.2 What is (presumably) worst

The worst areas are the ones having most
defects. The task is to predict where most
defects are located. This is done by ana-
lyzing probable defect generators. In this
section, some of the most important
defect generators and symptoms for
defect prone areas are presented. Many
more exist, and you have to always
include local ideas in addition to the
ones mentioned here.

• Complex areas

Complexity is maybe the most impor-
tant defect generator. More than 200

different complexity measures exist,
and research into the relation of com-
plexity and defect frequency has been
done for more than 20 years. However,
no predictive measures have until now
been validated for general validity.
Still, most complexity measures may
indicate problematic areas. Examples
include long modules, many variables
in use, complex logic, complex control
structure, a large data flow, central
placement of functions, and even sub-
jective complexity as understood by
the designers. This means that there
may be done several complexity ana-
lyses, based on different aspects of
complexity and finding different areas
of the product that might have prob-
lems.

• Changed areas

Change is an important defect genera-
tor [5]. The reason is that changes are
subjectively understood as easy, and
thus not analyzed thoroughly for their
impact. The result is side-effects.
Advocates for modern system design
methods, like the Cleanroom process,
state that debugging during unit test is
more detrimental than good to quality,
because the changes introduce more
defects than they repair.

In general, there should exist a proto-
col of changes done. This is part of the
configuration management system (if
something like that exists). You may
sort the changes by functional area or
otherwise and find the areas which
have had exceptionally many changes.
These may either have a bad design
from before, or have a bad design after
the original design has been destroyed
by the many changes.

Many changes are also a symptom of
badly done analysis (see study [5]).
Thus, heavily changed areas may not
correspond to user expectations.
Defects are more likely when code
changes.

• Impact of new technology, solutions,
methods

Programmers using new tools,
methods and technology experience a
learning curve. In the beginning, they
may generate many more faults than
later. Tools include CASE tools, which
may be new in the company, or new in
the market and more or less unstable.
Another issue is the programming lan-
guage, which may be new to the pro-
grammers, or Graphical User Interface
libraries. Any new tool or technique

69Telektronikk 1.1999

may give trouble. A good example is
the first project with a graphical user
interface. The general functionality
may work well, but the user interface
subsystem may be full of trouble.

Another factor to consider is the matu-
rity of methods and models. Maturity
means the strength of the theoretical
basis or the empirical evidence. If soft-
ware uses established methods, like
finite state machines, grammars, rela-
tional data models, and the problem to
be solved may be expressed suitably
by such models, the software can be
expected to be quite reliable. On the
other hand, if methods or models of
a new and unproven kind, or near the
state of the art are used, the software
may be more unreliable.

Most software cost models include fac-
tors accommodating the experience of
programmers with the methods, tools
and technology. This is as important in
test planning as it is in cost estimation.

• Impact of the number of people
involved

The idea here is the thousand monkeys
syndrome. The more people are in-
volved in a task, the larger is the over-
head for communication and the
chance that things go wrong. A small
group of highly skilled staff is much
more productive than a large group
with average qualification. In the
COCOMO [10] software cost model,
this is the largest factor after software
size. Much of its impact can be ex-
plained from effort going into detect-
ing and fixing defects.

Areas where relatively many and less
qualified people have been employed,
may be pointed out for better testing.

Care should be taken in that analysis:
Some companies [11] employ their
best people in more complex areas,
and less qualified people in easy areas.
Then, defect density may not reflect
the number of people or their qualifi-
cation.

• Impact of turnover

If people quit the job, other people
have to learn the design constraints
before they are able to continue that
job. As not everything may be docu-
mented, some constraints may be
hidden for the new person, and defects
result. Overlap between people may
also be less than desirable. In general,
areas with turnover will experience

more defects than areas where the
same group of people has done the
whole job.

• Impact of time pressure

Time pressure leads to people making
short-cuts. People concentrate on
getting the problem solved, and they
often try to skip quality control activi-
ties, thinking optimistically that every-
thing will go fine. Only in mature
organizations, this optimism seems
to be controlled.

Time pressure may also lead to over-
time work. It is well known, however,
that people lose concentration after
prolonged periods of work. This may
lead to more defects being introduced.
Together with shortcuts in applying
reviews and inspections, this may lead
to extreme levels of defect density.

Data about time pressure during de-
velopment can best be found by study-
ing time lists, or by interviewing man-
agement or programmers.

• Areas which needed optimizing

The COCOMO cost model mentions
shortage of machine time and memory
as one of its cost drivers. The problem
is that optimization needs extra design
efforts, or that it may be done by using
less robust design methods. Extra
design efforts may take resources away
from defect removal activities, and less
robust design methods may generate
more faults.

• Areas with many defects before

Defect repair leads to new defects,
and defect prone areas tend to persist.
Experience shows that defect prone
areas in a delivered system can be
traced back to defect prone areas in
reviews and unit and subsystem test-
ing. Evidence in studies [5] and [7]
shows that modules that had faults in
the past are likely to have faults in the
future. If defect statistics from design
and code reviews, and unit and subsys-
tem testing exist, then priorities can be
chosen for later test phases.

• Geographical spread

If people working together on a project
have a certain distance, communica-
tion will be worse. This is true even
on a local level. Here are some ideas
which have proven to be valuable in
assessing if geography may have a
detrimental effect on a project:

People having their offices in different
floors of the same building will not
communicate as much as people on the
same floor. People sitting more than
25 meters apart may not communicate
enough. A common area in the work
space, such as a common printer or
coffee machine improves communica-
tion. People sitting in different build-
ings do not communicate as much as
people in the same building. People
sitting in different labs communicate
less than people in the same lab.
People from different countries may
have difficulties, both culturally and
with the language. If people reside in
different time zones, communication
will be more difficult.

In principle, a geographical spread is
not dangerous. The danger arises if
people with a large distance between
each other have to communicate, for
example, if they work with a common
part of the system. You have to look
for areas where the software structure
implies the need for good communica-
tion between people, but where these
people have geography against them.

• History of prior use

If software has been used before by
many users, an active user group can
be helpful in testing new versions.
Beta testing may be possible. For a
completely new system, a user group
may need to be defined, and proto-
typing may be applied. Typically,
completely new functional areas are
most defect prone because even the
requirements are unknown.

• Local factors

Examples include looking at who did
the job, looking at who does not com-
municate well with someone else, who
is new in the project, which depart-
ment has recently been reorganized,
which managers are in conflict with
each other, the involvement of prestige
and many more factors. Only imagina-
tion sets boundaries. The message is:
You have to look out for possible local
factors outside the factors having been
discussed here.

What to do if you do not know any-
thing about the project, if all the
defect generators cannot be
applied?

You have to run a test. A first test should
find defect prone areas, the next test will
then concentrate on them. The first test

70 Telektronikk 1.1999

should cover the whole system, but be
very shallow. It should only cover typical
business scenarios and a few important
failure situations, but cover all of the sys-
tem. You can then find where there was
most trouble, and give priority to these
areas in the next round of testing.
The next round will then do deep and
thorough testing of prioritized areas.

This two phase approach can always be
applied, in addition to the planning and
prioritizing done before testing.

3.3 How to calculate priority of
test areas

The general method is to assign weights,
and to make a weighted sum for every
area of the system. Test where the sum
is highest!

For every factor chosen, assign a relative
weight. You can do this in very elaborate
ways, but this will take a lot of time.
Most often, three weights are good
enough. Values may be 1, 3, and 10.
(1 for ‘factor is not very important’, 3 for
‘factor has normal influence’, 10 for ‘fac-
tor has very strong influence’.)

For every factor chosen, you assign a
number of points to every product re-
quirement (every function, functional
area, or quality characteristic). The more

important the requirement is, or the more
alarming a defect generator seems to be
for the area, the more points. A scale
from 0 to 3 or 5 is normally good
enough.

The number of points for a factor is then
multiplied by its weight. This gives a
weighted number of points between 0
and 50. These weighted numbers are then
summed up. Testing can then be planned
by assigning most test to the areas with
the highest number of points. An ex-
ample is shown in Table 1.

The table suggests that invoicing is most
important to test, thereafter order regis-
tration and performance of order
registration. The factor which has been
chosen as the most important is visibility.

Computation is easy, as it can be pro-
grammed using a spreadsheet. A more
detailed case study is published in [4].

4 Making testing cheaper

A viable strategy for cutting budgets and
time usage is to do the work in a more
productive and efficient way. This nor-
mally involves applying technology. In
software, not only technology, but also
personnel qualification seem to be ways
to improve efficiency and cut costs. This
also applies in testing.

Automation

There are many test automation tools.
Tools catalogues list more tools for every
new edition, and the existing tools are
more and more powerful while not cost-
ing more [12]. Automation can probably
do most in the area of test running and
regression testing. Experience has shown
that more test cases can be run for much
less money, often less than a third of the
resources spent for manual testing. In
addition, automated tests often find more
defects. This is fine for software quality,
but may hit the testers, as the defect
repair will delay the project ... Still, such
tools are not very popular, because they
require an investment into training and
learning at start. Sometimes a lot of
money is spent in fighting with the tool.
For the productivity improvement,
nothing general can be said, as the appli-
cation of such tools is too dependent
on platforms, people and organization.
Anecdotal evidence prevails, and for
some projects automation has had a great
effect.

An area where test is nearly impossible
without automation is stress, volume and
performance testing. Here, the question is
either to do it automatically, or not to do
it at all.

Test management can also be improved
considerably using tools for tracking test
cases, functions, defects and their repairs.
Such tools are now more and more often
coupled to test running automation tools.

In general, automation is interesting for
cutting testing budgets. You should,
however, make sure you are organized,
and you should keep the cost for start-up
and tool evaluation outside your project.
Tools help only if you have a group of
people who already know how to use
them effectively and efficiently. To bring
in tools at the last moment has a low
potential to pay off, and can do more
harm than good.

The people factor
– Few and good people against
many who don’t know

The largest obstacle to an adequate test-
ing staff is ignorance on the part of man-
agement. Some of them believe that
“development requires brilliance, but
anybody can do testing”.

Testing requires skill and knowledge.
Without application knowledge your

Area to test Business Visibility Complexity Change SUM
criticality frequency

Weight 3 10 3 3

Order 2 4 5 1 64
registration

Invoicing 4 5 4 2 78

Order statistics 2 1 3 3 34

Management 2 1 2 4 35
reporting

Performance of 5 4 0 1 58
order registration

Performance 1 1 0 0 13
of statistics

Performance 4 1 0 0 22
of invoicing

Table 1

71Telektronikk 1.1999

testers do not know what to look for. You
get shallow test cases which do not find
defects. Without knowledge of common
errors the testers do not know how to
make good test cases1). Again, they do
not find defects. Without experience in
applying test methods people will use a
lot of unnecessary time to work out all
the details in a test plan.

If testing has to be cheap, the best thing
is to get a few highly experienced spe-
cialists to collect the test candidates, and
have highly skilled testers to improvise
the test instead of working it out on
paper. Skilled people will be able to
work from a checklist, and pick equiva-
lence classes, boundary values, and
destructive combinations by improvisa-
tion. Non-skilled people will produce a
lot of paper before having an even less
destructive test.

The test people must be at least equally
smart, equally good designers and have
equal understanding of the functionality
of the system. One could let the Function
Design Team Leader become the System
Test Team Leader as soon as functional
design is complete. Pre-sales, Documen-
tation, Training, Product Marketing and/
or Customer Support personnel should
also be included in the test team. This
provides early knowledge transfer (a
win-win for both development and the
other organization) and more resources
than exist full-time. Test execution re-
quires lots of people that do not need to
be there all the time, but need to have a
critical and informed eye on the software.
You probably also need full-time testers,
but not as many as you would use in the
peak testing period. Full-time test team
members are good for test design and
execution, but also for building or imple-
menting testing tools and infrastructure
during less busy times.

If an improvised test has to be re-done,
a problem will occur. But modern test
automation tools can be run in a capture
mode, and the captured test may later be
edited for documentation and rerunning
purposes.

The message is: Get highly qualified
people for your test team!

5 Cutting test work

Another way of cutting costs is to get rid
of parts of the task. Get someone else to
pay for it or cut it out completely!

Who pays for unit testing? Often, unit
testing is done by the programmers and
never turns up in any official testing
budget. The problem is that unit testing is
often not really done. Test coverage tool
vendors often report that without their
tools, 40 – 50 % of the code is never unit
tested. Many defects then survive for the
later test phases. This means that later
test phases have to test better, and they
are delayed by finding all the defects
which could have been found earlier.

As a test manager, you should require
higher standards for unit testing!

What about test entry criteria?

The idea is the same as in contracts with
external customers: If the supplier does
not meet the contract, the supplier gets
no acceptance and no money. Problems
occur when there is only one supplier and
when there is no tradition in requiring
quality. Both conditions are true in soft-
ware. But entry criteria can be applied if
the test group is strong enough. Criteria
include many, from the most trivial to
advanced. Here is a small collection of
what makes life in testing easier:

• The system delivered to integration or
system test is complete;

• It has been run through static analysis
and defects are fixed;

• A code review has been done and
defects have been corrected;

• Unit testing has been done to the
accepted standards (near 100 %
statement coverage, for example);

• Any required documentation is de-
livered and is of a certain quality;

• The units compile and can be installed
without trouble;

• The units may even have been run
through some functional test cases by
the designers;

• Really bad units are sorted out and
have undergone special treatment like
extra reviews, reprogramming, etc.

You will not be allowed to require all
these criteria. You will perhaps not be
allowed to enforce them. But you may
turn projects into a better state over time

by applying entry criteria. If every unit
is reviewed, statically analyzed and unit
tested, you will have a lot less problems
to fight with later.

Less documentation

If a test is designed by the book, it will
take a lot of paper to document. Not all
of this paper is needed. A test log made
by a test automation tool may do the ser-
vice. Qualified people may be able to
make a good test from checklists, and
even repeat it. Check out exactly which
documentation you will need, and pre-
pare no more.

Cutting installation costs
– strategies for defect repair

Every defect delays testing and requires
an extra cost. You have to rerun the
actual test case, try to reproduce the
defect, document as much as you can,
probably help the designers debugging,
and at the end install a new version and
retest it. This extra cost is impossible to
control for a test manager, as it is com-
pletely dependent on system quality. The
cost is normally not budgeted for either.
Still, this cost will occur. Here, some
advice about how to keep it low.

When to correct a defect,
when not?

Every installation of a defect fix means
disruption: Installing a new version, ini-
tializing it, retesting the fix, and retesting
the whole. The tasks can be minimized
by installing many fixes at once. This
means you have to wait for defect fixes.
On the other hand, if defect fixes them-
selves are wrong, then this strategy leads
to more work after finding new defects.
The candidate for being wrong is not that
easy to find. There will be an optimum,
dependent on system size, the chance to
introduce new defects, and the cost of
installation. For a good description of
practical test exit criteria, see [2]. Here
are some rules for optimizing the defect
repair work:

Rule 1: Repair only important defects!

Rule 2: Change requests and small
defects should be assigned to next
release!

Rule 3: Correct defects in groups!
Normally only after blocking failures
are found.

1) Good test cases, i.e. test cases that
have a high probability of finding
errors, if there are errors, are also
called ‘destructive test cases’.

72 Telektronikk 1.1999

6 Strategies for
prevention

The starting scenario for this paper is the
awful situation where everything is late
and where no professional budgeting has
been done. In most organization, no
experience data exist and there is no seri-
ous attempt at really estimating costs for
development, testing, and error cost in
maintenance. Without experience data
there is no way to argue about the costs
of reducing a test.

The imperatives are:

• You need a cost accounting scheme;

• You need to apply cost estimation
based on experience and models;

• You need to know how test quality and
maintenance trouble interact.

Measure

• Size of project in lines of code, func-
tion points, etc.;

• Percentage of work used in manage-
ment, development, reviews, test
preparation, test execution, and
rework;

• Amount of rework during first three
or six months after release;

• Fault distribution, especially causes
of user detected problems;

• Argue for testing resources by weight-
ing possible reductions in rework
before and after delivery against added
testing cost.

Papers showing how such cost and bene-
fit analyses can be done, using retro-

spective analysis, have been published in
several ESSI projects run by Otto Vinter
from Bruel&Kjær [6]. A different way to
prevent trouble is incremental delivery.
The general idea is to break up the sys-
tem into many small releases. The first
delivery to the customer is the least com-
mercially acceptable system; namely, a
system which does exactly what the old
one did, only with new technology. From
the test of this first version you can learn
about costs, error contents, bad areas,
etc., and then you have an opportunity
to plan better.

7 Summary

Testing in a situation where management
cuts both budget and time is a bad game.
You have to endure and survive this
game and turn it into a success. The gen-
eral methodology for this situation is not
to test everything a little, but to concen-
trate on high risk areas and the worst
areas.

Priority 1: Return the product as fast as
possible to the developers, with a list
of as serious deficiencies as possible.

Priority 2: Make sure that, whenever
you stop testing, you have done the
best testing in the time available!

References

1 Karlsson, J, Ryan, K. A cost-value
approach for prioritizing require-
ments. IEEE Software, 14 (5), 67–74,
1997.

2 Bach, J. Good enough quality :
beyond the buzzword. IEEE Com-
puter, 38 (8), 96–98, 1997.

3 Risk-based testing. STLabs Report,
3, (5). (info@stlabs.com)

4 Amland, S. Risk based testing of a
large financial application. In:
Proceedings of the 14th International
Conference and Exposition on Test-
ing Computer Software, June 16–19,
1997, Washington, D.C., USA.

5 Khoshgoftaar, T M et al. Using pro-
cess history to predict software qual-
ity. IEEE Computer, 31 (4), 66–72,
1998.

6 Several ESSI projects, about improv-
ing testing, and improving require-
ments quality, have been run by Otto
Vinter. Contact the author at
ovinter@bk.dk.

7 Levendel, Y. Improving quality with
a manufacturing process. IEEE Soft-
ware, 8 (2), 13–25, 1991.

8 Favaro, J. When the pursuit of qual-
ity destroys value. Testing Tech-
niques Newsletter, May-June 1996.
(http://www.pisa.intecs.it) in Pisa,
Italy. He may be contacted at
favaro@pisa.intecs.it.)

9 Quality : how to make it pay. Busi-
ness Week, 3384, 54–59, 1994.

10 Boehm, B W. Software engineering
economics. Englewood Cliffs, NJ,
Prentice Hall, 1981.

11 Jørgensen, M. 1994. Empirical
studies of software maintenance.
Thesis for the Dr. Scient. degree.
University of Oslo, 1994. (University
of Oslo Research report 188.)

12 Lots of test tool catalogues exist. The
easiest accessible key is the Test
Tool FAQ list, published regularly
on Usenet newsgroup
comp.software.testing.

13 Matsumoto, C. General Magic’s
Motorola : AT&T Accounts Go Poof.
San Francisco Business Times, Sept.
8, 1995.Hans Schaefer (46) holds a Civ.Eng. degree in computer

science from the Technical University of Braunschweig,
and is an independent consultant in software testing
matters. He has previous experience from Fraunhofer-In-
stitut in Karlsruhe and the Center for Industrial Research
in Oslo in work relating to real-time process control software,
CASE-tool developing and quality improvement efforts. He
is currently test co-ordinator in Telenor’s Y2K project, in
addition to guest lecturing at several universities in Norway.

hans.schaefer@ieee.org

This article gives an introduction
to some state of the art methods for
constructing quality communication
software. Emphasis is on formality,
abstraction, object-oriented techniques
and quality by construction. As an
illustration and frame of reference the
integrated methodology TIMe is pre-
sented.

Introduction

The combination of high complexity with
high reliability forced the communication
software industry to take a pro-active
approach to software quality from the
very beginning. As a result, the industry
has been a driving force in the research,
development and use of software engin-
eering techniques. Communication soft-
ware has always been highly concurrent,
distributed, heterogeneous, and real-time.
Therefore, solutions have been developed
to attack these problems in particular.

As the software industry in general
moves towards distributed heterogeneous
solutions we see a convergence towards
similar basic principles for the software
industry at large. This convergence leads
to considerable cross-fertilisation and
integration of previously different disci-
plines such as control systems, user inter-
faces and databases.

Consequently, we see a trend towards
harmonisation and integration of tech-
niques, where traditional boundaries
disappear. This development can be illus-
trated by The Integrated Method, TIMe,
which aims to integrate and combine
techniques to a whole that cover the
totality of disciplines and life cycle steps
required in modern systems engineering.

Description techniques

The essence of systems engineering is to
understand needs and to design systems
having properties that satisfy the needs
in a cost effective way. Without descrip-
tions, this is impossible. Descriptions are
indispensable in systems engineering and
all other engineering disciplines. To a
large extent systems engineering is a
matter of creating, understanding, ana-
lysing and transforming descriptions.
Consequently, the core (perhaps the soul)
of systems and software engineering is
description techniques.

This was early realised by the software
engineering community and techniques
were developed that aimed to increase
the abstraction and the formality of
descriptions. Abstraction was sought in
order to facilitate human conception and
understanding, formalisation in order to
give preciseness and tool support. The
idea was to help prevent errors by im-
proving problem understanding, team
communication and by automating man-
ual tasks, and to discover errors by
allowing extensive simulation and ana-
lysis to take place at early stages of de-
velopment. To the extent they succeed
in these areas, description techniques
contribute to software quality both by
construction and by correction.

The early techniques developed for soft-
ware engineering in general, such as
Structured Analysis / Structured Design
[23], tended not to deal with sequential
behaviour, concurrency and distribution,
and emphasised abstraction and human
understanding more than formality. They
had no formal semantics, and therefore it
was not possible to simulate and analyse
the system behaviour before it was im-
plemented. The mapping from abstract
model to concrete design was unclear,
and therefore the documentation value
of abstract models was limited. Also, the
action oriented approach taken by those
techniques seemed not to give all the
benefits expected.

Later developments have focused more
on data modelling, and these have been
considerably more successful, especially
for data-intensive applications. In recent
years the trend has been towards object-
orientation and more formality. The Uni-
fied Modeling Language, UML [3], is the
latest and most notable development in
this direction. It combines a set of gra-
phical notations with a partial semantics
that makes its meaning more precise. It
has a formalism for sequential and con-
current behaviours based on State Charts
[8] that enables a partial simulation of
behaviour before it is implemented.

The techniques developed for communi-
cation systems on the other hand, empha-
sised formality and dealt explicitly with
sequential behaviour and concurrency
from the beginning. The FDTs – formal
definition techniques – ESTELLE [10],
LOTOS [9] and SDL [12, 14] all had
state transition based semantics that
enabled simulation and analysis to take
place before implementation. SDL had
the additional benefits of a graphical

notation that supported human compre-
hension combined with an underlying
finite state machine semantics that could
be implemented effectively. For this rea-
son SDL now seems to be the most suc-
cessful of the FDTs, with a good track
record from numerous practical systems
development projects.

SDL as a language was object-based
already when first recommended in 1976,
and since 1992 [12] it has been a full
fledged object-oriented language. It has a
semantics that enables complete simula-
tion to take place before implementation,
and also to generate complete and effi-
cient implementation code automatically.
These properties enable development
organisations to move from an imple-
mentation oriented development
paradigm to a design oriented develop-
ment paradigm, see below.

In addition to SDL, three other languages
are much used for communication sys-
tems:

• Message Sequence Charts, MSC [15],
which describes interactions by ex-
ample. MSC provides a useful com-
plement to SDL;

• Abstract Syntax Notation One (ASN.1)
which is used to describe data struc-
tures, especially in connection with
protocols. ASN.1 is combined with
SDL [13];

• Tree and Tabular Combined Notation,
TTCN [11], which is used to describe
test cases. TTCN may be generated
from SDL and MSC.

Together these languages complement
each other to cover almost everything
needed to develop distributed reactive
systems. What they lack is the ability to
describe general conceptual structures
and data models in a graphical notation.
This is where UML has its strong point,
and fits in as a complement to SDL and
MSC.

There is a general trend now to use:

• Object Orientation as a common
approach to analysis, design and
implementation, with concurrent
processes as objects;

• Interaction Scenarios for the specifica-
tion of communication between users
and systems (use cases) and between
objects of systems;

• State/Transition based specification of
behaviour of individual objects.

73

Quality by construction exemplified by TIMe
– The Integrated Methodology
R O L V B R Æ K , J O E G O R M A N , Ø Y S T E I N H A U G E N , G E I R M E L B Y ,
B I R G E R M Ø L L E R - P E D E R S E N A N D R I C H A R D S A N D E R S

Telektronikk 1.1999

This is not very surprising, considering
that more and more applications tend to
be distributed and reactive. Object orien-
tation helps to master complexity by
structuring in terms of objects, and by
factoring out common properties in gen-
eral classes. Objects do not live on their
own but communicate with other objects.
Interaction Scenarios help to describe
and understand even the most complex
interaction cases. Describing the
behaviour of each object in terms of
states and transitions that are triggered by
incoming signals from other objects has
proven to be of great value and is now
adopted in one form or another by most
system engineering approaches. As an
example of a comprehensive approach,
The Integrated Method (TIMe), is pre-
sented below.

How FDTs may contribute
to quality by construction

In general, most systems engineering
methods aims to build quality by making
descriptions in the following main areas:

• The problem domain: in order to
understand and describe the needs.
Understanding the needs is a precondi-
tion for achieving quality when quality
is understood as ‘satisfaction of expec-
tations and needs’. Therefore, domain
descriptions that help to get the needs
right, and to communicate them pre-
cisely, contribute to quality by avoid-
ing errors in the understanding of
needs, which is the foundation for
quality itself.

• The system properties: in order to
specify and understand the characteris-
tics of the system, in particular as seen
from an external user. This is where
the most important trade-offs and
decisions are made concerning how the
system will answer the needs. Property
descriptions that enable the externally
observable properties to be clearly
defined, communicated and under-
stood by everybody involved, are
essential to ensure that they will
satisfy the needs as expected.

• The system design: in order to con-
struct the system in a way that satisfies
the properties. Here the main issue is
to map external properties to design
solutions without losing, changing or
adding properties in an undesirable
way.

• The system implementation: in order
to realise the system according to the

design so that it provides the properties
and satisfies the needs as expected.

All these descriptions are considered nec-
essary (in one form or another) in most
methodologies in order to:

1 Improve common understanding and
communication among the people
involved in all areas of concerns;

2 Achieve a controlled process towards
quality results.

At the same time the number of descrip-
tions may be a problem in itself because:

1 Each description takes some effort to
make;

2 Every mapping between descriptions
means an opportunity to introduce
errors.

Therefore, each description made must
be justified by its ability to eliminate
errors and simplify other work. The

number of translation errors introduced
by having several descriptions should be
considerably less than the number of
errors avoided by making the corre-
sponding descriptions.

Experience has shown that making
abstract design descriptions using a lan-
guage like SDL has helped to consider-
ably reduce the number of errors in
implementations, even when the
transformation to implementation has
been done manually, and therefore the
use of a separate application design in
SDL has been justified. With automatic
code generation, these figures are
improved because the translation errors
are removed. In that way, using an FDT
like SDL for abstract design can con-
tribute towards quality by construction in
two important ways:

• By avoiding to introduce errors in the
first place;

• By eliminating translation errors.

74 Telektronikk 1.1999

Instance
needsNeeds

Application design
Framework design
Architecture design

Specification

Problem
domain

Implementation

Instance
configuration

System

Needs

Needs

Needs

Market

Satisfies needs

Domain
needs

System
family
needs

Domain

System
family

Instance

Figure 1 The main steps

As a consequence, many companies have
now made the transition from implemen-
tation oriented development to design
oriented development. They no longer
treat the implementation code, in e.g.
C++, as the primary documentation, but
as secondary, derived documentation.
Application designs expressed in SDL
have taken over the role as primary docu-
mentation. On this level the application is
understood and maintained, and done so
in terms that are closer to user under-
standing. The SDL model can be exten-
sively simulated and validated before
implementation takes place, and imple-
mentation errors are avoided, particularly
by automated transformation. However,
there is a snag: the amount of detail
required to enable automatic code gener-
ation may clutter the description and
reduce readability to a level where
human errors are likely to increase. Some
sort of layering is required to avoid this.

Those that have moved to design ori-
ented development, naturally seek further
improvements. In a competitive market
place, the ability to add new services (or
modify existing ones) with a short time
to market while keeping the quality
stable, is often sought as the next im-
provement. In practice, this means
to focus more on the domain and the
properties. Issues that emerge now are
how to model properties separately and
how to compose and map properties to
designs. The ideal situation would be
property oriented development, where
designs are derived automatically from
property descriptions. Although this
vision cannot be realised today, some
small steps in that direction are already
possible using existing languages and
tools.

Using MSC to describe behaviour prop-
erties, for instance, offers some possi-

bilities. Firstly because MSCs provide
a readable and precise way to describe
interaction behaviour and thus help to
avoid errors, and secondly because
MSCs can be used both constructively to
partially synthesise application designs,
and correctively to verify that application
designs satisfy the properties specified in
an MSC.

It is interesting to see that UML, which
has its origin in the general software
engineering community, builds on very
similar concepts as SDL and MSC for
the behaviour part, namely state charts
for object models and event traces for
property models. Presently, however, the
lack of formal semantics and tool support
prevents the possibility of performing
design oriented development in UML.

An overall approach
– TIMe

The TIMe methodology [19] is designed
for systems that are reactive, concurrent,
real-time, distributed, heterogeneous and
complex. It is centered around a set of
models and descriptions capable of
expressing domain knowledge, system
specifications in terms of external prop-
erties, system designs in terms of struc-
ture and behaviour, implementation
mappings and system instantiation.

Like other similar methods [4], [18],
[21], [22], the methodology distinguishes
between analysis (of the domain and the
requirements), design, implementation
and instantiation (see Figure 2).

What is special about the methodology
is that:

• Design is split between:

- Application design, where the func-
tionality of the system is designed
on an abstract level;

- Architecture design, where the
implementation mapping satisfying
the non-functional properties is
taken care of; and

- Framework design, that defines
types of systems with the same
infrastructure (e.g. supporting distri-
bution) where the application spe-
cific parts are singled out to be re-
definable in specific systems.

• It uses a combination of object models
and property models both for domain
and system analysis, and for design.

75Telektronikk 1.1999

Object
Models

Property
Models

Domain Descriptions

System Family Descriptions

Specifications

Object
Models

Property
Models

Design Models

Implementation

Instance Descriptions

Instance
configuration

Domain analysis

Requirements
analysis

Application design

Framework design

Architecture design

Implementation

Configuration

Building

Testing

Instantiation

Design

Analysis

MSC, UML

MSC, UML

MSC,
SDL, UML

C++, Java.

Concrete system

Figure 2 TIMe activities, descriptions and languages

This is done in order to:

• Achieve flexibility in services and
system designs;

• Minimise cost and lead times and to
increase reuse;

• Enable application evolution to take
place in terms of application design;

• Move one step towards property ori-
ented development.

The methodology supports the integrated
use of:

• The Unified Modeling Language
(UML) for object model analysis;

• Message Sequence Charts (MSC)
for interaction scenarios;

• Specification and Description Lan-
guage (SDL) for specification and
design of behaviour.

UML and SDL support object orienta-
tion, there are tools that integrate them,
and the same tools also support MSC (as
well as ASN.1 and TTCN). UML has
recently been adopted by OMG – the
Object management Group, while SDL
and MSC are ITU-T standards.

The methodology promotes:

• Completely analysable application and
framework models;

• Automatic transformation from design
to code;

• Formal relationships between proper-
ties and objects.

This is the setting of the methodology;
now let us look at some of its foundation.

Systems and system fam-
ilies

A system is defined as a part of the world
that a person or group of persons during
some time interval and for some purpose
choose to regard as a whole, consisting
of interrelated components, each com-
ponent characterised by properties that
are selected as being relevant to the pur-
pose. A system is not a description on a
piece of paper, but something actually
existing as a phenomenon in the real
world. This puts the system apart from
the description of the system. The system
actually exhibits behaviour, while its de-
scription is a dead pile of paper.

Systems consist of objects. In order to
describe them, classes of objects are de-
fined and described. In short, the
methodology consists of approaches,
guidelines and techniques for identifying
and describing classes of objects, and for
deriving, analysing and composing
descriptions.

It is fruitful to think in terms of families
of systems and really make ‘system fam-
ily specifications’ and ‘system family
designs’. The idea is to focus develop-
ment and maintenance effort mainly on
the system families, in order to reduce
the cost and time needed to produce each
particular instance, and to reduce the cost
and time needed to maintain and evolve
the product base.

A system family is a generalised system
or set of component types (classes) that
can be configured and instantiated to fit
into a suitable range of user environ-
ments. They represent the product base
from which a company can make a busi-
ness out of producing and selling in-
stances.

The methodology provides guidelines on
how to make system families in addition
to single systems. Where practical, sys-
tem types and classes will be defined
from which complete system instances
may be generated.

Properties and objects

The methodology has the two dimensions
properties and objects as integral parts of
the method.

A system consists of a set of objects.
Objects are described by:

• Object models, that model how a sys-
tem or a set of related classes are com-
posed from objects, connections and
relationships, and how these objects
behave.

Systems and objects have properties.
Properties are described by:

• Property models, that model the prop-
erties of a system or object without
prescribing their internal construction.

Object models are constructive in the
sense that they describe how an object is
composed from parts, and is the perspec-
tive of designers. Property models are not
constructive, but are used to characterize
an object or collection of objects from
the outside: behaviour properties, perfor-
mance properties, maintenance proper-
ties, etc. This is the perspective preferred
by users and sales persons. It is also the
main perspective in specifications.

A central idea in the methodology is that
every object (and system) is characte-
rized by provided properties that can be
matched against required properties, see
Figure 3. The terms verification and vali-
dation refer to different aspects of this
matching. Verification seeks to establish
the truth of correspondence between a
description of required properties and the
provided properties. In practice, this can
be to check that a specified MSC actually
may be executed by the system. Valida-
tion seeks to check that the provided
properties satisfy the real needs of the en-

76 Telektronikk 1.1999

Required properties Provided properties

The system to be The system as
developed

Verification

& Validation

Development

Figure 3 Required and provided properties

vironment, for instance that the needs
of a user or another system are satisfied.
If the needs can be fully expressed in a
description of required properties, then
verification is the same as validation,
but usually this is not the case. Therefore,
validation often involves the user or
other systems in the environment. Proto-
col validation can be seen as a special
case where two protocol entities are
checked against each other in order
to ensure that they behave as expected
without errors when working together.

Of special interest are interaction proper-
ties, where a property involves the inter-
action between the system and one or
more users of the system or other sys-
tems in the environment, or between
objects in the system. Figure 4 illustrates
some interaction properties specified in
MSC. This diagram identifies two in-
stances: the User and the AccessGranting
and a simple interaction where the User
sends Card and the AccessGranting
responds by sending OK. This must be
understood as one possible interaction
and not as all possible interactions. The
property expressed is that the User may
send Card, and the AccessGranting may
respond by sending OK. Other properties
may be expressed in other MSCs, for
instance that the AccessGranting also
may respond by sending NOT_OK.

MSCs like the one in Figure 4 need not
be tied to particular objects. The User
and the AccessGranter may well be
understood as roles that some objects
play, without being tied to particular
objects, and this enables us to define
property models separately from object
models, and then associate roles with

objects. When object models and prop-
erty models are associated, the general
model organisation depicted in Figure 5
is used. The property descriptions
describe specific aspects of the system
model on different aggregation levels,
and is normally organised with a role
structure diagram, a concise textual
explanation and an MSC document.

Analysis will produce specifications of
objects, while design and implementation
activities will produce designs of objects.
In specifications the object context and
external properties are defined. Some lim-
ited parts of the content may also be spec-
ified, see the wiggly line in Figure 6. The
specification of an object includes what is
needed in order to use the object – and
that may be more than just an interface
specification. In the design the remaining
content is defined. Using this organisa-
tion, specifications are not considered as
special models but as an integral part of
any model. Before design is made, speci-
fications are validated against user re-
quirements. They are then used as input
to synthesising a design. The method-
ology has guidelines for constructing

object designs that will satisfy the proper-
ties, and tools exist that can verify that
object designs indeed satisfy the specified
properties.

When a design is finished the specifica-
tion can be used to characterise the design
as a reusable component and to simplify
validation of interfaces when it is con-
nected with other components. As the
reader may appreciate, this organization
contributes to quality by construction by
supporting design synthesis, and quality
by correction by supporting validation
and verification.

77Telektronikk 1.1999

User AccessGranting

Card

OK

MSC User_accepted

Figure 4 Simple interaction property
model expressed using MSC

Block type
Component-a

Class-b

Atributes

Operations

Service-A1

role
structure

Text

MSC
Service-a1

System Service-A

role
structure

Text

MSC
Service-a1

System

Object models Property models

Context/Specification

Context/Design Synthesise Refine Verify

Instance of Instance of

Types

Figure 5 General model organisation

Object Properties

Specification

Design

Context

content

Figure 6 Specification and design

Quite often a development starts by iden-
tifying and describing a number of ser-
vices that are to be provided, and by de-
fining property models for each of them.
Each service will typically involve
several object roles, as illustrated in Fig-
ure 7. During design, these roles are
given to actor objects, where each actor
often plays several roles. In this case
design synthesis means that the role
behaviours assigned to each actor must
be composed together into a complete
and consistent object behaviour and that
the object behaviour should be verified
against the assigned role behaviours. In
this way the methodology provides some
of the answers to the challenge of prop-
erty oriented system development: to
separately model properties, to identify
objects and synthesise object behaviours
so that they contribute to the properties
required of the whole system.

Abstract and concrete
descriptions

Descriptions suitable for execution by
existing platforms contain a lot of
detailed, concrete description elements
(implementation details, platform spe-
cific details, etc.). Descriptions suitable
for system developers in their strive to
match required properties expressed by
users, owners etc. are preferably more
abstract in the sense that they describe
systems in terms that reflect established
concepts within a given domain.

The methodology achieves abstraction by
supporting UML and MSC for analysis
models, and SDL and MSC for design
models. UML is a notation that enables
informal, abstract object models, MSC
describes use cases and interaction be-
tween objects, and SDL supports abstract
descriptions that (by including concrete
description elements) automatically may
be transformed to concrete implementa-
tions.

Concrete models describe the implemen-
tation architecture. This is a high level
description of the physical implementa-
tion. The purpose is to give a unified
overview of the implementation and
to document the major implementation
design decisions. An important benefit
of abstract models is that they can allow
for many alternative implementations.
Therefore they provide a good starting
point for trade-offs between alternative
technologies and ways to satisfy non-
functional properties. The results are
documented in the implementation
architecture.

Frameworks

Abstract descriptions are organised in
two main parts:

• An application part that describes what
the user environment wants the system
to do;

• An infrastructure part that describes
additional behaviour and supporting
functionality that needs consideration,
e.g. in order to fully simulate its be-
haviour. This may e.g. include support
for distribution, exception handling,
etc.

The reason for this distinction is that sys-
tems will often have the same infrastruc-
ture part, but different application parts.
Reuse of infrastructure is eased by keep-
ing them separate, and application evolu-
tion is simplified.

The SDL descriptions will be organised
according to the distinction between
application and infrastructure. It is
normally the case that different systems
within a system family will have the
same infrastructure but slightly different
application parts, and when making
different application systems it is de-
sirable not to change or even consider
the infrastructure part (besides what it
offers). A framework defines the com-
position of the infrastructure parts and
application parts in such a way that dif-
ferent systems can be made by only
changing the application parts.

The methodology adapts this idea to
SDL, showing how a framework can be
defined as an SDL system type, and the
different systems as instances of subtypes
of this system type. The methodology
provides detailed guidelines for how to
do this, see [2].

We have above presented some of the
foundation of the methodology; we shall
now present some aspects that are related
to how the languages and FDTs are com-
bined on order to produce quality sys-
tems.

From UML models to
SDL models

In a mapping from UML to SDL a num-
ber of decisions must be taken. The
methodology provides guidelines on
this mapping – some of them are given
below. Most of them are given in a short
form just to give an impression of what
kind of guidelines that are provided.

UML classes map in general to types in
SDL. Classes with their own behaviour
and with communication with other
objects map to SDL processes types,
container classes map to block types,

78 Telektronikk 1.1999

Change PIN code

Block access
point

Accept/reject user

Access
point

Access
point

Access
point

Objects

Behaviour
properties Object plays

a role

Figure 7 Matching objects and properties in an Access Control System

and data object classes map to SDL
data types.

Attributes of objects generally map to
SDL variables of data types, unless the
object attributes are classes themselves,
in which case it is these classes that are
mapped as stated above.

Operations are either mapped to remote
procedures, to signals in combination
with the corresponding transition and
optional reply signal, or to operations
on variables.

Relations are not easily mapped to SDL.
The methodology makes a distinction
between constructive and illustrative
relations. Being aware of this distinction
when defining relations helps during the
mapping. Constructive relations will typ-
ically be implemented by corresponding
relations in a database part of the system,
while illustrative relations need not nec-
essarily be implemented at all.

Connections are mapped to signal routes/
channels and corresponding gates on the
types involved.

The relations in Figure 8 are not visible
in the mapping of the UML AccessPoint
class to the SDL AccessPoint block type,
while the connection between Access-
Point and User maps to a gate e. The
User class is ‘mapped’ in the first round
to processes in the environment of the
AccessPoint, and in the second round
to processes in the environment of the
system.

In a further mapping of the classes in
Figure 8, the passive classes will be
mapped to classes of objects in a
database, describing which users may
enter which access zones through which
access point. In that mapping the rela-
tions are not just illustrative but map to
corresponding relations in the database.

Aligning SDL and MSC

The property descriptions describe spe-
cific aspects of the object model, on dif-
ferent aggregation levels and on different
abstraction levels. An important issue is
to be able to assess that the different de-
scriptions of the same system actually
talk about the same thing.

In some cases this is a simple task, while
in other cases it is not so simple. The
most difficult situation is when the align-

79Telektronikk 1.1999

ment appears to be simple, but in fact is
more intricate. If various aspects of
property models are not continuously
aligned, a situation like the one in Figure
9 may easily arise.

In Figure 9 it is easy to see that the three
different descriptions all describe the
same situation in the Access Control

system. Still, the three perspectives do
not cover each other completely.

The prose says very little about the exact
sequencing of the messages, and little
about the requirements which the user
must fulfil (such as opening the door
himself and closing it afterwards) before
the system is again ready for another card.

1(1)

CE

[(oup)] [(inp)]

(validity)

C (code)

[(inp)]

[(oup)] e

AccessZone

AccessPoint User

Controller

Panel Door

apc:
Controller

P
D

U

BLOCK TYPE AccessPoint

(validity)

(code)

CE[(inp)]

[(oup)
(ope,
close)

CU (code)(validity)

(opened,
close) D

P1

1(1)

controls
access to

may enter

may
use

constructive
relations

illustrative
relation

active object
class mapped
to a block
type of
processes

connection
mapped to gate
and channel

AccessPoint

AP (100):
AccessPoint

Ce CentralUnit
(validity) (Code)

C

SYSTEM AccessControl

Figure 8 Mapping UML classes, relations and connections to SDL

The MSC says little about the fact that
there is a User, and it has no indication
of the states which the system passes
through. Furthermore, the (visual)
response to the user is omitted.

The state-oriented diagram is the most
complete one, but it is still not formal
enough to be used for automatic code
generation (a complete SDL description
must be made).

The informal alignment is basically given
by identical identifiers. Card has been
highlighted as one such identifier.

In order to align the three descriptions
more formally one runs into questions
such as:

• Where are the states (of the state dia-
gram) in the other descriptions?

• Where is the Panel (mentioned in the
MSC) in the others?

• Where is the AccessControl system
(mentioned in the prose) in the others?

Such differences may not be important,
as it is obvious that each perspective will
have its own ‘aids for thought’. The state
diagram uses states as a major means for
expression, while MSCs need instances
which produce and consume messages.
A process algebra description (and other

notations based on logic) often uses aux-
iliary functions.

Where the object model is a complete
SDL specification and important proper-
ties are expressed by MSC, there is
a fairly straight forward alignment
mapping. When an MSC document and
a supposedly corresponding SDL system
is defined, it is necessary to align the two
descriptions. By aligning we mean to
make explicit how the two descriptions
correspond. Which message corresponds
to which signal? Which SDL block cor-
responds to which MSC instance? The
advice is to let the names coincide and
make this part of the mapping simple.1)

Both MSC and SDL may describe non-
terminating systems. SDL has initial
transitions to define the starting state,
while MSC documents do not necessarily
have any explicit start at all. Since the
MSC document normally does not de-
scribe a system completely, the corre-
sponding execution points between the
MSCs and the SDL system must be
specified.

We recommend that in defining this exe-
cution correspondence, the developer
should map SDL system states2) into
MSC conditions. The developer must be
aware that MSC conditions do not imply
synchronization. Therefore, it may be
necessary and advisory to add state in-
variants as comments in both the MSC
and SDL descriptions.

Model checking can face more initial
problems. Firstly, there is the partiality
problem. The MSC document may not
describe all the messages which the SDL
system finds adequate to introduce as
signals, or the opposite way round.

Secondly, the SDL system and the MSC
system may not agree on what objects are
in the environment. The MSC document
might describe the User as an instance
while the SDL system defines the user in
the environment. Conversely, the SDL
system might define the Door as a block
while it is considered in the environment
by the MSC document.

To overcome these discrepancies it is
necessary to perform some alignment
modifications. Some of the alignment
modifications will be a permanent
change to the specifications while others
are only modifications which are neces-
sary for the model checking to perform.
For example, the message name Card
Out could be substituted with Eject Card.
This could be made permanent. A Push-
Door message could be eliminated tem-
porarily so that its existence will not
confuse the model checking.

Such temporary modifications are often
what we call reductions. A reduction is a
simplification which has no effect on the
result of the verification. Put differently,
the simplification should be truthful to
the original with respect to the purpose
of the verification. Reductions may either
be mandatory in order to make the model
checking work at all, or they may reduce
the amount of resources needed to per-
form the check. One may reduce either
the SDL description or the MSC descrip-
tion or both to achieve the most practical
correspondence.

80 Telektronikk 1.1999

card in/
check

PROSE

Unlocked

Valid?

Opened

Idle
NOK/

card out

OK/unlock
card out

close

open
door/
lock

STATE DIAGRAM

Panel

unlock

card out

ok

nok
alt

check
card in

msc AC

MSC

The Access Control system
receives the user´s card, and
responds by either OK or NOK.
The user may enter only if the
response is OK, otherwise the
card is just returned.

Figure 9 Aligning prose,
MSC and state diagram

1) Integrated MSC/SDL tools often make
sure that the mapping of instances and
messages are trivial since they demand
that the MSC part uses the SDL names.

2) An SDL system state is the tuple of all
process states in the system. In some
cases the internal queues should also
be included in the system state.

Reductions may be static or dynamic.
Static reductions are changes in the de-
scriptions which are based on the static
semantics of the description. Such reduc-
tions are e.g. elimination of messages
and transitions which communicate with
instances which are not in the picture for
the verification. See [16]. Dynamic
reductions take into account the actual
execution of the system. Truthfulness
can be achieved more accurately, but the
effort needed in the reduction is com-
parable to performing a reachability
analysis. See [20].

There are no adequate tools available to
aid in this alignment phase. Therefore
manual effort will be necessary to ascer-
tain the consistency of the simplifica-
tions. It is especially critical that the
statements of truthfulness are made
explicit and checked with scrutiny.

Conclusion

FDTs, when used systematically, offer
the opportunity to move up in abstraction
from implementation-oriented through
design-oriented towards property-ori-
ented development, and by doing so har-
vest quality improvements. The quality
improvements are caused partly by con-
structive means that avoid making errors
in the first place, and partly by corrective
means that detect errors.

This potential is exemplified by TIMe –
The Integrated Method – a development
methodology that unites the informal
ease of expression of concepts and
objects in UML with interaction scenar-
ios in the more formal MSC language,
and detailed design of structure and
behaviour in formal SDL. From the
latter, running implementations may be
derived automatically. TIMe provides
guidelines on how to use these notations
and languages together, both construc-
tively and for verification and validation,
to produce high-quality systems. TIMe
also exemplifies the convergence of
methodologies that are driven by the gen-
eral convergence of communication and
information processing technology.

81Telektronikk 1.1999

Bibliography

1 Bræk, R, Haugen, Ø. Engineering
real time systems. Hemel Hempstead,
Prentice Hall International, 1993.
ISBN 0-13-034448-6.

2 Bræk, R, Møller-Pedersen, B. Mak-
ing frameworks by means of virtual
types exemplified by SDL.
FORTE/PSTV, Paris, 3–6 November
1998.

3 UML Partners. The unified modeling
language, version 1.1. [Online].
URL: http://www.omg.org. (Septem-
ber 1997.)

4 Douglass, B P. Real-time UML :
developing efficient objects for
embedded systems. Reading, Mass.,
Addison Wesley Longman, 1998.
ISBN 0-201-32579-9.

5 Haugen, Ø, Bræk, R, Melby, G. The
SISU project. SDL’93 Using Objects.
In: Proceedings of the Sixth SDL
Forum, Darmstadt, Germany, 12–16
Oct. 1993. North-Holland, Elsevier,
1993. ISBN 0-444-81486-8.

6 Haugen, Ø. Using MSC-92 effec-
tively. SDL’95 with MSC in CASE.
In: Proceedings of the Seventh SDL
Forum, Oslo, Norway 26–29 Sep.
1995. North-Holland, Elsevier, 1995.

7 Haugen, Ø. The MSC-96 distillery.
SDL’97 Time for Testing : SDL,
MSC and Trends. In: Proceedings of
the Eighth SDL Forum, Evry, France
23–26 Sep. 1997. Elsevier, 1997.
ISBN 0-444-82816-8.

8 Harel, D. Statecharts : a visual for-
malism for complex systems. Science
of Computer Programming, 8 (3)
231–274, 1987.

9 ISO. Information processing systems
: Open System Interconnection.
LOTOS : a formal description tech-
nique based on the temporal order-
ing of observational behaviour.
Geneva, 1989. (ISO 8807.)

10 ISO. Information processing systems
: Open System Interconnection.
ESTELLE : a formal description
technique based on an extended state
transition model. Geneva, 1997. (ISO
9074.)

11 ISO. The Tree and Tabular Com-
bined Notation (TTCN). ISO/IEC
JTC 1/SC 21 (“TTCN”). Geneva,
1991. (ISO 9646-3.)

12 ITU. Z.100 ITU Specification and
Description Language (SDL).
(“SDL-92”). Geneva, 1994. (ITU-T
Z.100.)

13 ITU. SDL combined with ASN.1.
Geneva, 1994. (ITU-T Z.105.)

14 ITU. Addendum to Recommendation
Z.100 : CCITT Specification and
Description Language. (“SDL-96”).
Geneva, 1996. (ITU Z.100.)

15 ITU. Message Sequence Charts
(MSC). (“MSC-96”). Geneva, 1996.
(ITU-T Z.120.)

16 Juul-Wedde, K. Consistency control
methods and evaluation. Oslo, ITF,
1994. (SISU Note L-1312-5.)

17 Olsen, A et al. Systems engineering
using SDL-92. North Holland, Else-
vier, 1994. ISBN 0 444 89872 7.

18 Rumbaugh, J et al. Object-oriented
modeling and design. Englewood
Cliffs, NJ, Prentice Hall, 1991. ISBN
0-13-629841-9.

19 SINTEF. TIMe : The Integrated
Method. Electronic Textbook.
[Online].URL: http://www.sintef.no/
time. (1998.)

20 Spurkland, S, Haugen, Ø. Rudimen-
tary SDL Verifier in Prolog. Oslo,
ITF, 1994. (SISU Note L-1313-3.)

21 Methodology guidelines. The SOMT
method. Malmö, Telelogic, 1998.
(Telelogic Manual SDT 3.3.)

22 Verilog. ObjectGEODE : Method
Guidelines. Verilog Toulouse,
France, 1997.

23 Yourdon, E, Constantine, L. Struc-
tured design. Englewood Cliffs, N.J.,
Prentice Hall, 1979.

82 Telektronikk 1.1999

Richard Sanders (39) is Research Scientist at SINTEF
Telecom and Informatics, and lecturer at the Norwegian
University of Science and Technology, from which he grad-
uated in 1984. He has previously worked as a consultant
with CAP Gemini and as a software designer and manager
at Stento, developing intercom systems and participating in
the SISU project. He joined SINTEF in 1995, and helps
introduce new development methods in companies, holds
courses and carries out research in the field of system
development methodologies.
e-mail: richard.sanders@informatics.sintef.no

Geir Melby (44) has been working for two years at Ericsson
NorARC, where he has the responsibility for the NorARC
research program. Before that he was project manager for
the SISU project (1988–1997) which has been considered
one of the most successful research projects in the soft-
ware technology area in Norway. He took part in the de-
velopment of this TIMe methodology based on his earlier
experiences with development of real time systems. He
has also given several courses in object oriented methods
(TIMe) and languages.
e-mail: Geir.Melby@ericsson.no

Øystein Haugen (44) has been working for two years at
Ericsson NorARC, where he participates in projects relating
to the introduction of TIMe methodology to Ericsson de-
velopment projects following his earlier activity in the SISU
project. He is also part time associate professor at the Inst.
for Informatics at the University of Oslo, giving a course in
TIMe methodology. Haugen is also heading the group with-
in ITU that standardizes the MSC language, whose next
standard is due for approval end 1999. His doctorate thesis
dealt with Practitioners’ verification of SDL systems.
e-mail: oystein.haugen@ericsson.no

Joe Gorman (41) studied Computing Science at the Univ.
of Glasgow, where he gained his Honours Degree in 1977.
After working in Scottish Universities, he started work at
SINTEF in 1986. He is involved in contract research work
with Norwegian industry, and in international co-operative
research funded by the European Commission. His main
research interests are software engineering, software
development methodologies, compiler techniques and
configuration management.

e-mail: joe.gorman@informatics.sintef.no

Rolv Bræk (54) is Principal Research Scientist at SINTEF
Telecom and Informatics, as well as Adjunct Professor at
the Institute for Telematics at the Norwegian Univ. of Sci-
ence and Technology. He has extensive experience from
teaching, consulting and introducing systems engineering
methodologies to industry. He has played a central role
in the national technology transfer program SISU and its
follow-up SISU II, a collaboration between several com-
panies to improve their systems engineering practices.

e-mail: braek@informatics.sintef.no

Birger Møller-Pedersen (49) is Senior Research Scientist
at NorARC, Applied Research Center, Ericsson Norway,
Software Engineering.

e-mail: Birger.Moller-Pedersen@ericsson.no

1 Introduction

Reliability prediction within the telecom-
munications industry through necessity,
is an evolving process. Until the early
1970s the focus had been on the mechan-
ical attributes of uniselectors and relays,
a technology that had been evolving over
the past 30 years. At this time there were
of course thermionic valves whose
properties and ‘wear out’ characteristics
were accurately analysed for use in under
sea repeaters and other line plant. The
1970s saw a population explosion in the
use of transistors, TTL logic and the
microprocessor. The size and versatility
of the new devices coupled to their
adaptability to automated manufacturing
methods meant an explosion in their
deployment within the telecommunica-
tions networks around the world.
Through the repeated use of what by
today’s standards were simple devices,
a more complex functionality of the net-
work was achieved. The risk of common
failure modes now became a growing
factor and it was during the late 1970s
and early 1980s that telecommunication
companies began to expand reliability
departments to include experts in the
fields of materials, manufacturing, pro-
cess control and component testing. In
many instances the work carried out was
in parallel with that of the supplier and
not sustainable, the growth of supplier
management and quality standards such
as ISO9000 has since allowed such
departments to refocus on the core activ-
ity of systems and network reliability.

Recently the concept of reliability is
gaining a harder edge, it is now becom-
ing the differentiator between competing
services and is synonymous with per-
ceived quality. To the reliability engineer
this now means that reliability calcula-
tions extend to the performance of cus-
tomer support, fault identification, repair
statistics and other aspects of network
management. In contrast with the famil-
iar world of circuit reliability, redundant
paths and failure mode predictions we
must now enter the domain of software
reliability and its associated processes.

Figure 1 shows the various factor con-
tributing to system reliability.

It is difficult to directly include software
reliability into ‘hard’ reliability calcula-
tions due to its attributes. This paper
looks at an emerging service and asks
the basic questions:

• Are software faults effecting the
service?

• How do their numbers compare to
hardware faults?

• Where do they occur?

2 Software reliability

The intrinsic reliability of software is at
best a contentious subject, there are of
course the jewels in the crown such as
the software written for the NASA space
shuttle. This level of assurance and test-
ing is not viable in the telecommunica-
tions industry where most initiatives are
directed at the evaluation of the suppliers
development process backed by an exten-
sive testing programme. Figure 2 shows
the typical telecommunications view on
software.

The types of software testing fall into the
general categories of module testing and
validation and network simulation. The
module testing is usually done by the
supplier who tries to
ensure it meets its
design specifica-
tion. Some of
the
modules
pro-
duced
will be
based

upon those already in existence, others
will be new. Network software invariably
interacts with other software from vari-
ous suppliers within its operational envi-
ronment. To this end it is in the users’
interest to evaluate the software on a test
network before it is launched on the real
system. The suppliers generally support
many customers and are not expected,
or able, to build network test models to
represent every possible application of
their software. This applies equally if the
software is supplied as part of an equip-
ment or as a standalone package, i.e. net-
work management software. The model
testing therefore often falls to the end
user.

The type of testing carried out by the end
user is dramatically different from that of
the supplier, indicators of reliability from
the supplier’s point of view such as ‘esti-
mates of complexity’, ‘module size’ and
‘number of patches’, are normally not
available or applicable. The focus now
turns to ‘does it perform to require-
ments?’ and ‘can we cause it to fail?’.

The supplier is often
present at such

evaluations to
translate the
observed
problems
into terms

his software
engineers

83

Software in system perspective
P A U L H O L D E R

Telektronikk 1.1999

Figure 1 Related reliability factors

Project
Plan

Quality
Plan

Configuration
Management

Plan

VV&T
Strategy

unit
test plan

integration
test plan

system
test plan

acceptance
test plan

Figure 2 Software development and testing

Related Reliability
Factors

Customer
Help Line

Fault
Detection
Capability

Third Party
Failure

Process
Failure

Software
Failure

Hardware
Failure

Field Force
Response

Equipment
Spares

can understand. When the software is
accepted by the customer it is introduced
onto the live network. Faults occurring
after this stage should be quite rare and
due to some unforeseen condition or
‘deep seated’ error.

3 Software in service

Software does fail in service, even after
stringent testing. The software will show
a decline in reported faults as it matures
and the ‘bugs’ are fixed. In the telecom-
munications industry the functionality
requirements of the software change
rapidly, and major new releases of soft-
ware can reset the stabilisation process.
This is illustrated in Figure 3.

3.1 Operational environment

The roll out of new software into a live
network is in itself a major operation
requiring planned co-ordination and a
rehearsed fall back procedure should it
not work. The network itself is operated
to conform within specified limits
governed by the stated quality of service
requirements. The network management
system is supported through procedures
that provide specific and directed reac-
tions to network problems. The proce-
dures mentioned have a dual purpose,
from the point of view of the network
manager; they ensure the problem is
addressed in a uniform predictable
manner whose progress can be easily
tracked. The procedures also assign
responsibility for clearing the problem
to the associated support services who
themselves may have their own proce-
dures for use of the resources of others.
This is particularly easy to appreciate
when one considers the hierarchy of ser-

vices such as IP over ATM, itself inter-
connected by an SDH bearer network. In
these circumstances the cause of the fault
can be lost, particularly if it is transient in
nature. In the operational environment
such transient failures are often encoun-
tered and are worked around, the classic
term is FNF, fault not found.

3.2 The network management
process

The objective of the network manage-
ment system is to maintain the opera-
bility of the services and to support
accurate billing. The ability of the net-
work management process to detect
faults, re-route, without losing traffic,
while maintaining billing is a key driver.
The complexity and shear dynamics of
these networks restrict the ability to diag-
nose every fault that occurs and this,
while regrettable, is a fact of life. Such
FNF can manifest themselves in many
ways. In the maintenance arena cards
returned to the supplier as faulty are
often diagnosed as being satisfactory
when tested.

In some instances faults can be caused
by unplanned work by customers on their
own premises or through temporary loss
of bearer networks run by other opera-
tors. Many network management systems
have difficulty in standardising terminol-
ogy or descriptions for non standard
faults, how many times do cards show
faults that are cleared through removing
then reinserting them? The same thing
exists for computers which lock up or
crash only to work perfectly when re-
booted. The most disturbing fact is that
we have become conditioned to accept
such failures without taking too much
notice, particularly when equipment is
widely dispersed and the extent of these
instances is not experienced too fre-
quently by the same person.

The following chapters document an
attempt to evaluate the possible extent or
existence of the problem and associate
them to software or hardware sources.

4 Measurement method

In the previous chapter some of the gen-
eral problems associated with network
management were discussed, the purpose
of this investigation was to try and iden-
tify the magnitude of software problems
and present them in proportion to those
related to hardware.

The major obstacle was to clearly iden-
tify the fault and register it in a uniform
way. During the investigation, it was
noted that in the particular Network
Management Centre being analysed, that
in addition to the formal system, a local
log of faults was being kept; its purpose
was to keep a record of problems and the
follow-up actions taken. It became
apparent that this local log might be re-
fined to be more precise in its classifica-
tion of faults, the following actions being
taken:

• The log was written in a ‘data base’
format;

• Fault descriptions were entered from a
‘pick list’, new fault types could be
added by the user;

• Dates and times were added auto-
matically;

• All fields had to be entered;

• An exceptions list was automatically
produced at the end of the day for un-
cleared faults.

The method allowed the results to be
gathered in a uniform way and the ex-
ceptions list reduced the number of
incomplete records.

5 Observations

The data Service chosen for considera-
tion consisted of a core Network of
switches interconnected by a bearer net-
work. The ‘Network Management’ sys-
tems for the bearer network operate in-
dependently from that of the data service.
The service was in its set-up phase and
all percentages were calculated from a
total number of 151 reported faults over
a four month period.

The breakdown of faults within the net-
work is shown in the following sections.
The chart shown in Figure 4 indicates the
broad areas of faults found across the
whole network services.

The above chart addresses all faults
detected and suggests that many of the
faults encountered are not resolved, at
least from the point of view of the Net-
work Operations Unit (NOU). This
could be due in part to faults lying in the
domains of other NOUs who have passed
the fault but do not make a reply to its
cause. There is however strong evidence
that faults do occur that cannot be traced
with any certainty.

84 Telektronikk 1.1999

Figure 3 Observed faults with new software
release

O
bs

er
ve

d
F

au
lts

1 2 3
Software Release

5.1 Hardware and software
faults in the network

The chart in Figure 5 indicates that of the
faults found, 25 % are attributed to soft-
ware problems. The FNF are not in-
cluded in these figures.

5.2 Distribution of software
faults

Figure 6 shows the distribution of soft-
ware faults. The chart strongly suggests
that the majority of problems relate to the
Network Management System with over
55 % of the reported faults. The core
switches contribute to 39 % of the faults
with 6 % of the faults arising in the
bearer network. It is possible that all of
the ‘internal’ bearer network software
faults are not captured here but only the
ones that effect our service. If this is the
case then 6 % may be considered quite
high.

6 Discussion

It is clear that software faults form a
large contribution to the overall relia-
bility of this Data Service. It was not
proven but one might suspect that many
of the FNF failures would also be related
to software faults. In order to gain a
better understanding of the occurrence
and effect of software failures we need to
take more care in identifying and logging
them. The Network management systems
themselves need to be within this logging
process as many of the service faults
occur within those systems. Testing
of systems needs to be thorough and a
complete VV&T life cycle process is
required.

85Telektronikk 1.1999

Figure 4 Fault profile – 4 month period

Figure 5 Hardware vs. software

Figure 6 The distribution of software faults

Joining British Telecom in 1974, Paul Holder (41) com-
pleted an Apprenticeship in Electronics and Telecommuni-
cations before gaining a degree in Engineering. Initially his
career was focused on predicting the reliability of systems
using Finite Element (FEA) and Finite Difference (CFD)
techniques. In later years after further studying he focused
on software reliability and currently manages the Verifica-
tion Validation and Test of network “Plan and Build” soft-
ware.

e-mail: paul.he.holder@bt.com

Customer 8%

Bearer
Network 14%

Node Site
Switch 9%

Net Management 9%Core Switch 9%

International
Links 14%

Faults Not
Found 37%

Total Hardware
Faults 25%

Total Software

Faults 75%

Bearer
Network 6%

Network

Management 55%

Core Switch
39%

86 Telektronikk 1.1999

In today’s business of a PNO (Public
Network Operator) quality is becom-
ing a big issue. It is generally perceived
that a PNO can only be successful if
the quality of service offered to its
customers is on a high level. In other
words, quality increases revenues.

There are several inputs in order to
obtain the desired quality of service
level. Some aspects have to do with the
internal organisation and know-how of
the PNO. But another very important
aspect is the so-called incoming qual-
ity, the quality of the telecommunica-
tion products that a PNO buys from
its suppliers.

In order to be able to assess the quality
of these telecommunication products
a measurement system should be in
place. Such a system should provide
a general overview of the quality and
reliability of the product and also of
the quality of the processes of the sup-
plier.

This paper will start with a presenta-
tion of the quality measurement sys-
tem implemented in Belgacom for a
particular telecommunication product,
namely public switching elements. The
system consists in fact of two different

quality measurement systems. Depend-
ing on the phase in the product life-
cycle a different approach is indeed
needed. The first system contains in-
process quality metrics that evaluate
the processes of the supplier mainly
during the development phase of the
product. The second system contains
measurements that analyse the quality
and reliability during the operational
phase.

The second part of this paper will
focus on the role of EIRUS during
the implementation of these quality
measurement systems.

1 Quality metrics during
the development phase

1.1 In-process quality metrics

A definite goal for a PNO is to get from
the supplier a product with a high qual-
ity, at low cost and on time. In the case
of switching elements, this is not always
an easy objective, because the complex-
ity of switching software is often under-
estimated. Therefore it happens that
suppliers have to announce delivery

delays during the development phase.
But it also happens that the quality level
suffers.

In-process quality metrics allow the PNO
to follow the development phase in detail
and to get a guarantee that no compro-
mises are made with respect to quality.
Metrics are also a major input for sup-
plier monitoring activities. Practice
shows that possible delays in the product
delivery are detected and announced
earlier. This means that the internal
organisation of the PNO can react in
an earlier stage and resources can be
rescheduled without excessive costs.

Moreover, these in-process quality met-
rics help not only to follow the de-
velopment of a product already bought,
but give also an idea of the ability of the
supplier to manage development projects.
This can be useful for buying decisions
on future products of this supplier.

1.2 Implementation issues

The metrics that are used in Belgacom
for this purpose, are defined in a Bellcore
Generic Requirement document, namely
IPQM [1].

The detailed Bellcore definitions of these
metrics serve only as a basis. Hard
requirements for the supplier to provide
IPQM metrics exactly as they are defined
in the IPQM document, can be relaxed in
many cases. Especially when the supplier
performs already IPQM-like metrics
internally. In that case they are analysed
and taken over as they are or slightly
adapted where needed. The underlying
idea for the PNO is to get a good picture
on how the supplier masters its processes
during the development of the product.
In other cases, where no equivalent in the
existing metrics can be found, the sup-
plier may have to install new tools and is
asked to provide the metrics.

The benefit for the supplier is that the
metrics are generally accepted as being
useful for internal use as well, and that
the results can be used to define improve-
ment plans. For Belgacom it is mainly a
useful supplier monitoring tool.

1.3 Examples

Two examples of IPQM metrics will be
given here: Milestone Monitoring and
Test Tracking. Together with other
IPQM-metrics, these are provided to

Implementing a quality measurement system
and the role of EIRUS
J A N W I L L E M S

30/05/97

10/05/97

20/04/97

31/03/97

11/03/97

19/02/97

30/01/97

21/12/97

10/01/97

16/12/96 30/01/97 30/04/9716/03/97 14/06/97

Date

S
ch

ed
ul

ed
 m

ile
st

on
e

da
te

s

milestone A
milestone B
milestone C
milestone D

Figure 1 A graphical representation of the Milestone Monitoring metric in IPQM.
During the development of a product, this metric clearly shows slips in the internal

milestones defined by the supplier

87Telektronikk 1.1999

Belgacom by the suppliers on a formal
and regular basis, at least monthly.

Milestone Monitoring

This is a simple but important metric.
The project milestones are all listed and
the planned and the actual completion
dates for each milestone are compared.
The milestones can also be defined as
a set of goals that must be completed
before approaching the next sets of goals
that are necessary for the completion of
the project.

On the EIRUS forum a graph has been
proposed which gives an overview of
these planned and actual milestone data.
An example of such a graph is shown in
Figure 1. The planned date of each mile-
stone is shown on this graph. This is
done as a function of time, because at
some moment in time it may be needed
to shift the planned date of a particular
milestone towards a later date. In an ideal
project the planned dates remain constant
and the graph shows horizontal lines.

Test Tracking

The Test Tracking metrics assess the
progress of test planning and test activi-
ties. The information is used by Belga-
com to track the testing activities of the
supplier during integration, regression
and system testing. The main reason here
for the PNO is to gain confidence in the
product of the supplier and to detect
weak areas. The underlying idea is that
with a follow-up of these metrics the val-
idation period (i.e. the period between
the official delivery to the PNO and the
first office application) can be kept very
short and efficient.

Data that are collected and provided by
the supplier, are the total number of test
cases planned, executed, resp. passed, for
each test life cycle phase. This yields an
execution percentage of planned tests, a
pass percentage related to the executed
tests and a pass percentage related to the
number of tests planned. The metric is
performed for the overall product as well
as per group of features in the software
release.

2 Quality and reliability
measurements in the
operational phase

2.1 Tactical Report Card

After the development phase the switch-
ing software is officially delivered to the
PNO. A short validation period takes
place and afterwards the operational
phase starts with the first office applica-
tion. The software introduction in all the
exchanges of the network is part of the
operational phase. An excellent quality
of the switching software should be
reached by that time, because the cus-
tomers of the PNO are now directly
affected if the quality level is too low.

In order to measure the quality of the
supplier’s product during the operational
phase, the concept of a so-called ‘Tacti-
cal Report Card’ was introduced in Bel-
gacom. Such a Tactical Report Card is
issued every three months and evaluates
the quality of the supplier’s product in a
quantitative way by means of a global
score. This score is a value between 1
and 5 and reflects the overall quality of
the product. A value 1 corresponds with
an unacceptable quality level, while a
value 5 corresponds with an excellent
quality level.

Since this score is calculated every
quarter, it is a unique instrument for the
management of both the PNO and the
supplier to keep track of the quality
evolution and to initiate improvement
actions whenever needed.

At the end of every quarter one or two
meetings are organised between Belga-
com and the supplier. First the correct-
ness of the measurement values are
checked and analysed, and afterwards the
Tactical Report Card is discussed on a
higher management level between Belga-
com and the supplier. On these follow-up
meetings, weak and strong points are
highlighted and action points are defined.

2.2 Measurements

The Tactical Report Card contains up to
30 different measurements, all based on
the Bellcore Generic Requirement docu-
ment RQMS [2]. In Belgacom a subset of
the RQMS measurement was chosen.
The measurements are grouped into 7

items: System Outage Performance,
Patches, Problem Reports, Fault/Fix
History, Fix Response Time, Circuit
Pack and Release Application.

For each of these measurements the
actual outcome is compared with pre-
defined target values. This comparison
determines the score for each measure-
ment. The global score is calculated as
a weighted average of these individual
measurements scores. The weights are
fixed values, chosen by Belgacom, and
not by the suppliers. They allow the PNO
to indicate that some measurements are
more important than others. The System
Outage Performance measurement, for
example, is considered in Belgacom
more important than the ‘Circuit Pack’
measurement.

System Outage Performance

The objective of the PNO is to minimise
or even to prevent system outages. The
history of system outages with data on
duration and frequency helps to under-
stand the performance of the switching
element over time.

For the implementation in Belgacom the
exact measurement definition was copied
from Bellcore, with some small excep-
tions, e.g. a more strict distinction be-
tween outages of host and remote units.

A difficulty in the implementation is the
fact that the data collection and reporting
for outages in the exchanges is not yet
fully automated. Practice shows that out-
age reporting has to be described in strict
procedures for the operational people.
Only then can reliable statistics be
derived from these data.

An example of the Total Downtime
measurement is shown in Figure 2. The
downtime, expressed in minutes/system/
year, is depicted for the last 12 months.
This downtime value is a six-month
rolling average of the downtime of the
exchanges. Such a calculation smooths
the graph and prohibits exceptional
outages disturbing the statistics. Every
outage report contains also whether the
outage in the exchange was attributable
to the supplier or not and whether the
outage was scheduled or not. This makes
it possible to split up the overall down-
time into supplier attributable outages
and scheduled outages.

88 Telektronikk 1.1999

Patches

This measurement helps the PNO to
understand on the one hand the extent to
which operational people have had to
deal with patching activity and on the
other hand the stability of the product,

i.e. the extent to which the software is
being changed in the field.

The switching suppliers of Belgacom
are providing detailed information about
each patch (introduction date, IDs of
problem reports that have been fixed,

feature or corrective patch, ...). Two
important measurements are the number
of released corrective patches as a func-
tion of the cumulative field operation
months and the percentage of patches
found defective.

Problem Reports

The number of incoming problem
reports, reported by the people in the
PNO during the operational phase, is a
measure for the pain experienced in the
field. The measurement distinguishes
between critical, major and minor prob-
lem reports.

The measurement is not provided by
the supplier, but is done by Belgacom,
mainly because the input data are based
on the problem reporting tool of Belga-
com, and this tool can produce statistical
results in an easy way.

Fault/Fix History

This measurement shows the number of
cumulative faults found during the sup-
plier test activities, during the PNO vali-
dation test period and during first office
applications. The number of fixed and
still unfixed faults enables us to assess
the effectiveness of the supplier’s fault
detection and removal process.

The fact that many faults are found does
not necessarily indicate either bad or
good quality. The more faults are found
and resolved before deployment, the be-
tter. The importance of this measurement
is that it helps to understand whether the
release is ready for deployment or not.

Fix Response Time

An example of one of the measurements
related to Fix Response Time is shown in
Figure 3. The measurement values are
calculated as six-month rolling averages
of the percentage of fixes delivered on
time to the total number of fixes de-
livered that month. In Figure 3 this is
done per severity (critical, major and
minor problem reports). On time means
fixed within 24 hours for critical problem
reports, within 30 days for major prob-
lem reports and within 180 days for
minor problem reports.

This is one of the most important
measurements for Belgacom, because
it allows us to examine the supplier
responsiveness and promptness with
which he responds to problem reports.

18

16

14

12

10

8

6

4

2

0

m
in

ut
es

/s
ys

te
m

/y
ea

r

04/97 06/97 08/97 10/97 12/97 02/98

month/year

Overall
Supplier
Scheduled

Figure 2 A submeasurement of the System Outage Performance measurement in
RQMS. A distinction is made between the overall downtime, the supplier attributable

downtime and the scheduled downtime

100

96

92

88

84

80
Jan-98 Feb-98 Mar-98 April-98 May-98 June-98 July-98

C
lo

se
d

on
 ti

m
e

(%
)

month/year

Critical
Major
Minor

Figure 3 A submeasurement of the Fix Response Time measurement in RQMS

89Telektronikk 1.1999

A high responsiveness of the supplier is
needed, especially when the customers of
the PNO are affected by these problems
of the switching elements.

The measurement results are regularly
compared with the target values. It turns
out that this comparison is a strong driver
for the supplier to increase the respon-
siveness for delivering fixes.

Circuit Pack

The sixth group of measurements are the
Circuit Pack measurements. These are
more focused on the hardware perfor-
mance of the switching elements and cal-
culate the number of circuit packs that
were returned for repair. A high number
of returns increases the hardware main-
tenance cost. Reliable circuit packs are
needed and this measurement gives a
good indication of this reliability. Thanks
to the Circuit Pack measurement app-
ropriate improvement actions can be
defined if needed.

Release Application

The measurement data for the Release
Application measurement are provided
by the supplier and give an idea on the
extent to which aborts and problems are
encountered during the application of a
new release. The percentage of the cumu-
lative number of application attempts for
which an abort occurred, and the percent-
age of the cumulative number of applica-
tion attempts with one or more problems,
are the two submeasurements. Belgacom
is working with yearly switching soft-
ware releases, which means that each
year the measurement output can be
compared with previous releases. This is
clearly a motivation for the supplier to
improve the performance on this domain
on a yearly basis.

2.3 Future development of
Tactical Report Card

Within Belgacom the concept of a Tacti-
cal Report Card has been quite success-
ful. Suppliers are now very concerned
about the quality of their products. Of
course, this was already the case before,
but it is felt that this attention increased.

It has been a clear decision in Belgacom
to keep this Tactical Report Card as a
management tool for assessing the qual-
ity of the supplier. On a high manage-

ment level quality improvement actions
can now be discussed more easily.

Although the primary purpose was not
to compare the performance of different
suppliers, it is very tempting to do this.
Comparisons are however delicate and
the differences in the global scores of
two suppliers are to be interpreted very
carefully. The main objective of Belga-
com, however, is to see an improvement
over time for each individual supplier.
In order to force the suppliers to really
improve over time, it has been agreed
with the suppliers to make the score
calculation a little bit more severe every
year. This is done by every year chang-
ing the target values to which the
measurement values are compared.

Because of the positive experience with
this system for switching elements, activ-
ities have already started in Belgacom to
extend the Tactical Report Card concept
to other telecommunications products,
e.g. SDH equipment and even into the
GSM world.

In the future, further measurements will
be added to this report card, because for
the time being only a subset, although a
large one, of the RQMS measurements
has been implemented.

The experience showed also that some
details need to be finely tuned in order to
increase the usefulness, the correctness
or the understandability of the measure-
ments. The evolution in EIRUS and in
the Bellcore documents will be a guide-
line here.

3 Role of EIRUS

3.1 A user group for quality
and reliability measure-
ments

The EIRUS group (see Figure 4) consists
of PNOs and suppliers who apply a uni-
form quality measurement system for
telecommunication products [3]. A study
for such a uniform quality measurement
system that would satisfy the needs of the
European PNOs, was conducted by
EURESCOM back in 1995. The main
result of this EURESCOM study was that
the combination of two measurement sets
from Bellcore fulfils the criteria. These
Bellcore measurement sets are IPQM and
RQMS. In the EURESCOM study these
measurement sets were tailored to Euro-
pean use, resulting in the E-IPQM and E-

RQMS system. Under the impulse of this
EURESCOM study, EIRUS (= E-IPQM
and E-RQMS Users) was formed in 1995
as a user group of PNOs and suppliers
with the following objectives:

• To implement the E-IPQM and E-
RQMS measurements on a wide scale;

• To formulate a consensus on change
requests to E-IPQM and E-RQMS to
preserve uniformity;

• To find best solutions and practices;

• To learn from experiences of other
EIRUS members;

• To provide input to system user groups
on the issue of quality measurements;

• To promote the knowledge about
E-IPQM and E-RQMS.

EIRUS is now a user group with ten
PNO members (Belgacom, BT, Deutsche
Telekom, OTE Greece, Swisscom, KPN
Telecom, Telecom Finland, Telecom
Italia, Telenor and Telia). The supplier
members are Alcatel, Ascom Ashler,
Bosch Telecom, ECI Telecom, Ericsson,
GPT, Italtel, Lucent Technologies, Nortel
and Siemens.

3.2 EIRUS Issue List
mechanism

EIRUS strongly believes in the uni-
formity of the measurement definitions,
because it can reduce the measurement
implementation cost for the PNOs and
the suppliers. In order to maintain this
uniformity a mechanism was established
which manages potential requests for
deviation from the Bellcore measure-
ments or potential proposals for changing
a particular measurement to a small or
a large extent. The need for this mecha-
nism stems from recent experiences dur-
ing the implementation of the measure-

Figure 4 Logo of EIRUS, a user group
of quality and reliability measurements

for all kinds of telecommunication
products

90 Telektronikk 1.1999

ments. Indeed, PNOs and suppliers are
sometimes faced with implementation
problems. In a lot of cases this is due to
the fact that the Bellcore measurements,
defined in the United States, are not
directly applicable to the European situa-
tion.

The core of this mechanism is the EIRUS
Issue List. This list is an official docu-
ment to which every PNO or supplier
member can add an issue. Issues can be
requests for clarification or interpretation
of a measurement definition, but also
proposals for deviations from the Bell-
core measurement definitions. This list
is available on the Internet: http://www.
eurescom.de/public/newpub.htm.

A fixed item on the agenda of the EIRUS
meetings, which are in principle held
twice a year, is the EIRUS Issue List.
Here each issue is presented and dis-
cussed. If necessary, a small working
group is created to analyse the issue in
more detail. The final decisions on these
issues help the PNOs and suppliers to
implement the measurements in an effi-
cient way.

This mechanism is rather similar to the
process used within Bellcore for creating
new versions of the RQMS document. In
the United States a BTF (Bellcore Tech-
nical Forum) is established where Ameri-
can PNOs and suppliers come together to
discuss changes and improvements to the
measurement definitions.

3.3 Contacts with Bellcore

The IPQM and RQMS documents from
Bellcore are living documents. A result
of their BTF process is that on a regular
basis new versions of IPQM and RQMS
are publicised. The differences between
the versions are rather modest, but they
are nevertheless important enough for
EIRUS to think about how to cope with
this evolution.

For the time being EIRUS has decided to
adhere to a particular version, at least for
some time, even when new versions are
issued by Bellcore. An annoying problem
is that EIRUS is now not involved in the
BTF process. It is believed that
EURESCOM could play an important
supporting role here. The ideal solution is
of course that the evolution in the IPQM
and RQMS documents is handled with
inputs from both the United States,

EIRUS and possibly other interested
parties. A standardisation body could
play a role here, but today the reality
is that the development of the Bellcore
documents remains a commercially
driven process.

Another topic in the relations with Bell-
core are tools. Bellcore has developed an
IPQM tool [4], which is now commer-
cially available for different computer
platforms. This tool enables the imple-
mentation of the IPQM metric system in
an easy and standardised way. Bellcore
announced that soon there will be a ver-
sion for RQMS as well. The use of (uni-
form) tools surely facilitates and speeds
up the use of IPQM and RQMS.

3.4 Future developments in
EIRUS

A driver for future developments in
EIRUS are the recommendations made
by EURESCOM Project P619 [5], e.g.
about data dissemination and common
targets. Data dissemination becomes
feasible because of the uniform reporting
and means sharing the data that result
from the measurements. Several forms of
data dissemination have been proposed
and the advantages and disadvantages
have been listed in this project deliver-
able. The definition of common targets
for each measurement is the process of
establishing target values that the prod-
ucts must meet according to the PNOs.
Common targets can push forward the
quality level.

Another driver for the future comes from
the EIRUS members themselves. Their
vision will determine for example how
the EIRUS Issue List mechanism could
evolve. Who knows – maybe one day the
development of a separate European
quality measurement set without Bellcore
will become feasible.

On a short term, however, it is important
to extend the application of the E-IPQM
and E-RQMS measurements towards
more telecommunication product cate-
gories. Now the focus is mainly on
switching and some transmission prod-
ucts, but the measurements are in
principle applicable to a still broader
range of products, e.g. TMN, ATM, ...

3.5 Role of EIRUS for the
quality measurement
system implementation
in Belgacom

In the fast changing world of telecommu-
nications it is necessary for a PNO to
work better, faster and cheaper. Having
these three requirements in mind, it is
certain that the role of EIRUS is impor-
tant for Belgacom with respect to the
implementation of the above mentioned
quality measurement systems.

EIRUS allows Belgacom to work better.
Indeed, the E-IPQM and E-RQMS
measurement system is, through EIRUS,
generally accepted amongst the PNOs
and the suppliers. Moreover, this system
gives the PNOs an instrument to push
quality to a high level, because the
system makes the PNO and the supplier
understand where the weak and strong
points are.

EIRUS also allows us to go faster.
Because experiences are shared, the
learning phase is shorter. Moreover, such
a discussion forum leads to better con-
tacts on the subject of quality measure-
ments among PNOs and between PNOs
and suppliers. These contacts are paving
the way for a rapid implementation.

And finally, it is possible to work
cheaper because EIRUS assures the uni-
formity of the measurement definitions
and this reduces the cost for the suppliers
of making or adapting measurement
tools. It is cheaper for a supplier to de-
liver the same measurements to all his
customers, than to deliver completely
different measurement data to each of his
customers. And a lower cost for suppliers
will be reflected in a lower cost of the
telecommunication product. But also the
fact that internally in a PNO organisation
the measurements of different suppliers
can be compared and the same tools can
be used, is a cost reducing factor.

4 Conclusions

This paper presented the implementation
of a quality measurement system in Bel-
gacom for switching elements.

The development phase at the supplier’s
is covered by a set of IPQM metrics. It
allows the PNO to monitor the supplier
and it increases the visibility on the prod-
uct development. A regular reporting of
these metrics helps to learn whether the

91Telektronikk 1.1999

product will be delivered to the PNO on
time and/or according the required qual-
ity criteria.

For the operational phase, i.e. when the
switching software is operating in the
field exchanges, a subset of the RQMS
system was chosen. Up to 30 measure-
ments are part of a so-called Tactical
Report Card, in which the quality is
assessed in a quantitative way by means
of a three-monthly global score between
1 (unacceptable quality) and 5 (excellent
quality). this turned out to be an impor-
tant management tool for pushing the
overall quality towards higher levels.

The work in EIRUS, being a user group
of PNOs and suppliers that are imple-
menting these IPQM and RQMS
measurement sets, is of high importance.
Such an international user group made it
easier for Belgacom to implement gener-
ally accepted measurements on a short
term and at a lower cost. Evolution and
improvements in the measurement sys-
tem are followed up by EIRUS in order
to keep the uniformity in the measure-
ment definitions among the PNOs and
the suppliers. Uniformity is indeed sub-
stantial because it can reduce the imple-
mentation costs. The issue list mecha-
nism in EIRUS is a valuable procedure
to maintain this uniformity and at the
same time to share experiences.

The positive experience of Belgacom
with EIRUS and with the implementation
of E-IPQM and E-RQMS hopefully
encourages others to start or continue
similar activities, because a quality
measurement system that is generally
applied in Europe and beyond, will force
the suppliers even more to deliver high
quality telecommunication products. In
the end, this is in the interest of the PNO
customers.

5 References

1 Reliability and Quality Measure-
ments for Telecommunications Sys-
tems (RQMS). Bellcore GR-929-
CORE, Issue 2, December 1996.

2 In-Process Quality Metrics (IPQM).
Bellcore GR-1315-CORE, Issue 1,
September 1995.

3 Johansson, R. EIRUS : a user group
for quality measurements. Telektron-
ikk, 93 (1), 86–88, 1997.

4 Ali, S R. Tool based in-process soft-
ware quality analysis. Telektronikk,
93 (1), 83–85, 1997.

5 European Quality Measurements :
Overview of E-IPQM and E-RQMS,
Version 2, Deliverable 4. Heidelberg,
EURESCOM, January 1998.
(EURESCOM Project P619.)

Jan Willems (32) received his electrical engineering degree
from the Univ. of Gent in 1990. He worked 1990 – 1994 as
Research Engineer at the Univ. of Gent, dealing with opto-
electronic device research for telecom systems. He receiv-
ed his Ph.D. in 1995, joined Belgacom in 1994 in charge of
QA and supplier monitoring activities for public switching
software until becoming Quality Manager in the Network
Services div. in 1998 with the responsibility for improve-
ments in network quality, performance and quality of service.

e-mail: Jan.Willems@is.belgacom.be

92 Telektronikk 1.1999

1 Introduction

The liberalisation of the European
telecommunication market since 1 Jan-
uary 1998 has put new demands on the
Quality of service (QoS) provided by
Service and Network Providers – here-
after named PNOs (Public Network
Operator – PNO). An important basic of
controlled QoS is a well structured and –
between PNOs and suppliers – agreed
upon Quality Assurance framework. The
importance of QoS provided to the cus-
tomer has in later years received a
remarkably increased attention. In addi-
tion, ‘Time to Market’ and ‘Cost Sav-
ings’ now represent real competitive
issues for the PNOs.

However, a Quality Assurance frame-
work specific to each PNO – Supplier
contract on the market would make up a
substantial variation in the understanding
of quality concepts and make life very in-
effective for both suppliers and PNOs.
The result could be a lot of ambiguity in
the communication on technical matters
between PNOs and their many suppliers.
It is therefore imperative to all actors in
the telecommunication market that PNOs
and Suppliers communicate in a well
defined and harmonised manner as re-
gards quality issues. Fortunately such a
process is well under way in the EIRUS
(European IPQM and RQMS Users)
organisation by the combined efforts
of many leading Suppliers and PNOs.

Recommendations to improve the technical interface
between PNO and suppliers
J A N - E R I K K O S B E R G , Ø Y S T E I N S K O G S T A D A N D O L A E S P V I K

SPICE

TRILLIUM

EUROMETHOD

European
Directives

ITU

ETSI

ISO

IEC

EURESCOM
P619

EURESCOM
P227

EURESCOM
P307

EIRUS

Figure 1 Information basis for the harmonisation work of EURESCOM P619

PNO
processes

Supplier
processes

P619
Technical Interfaces

Supplier Qualification

and

Supplier Monitoring

Requirements

Specification

Quality

Measurements

Figure 2 Key technical interfaces
between PNOs and suppliers

Defining PNO – Suppliers Technical
Interface as

“The communication taking place
about technical matters between a
PNO and a supplier”

implies that controlling the incoming
quality through an optimisation of the
Technical Interfaces is a key issue to a
PNO’s market success.

This paper is based on the work and the
results from EURESCOM project P619
‘PNO – Suppliers Technical Interfaces’,
that took place during the period Febru-
ary 1996 – March 1998. The project pro-
duced six reports (EURESCOM De-
liverables) – all publicly available from
EURESCOM [1, 2, 3, 4, 5, 6].

PNOs participating in P619 were BT
(United Kingdom), CSELT (Italy),
Deutsche Telekom (Germany), France
Telecom (France), HT (Hungary), KPN
Research (The Netherlands), OTE
(Greece), RB (Belgium), Telia (Sweden),
and Telenor Research and Development
(Norway). SINTEF Telecom and Infor-
matics participated in the Telenor team.
Project leader was Dr. Marcello Melgara
from CSELT and the EURESCOM
project supervisor was Juan Siles. The
P619 project team kept close contact
with EIRUS and reported regularly to
the EIRUS meetings.

The purpose of the EURESCOM project
619 was to analyse the technical inter-
faces and to identify on which levels
these interfaces could be harmonised and
improved. The commercial interfaces of
the procurement environment were not
subject to the project analysis. Technical
interfaces had been partially analysed by
an earlier EURESCOM project P227
‘Software Quality Assurance’ that pro-
duced a deliverable ‘Buy IT’ [7], upon
which some of the work of P619 was
based – in addition to a wide range of
other international studies, reports, and
standards on Quality Assurance. The
background information of P619 is
shown in Figure 1.

The technical interfaces cover product
and process related quality assurance
activities agreed upon between the PNO
and the supplier. P619 focused on the
following three main technical interfaces:

• Requirements Specification;

• Supplier Qualification and Supplier
Monitoring;

• Quality Measurement.

93Telektronikk 1.1999

These interfaces are illustrated in Figure
2. The interfaces cover activities both
within the PNO and at its supplier.

The selected technical interfaces and the
relations to the results of P619 in the form
of Deliverables are shown in Figure 3.

2 Requirements speci-
fication interface

The Requirement Specification document
not only describes technical characteris-
tics of products but also takes into account
the product’s entire life cycle, placed into
the standard life-cycle process model
described in ISO 12207 [18] for soft-
ware.

The process of specifying requirements
starts after having identified the needs
made by the PNO, involves interaction
with suppliers, and ends with the inclu-
sion of the Requirements Specification
document in a contract. Specification
writing steps are not purely technical.
They are in fact a combination of all
kinds of activities, including organisa-
tional and commercial ones. European
Council Directive 93/38 [9], harmonising
the procurement procedures of entities
operating in the water, energy, transport
and telecommunications sectors, speci-
fies rules and restrictions to the scope
of technical specifications.

The Requirements Specification interface
is highlighted in Figure 4.

2.1 Types of requirements

2.1.1 Product types

There are many types of products that
can be purchased, and the requirement
specifications will differ depending on
the various product types. In P619, prod-
ucts were classified as belonging to one
of the following three market types:

• Innovative products (IN). A product is
innovative if the purchaser has little
experience with this or similar prod-
ucts. This implies that the purchaser
will have to do more work in specify-
ing his requirements. Maybe he also
is limited to define only some require-
ments that he estimates to satisfy the
purpose of the product, leaving the rest

Abbreviations

ATM Asynchronous Transfer Mode

EIRUS E-IPQM and E-RQMS Users

E-IPQM European IPQM

E-RQMS European RQMS

ETSI European Telecommunications
Standards Institute

EURESCOM European Institute for Research and
Strategic Studies in Telecommuni-
cations GmbH

IEC International Electrotechnical
Commission

ICS Implementation Conformance
Statement

IN Innovative Product

IPQM In-Process Quality Metrics

ISO International Standardisation
Organisation

ITU International Telecommunications
Union

KN Known Product

OAM Operation and Maintenance

OTS Off-the-Shelf Product

PNO Public Network Operator

RQMS Reliability and Quality Measurements
for Telecommunication Systems

SPICE Software Process Improvement and
Capability dEtermination

SM Supplier Monitoring

SQ Supplier Qualification

Trillium Model for Telecom Product Develop-
ment & Support Process Capability

Technical Interfaces

Requirement
Specification

Supplier Qualification
and

Supplier Monitoring

Quality
Measurement

D1 D5 D3 D4

Figure 3 Technical interfaces and P619 Deliverables

Requirement
Specification

Fuctional and Quality Requirements
Product Types

Functional Types
Process Requirements
Product Requirements

Guidelined
Check list

Information Conformance Statement

Figure 4 Requirements specification
interface aspects

D1: ‘Guidelines on Requirements Specifications’ D4: ‘European Quality Mesurements: Overview
D3: ‘Guidelines on Suppliers Qualification of E-IPQM and E-RQMS’

and Monitoring’ D5: ‘Guidelines on Hardware Traceability’

of the requirements to be defined in
collaboration with the supplier.

• Known products (KN). A product is
known to a PNO if the PNO already
has experience with this or similar
products. This implies that the PNO
probably has to do less work in re-
quirements specification than for the
innovative product. An example is
when the product is a new version
of an existing product.

94 Telektronikk 1.1999

• Off-the shelf products (OTS). An OTS
product is produced by a supplier for a
general market, to the supplier’s own
specifications, and it is simply pur-
chased by a PNO.

Variations or combinations of the above
product types are of course possible.

2.1.2 Functional types

It is also useful to make a technical divi-
sion of telecommunication products into
functional types like transmission sys-
tems, switching systems, operation,
administration and maintenance systems,
and possibly other systems.

2.1.3 Process requirements

Requirements can be specified for a
product and for the process by which
the product is created, delivered, and
supported.

General Process Requirements can be
considered as specifications regarding:

• Rules for Quality Assurance:

- Traceability rules

- Configuration management rules

- Change control and corrective
actions procedures and rules

• Test definitions

- Verification/validation test
definition

- Qualification test definition

- Serial production test definition

- Compliance to standards and
procedures

• Acceptance procedure and criteria

• Required measurement procedures for
process quality measurements.

2.1.4 Product requirements

General Product Requirements can be
considered as specifications addressing:

• Functional and structural requirements

- Data model requirements

- Functional requirements

- Human-engineering requirements

- Operation and maintenance
requirements

- Design constraints

- Usability requirements and user
interfaces

- Interfaces to other systems

- Environment and domain issues

- Criticality

- Compatibility

- Performance

- Dimensional

- Capacity, hardware requirements

- Safety and security

- Environmental

- Electro-magnetic compatibility,
protection

- Electro-static protection

PROCESS

Source Abbreviation Requirements Specification

EURESCOM P619 P619 D1: Guidelines on Requirements Specification.
‘PNO-Suppliers D2: Update of the P227 Deliverable, in the form
Technical Interfaces’ of a road map for finding updated base-documents.
(Based on D3: Guidelines on Supplier Qualification and
EURESCOM P227, Monitoring,
EURESCOM P307) D4: Quality Measurements according to E-IPQM and

E-RQMS Revision 2.

The requirements should mention the E-IPQM and E-
RQMS quality measurements for use during product
delivery and operation and maintenance.

EURESCOM P227 P227 In its quality assurance activities and with its reference
‘Software Quality to ISO 12207 [18], the P227 Deliverables contains
Assurance’ many detailed definitions of processes, activities and
(ISO 12207) tasks that can be used to define quality assurance as

part of the entire life cycle of a software product.
P619, D2, added a road map to the P227 Deliverables
through which updated base-documents can be found.

EURESCOM P516 P516 When specifying a product, the requirements should
‘Telecom Software use the quality characteristics of ISO/IEC 9126 [15].
Validation Procedures’
(ISO/IEC 9126)

SPICE SPICE99 The SPICE project (Software Process Improvement
and Capability dEtermination) developed a standard for
(ISO/IEC TR 15504) software process assessment [19].

ISO/IEC 12119 ISO12219 ISO 12119 [17] defines requirements for software
‘Quality Requirements’ packages concerning quality and testing. As such,
(ISO/IEC 9126) it provides input for specifying the requirements for

a software product. Furthermore, it uses the ISO/IEC
9126 quality characteristics.

ISO 9000 Series ISO9000 ISO 9000 Series specifies requirements on the quality
Quality Assurance system and process used by a company, and requires
Standards (ISO 8402, strict certification by an authorised body [10, 11, 12, 13,
ISO 9000-3, ISO 9001, 14]. The ISO 9000 Series will be updated in 1999.
ISO 9004, ISO 9004-2)

European Council ECD93/38 This Directive [9] puts restrictions on the scope of
Directive 93/38 Technical Specifications.

Table 1 Sources for Process Requirements [1]

95Telektronikk 1.1999

Chosen or preferred measurement
methods suitable for measuring the
quality parameters should be included
in a requirement specification. PNO
and suppliers should also agree on the
metrics to be used in measuring the
parameters contained in the specification.

2.2 Recommendations

Some of the recommendations in P619 to
the Requirements Specification Interface
are [1]:

• A Requirements Specification docu-
ment should contain product and/or
process requirements where appli-
cable, related to all groups of cate-
gories of products, all levels of ana-
lysis in each category, for the entire
life-cycle of the product up to and
including disposal.

• Requirements should be written
according to the guidelines of Euro-
pean Council Directive 93/38. The
Directive includes details for technical

PRODUCT

Source Abbreviation Requirements Specification

Standards of the ISO-IEC Such issues as power levels, cable characteristics,
ISO-IEC protocols, safety requirements, software characteristics

etc.

ISO/IEC 9126 ISO9126 Definitions of quality characteristics for software like
‘Quality characteristics Functionality, Reliability, Usability, Efficiency,
and guidelines for their Maintainability, and Portability, and definitions
use’ of a process for using these six characteristics in

assessing software quality requirements definitions.

ISO/IEC 9646-7 ISO9646 Specifies requirements for the development of
Information Technology Implementation Conformance Statements (ICS) [16].
– Open System Inter- The supplier of an implementation should make a
connection – confor- statement to conform to a given specification, stating
mance testing metho- which capabilities have been implemented.
dology and framework

Part 7: Implementation
Conformance Statement

Specifications of ad-hoc ATM-Forum, Various technical and functional characteristics.
international groups as DAVIC, IETF,
ATM-Forum, DAVIC, FSAN
IETF, FSAN etc.

EURESCOM P518 P518 The requirements should mention the Guidelines for
‘Telecommunication Environmentally Responsible Procurement for use
and the Environment’ during Product Delivery.

Table 2 Sources for Product Requirements [1]

1) Services provided by the supplier as
part of the product such as training,
installation, and operation and main-
tenance.

- Marking, packaging, labelling

- Shipment, installation

• Quality parameters

- Incoming product quality indexes

- Complexity

- Reliability

- Availability

- Maintainability

- Modularity

- Upgradeability

- Portability

- Operational efficiency

- Criticality

• Required measurement procedures for
product quality measurements.

2.1.5 Guidelines

There is a number of guidelines for mak-
ing relevant specifications. A selected
sample of sources for producing require-
ment specifications is listed in Tables 1
and 2.

Table 1 includes sources of requirement
specifications defining acceptance and
operation methods and processes and
assuring, as much as possible, process
conformity to specified requirements.

Table 2 includes sources of technical
specifications of products as well as
acceptance and operation criteria for
the assurance of product conformity to
specified requirements.

More general issues for products like
power levels, cable characteristics, proto-
cols, interfaces etc. can be found in vari-
ous recommendations and standards from
ETSI and ITU. Hardware products like
electrical components, equipment tech-
nology, electrical safety etc. are add-
ressed in standards from ISO. Issues
related to reliability, dependability,
quality of service, risk management,
reliability testing, etc. can be found in
standards from IEC.

As Table 2 shows, results from the inter-
national non-formal organisations and
groups like ATM-Forum, DAVIC, IETF
and FSAN are to be considered.

2.1.6 Requirements specification
check list

Deliverable D1 [1] presents guidelines
on producing requirements specification.
The guidelines propose a checklist to be
used as a reference list for creating re-
quirement specifications. The checklist
defines general requirements and appli-
cable additional requirements for each
of the types of a product’s components
types: software, hardware, and ser-
vices1). Then the relevance of a require-
ment source to Innovative, Known, and
Off-the-Shelf product is indicated with
low (l), normal (n), and high (h) – as
shown in Table 3.

The table contains both product and pro-
cess requirements sources.

96 Telektronikk 1.1999

CHECKLIST Relevance

Applicability Source General Requirement IN KN OTS

Requirements P619 Quality Measurements n n l
for all product
types

P227 Rules for Quality Assurance n n l

ISO9000 Rules for Quality Assurance h n l

ECD93/38 n l n

ITU Functional / structural description n n n

P619 Supplier monitoring h n l

P518 Design for the Environment and End-of-Life h h h
Options

Additional ETSI Functional / structural description n h h
requirements
for Software

ISO9646 Test definition l h h

ISO12219 Test definition l n h

ISO 9126 Generic quality definitions n n n

P516 Quality parameters h n n

SPICE Rules for Quality Assurance n n n
ISO/IEC
TR15504

ATM-Forum, Functional / structural description n h h
DAVIC, IETF,
FSAN, and
other ad-hoc
international
groups

Additional ETSI Functional / structural description n h h
requirements
for Hardware

IEC 747, 748 Reliability / dependability requirements n n n

CENELEC Reliability / dependability requirements h n n
CECC

ATM-Forum, Functional / structural description n h h
DAVIC, IEFT,
FSAN, and
other ad-hoc
international
groups

Additional ISO 9004-2 Rules for Quality Assurance h n n
requirements
for Services

specifications and details for qualifica-
tion procedures. It is applicable if the
product or service to be acquired is to
be used for concession or enforced
activities in the field of telecommuni-
cations. The Directive describes only
the first steps of the product life cycle
as Technical specification, Call for
tender, Supplier qualification, and
Product selection. Refer to standards
whenever possible.

• For communication with suppliers
about requirements, it is recommended
to use an approach according to the
Implementation Conformance State-
ment from ISO 9646 (see Table 1).
This approach needs to be described
in detail.

3 Supplier qualification
and supplier monitor-
ing interface

Supplier Qualification and Supplier
Monitoring are two activities conducted
by the PNO. Both activities are con-
cerned with procurement of telecommu-
nications products and related processes
used at the supplier.

The Supplier Qualification and Supplier
Monitoring interface aspects and guide-
line sources are highlighted in Figure 5.

3.1 Supplier qualification

A supplier should have a demonstrated
capability to furnish products that meet
the PNO’s requirements. The method of
assessing such a capability before actual
purchasing of any product is Supplier
Qualification. Qualification can take
place within a procurement session, or at
any period of time chosen by a PNO. The
intention of qualification is to create a list
of qualified suppliers for future procure-
ments.

The management of a list of qualified
suppliers is an effective way of guaran-
teeing that all the suppliers meet the
basic requirements about quality. By
using a supplier qualification system,
a PNO is allowed to deal with suppliers
having obtained the characteristics con-
sidered necessary.

The need for a supplier qualification
system is linked to the following goals,
common to both the PNO and the
supplier:

Table 3 Requirements checklist with relevance for Innovative, Known and Off-the-shelf products [1]

97Telektronikk 1.1999

• Reduction of acquisition cost: the
reduction can be achieved through a
decrease of incoming cost (less con-
trols, less goods stocked to be tested,
less production line interrupts, less
reworks and repairs).

• Increasing product quality: if a
supplier is reliable concerning orga-
nisation, financial issues, processes,
flexibility etc., it is also possible to
assume a high quality of the product.

• Prevention of non-conformities: repe-
titiveness in the supplier’s processes,
both technical and organisational,
increases the probability that a product
is reliable and meets the requirements.

Supplier qualification focuses both on
products and processes. For both prod-
ucts and processes the main document is
the Requirements Specification where all
the requirements to be met by the
products and the processes are listed
together with associated measurement
methods and techniques.

For the qualification of processes, several
reference documents are available. Two
such reference documents, SPICE [19]
and TRILLIUM [20], are briefly ana-
lysed and presented in D3, Annex 1 [3].

The SPICE project (Software Process
Improvement and Capability dEtermina-
tion) was an international collaborative
effort to develop a standard for software
process assessment. The work done by
the SPICE project is in 1998 published
as an international standard (technical
report) ISO/IEC TR 15504. The potential
usage of the SPICE results is as a base
document for Supplier Assessment and
for Process Improvement.

The Trillium Model2) consists of the
following chapters:

• Model overview;

• Implementation Guidelines;

• Model Description;

• Essential Information about Trillium
Practices;

• Trillium Capability Areas, Road Maps
and Practices.

A Road Map in this context is a set of
related practices that focus on an organi-
sational area or need, or a specific ele-
ment within the product development
process. In total, 508 practices are identi-
fied. These practices are mainly in the
form of references to practices defined in
the underlying documentation. Trillium
is claimed by Bell Canada to be used
to assess the product development and
support capability of prospective and
existing suppliers of telecommunications
or information-based products.

Measurements on products and processes
are normally carried out during all life-
cycle phases of the product. Quality
measurements (e.g. E-IPQM and E-
RQMS) are discussed in Section 4.

3.2 Supplier monitoring

When procurement is decided and a con-
tract is awarded, the supplier is moni-
tored in order to assess the correct exe-
cution of the contract. The monitoring
covers all factors involved in the pro-
curement (depending on market types IN,
KN or OTS, functional types as trans-
mission systems, switching systems or
other systems, technical properties, and
life-cycle phases of the products).

Supplier monitoring can be done by
measuring the performance of supplier’s
processes and of the quality of the prod-
ucts and services actually produced.

Although supplier monitoring and sup-
plier qualification are performed in dif-
ferent time phases, they show many simi-
larities because they both deal with
product and processes related to a pro-
curement, and they take into account the
same factors though seen from different
perspectives.

Using the results from supplier moni-
toring, the PNOs can assess the status
of procurement and initiate corrective
actions if necessary. Thus the results
from the measurements can be used by
the PNOs in the supplier qualification
process for later purchases and of
telecommunication products.

Measurements are normally performed
with the life-cycle phases of the products
in mind. These are summed up as fol-
lows:

• During the development phase, the
suppliers’ management of a develop-
ment project can be monitored. Mea-

surements of resources, changes and
delays can be captured. In case of soft-
ware development, characteristics of
the produced code, like size and fault
content, can be measured.

• At physical delivery, the discrepancy
between planned and actual delivery
dates can be recorded, as well as non-
conforming functionality and quality
characteristics.

• When in the operational phase, failure
statistics, update and support capability
measurements are important.

3.2.1 Supplier monitoring areas

As already mentioned, two groups of
monitoring areas can be identified:

1 Supplier processes monitoring consists
of:

• Monitoring of supplier processes
(manufacturing and organisational);

• Monitoring of the specific develop-
ment and delivery project (milestones);

• Monitoring of supplier services pro-
cesses (after sale, installation, etc.).

Monitoring of supplier development pro-
cesses can be done in the early phases of
the development, even before a product
is developed. The purpose is to assess
and verify that the capability of the sup-
plier is in conformance with the require-
ments specification.

2 Product performance monitoring
Product performance monitoring con-
sists of:

2) Model for Telecom Product
Development & Support Process
Capability©Bell Canada, 1994
(release 3).

Supplier Qualification
and

Supplier Monitoring

Supplier
Qualification

Supplier Processes
SPICE
Trillium

Supplier Monitoring
Supplier Processes

Product Performance
SPICE

E-IPQM and E-RQMS

Figure 5 Supplier qualification and supplier monitoring
interface aspects and guideline sources

98 Telektronikk 1.1999

• Monitoring of the product characteris-
tics during development (verification
and validation);

• Monitoring of the product during man-
ufacturing (requirements meeting, test
results);

• Monitoring of the product performance
during operation (reliability, availa-
bility) and during the telecommunica-
tion network management and main-
tenance.

During the later stages of the develop-
ment, when the product exists in a proto-
type form, it becomes possible to assess
the product itself. By reviewing the prod-
uct during development and manufac-
turing, quality characteristics can be ob-
tained. During the operational phase,
actual failure performance can be measured.

3.2.2 Supplier monitoring
procedures

In order to monitor a supplier, a corre-
sponding agreement has to be made
between the PNO and the supplier. The
agreement is usually included in the busi-
ness contract and further detailed in the
requirement specification. The agreement
includes the agreed activities and time
schedules for procurement, and the moni-
toring to be done for relevant aspects.
After the contract is signed, the agree-
ment comes into force, and the actual
monitoring of the supplier can start.

In the product requirement specification,
all required properties are specified, i.e.
functional requirements, quality require-
ments, and other. The fulfilment of all
the specified properties can, in principle,
be measured during the relevant life-
cycle phases.

It is important that collected data relates
to a plan with decision points or mile-
stones, so that the supplier (or the PNO)
can take actions to correct identified
problems.

3.3 Results and application
fields

Qualification or monitoring of suppliers
can be accumulated in a measure of qual-
ity called Supplier Quality Level. A Sup-
plier Quality Level may have many pur-
poses such as ranking of suppliers, selec-
tion of the best supplier, contract award-
ing to a supplier, or quality monitoring.

In P619, a ‘universal’ method was
sketched to perform qualification or
monitoring of suppliers in an objective
way and to obtain the Supplier Quality
Level, on both products and processes,
for all product categories, and all param-
eters involved. The method comprises
three parts: the Prerequisites, the Ana-
lysis Part and the Synthesis Part.

The Prerequisites include the procure-
ment scenario and the requirement speci-
fication.

The Analysis Part comprises the analysis
of the procurement into simple cases, and
the analysis of supplier qualification or
supplier monitoring into simple cases.

A simple procurement case is defined as
a case that includes only one type of
equipment like a switching system, a
transmission system, an operation and
maintenance system, or some other sys-
tem. Within the actual type of equipment,
there will then be an indication of the
‘component’ category like hardware,
software or services, and with indication
of the market type category ‘known
product’, ‘innovative product’ or ‘off-
the-shelf product’.

A simple case for supplier qualification
or supplier monitoring is defined as a
case that deals with one simple procure-
ment case as defined above. For this
simple procurement case, the assessment
method – for supplier qualification or for
supplier monitoring – to be performed
has to be chosen. Once this assessment
method is chosen, an aspect, defined as a
property or a feature of the telecommuni-
cation product, is chosen. And then, at
last, the relevant life-cycle phase(s) for
that aspect is chosen.

Non-Official Standardisation Bodies

ATM-Forum The ATM Forum, a non-profit international organisation formed in 1991, consists of
a world-wide Technical Committee; three Marketing Committees for the Americas,
Europe and Asia/Pacific; and the User Committee, in which ATM end-users partici-
pate. The ATM Forum comprises more than 900 member companies, and remains
open to any organisation that is interested in accelerating the availability of ATM-
based solutions.

DAVIC Digital Audio Visual Council
DAVIC is a non-profit association based in Switzerland, with a membership of over
175 companies from more than 25 countries. It represents all sectors of the audio-
visual industry: manufacturing (computer, consumer electronics and telecommunica-
tions equipment) and service (broadcasting, telecommunications and CATV), as well
as a number of government agencies and research organisations.

FSAN Full Service Access Network
FSAN is a group of 14 telecommunication companies who are working with their
strategic equipment suppliers to agree upon a common broadband access system
for the provision of both broadband and narrowband services. This common broad-
band access system is documented in the FSAN requirement specification. It is a
public document, with the contents being presented to relevant standardisation bod-
ies.

The companies involved in FSAN are Bell Canada, Bell South, BT, DT, Dutch PTT,
FT, GTE, KOREA Telecom, NTT, SBC, Swisscom, Telefonica, Telstra and Telecom
Italia.

IETF The Internet Engineering Task Force is a large open international community of net-
work designers, operators, vendors, and researchers concerned with the evolution
of the Internet architecture and the smooth operation of the Internet. It is open to any
interested individual.

99Telektronikk 1.1999

The Synthesis Part, starting with the
assessments of simple supplier qualifi-
cation (or supplier monitoring) cases,
results in a value for the overall quality
level as follows:

1 Measurements in each simple supplier
qualification (or supplier monitoring)
case take place.

2 Quality levels for simple supplier qual-
ification or supplier monitoring cases
are obtained.

3 Obtained quality levels are combined
to higher-level quality levels.

4 Overall quality level for supplier quali-
fication or supplier monitoring is
obtained.

More details about this method can be
found in D3, Annex 2 [3], together with
application examples. The method, its
effectiveness, its precision and the
results, depend on the factors involved,
their status and their evolution in time.

The requirement specification contains
all elements about both products and
related processes that are considered dur-
ing qualification and monitoring of the
supplier to ensure that the supplier meets
all the requirements. The use of the pro-
posed method for supplier qualification
and supplier monitoring can therefore
provide a means for improving the
requirement specification in the appro-
priate topics.

The measurement methods E-IPQM
and E-RQMS [4] can be used during
the monitoring phase in order to verify
whether the target quality levels are
reached, both for processes and products.

3.4 Recommendations

Some of the recommendations to supplier
qualification and supplier monitoring
interfaces are according to D3 [3]:

• PNOs should create and keep up-to-
date a requirements specification
adapted to the needs of the proposed
method for supplier qualification and
supplier monitoring.

• PNOs should introduce the method in
stages. Thus both PNOs and suppliers
may become familiar with the applica-
tion of the method and improve it
according to practical experiences. In
the first stage of this approach, some
life-cycle phases may be grouped
together, levels of analysis may be lim-

ited, and types of equipment may be
grouped so that the number of cases
and resulting measurements can be
limited and better performed.

4 Quality measurement
interface

The quality measurement interface be-
tween PNOs and suppliers consists of
measurement methods and measurement
systems where both the PNOs and the
suppliers are involved in active co-opera-
tion.

During the development or modification
of a telecommunications system, the
suppliers’ performance and progress are
evaluated by the PNO by comparing the
suppliers’ actual process with his project
plans. Conformance to these plans en-
sures that the product is delivered by the
agreed time and with the required qual-
ity. The supplier is expected to provide
measurement reports that define the cur-
rent status of the work on the process of
developing new products, and to report
on the actions that they will take if the
progress does not proceed according to
the plans. The PNO will then evaluate
the situation based on the supplier
reports.

When in operation, the systems’ per-
formance will be monitored and analysed
by the PNO by means of measurement
reports. Information from some of these
measurements will necessarily be
supplied by the PNO itself, but the
supplier provides the final measurement
reports. The results from this analysis can
then be passed to the supplier to support
the product improvement process.

The quality measurement interface and
relations to the major input deliverables
are highlighted in Figure 6.

One of the focus points in P619 has been
further development of the measurement
systems E-IPQM and E-RQMS. The
PNO will include in the requirement
specification of a new telecommunica-
tion system the quality measurements
that are to be used in the development
phase and in the operational and mainte-
nance phase of the system. The results
from the measurements can be used by
the PNO in the supplier qualification pro-
cess as well as in the supplier monitoring
process.

4.1 Results and application
fields

The Bellcore measurement systems
IPQM [24] and RQMS [25] have gone
through considerable changes since the
initial work of defining the European
measurement systems was carried out in
P307 in the period 1993 – 1995. There
was therefore a need to clarify among the
European PNOs participating in P619
and in EIRUS [21], how to handle these
changes through defining the new Euro-
pean versions of E-IPQM and E-RQMS.

The main part of deliverable D4 [4] gives
an overview of the measurement systems
E-IPQM and E-RQMS Version 2 with
definition of the measurements by Bell-
core, the E-Addendum, data dissemina-
tion options, common targets options,
application guidelines and system main-
tenance. In addition, D4 gives a discus-
sion of the aspects of standardisation and
of possible forms of co-operation with
Bellcore, and of the changes in the status
of EIRUS that would be implied. The
Annex to D4 gives the detailed definition
of E-IPQM and E-RQMS Version 2.

In order to maximise the impact and
potential benefits of E-RQMS and E-
IPQM, P619 recommended that they
should be implemented uniformly by all
PNOs. Organisations who apply the sys-
tems should become members of EIRUS
in order to contribute to the development
and update procedures for E-IPQM and
E-RQMS.

Quality
Measurement

Development
Process

Management
E-IPQM

Product and
Maintenance
Measurement

E-RQms

Definition by Bellcore
E-Addendum

Data dissemination
Common targets

Application guidelines
System maintenance

Figure 6 Quality measurement interface aspects

100 Telektronikk 1.1999

Due to its contractual nature, evaluation
methods and metrics suitable for mea-
suring the quality parameters should be
included in a requirement specification.
PNO and suppliers should agree about
metrics to be used in measuring the
parameters contained in the specification.

4.1.1 Definition of the measure-
ments

The definition of Version 2 of E-IPQM
and E-RQMS is as shown in Figure 7:

4.1.1.1 Definitions of measurements
by Bellcore

The first definitions of the measurements
in E-IPQM and E-RQMS are taken from
the definitions of measurements by Bell-
core [24, 25].

The main purpose of the In-Process
Quality Metrics (IPQM) is to keep a cus-
tomer (e.g. a PNO) informed about the
development process of telecommunica-
tion software. This enables the PNO to
investigate and control the development
of the software, and to let the supplier
take corrective actions if problems occur.

The main purpose of the Reliability and
Quality Measurements for Telecommuni-
cations Systems (RQMS) is to measure
trends in the reliability and quality of
subsequent releases of telecommunica-
tion systems and software. Thus, RQMS
measures vital quality aspects in the
operation and maintenance phases.

From the Bellcore documents, only the
definitions of the measurements are
taken. Objectives, thresholds and other
requirements as defined in the Bellcore
documents are not a part of E-IPQM
and E-RQMS. As to the E-IPQM and
E-RQMS equivalent of objectives and
thresholds, see discussion in section
4.1.1.4.

4.1.1.2 E-Addendum

Due to European needs, new or deviation
measurements may have to be defined.
Any deviations from the Bellcore mea-
surement definitions will be included in
the E-Addendum, which contains the
information on measurements that are
different from or extra to those referred
in RQMS and IPQM. A maintenance
procedure for the E-Addendum by using
an E-Addendum Issue List mechanism
and a template facilitating this mainte-
nance has been proposed.

EIRUS was considered to be the most
appropriate body to perform the mainte-
nance of the E-Addendum.

4.1.1.3 Data dissemination options

Data dissemination of actual measured
data among PNOs can give benefits to
the PNOs involved. Careful considera-
tion will be required to the type and
detail of any data that is shared. Various
options for data dissemination are ana-
lysed and described in more detail in D4.
The options, which have been deter-
mined for, are:

1 Private Data Dissemination: The mea-
surement data are collected, but are not
disseminated outside the PNO. The
measurement data are for internal use
only.

2 Best Practice Data Dissemination:
Only the best practices for each partic-
ular measurement are public and are
published anonymously.

3 Aggregated Data Dissemination: The
measurement data are disseminated
anonymously in an aggregated form.

4 Full Data Dissemination: All measure-
ment data are distributed among PNOs.

An assessment method is defined to en-
able the individual PNOs to assess the

desirability and feasibility of the options
available.

The ultimate decision as to the level of
data dissemination practised will rest
with the individual PNO. It is most likely
that in the first instance, PNOs with
limited experience in disseminating
measurement results will need to re-
affirm their policy on such matters. The
implementation process is thus likely to
evolve over time as confidence and the
benefits of the process are better under-
stood. It can therefore be expected that
any preferred option for data dissemina-
tion between PNOs will be transitory
and subject to change.

It is considered that in reality ‘best prac-
tice’ data dissemination will be the most
likely entry point for many PNOs, and it
is from this starting point that they will
gain experience in the benefits available.
It is expected that in certain fields of
measurement, ‘best practice’ dissemina-
tion will lead to higher levels of data dis-
semination. The establishment of some
kind of a ‘Data Dissemination Centre’
would then be required.

4.1.1.4 Common target options

To what degree the PNOs can agree on
setting common target values that a prod-
uct must meet was also an object of the
study in P619. A target is, in this context,
the value of a particular measurement
that can be used as a goal for quality
improvement.

The target values should be defined from
experience and with care. The common
targets should be used as goals; the use
of the values in contracts should mirror
this.

The following options, different for
E-IPQM and E-RQMS, have been
evaluated:

1 No Common Targets.

2 Common Targets for selected E-
RQMS measurements for selected
product makes.

3 Common Targets for selected E-RQMS
measurements for all products of a
defined type.

4 Common Targets for selected E-IPQM
measurements by selected suppliers.

5 Common Targets for selected E-IPQM
measurements for all suppliers.

E-IPQM and E-RQMS
Version 2

Definition of
Measurements

by Bellcore

Common
Targets

E-Addendum
Data

Disseminition
Application
Guidelines

Figure 7 Components of E-IPQM
and E-RQMS version 2

101Telektronikk 1.1999

Restrictions similar to those defined
above for data dissemination apply to
defining the optimum degree of common
targets. It is expected that most PNOs
will rank the desired common targets
individually to reflect their own require-
ments. The actual values used would be
derived by user groups such as EIRUS
and implemented by groups of PNOs
with similar interests.

To help the decision process, an assess-
ment mechanism has been provided
which covers data dissemination as well
as common targets. This mechanism
takes account of aspects of ‘Quality
Assurance’ activities such as supplier
qualification and monitoring as well as
‘Feasibility Aspects’, including confiden-
tiality issues and resources needed.

Based upon experience gained within the
USA, European PNOs should establish
common targets, mainly for the E-RQMS
measurement system, since the operators
in USA for the time being still are lack-
ing extensive experience from IPQM.
The advancement of common targets to
cover as many measurements as possible
should become a key objective for the
PNOs.

4.1.1.5 Application guidelines

The introduction of any quality system
puts challenges on the staff of the PNOs
concerned, both in the relationship with
their suppliers and the integration of the
quality system into their current operat-
ing procedures. It is recommended as
application guidelines that PNOs intro-
duce the measurements and associated
procedures in a planned way, such as the
one recommended by EIRUS.

The implementation programme devised
by EIRUS is based on the two stages pro-
posed by P307, known as Phases 1 and 2
[8]. The EIRUS scheme starts with a
Phase 0 with a subset of the measure-
ments that were in the P307 Phase 1.
The splitting of the original Phase 1 set
of measurements was established in
response to difficulties found in applying
the measurements that were in Phase 1 in
a single step.

It would be prudent for any PNO
planning an introduction schedule to
approach EIRUS to gain the most current
information on the status of measure-
ments introduction within its member
organisations. For guidance, the duration

Phase 0 9 months

Phase 1 12 months

Phase 2 12 months

Table 4 Duration of EIRUS phases of
introduction

of the original EIRUS introduction of
measurements was as described in Table 4.

The measurements contained within each
phase are listed in Appendix A of Annex
A to D4 [4].

4.1.1.6 Standardisation – co-opera-
tion with Bellcore

European parties should work towards a
situation in which a European standard
can be created for E-IPQM and E-RQMS,
similar to the US situation. The experi-
ence gained by Bellcore within the USA
could be exploited by finding an agree-
ment with Bellcore in keeping a Euro-
pean standard up to date. EIRUS is a
possible organisation to be involved in
advancing a practical solution to this.

5 Conclusions

The competition between PNOs has
increased during the last years. QoS pro-
vided to customers by the PNOs receives
attention. Since QoS to customers strictly
correlates with products and services
PNOs receive from their own suppliers,
incoming quality, seen from the PNOs,
is a key issue to their business success.

The goal of the EURESCOM Project
P619 was to improve and harmonise
technical interfaces between PNOs and
their suppliers. The perspective has been
to improve the quality control of
telecommunications products and ser-
vices. The P619 project activities were in
line with work carried out earlier by
EURESCOM in several projects, starting
with Project P227 and continued in Pro-
ject P307. The results of P619 were pre-
sented to the public in a seminar in Hei-
delberg in March 1998, and all the pro-
ject deliverables are now available to the
public.

P619 has proposed a set of possible
guidelines that PNOs should consider,
though some of these proposals require

further work. A concrete result from the
work is the support to EIRUS and the
dissemination of experiences gained by
PNOs and supplier members of EIRUS.

Acknowledgement

This paper is based on a study done in
EURESCOM Project P619. It is a plea-
sure to acknowledge the contributions
from all the colleagues in the project.
Especially an acknowledgement to Pro-
ject Leader Dr. Marcello Melgara from
CSELT, the Task Leaders Mr. Werner
Deichmann from Deutsche Telekom, Mr.
George Tsiamas from OTE, Mr. Chris
Aldenhuijsen from KPN Research, and
Mr. Paul Holder from BT. And last, but
not least, an acknowledgement for the
contributions from our colleagues at
CSELT in writing P619 D6: Mr. Gianni
Benso, Ms. Patrizia Bondi, and Ms.
Laura Marchisio.

References

1 EURESCOM. Guidelines on Re-
quirements Specifications. Heidel-
berg, 1998. (EURESCOM P619 D1.)

2 EURESCOM. Update of the P227
Deliverables. Heidelberg, 1998.
(EURESCOM P619 D2.)

3 EURESCOM. Guidelines on supp-
liers qualification and monitoring.
Heidelberg, 1998. (EURESCOM
P619 D3.)

4 EURESCOM. European Quality
Measurements: Overview of E-IPQM
and E-RQMS version 2. Heidelberg,
1998. (EURESCOM P619 D4.)

5 EURESCOM. Guidelines on hard-
ware traceability. Heidelberg, 1998.
(EURESCOM P619 D5.)

6 EURESCOM. Recommendations to
improve the technical interfaces be-
tween PNO and suppliers. Heidel-
berg, 1998. (EURESCOM P619 D6.)

7 EURESCOM. Buy IT : recommended
practices for Procurement of
Telecommunication Software. Hei-
delberg, 1995. (EURESCOM P227
D4.)

8 EURESCOM. European quality
measurements : E-IPQM and E-
RQMS. Heidelberg, 1995.
(EURESCOM P307 D5.)

102 Telektronikk 1.1999

9 European Council. Co-ordinating the
procurement procedures of entities
operating in the water, energy, trans-
port and telecommunication sector.
1993. (European Council Directive
93/38.)

10 ISO. Quality management and qual-
ity assurance : vocabulary. Geneva,
1994. (ISO 8402.)

11 ISO. Quality management and qual-
ity assurance standards : guidelines
for the application of ISO 9001 to the
development, supply, and mainte-
nance of software. Geneva, 1992.
(ISO 9000-3.)

12 ISO. Quality systems : model for
quality assurance in design/de-
velopment, production, installation
and servicing. Geneva, 1994. (ISO
9001.)

13 ISO. Quality management and qual-
ity system elements : guidelines.
Geneva, 1994. (ISO 9004-1.)

14 ISO. Quality management and qual-
ity system elements : guidelines for
services. Geneva, 1991. (ISO 9004-
2.)

15 ISO. Information technology : soft-
ware product evaluation : quality

characteristics and guidelines for
their use. Geneva, 1991. (ISO/IEC
9126.)

16 ISO. Information Technology : open
systems interconnection : confor-
mance testing methodology and
framework. Part 7 : Implementation
Conformance Statements. Geneva,
1995. (ISO/IEC 9646-7.)

17 ISO. Information technology : soft-
ware packages : quality requirements
and testing. Geneva, 1994. (ISO/IEC
12119.)

18 ISO. Information technology : soft-
ware life cycle processes. Geneva,
1995. (ISO/IEC 12207.)

19 ISO. SPICE99 : Software Process
Improvement and Capability dEter-
mination. Information technology :
software process assessment, parts
1–9. Geneva, 1998. (ISO/IEC TR
15504.)

20 Trillium : model for telecom product
development & support process
capability. Bell Canada, 1994.
(Release 3.)

21 Johansson, R. EIRUS : a user group
for quality measurements. Telektron-
ikk, 93 (1), 86–88, 1997.

22 Groen, H et al. EURESCOM and
QoS/NP related projects. Telektron-
ikk, 93 (1), 184–195, 1997.

23 Skogstad, Ø. Review of international
activities on software process im-
provements. Telektronikk, 93 (1),
101–108, 1997.

24 In-Process Quality Metrics (IPQM).
Bellcore, 1995. (Generic Require-
ments GR-1315-CORE, Issue 1.)

25 Reliability and Quality Measure-
ments for Telecommunications Sys-
tems (RQMS). Bellcore, 1996.
(Generic Requirements GR-929-
CORE, Issue 2.)

Ola Espvik (55) is Senior Research Scientist and editor of
Telektronikk. He has been with Telenor R&D since 1970
doing research in traffic engineering, simulation, reliability
and measurements as well as being active in ITU,
EURESCOM and several educational projects. His
present research focus is on Quality of Service and
Quality Assurance.

e-mail: ola.espvik@fou.telenor.no

Øystein Skogstad (55) is Senior Scientist at SINTEF Tele-
com and Informatics, Trondheim. He is working with safety
issues relating to electronic railway signalling systems.
During his career he has also been engaged in research
activities in various other areas including reliability in
telecommunication switching, telecom network reliability,
software quality assurance and software engineering meth-
ods.

e-mail: Oystein.Skogstad@informatics.sintef.no

Jan-Erik Kosberg (53) graduated from the Norwegian
Univ. of Science and Technology in 1969 and completed
his Dr.Ing. thesis in 1973. He joined SINTEF in 1974 and
is now Research Scientist at SINTEF Telecom and Infor-
matics. His present research is on Quality of Service, and
on infrastructures and services for information exchange in
the Norwegian National Information Networks Program.

e-mail: Jan-Erik.Kosberg@informatics.sintef.no

Special

103Telektronikk 1.1999

104 Telektronikk 1.1999

1 Introduction

A previous contribution to this journal [1] reported on work
sponsored by the European Telecommunications Standards
Institute (ETSI) which reviewed the problems arising out of a
possible initiative to harmonise European telephone network
tones. A number of technical aspects were reviewed, but in
particular some of the human factors issues contributing to
usability were dealt with at some length. An analysis of user
actions and basic information about auditory perception and
association led to the development of a descriptive model for
tones which assigned functional characteristics to different
phases of a call set-up procedure. The phases were embraced
in a so-called SWAT model – named after the possible actions
available to the caller: Signal, Wait, Abort and Talk. Tones were
identified as prompts for action on the part of the caller or as
feedback; a feedback tone could indicate that progress was
being made and the user should wait, or that there was some
problem and the user should abort the call. In most cases exist-
ing network tones were a good fit into the model, and it was
suggested that the model could be used in a predictive way
to help design new tones, provided that the function could be
defined.

Although some indications were given in the literature about
users’ stereotyped associations for both frequency (pitch) and
cadence (rhythm), no specific research existed which could con-
firm assumptions about tone assignment within the model. As
an example, tones with high pitch or fast cadence were asso-
ciated with urgency or importance, which could be interpreted
as indicating that the user should do something (prompt for
action). Likewise, slow cadence or low frequency could be
assigned the meaning wait (or take no action because the net-
work is processing your last action). Thus, the model proposed
in the ETSI report [2] was based only on theoretical or extra-
polated assumptions from laboratory-tested concepts and not
confirmed in any user testing in the context of telephony.

The Centre for Communication Interface Research (CCIR) at
the University of Edinburgh undertook to investigate some of
these behavioural associations. Using a set of existing European
tones identified from the ETSI work, and a set of semantic
opposites devised by the ETSI Project Team, CCIR carried out
a user perception experiment, the results of which are reported
here.

2 Aims of the experiment

The purpose of the experiment was to evaluate a number of
existing tones with respect to whether they fulfil the basic func-
tions for which they are intended, such as indicating that action
from the user is required (e.g. pay tone), or indicating a particu-
lar status of the network (e.g. engaged, ringing). The tones were
evaluated using a set of adjectives, such as pleasant, disruptive,
calming or boring, which can be seen as contributing to the
‘meaning’ of a particular tone. This ‘meaning’ in turn may
relate to the behaviour of the telephone user after hearing the
tone, which in the end determines a tone’s effectiveness and
usefulness. A secondary aim was to test a particular metho-
dology for evaluating such tones using semantic differential
scales, whose extremes are labelled with two contrasting words
or phrases. The goal of the experiment was to answer the fol-
lowing two questions:

• How do British subjects judge the particular network tones
along a pre-defined set of semantic differential scales labelled
with opposites such as ‘pleasant – unpleasant’?

• Are there significant differences in subjects’ judgements for
different tones?

3 The ETSI model

The model [1, 2] classifies each tone by its functional character-
istics. A tone may indicate to the caller that progress with a call
is being made (OK), or that there is a problem in the network or
with the particular call (not OK). Also it may simply provide
feedback or it may be a prompt for action from the user. Tones
are further classified according to the phase in the call at which
they occur – the non-talk phase in which the connection is
established, or the talk phase in which speech or other informa-
tion is transmitted between the connected parties – and as indi-
cating basic or sophisticated functionality. This classification is
shown in Figure 1, with examples of tones in different cate-
gories. The cells are coloured to represent the spectrum of call
status severity noted by the ETSI team and indicated in the final
version of their model (Figure 3 in [1]), and the special require-
ments for the talk phase, where a low duty cycle is recom-
mended so as not to interfere with conversation.

The underlying motivation of the model is to determine what
meaning each network tone should attempt to convey to the
caller, establish how effectively each tone conveys its intended
meaning, and determine whether these functional characteristics
have acoustic equivalents in terms of cadence, frequency, inten-
sity and duration. For example, Pollack (1952) showed that
tones with long cadences imply ‘goodness’, whereas tones with
short cadences imply ‘badness’ and elicit a greater feeling of
urgency than long cadences [3].

The goal of the ETSI project’s assignment of tones is greater
harmonisation of existing European network tones and in the
long term this may aid the design of new, audibly distinct and
more widely recognised network tones.

4 Tones evaluated

The 18 tones evaluated in this experiment are listed in Table
1.1) They are classified according to the ETSI model: those
occurring in the talk phase are asterisked.

The notation for cadences is as in [1] and [2]: durations of ‘on’
intervals (tone bursts) are given in bold, and durations of ‘off’
intervals (silences) in normal type. Where a tone is specified to
occur only a limited number of times, this is shown in square
brackets in the ‘Cadence’ column; otherwise the tone is de-
signed to be repeated indefinitely (subject to any applicable
time-out). Frequencies separated by ‘/’ within a tone specifica-
tion occur in succession, while those separated by ‘+’ occur
simultaneously. Where simultaneous frequencies have different

105

User perception of European network tones
F E R G U S M C I N N E S , D O N A L D A N D E R S O N , M A R K S C H M I D T

A N D M E R V Y N J A C K

Telektronikk 1.1999

1) In fact, 19 tones were evaluated, but it was subsequently
discovered that one of them (intended to be the ETSI recom-
mended Special Information/Number Unobtainable tone [4])
did not match its specifications, as it had been generated with
the wrong sequence of frequencies; the results for this tone
have therefore been omitted from the paper.

106 Telektronikk 1.1999

PROMPT – Basic
MUST

Sophisticated

Figure 1 The ETSI model of tone functions

OK NOT OK

Non-Talk Talk Non-Talk Talk

FEEDBACK Basic

Sophisticated

PROMPT – Basic
CAN

Sophisticated

Ring,
Comfort,
Holding,
Caller Waiting

Special Ring,
Positive
Indication

Dial,
Second Dial

Special Dial

UPT (PUI/PIN),
Record

Conference

Call Waiting

Pay

Busy,
Number
Unobtainable

Congestion,
Negative
Indication

Pre-Empt

Intrusion,
Warning

PROMPT – Basic
MUST

Sophisticated

Figure 2 Numbers and descriptions of tones evaluated, classified according to the ETSI model

OK NOT OK

Non-Talk Talk Non-Talk Talk

FEEDBACK Basic

Sophisticated

PROMPT – Basic
CAN

Sophisticated

2 (ETSI & UK
Ring)

2 (ETSI & UK
Dial)

2 (UK Special
Dial: System X
& System Y)

1 (ISO/IEC
Record)

2 (ETSI & UK
Call Waiting)

2 (UK &
Sweden Pay)

4 (ETSI & UK
Busy, UK SI,
UK NU)

2 (ETSI & UK
Congestion)

1 (ETSI Warning)

cadences (tone no. 3), the respective cadences are separated by
‘+’ in the ‘Cadence’ column.

The locations of these tones in the ETSI model are shown in
Figure 2.

5 Experiment procedure

A total of 100 subjects took part in the experiment and each
evaluated all the tones in a listening experiment. Subjects were
balanced for age and gender and were presented with each tone
after pressing any key on the keypad of the telephone they were
using for the experiment. This was the same for each subject as
all subjects completed the experiment at CCIR. Simple continu-
ous tones were presented with a duration of 5 seconds. Repeti-

tive tone sequences and chimes with an unspecified number of
cycles were presented in cycles of 6 instances. Other tone
sequences or chimes with a fixed number of cycles were pre-
sented accordingly (e.g. the Swedish pay tone has 2 cycles of
a tone sequence). All tones were presented at -6 dBm0, as this
takes adequate account of signal loss between the exchange and
the handset. The order of presentation of the tones was random-
ised for each subject.

Following each tone, subjects indicated their judgements on a
set of semantic differential scales. Semantic differential scales
are used to assess aspects of meaning with the use of adjectival
opposites [5]. The scales adopted for this experiment, after dis-
cussions between members of CCIR and the ETSI Project
Team, are shown in Figure 3. Subjects were asked to evaluate
each tone on all seven scales.

107Telektronikk 1.1999

Source Tone Classification Cadence Frequency

1. United Kingdom Dial Prompt – Can continuous 350+440

2. United Kingdom Special Dial Prompt – Can 0.75 – 0.75 350+440
(System X; GPT)

3. United Kingdom Special Dial Prompt – Can continuous 440
(System Y; Ericsson) + +

0.75 – 0.75 350

4. United Kingdom Ring Feedback OK 0.4 – 0.2 – 0.4 – 2.0 400+450

5. United Kingdom Busy Feedback Not-OK 0.375 – 0.375 400

6. United Kingdom Congestion Feedback Not-OK 0.4 – 0.35 – 0.225 – 0.525 400

7. United Kingdom Number Unobtainable Feedback Not-OK continuous 400

8. United Kingdom Special Information Feedback Not-OK 0.33 – 0.03 – 0.33 – 950/1400/1800
0.03 – 0.33 – 0.0

9. United Kingdom Pay Prompt – Must * 0.125 – 0.125 400

10. United Kingdom Call Waiting Prompt – Can * 0.1 – 3.0 400

11. ETR 187 Dial Prompt – Can continuous 425

12. ETR 187 Ring Feedback OK 1.0 – 4.0 425

13. ETR 187 Busy Feedback Not-OK 0.5 – 0.5 425

14. ETR 187 Congestion Feedback Not-OK 0.2 – 0.2 425

15. ETR 187 Call Waiting Prompt – Can * 0.2 – 0.6 – 0.2 – 3.0 [x2] 425

16. ETR 187 Warning Feedback Not-OK * 0.5 – 15.0 1400

17. Sweden Pay Prompt – Must * 0.2 – 0.2 – 0.2 – 3.6 [x2] 941

18. ISO/IEC 13174 Record Prompt – Must 0.15 – 0.075 – 0.15 [x1] 500/620

Table 1 Details of tones evaluated

6 Results

This experiment yielded mean ratings (obtained by averaging
across the 100 subjects) for 18 tones on seven semantic differ-
ential scales. These results can be presented and analysed in
various ways: taking one tone at a time and plotting a profile
of its ratings on all the scales, or taking one scale at a time and
deriving a ranking of all the tones on that scale. In the latter
case, pairwise statistical comparisons of tones can also be made,
using the individual subjects’ responses.

Section 6.1 below presents the results in the form of a profile
for each tone. Section 6.2 gives the ranking of the tones on each
semantic differential scale, and also on a pooled scale derived
after observing strong correlations among six of the seven origi-
nal scales. Section 6.3 presents a characterisation of the tones on
two dimensions, the first corresponding to the pooled scale and
the second to the ‘Interesting – Boring’ scale.

6.1 Profiles of tones across all
semantic differential scales

Figures 4 to 6 show the mean ratings on all the semantic differ-
ential scales for each of the tones. Tones are grouped according
to their context of occurrence and function, as follows:

• Prompt, Non-Talk: dial and record tones (tones 1, 2, 3, 11 and
18) – Figure 4;

• Feedback, Non-Talk: tones occurring after dialling and giving
feedback on success (ring tone) or failure (busy, congestion,
number unobtainable or special information) (tones 4, 5, 6, 7,
8, 12, 13 and 14) – Figure 5;

• Talk: tones occurring during the talk phase of a call, com-
prising pay, call waiting and warning tones (tones 9, 10, 15,
16 and 17) – Figure 6.

On each scale, labelled ‘A – B’ where A and B are the contrast-
ing adjectives or phrases, high scores indicate ratings towards
‘A’, and low scores indicate ratings towards ‘B’. Possible scores
range from 1 to 7; a value of 4 is neutral.

108 Telektronikk 1.1999

Alarming :___:___:___:___:___:___:___: Calming

Reassuring :___:___:___:___:___:___:___: Worrying

Urgent :___:___:___:___:___:___:___: Not urgent

Pleasant :___:___:___:___:___:___:___: Unpleasant

Interesting :___:___:___:___:___:___:___: Boring

Disruptive :___:___:___:___:___:___:___: Not disruptive

Requires action :___:___:___:___:___:___:___: Does not require action

Figure 3 Semantic differential scales used to evaluate the tones

Figure 4 Ratings of ‘Prompt Non-Talk’ tones

Pleasant-
Unpleasant

5.5

5

4.5

4

3.5

3

2.5
Reassuring-

Worrying
Calming-
Alarming

Not disruptive
Disruptive

Does not
require
action-

Requires
action

Not urgent -
Urgent

Interesting
Boring

UK Dial
UK SDial-X
UK SDial-Y

ETR Dial
ISO Record

109Telektronikk 1.1999

Figure 5 Ratings of ‘Feedback Non-Talk’ tones

Figure 6 Ratings of ‘Talk’ tones

5.5

5

4.5

4

3.5

3

2.5

2

1.5

Pleasant-
Unpleasant

Reassuring-
Worrying

Calming-
Alarming

Not disruptive
Disruptive

Does not
require
action-

Requires
action

Not urgent -
Urgent

Interesting
Boring

UK Ring
UK SI
UK Busy
UK NU

ETR Ring
UK Cong
ETR Busy
ETR Cong

5.5

5

4.5

4

3.5

3

2.5

2

Pleasant-
Unpleasant

Reassuring-
Worrying

Calming-
Alarming

Not disruptive
Disruptive

Does not
require
action-

Requires
action

Not urgent -
Urgent

Interesting
Boring

UK Pay
ETR Warn
UK CWait

Swed Pay
ETR CWait

6.1.1 ‘Prompt Non-Talk’ tones

As can be seen in Figure 4, the four dial tones evaluated were
all rated near or slightly below neutral on all the scales. The UK
and System X dial tones were found more pleasant, reassuring
and calming and less disruptive than the System Y and ETSI
counterparts. The other three scales show a different pattern,
with the two basic dial tones (UK and ETSI – both with a
simple continuous cadence) judged less urgent and requiring
of action and more boring than the System Y dial tone, and the
System X tone rated intermediately. In most cases the contrasts
were statistically significant, and in some cases highly signifi-
cant.

The ISO record tone was placed higher than all the dial tones on
every scale, and in most cases this was highly significant. For
some of the scales (e.g. non-disruptiveness) this can perhaps be
attributed to its being a once-only rather than recurring or con-
tinuous tone.

6.1.2 ‘Feedback Non-Talk’ tones

As shown in Figure 5, both the ring tones tested were rated
above neutral on most of the first six scales, whereas the other
tones (indicating failure to make a connection) were scored
below neutral to a greater or lesser degree. This is as it should
be if the tones have been designed appropriately for their func-
tions as giving positive (‘OK’) and negative (‘not-OK’) feed-
back. However, the wide range of scores across the set of ‘not-
OK’ feedback tones warrants examination.

The most unpleasant, worrying, alarming, disruptive, action-
requiring and urgent tone was the UK special information tone,
with ratings near 2 on all the first six scales. (On each of these
scales, the difference between this tone and any of the others in
the group was highly significant, with the one exception that the
UK number unobtainable tone was not quite significantly less
unpleasant.) Distinctive characteristics of this tone are the wide
range of frequencies, including one as high as 1800 Hz, and the
lack of silent intervals.

Next lowest on most of the scales was the UK number unob-
tainable tone. It is interesting to note that this scored signifi-
cantly lower on all the first six scales than the ETSI dial tone
(seen in Figure 4) although the only difference in their specifi-
cations is between their frequencies of 400 Hz and 425 Hz
respectively. Recognition of the UK tone by UK subjects as
having a negative meaning may have played a part here.

The other four tones – the UK and ETSI busy and congestion
tone – were all rated just slightly below the neutral point on all
the scales, with the exception of the UK congestion tone which
was slightly above neutral for non-disruptiveness.

While the UK ring and special information tones were at oppo-
site extremes on most of the other scales, they were similarly
rated on the ‘Interesting – Boring’ scale, both being judged
more interesting than any of the others in the group.

6.1.3 ‘Talk’ tones

Figure 6 shows that the tones occurring in the talk phase of a
call fall into two groups according to their scores on the first six
scales. Above neutral on all these scales are the UK and ETSI
call waiting tones; below neutral are the UK and Swedish pay
tones and the ETSI warning tone. These ratings seem appropri-
ate in view of the tones’ functions: pay tones, being prompts for
mandatory action (without which the call will be terminated),
ought to be more intrusive and urgent than call waiting tones
which are prompts for optional action, while the warning tone
(indicating that the privacy of the call may be compromised)
likewise conveys important information of which the caller
needs to be aware.

Here, as in Figures 4 and 5, the first six scales show broad co-
herence in their rankings of the tones but the ‘Interesting – Bor-
ing’ scale yields very different results. In this case all the tones
in the group were similarly judged to be slightly on the boring
side of neutral.

6.2 Ranking and comparison of tones
on each scale

For each scale (adjective1 – adjective2), the tones are listed in
order from the adjective1 end of the scale to the adjective2 end,
with their mean ratings on the scale. A horizontal line marks the
neutral point on each scale.

6.2.1 ‘Pleasant – Unpleasant’ scale

18 ISO Record 4.75
4 UK Ring 4.58

15 ETR CWait 4.24
10 UK CWait 4.11
2 UK SDial-X 4.01

12 ETR Ring 3.85
6 UK Cong 3.62

13 ETR Busy 3.61
1 UK Dial 3.42
9 UK Pay 3.38

14 ETR Cong 3.37
5 UK Busy 3.34
3 UK SDial-Y 3.12

11 ETR Dial 2.88
16 ETR Warn 2.76
17 Swed Pay 2.41
7 UK NU 2.34
8 UK SI 2.01

Comments:

Most tones were rated on the ‘unpleasant’ side of the neutral
point (4 on the scale). Only the ISO record and UK ring tones
were placed substantially on the ‘pleasant’ side, though both
UK and ETSI call waiting tones were slightly on the ‘pleasant’
side.

110 Telektronikk 1.1999

6.2.2 ‘Reassuring – Worrying’ scale

4 UK Ring 5.08
12 ETR Ring 4.26
15 ETR CWait 4.19
10 UK CWait 4.13
18 ISO Record 4.12

2 UK SDial-X 3.86
1 UK Dial 3.86
6 UK Cong 3.71

13 ETR Busy 3.63
5 UK Busy 3.54

14 ETR Cong 3.30
9 UK Pay 3.25

16 ETR Warn 3.24
11 ETR Dial 3.22
3 UK SDial-Y 3.08

17 Swed Pay 2.64
7 UK NU 2.48
8 UK SI 2.01

Comments:

The UK ring tone was much the most reassuring of all the
tones assessed, which is appropriate given its function. How-
ever, this may be an effect of the subjects’ familiarity with this
tone as conveying an ‘OK’ signal. It would be interesting to
see whether subjects in other countries considered it similarly
reassuring.

In general, tones with a ‘Feedback OK’ or ‘Prompt – Can’ func-
tion were considered reassuring or only slightly worrying, and
those with other functions were considered worrying. Excep-
tions are the ISO record tone (placed on the reassuring side of
neutral despite being categorised as ‘Prompt – Must’) and the
ETSI and System Y dial tones (considered worrying although
intended for a ‘Prompt – Can’ function).

6.2.3 ‘Calming – Alarming’ scale

10 UK CWait 4.76
4 UK Ring 4.73

18 ISO Record 4.60
15 ETR CWait 4.41
12 ETR Ring 4.29

2 UK SDial-X 3.99
1 UK Dial 3.85
6 UK Cong 3.77

13 ETR Busy 3.47
5 UK Busy 3.46

11 ETR Dial 3.25
9 UK Pay 3.19
3 UK SDial-Y 3.13

14 ETR Cong 3.09
16 ETR Warn 2.99
7 UK NU 2.58

17 Swed Pay 2.56
8 UK SI 1.80

Comments:

The same five tones were rated above neutral on this scale as on
the ‘Reassuring – Worrying’ scale, though the UK ring tone no
longer stood out from the rest. The scores for the remaining
tones were similar on the two scales, and similar remarks apply.

6.2.4 ‘Not disruptive – Disruptive’ scale

10 UK CWait 5.17
18 ISO Record 5.12
15 ETR CWait 4.90
4 UK Ring 4.62

12 ETR Ring 4.43
6 UK Cong 4.22
2 UK SDial-X 4.21
1 UK Dial 4.19

5 UK Busy 3.87
11 ETR Dial 3.80
13 ETR Busy 3.80
9 UK Pay 3.66

14 ETR Cong 3.60
16 ETR Warn 3.42
3 UK SDial-Y 3.38
7 UK NU 3.10

17 Swed Pay 2.80
8 UK SI 2.04

Comments:

Ratings on this scale tended to be higher than on the preceding
ones, and this is reflected in the larger number of tones scoring
above neutral. However, the relative scores and rank ordering
are similar to those on the ‘Calming – Alarming’ scale.

The tones considered least disruptive were the two call waiting
tones and the ISO record tone, all of which have short ‘on’
intervals (0.2s or less). However, the Swedish pay tone which
also has short ‘on’ intervals was one of the most disruptive. This
suggests that high frequency (found both in the Swedish pay
tone and in the UK special information tone) is perceived as a
disruptive characteristic.

6.2.5 ‘Does not require action – Requires action’ scale

18 ISO Record 4.88
10 UK CWait 4.86
15 ETR CWait 4.33
12 ETR Ring 4.24

–-1 ––– UK Dial ––––––– 4.00 ––
4 UK Ring 3.87

11 ETR Dial 3.84
5 UK Busy 3.66
6 UK Cong 3.65
2 UK SDial-X 3.59

13 ETR Busy 3.58
16 ETR Warn 3.33
3 UK SDial-Y 3.23
7 UK NU 3.13

14 ETR Cong 3.12
9 UK Pay 3.03

17 Swed Pay 2.78
8 UK SI 2.05

111Telektronikk 1.1999

Comments:

The scores and rankings on this scale were broadly similar to
those on the preceding two scales, though the UK ring and pay
tones and the System X dial tone were placed lower, and the
UK dial tone higher, on this scale.

This perceptual scale relates more directly to function than any
of the other scales, in that some tones, in their intended uses, do
in fact require action and others do not. Those that most clearly
do require action are those in the ‘Prompt – Must’ category, i.e.
pay and record tones; ‘Prompt – Can’ and ‘Feedback Not-OK’
tones do not require action but do at least suggest or invite it;
and ‘Feedback OK’ tones clearly do not require action. When
this functional ranking is compared with the perceptual one,
some anomalies emerge. In particular, the ISO record tone,
designed for a ‘Prompt – Must’ function, and the two call wait-
ing tones, classified as ‘Prompt – Can’, were all perceived as
less requiring of action than any of the others. The UK and
Swedish pay tones, however, were appropriately rated as re-
quiring action, and within the ‘Feedback’ category all the ‘Not-
OK’ tones were judged to require action more than those (ring
tones) indicating an ‘OK’ status.

6.2.6 ‘Not Urgent – Urgent’ scale

10 UK CWait 5.28
18 ISO Record 4.70
12 ETR Ring 4.54
15 ETR CWait 4.51
1 UK Dial 4.22
4 UK Ring 4.07

11 ETR Dial 4.04

6 UK Cong 3.67
2 UK SDial-X 3.64
5 UK Busy 3.61

13 ETR Busy 3.43
16 ETR Warn 3.42
3 UK SDial-Y 3.32
7 UK NU 3.22

14 ETR Cong 2.98
9 UK Pay 2.98

17 Swed Pay 2.82
8 UK SI 1.88

Comments:

The ranking of the tones on this scale was very similar to that
on the preceding scale. Ring, call waiting and record tones and
basic dial tones were judged ‘not urgent’ on average, while all
the ‘Feedback Not-OK’ tones and the two special dial tones
were rated as ‘urgent’.

6.2.7 ‘Interesting – Boring’ scale

18 ISO Record 4.47
4 UK Ring 4.34
3 UK SDial-Y 4.09
8 UK SI 4.08

17 Swed Pay 3.91
15 ETR CWait 3.76

9 UK Pay 3.73
2 UK SDial-X 3.73
6 UK Cong 3.63

16 ETR Warn 3.52
13 ETR Busy 3.52
14 ETR Cong 3.43
12 ETR Ring 3.42
1 UK Dial 3.30
5 UK Busy 3.23

10 UK CWait 3.18
7 UK NU 2.85

11 ETR Dial 2.74

Comments:

The ranking of the tones on this scale was very different from
that on any of the other scales. For instance, the ISO record tone
and the UK special information tone, which were near opposite
ends of the rank order for each of the other adjective pairs, were
here placed close together as both being ‘interesting’, while the
UK call waiting and number unobtainable tones, also placed
near the top and bottom respectively for each of the other scales,
were both considered ‘boring’. Some similarity might have been
expected between the ‘Interesting – Boring’ and ‘Pleasant – Un-
pleasant’ scales, and indeed the same two tones appear at the
top of both, but in other respects they differ widely, and the
‘Pleasant – Unpleasant’ scores are on the whole more closely
related to those on the other five scales than to those on this one.

Multiple frequencies with different timing (found in tones 3, 8
and 18) and a complex cadence (tones 4, 6, 8, 15, 17 and 18)
appear to contribute to making a tone interesting. In contrast,
tones with a single frequency presented continuously (tones 7
and 11) are regarded as boring.

Ratings on this scale do not appear to relate to tone function: in
several cases different tones with similar functions were scored
very differently, including ring tones (4 and 12) and dial tones
(1, 2, 3 and 11).

6.2.8 Pooled scale

Scores on the pooled scale were derived by taking the mean
across all the original scales other than ‘Interesting – Boring’.
These scales had been observed to be strongly correlated. (This
was confirmed by a factor analysis of the mean scores for the 18
tones on these six scales, in which the first factor was found to
explain 91.8 % of the variance and yielded a rank order identi-
cal to that on the pooled scale. A factor analysis of the mean
scores on all seven scales yielded two factors, the first similar to
that in the six-scale analysis and almost independent of the
‘Interesting – Boring’ score, and the second having weighting
0.975 on the ‘Interesting – Boring’ score and less than 0.3 on
each of the others, which together accounted for 95.7 % of the
variance.)

A high score thus indicates a tone judged to be pleasant, re-
assuring, calming, not disruptive, not requiring action and not
urgent, whereas a low score represents one considered un-
pleasant, worrying, alarming, disruptive, requiring action
and urgent.

112 Telektronikk 1.1999

10 UK CWait 4.72
18 ISO Record 4.70
4 UK Ring 4.49

15 ETR CWait 4.43
12 ETR Ring 4.27

1 UK Dial 3.92
2 UK SDial-X 3.88
6 UK Cong 3.77

13 ETR Busy 3.59
5 UK Busy 3.58

11 ETR Dial 3.50
9 UK Pay 3.25

14 ETR Cong 3.24
3 UK SDial-Y 3.21

16 ETR Warn 3.19
7 UK NU 2.81

17 Swed Pay 2.67
8 UK SI 1.97

Comments:

The order of the tones on the pooled scale is very similar to
that on the ‘Calming – Alarming’ scale. Ring, call waiting and
record tones scored positively overall, and all the others scored
negatively.

Where UK and other tones with the same function were com-
pared, the UK tone was usually given a higher score than the
non-UK one. (The only exception is for busy tones, where the
UK and ETSI tones scored almost the same.) This may be a
familiarity effect, given that the subjects were British; experi-

ments with subjects from other countries would be necessary
to elucidate this.

6.3 Characterisation of tones in a
two-dimensional space

The observations in the previous section suggest that tones can
be characterised perceptually on two dimensions, the first corre-
sponding to the pooled scale defined in Section 6.2.8, and the
second corresponding to the ‘Interesting – Boring’ scale.

Figure 7 shows the 18 tones plotted on these two dimensions.
According to recommendations on subjective characteristics in
the ETSI report [2], tones towards the left of the plot should be
suitable for ‘Feedback Not-OK’ and ‘Prompt – Must’ functions,
and those towards the right should be suitable for ‘Feedback
OK’ and ‘Prompt – Can’ functions. By this criterion, most of
the tones tested appear to be fairly well matched to their in-
tended functions, the ISO record tone being an exception (as
already remarked in Sections 6.2.2 and 6.2.5 above).

7 Summary and conclusions

The study described here set out to explore users’ perceptions of
a set of telephony tones using an inventory of semantic differen-
tial scales, so as to determine whether the perceptions matched
the intended functions of the tones (as set out in the ETSI
model), and whether differences in perceived characteristics
between tones could be reliably detected using the semantic
differential technique.

113Telektronikk 1.1999

Figure 7 Positions of tones in two-dimensional space

1.5

5

4.5

4

3.5

3

2.5
2.0 2.5 3.0 3.5 4.0 4.5 5.0

UKNU
EDial

UKCWUKBusy
UKDial

ERing

ECWUKSD-X
UKCong

EBusy
ECong

EWarm

UKPay

SPay
UKSI UKSD-Y

UKRing

IRec

Dimension 1 (Pooled)

D
im

en
si

on
 2

 (
In

te
re

st
in

g
-

B
or

in
g)

Major differences were in fact found in the judgements of dif-
ferent tones. Most of the comparisons between pairs of tones on
specific semantic differential scales attained a high degree of
statistical significance on the sample of 100 subjects. Moreover,
a clear pattern emerged, in which over 90 % of the inter-tone
variance in the mean scores on six of the seven scales was
explained by a single factor, so that the results could be sum-
marised by locating each tone in a two-dimensional space.

The first of the two dimensions of perceptual characterisation
contrasts tones which are pleasant, reassuring, calming, not dis-
ruptive, not requiring action and not urgent (having high values
on the pooled scale) with those considered unpleasant, worry-
ing, alarming, disruptive, requiring action and urgent (having
low values). This dimension seems closely related to the con-
trasting subjective characteristics recommended in the ETSI
report [2] for tones indicating ‘OK’ and ‘not OK’ system status.

The second dimension corresponds to the single semantic differ-
ential scale from interesting to boring. Tones incorporating
multiple frequencies or complex cadence were judged most
interesting, and those with a single frequency played continu-
ously were found most boring. It is not immediately obvious
how this dimension relates to the functional classification of
tones.

Results on specific tones were as follows:

• The dial tones (UK and ETSI) and special dial tones (System
X and System Y) ranged from near neutral to fairly low on
the first dimension, but were mostly near the middle of the
ranked list, which seems reasonable given their ‘Prompt –
Can’ function.

• The ISO record tone was rated high on the first dimension.
This suggests that it may not be suitable for its intended func-
tion, in which a response is required from the user within a
designated time-out period (i.e. it is in the ‘Prompt – Must’
category), as it does not convey an impression of urgency.
However, in practice this will depend on the context in which
it is encountered: for instance a verbal prompt to record a
message, immediately preceding the tone, would help to
make the purpose clear.

• The UK and ETSI call waiting tones were also high on the
first dimension. This seems appropriate given that they occur
in the talk phase of a call as prompts for non-mandatory
action and should therefore be designed not to be too intru-
sive.

• Both the pay tones tested (UK and Swedish) had scores well
below neutral on the first dimension, appropriate to their
function as prompts for urgent and necessary action.

• Both the UK and the ETSI ring tones scored positively on the
first dimension – appropriately since they give feedback that
the system status is OK. The other feedback tones had scores
below the neutral point, appropriate to their function as indi-
cating a ‘not OK’ condition. The UK special information
and number unobtainable tones were found particularly un-
pleasant and disturbing.

In general the subjects in this experiment rated the UK tones
higher on the first dimension (i.e. as more pleasant, less alarm-
ing, etc.) than the non-UK equivalents. This may be a result of
greater familiarity; to test this hypothesis would require further
research with subjects from other countries.

Broader questions include the following.

• To what extent are the perceptions of existing tones, as mea-
sured in this experiment, determined by the tones’ inherent
acoustic characteristics, and to what extent are they modified
by users’ past experience of the tones in use? This will have a
bearing on predictions about users’ perceptions of new tones
when these are first introduced, and on the degree to which
those perceptions can be expected to change with experience.

• Do the two dimensions identified here provide a complete
characterisation of the salient aspects of users’ perceptions of
telephone network tones, or are there other dimensions which
must be considered so as to design tones appropriate for par-
ticular functions?

• To what range of sounds is the two-dimensional characterisa-
tion appropriate? This experiment was confined to existing
tones which are fairly simple in their acoustic structure (being
combinations of not more than three pure tones, with regular
cadences), but with modern equipment it might be feasible to
use more complex synthesised or real-world sounds; would
the same dimensions apply to these, and would any extra
dimensions be required to characterise them?

All these questions suggest directions for further experimental
work.

To bridge the gap between evaluating tones out of their intended
specific contexts, as in this experiment, and experiencing them
in context (i.e. at particular points in the process of setting up
and continuing a call), comparative trials of tones in their in-
tended contexts should ideally be conducted. However, experi-
ments like the one reported here, which are relatively simple
and quick to design and run, will still be appropriate in the early
stages of designing a new tone, with evaluations in context per-
haps following at a later stage once a promising tone (or a set of
plausible candidate tones) for a specified function has been
identified.

8 Acknowledgements

This work was carried out as part of the Dialogues 2000 Project,
which was made possible by support from Engineering and
Physical Sciences Research Council and from BT as part of the
SALT LINK Programme. The authors acknowledge with thanks
the assistance of their colleagues at CCIR, at BT Laboratories
and at ETSI.

114 Telektronikk 1.1999

9 References

1 Anderson, D M. Feedback tones in public telephone net-
works: Human Factors work at ETSI. Telektronikk, 93 (3/4),
65–77, 1997.

2 ETSI. Human Factors (HF) : European harmonization of
network generated tones, Part 1: A review and recommen-
dations. Valbonne, 1997. (TR 101 041-1.)

3 Pollack, I. The information of elementary auditory displays.
Journal of the Acoustical Society of America, 24, 745–749,
1952.

4 ETSI. Recommendation of characteristics of telephone ser-
vice tones when locally generated in telephony terminals.
Valbonne, 1995. (ETR 187.)

5 Oppenheim, A N. Questionnaire design and attitude
measurement. London, Heinemann Educational Books Ltd,
1973.

115Telektronikk 1.1999

Mervyn Jack (49) is Professor of Electronic Systems
at the University of Edinburgh. He leads a multi-
disciplinary team of twenty researchers investigating
human factors and usability engineering of auto-
mated telephone services. His main research inter-
ests are dialogue engineering and virutal reality
systems design for advanced e-commerce and
consumer applications.

e-mail: Mervyn.Jack@ed.ac.uk

Mark Schmidt (32) is currently a manager in the Cus-
tomer Relationship Management (CRM) practice at
Andersen Consulting, specialising in the design and
implementation of multi-channel customer contact
centres. His specialist skills lie in the area of speech
processing, voice processing and dialogue design for
man-machine interfaces involving speech. Prior to
joining Andersen Consulting in 1997, Mark Schmidt
spent 8 years at the Centre for Communication Inter-
face Research at Edinburgh Univ.

Donald M. Anderson is currently working as Re-
search Ergonomist with Rikshospitalet (National
Hospital), Oslo, and as the Principal Consultant,
Man Machine Technology AS. He has 45 years
experience in ergonomics and his interests include
standards, maritime ergonomics, product design
and development and aids for the handicapped.

e-mail: mantech@login.eunet.no

Fergus McInnes (36) is a Research Fellow at the
Centre for Communication Interface Research
(CCIR) at the University of Edinburgh. He has 14
years’ research experience, mainly in speech recog-
nition and spoken dialogue systems. His current
work is on fluent speech dialogues for automated
telephone services and on usability issues in video-
conferencing systems and virtual environments.

e-mail: Fergus.McInnes@ed.ac.uk

116 Telektronikk 1.1999

Status

117Telektronikk 1.1999

118 Telektronikk 1.1999

Security is a key component in all information technology and
telecommunications. Security functions take care of the user's
privacy by preventing eavesdropping, and it also protects the
network and service providers from unauthorised access to the
systems. In telecommunications, security functions were heavily
emphasised when specifying the pan-European mobile system
GSM. Radio frequencies constitute a ‘shared’ transmission
medium, which means that ‘anyone’ in principle can eavesdrop
on or intrude into the communications channel with simple
means. In GSM, this issue was taken seriously, so that advanced
algorithms and functions were introduced for both authentica-
tion and encryption purposes.

One of the international organisations dealing with security
issues is the International Organization for Standardization –
ISO. In this issue of the Status section, Øyvind Eilertsen reports
from the work performed in ISO/IEC1) Joint Technical Com-
mittee (JTC) 1, Subcommittee (SC) 27, “Security Techniques”.
The work in SC 27 covers all aspects of security standardisa-
tion.

The future mobile communications systems, or third generation
mobile systems, as they are often called, are now soon reality.

119Telektronikk 1.1999

1) International Electrotechnical Committee.

Introduction
P E R H J A L M A R L E H N E

Per Hjalmar Lehne (40) is Research Scientist at
Telenor Research & Development, Kjeller. He is
working in the field of personal communications,
with a special interest in antennas and radio wave
propagation for land mobile communications.

e-mail: per.lehne@fou.telenor.no

That means that the future we are talking about is the very near
future. In Europe, the new generation of mobile communica-
tions is called UMTS – Universal Mobile Telecommunications
System. The European Telecommunications Standards Institute
– ETSI , with its Technical Committee (TC) Special Mobile
Group (SMG), is responsible for the standardisation of UMTS.
The introduction of UMTS is defined to be in two steps, or
phases. Phase 1, which is based on the existing GSM core net-
work, is planned for introduction and roll-out from 2001 – 2002.
UMTS Phase 2 is planned to start in 2005 using a broadband
core network, probably based on an evolvement of the Internet
Protocol (IP).

The single most important step towards providing full multi-
media access to personal, mobile terminals is the specification
of a new radio interface capable of carrying 2 Mb/s services in
dense areas. The new terrestrial radio interface for UMTS is
called UTRA, which stands for UMTS Terrestrial Radio Access.
In the second paper of this section, the basic concepts of UTRA
are described, emphasising the physical layer. It is important not
to forget that UMTS also incorporates a satellite component, for
which a radio interface called USRA (UMTS Satellite Radio
Access) is being discussed.

120 Telektronikk 1.1999

JTC 1

The International Organization for Standardization (ISO) and
the International Electrotechnical Committee (IEC) have estab-
lished a joint technical committee (JTC 1) to facilitate standard-
ization in the field of information technology. In this context,
information technology includes the “specification, design and
development of systems and tools dealing with the capture, rep-
resentation, processing, security, transfer, interchange, presenta-
tion, management, organization, storage and retrieval of infor-
mation.”

As of January 1999, JTC 1 has 19 subcommittees, and the work
areas include terminology, user interfaces, audio/video coding,
software engineering, and security.

SC 27

Subcommittee (SC) 27 ‘Security Techniques’ takes care of all
aspects of security standardization, including

• Identification of generic requirements for IT system security
services;

• Development of security techniques and mechanisms;

• Development of security guidelines;

• Development of management support documentation and
standards.

Specifically excluded is the actual embedding of security mech-
anisms in applications. The standardization of cryptographic
algorithms for confidentiality services was excluded for some
time, but is now a part of the work area.

A large number of security-related standards from a variety of
standards organizations have already been developed. To avoid
duplicating existing work, SC 27 has liaison with groups doing
security work, including ECMA (TC 36), ETSI (TC security),
ITU-T (SG7/Q20) and IEEE (P1363). In addition, SC 27 has
liaison to other ISO committees, including TC 68 (‘Banking,
securities and other financial services’).

Working groups

The activities of SC 27 are divided into three working groups or
WGs.

Working Group 1:
‘Requirements, security services and guidelines’

The terms of reference of Working Group 1 are

• Identification of application and system requirement compo-
nents;

• Development of standards for security services (e.g. authenti-
cation, access control, integrity, confidentiality, management
and audit) using techniques and mechanisms developed in
WG 2;

• Development of supporting interpretative documents (e.g.
security guidelines, glossaries, risk analysis).

Current work:

• Trusted Third Parties (TTPs): The technical report ‘Guide-
lines for the use and management of TTPs’ is currently under
PDTR ballot. The target date for publishing is May 2000.
‘Specification of TTP services to support the application of
digital signatures’ is still a Working Draft.

• Guidelines for the management of IT security (GMITS): Parts
4 and 5 are currently under PDTR ballot, and the target date
for publishing is May 2000.

• Other work items in WG 1 still on the working draft level are
‘Time stamping services and protocols’, ‘Security Informa-
tion Objects’ and ‘IT intrusion detection framework’.

Working Group 2:
‘Security techniques and mechanisms’

WG 2 terms of reference:

• Identify the need and requirements for security techniques
and mechanisms in IT systems applications;

• Develop terminology, general models and standards for these
techniques and mechanisms for use in security services.

The mechanisms in general include several options, including
both cryptographic (symmetric and asymmetric) and non-cryp-
tographic techniques.

Current work:

A number of standards are currently being revised, including

• IS 10118 ‘Hash functions’ parts 1 and 2;

• IS 9797 ‘Message Authentication Codes’ parts 1 and 2;

• IS 9798 ‘Entity authentication’ parts 2 and 4;

• IS 9796 ‘Digital signature mechanism giving message
recovery’ part 1;

• IS 7064 ‘Check character systems’.

A new work item is ‘Cryptographic techniques based on Elliptic
Curves’, parts 1 to 3, which is a really hot topic in the crypto-
graphic community. All three parts are still Working Drafts with
a publication target date of 2000/2001. A new working draft on
random number generation and validation is still in a very early
phase.

Working Group 3:
‘Security evaluation criteria’

WG 3 terms of reference (excerpt):

• Develop standards for security evaluation and certification of
IT systems, components and products. This will include con-
sideration of computer networks, distributed systems, asso-
ciated application services, etc. Three aspects may be dis-
tinguished:

1 Evaluation criteria;

2 Methodology for application of the criteria;

3 Administrative procedures for evaluation, certification and
accreditation schemes.

Security standardization in ISO
Ø Y V I N D E I L E R T S E N

121Telektronikk 1.1999

Current work:

WG 3 was initially established to develop the IT evaluation
criteria. This project has been carried out in close co-operation
with the Common Criteria project, whose main goal has been to
align existing evaluation criteria from Canada, Europe and the
US. The ISO/IEC standard will be technically aligned with the
final version of the Common Criteria.

The WG 3 evaluation criteria project is now approaching its
conclusion, as all three parts of the standard are undergoing
Final DIS ballot. To facilitate the implementation and wide-
spread use of the evaluation criteria, WG 3 has initiated a num-
ber of new projects, including ‘Protection Profile registration’,
‘Framework for IT security assurance’ and ‘Guide for produc-
tion of Protection Profiles and Security Targets’.

SC 27 schedule

SC 27 working group meetings are held every six months,
usually in April and October. The 1999 meetings will be
arranged in Madrid, Spain (April) and Columbia, MD, USA
(October). The SC 27 meeting calendar, as well as the an
overview of security terminology and the project catalogue can
be downloaded from the Internet address

http://www.iso.ch:8080/jtc1/sc27/

Norwegian work in SC 27

Norway has been an active member of SC 27 since the creation
of the committee in 1990. Svein J. Knapskog has been convenor
of WG 3 from the start, and there has been consistent Norwe-
gian representation in WG 2.

It has generally been difficult to find Norwegian companies
willing to support participation in WG 1, but the recent work
on TTPs has persuaded both Posten SDS and Telenor to send
representatives to the working group meetings.

Norsk Teknologistandardisering (NTS) is the Norwegian mem-
ber body for SC 27, and all membership issues are handled by
NTS and the reference group K 171, which at present is headed
by Øyvind Eilertsen of Telenor Research and Development.
K 171 generally meets prior to the Working Group meetings
to co-ordinate Norwegian voting and comments to documents,
and participation is not limited. Interested parties are strongly
encouraged to attend the K 171 meetings.

Abbreviations

CD Committee Draft

DIS Draft International Standard

DTR Draft Technical Report

FCD Final Committee Draft

FDIS Final Draft International Standard

IEC International Electrotechnical Committee

ISO International Organization for Standardization

JTC Joint Technical Committee

NTS Norsk Teknologistandardisering

PDTR Proposed Draft Technical Report

SC Subcommittee

TR Technical Report

TTP Trusted Third Party

WD Working Draft

WG Working Group

Øyvind Eilertsen (32) has been employed as Re-
search Scientist at Telenor R&D since 1992. He
is attached to the security group and is currently
working on a project related to GSM security.
Interests include cryptographic algorithms and
Internet security.

e-mail: Oyvind.Eilertsen@fou.telenor.no

122 Telektronikk 1.1999

Background

In January 1998, ETSI1) Special Mobile Group – SMG, held its
24th meeting in Paris. The main task for this meeting was to
decide the new radio access method to be adopted for UMTS,
namely UTRA – UMTS Terrestrial Radio Access. Before the
ETSI decision, 5 candidates were competing for UTRA:

• α: Wideband Code Division Multiple Access (W-CDMA);

• β: Orthogonal Frequency Division Multiple Access
(OFDMA) with slow frequency hopping (SFH);

• δ: Time Division / Code Division Multiple Access
(TD/CDMA);

• γ: Wideband Time Division Multiple Access (WB-TDMA);

• ε: Opportunity Driven Multiple Access (ODMA).

ETSI SMG’s decision was a compromise:

• In the paired frequency band the α-concept (W-CDMA) was
chosen.

• In the non-paired frequency band the δ-concept (TD/CDMA)
was chosen together with elements from the ε-concept
(ODMA).

• The concepts should be further developed to be harmonised
for best interoperability.

UTRA – the radio interface for UMTS
P E R H J A L M A R L E H N E

1) European Telecommunications Standards Institute.

Mode:

FDD TDD

Access method Direct Sequence (DS)-CDMA

User bit rates up to 2.048 Mb/s

Chip rate 4.096 Mcps, extendible to 8.192 and 16.384 Mcps

Channel separation 5 MHz, adjustable with a channel raster of 200 kHz
The carrier frequency must be a multiple of 200 kHz

Duplex distance Variable (TBD) n/a

Frequency bands 1 920 – 1 980 MHz (UL) any
2 110 – 2 170 MHz (DL)

Frame length 10 ms

Spreading codes Orthogonal Variable Spreading Factor – OVSF
Extended Very Large Kasami Orthogonal Gold codes

Channel coding Convolutional codes, Turbo codes, RS codes, interleaving

Table 1 Main parameters of the new UTRA concept [1]

ITU Spectrum (WRC97) IMT-2000IMT-2000

Europa (CEPT)

GSM1800 (U) GSM1800 (D)
UTRA

FDD (U)

700 1800 1900 2000 2100 2200

UTRA
FDD (D)D

E
C

T

U
T

R
A

T
D

D

U
T

R
A

T
D

D

S
-

U
M

T
S

(U
)

S
-

U
M

T
S

(D
)

MHz

Figure 1 Frequencies for IMT-2000 and UMTS

123Telektronikk 1.1999

ModulatorInformation bit stream, rb

Spreading code, rs

Figure 2 Principle for Direct Sequence CDMA

Channelization code Orthogonal Variable Spreading factor – OVSF

Scrambling codes Short Scrambling Code:
Extended Very Large Kasami set (256)

Long Scrambling Code:
40960 (10 ms) segment of a 241 - 1 Gold code

Random access preamble spreading code 256/128 chip orthogonal Gold code

Synchronisation code 256/128 chip orthogonal Gold code

Table 2 Spreading codes used in UTRA

UTRA in a ‘nutshell’

After the decision, the Physical Layer Expert Group of SMG2
has worked intensively to develop and harmonise the concepts.
In Table 1 the main parameters of UTRA are listed [1]. These
seem to be fairly stable. Most of the parameters and modes are
described in this article.

Frequencies

The ITU World Radio Conference in 1997 – WRC ’97 – allo-
cated the frequency bands for the third generation mobile sys-
tem – IMT-2000. The European counterpart – UMTS – was
allocated nearly the same bands from the European Radio
Office – ERO. Figure 1 shows these frequency bands.

Duplex methods

The duplex method is the technique used for separating the
two transmission directions, denoted uplink and downlink. The
UTRA concept contains two different duplex modes to be used
in different scenarios:

• FDD – Frequency Division Duplex: Up- and downlink are
separated in the frequency domain. Different frequencies are
used for each direction.

• TDD – Time Division Duplex: Up- and downlink are sepa-
rated in the time domain. The same frequency is used, but the
two directions use different time slots.

CDMA – Code Division Multiple Access

A novel method for channel access and resource sharing is used
in UTRA. This is Code Division Multiple Access – CDMA.
In UTRA, a technique called Direct Sequence CDMA (DS-
CDMA) is employed. The principle is shown in Figure 2. More
comprehensive descriptions of the CDMA principle are given
by [2] and [3].

The coded information bit stream is multiplied with a spreading
code before it is fed to the RF-modulator. The smallest unit of
the spreading code is called ‘chip’. The chip rate is much higher
than the information bit rate. For UTRA it is up to 64 times
higher.

CDMA is thus used to allocate several connections and users to
the same time- and frequency-domain resource. In UTRA dif-
ferent spreading codes are used for different purposes:

• Channelisation code – allocated to the connection;

• Scrambling codes – allocated to the cell;

• Random access preamble spreading code;

• Synchronisation code.

Table 2 lists the spreading codes chosen.

124 Telektronikk 1.1999

Common Channels:

Broadcast Control Channel – BCCH A downlink channel used to broadcast system- and cell-specific information over the
entire cell.

Forward Access Channel – FACH A downlink channel used to carry control information to an MS when the location cell is
known. Transmitted over the entire cell or over only a part of the cell using lobe-forming
antennas.

Downlink Shared Channel – DSCH A downlink channel used to carry control information to MSs. Can be standalone or
associated with a DCH. Transmitted over the entire cell or over only a part of the cell
using lobe-forming antennas.

Paging Channel – PCH A downlink channel used to carry control information to a mobile station when the loca-
tion cell is unknown. Transmitted over the entire cell.

Random Access Channel – RACH An uplink channel used to carry control information from a mobile station. Always re-
ceived from the entire cell.

Dedicated Channels:

Dedicated Channel – DCH A downlink or uplink transport channel used to carry user or control information between
the network and a mobile station.

Table 4 Transport channel types in UTRA

Control Channels (CCH): Control plane information only

Synchronisation Control Channel (SCCH) A downlink channel used for broadcasting synchronisation information (cell ID,
optional information) in case of TDD operation.

Broadcast Control Channel (BCCH) A downlink channel for broadcasting system control information.

Paging Control Channel (PCCH) A downlink channel that transfers paging information. It is used when the network
does not know the location cell of the UE.

Dedicated Control Channel (DCCH) A point-to-point bi-directional channel that transmits dedicated control information
between a UE and the network.

Common Control Channel (CCCH) Bi-directional channel for transmitting control information between network and UEs.

Traffic Channels (TCH): User plane information only

Dedicated Traffic Channel (DTCH) A point-to-point channel dedicated to one UE, for the transfer of user information.

Table 3 Logical channel types in UTRA

Radio Protocol Architecture

Channel hierarchy

The radio protocol is organised in so-called ‘channels’ on three
levels on layers 1 and 2. From top to bottom these are: Logical
channels, transport channels and physical channels.

The logical channels handle the layer 2 Medium Access Control
(MAC) and Radio Link Control (RLC), as well as control and
user information. The transport channels constitute the interface
between layer 1 and layer 2 MAC, both for signalling and data.

The physical channels are the physical bearers for the transport
channels. They describe the physical resources, like carrier fre-
quency, code and (uplink only) relative phase (0 or π/2); in
TDD mode also time slot. In this context, it is necessary to
define the difference between the Mobile Station – MS, and the
User Equipment – UE. The MS (or ME – Mobile Equipment) is
the radio transceiver equipment. The MS together with a UMTS
Subscriber Identity Module (USIM) is called a UE. A UE can
have several USIMs.

The different logical, transport and physical channel types de-
fined in UTRA are listed in Tables 3, 4 and 5.

Common Physical Channels:

Primary Common Control Physical Downlink physical channel used to carry the BCCH.
Channel – CCPCH

Secondary Common Control Physical Downlink physical channel used to carry the FACH and PCH.
Channel – CCPCH

Synchronisation Channel A downlink signal used for cell search. Consists of two sub-channels, the Primary and
– SCH Secondary SCH.

Physical Random Access Channel Uplink physical channel used to carry the RACH. Based on a slotted ALOHA scheme.
– PRACH

Dedicated Physical Channels:

Dedicated Physical Channel Downlink physical channel used to carry dedicated data generated at Layer 2 and
– DPCH above. It is time-multiplexed with control information generated at Layer 1.

Dedicated Physical Data Channel Uplink physical channel used to carry dedicated data generated at Layer 2 and above,
– DPDCH i.e. the DCH. Each Layer 1 connection may have zero, one or several uplink DPDCHs.

Dedicated Physical Control Channel Uplink physical channel used to carry control information generated at Layer 1.
– DPCCH

125Telektronikk 1.1999

Physical Layer Model

The physical layer model, with an example of the uplink as seen
from the MS is shown in Figure 3.

Frame Structure

The basic unit in the frame structure of UTRA is called a frame
of 10 ms duration. It consists of 16 slots, each 625 µs. Each slot
consists of a variable number of bits, depending on the service
carried. By using rate matching and OVSF codes the bits are
coded into a chip rate of 4.096 Mchips/s, giving 2 560 chips/slot.

Phy CH

Coding and
multiplexing

Coding

Splitter

Coding

Physical
Channel
Data
Streams

TCP

Coded Composite
Transport Channel

(CCTrCH)

Transport
Format

Indicator
(TFI)

DCHDCHDCHDCH RACH

Phy CH Phy CH Phy CH Phy CH

Figure 3 Model of the MSs physical layer – uplink

Table 5 Physical channel types in UTRA

126 Telektronikk 1.1999

UTRA FDD also defines a super frame of 720 ms, consisting
of 72 frames. The frame structure is shown in Figure 4. An ex-
ample of how the slot is organised for the dedicated physical
channel (DPCH) is shown in Figure 5.

Random Access – FDD mode

The random access is based on a slotted ALOHA scheme as
shown in Figure 6. Each frame period is organised into 8 access
slots, each offset by 1.25 ms. The access burst is of 11.25 ms
duration, consisting of a 1 ms preamble and a 10 ms data part
as shown in Figure 7.

Asymmetric Duplex in TDD mode

Multimedia communications, like Internet browsing, has a very
asymmetric nature, i.e. the effective bit rate is much higher in
one direction than in the other. Conventional FDD networks
typically allocate equal bandwidths in both directions, and are
thus far from optimal in resource efficiency. In UTRA, this
aspect has been taken into account, especially in the TDD part.
The asymmetric duplex method specified has a high degree of
flexibility in the asymmetry rate, ranging from 1:1 to 1:15.
Some examples are shown in Figure 8.

Data++

Slot
#i

Slot
#2

Slot
#1

Slot
#16

Frame
#i

Frame
#2

Frame
#1

Frame
#72

Slot: 0,625 ms; 20•2k bits (k=0..6)

Frame: 10 ms; 16 Slots

Super Frame: 720 ms; 72 Frames

Figure 4 Frame hierarchy for UTRA

Figure 5 Frame structure for the dedicated physical channel in UTRA FDD

DataPilot

Slot: 0,625 ms; 20•2k bits (k=0..6)

TPC RI

DPCCH DPDCH

Data

DPDCH

Pilot

Slot: 0,625 ms; 10•2k bits (k=0..6)

TPC RI

DPCCH

Downlink
DPCH

Uplink
DPDCH /
DPCCH
Quadrature
modulated

I

Q

127Telektronikk 1.1999

Random-access burst

1.25 msSlotted
ALOHA scheme

Random-access burst

Random-access burst

Random-access burst

Access slot #1

Access slot #2

Access slot #i

Access slot #8

Offset of

access slot #i

Frame boundary

Figure 6 Slotted ALOHA scheme for UTRA.FDD

Figure 7 Random-access burst

Figure 8 Asymmetric duplex in UTRA TDD

Random-access burst

Pream-
ble part
16•256
chips

Message part

1 ms 10 ms

0,25 ms

Frame: 10 ms; 16 slots

Multiple switching point;
UL/DL symmetry

Multiple switching point;
UL/DL asymmetry

Single-switching point;
UL/DL symmetry

Single-switching point;
UL/DL asymmetry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Slot no:

Frame Structure – TDD mode

In TDD mode, the basic frame structure is equal to FDD, how-
ever a different slot structure is used. A mid amble of 256 or
512 chips is introduced, and the slots are separated by a 96 chip
guard period. The transmission within a slot period in UTRA
TDD is called a ‘traffic burst’. Two different bursts are defined
as shown in Figure 9.

The transmission of control channels in TDD is also different
from FDD. In Figure 10, the organising of a frame is shown,
with the structure of the access burst, which clearly is different
from the FDD access burst.

128 Telektronikk 1.1999

Channel Coding and Multiplexing

In general, the channel coding in UTRA is performed as shown
in Figure 11. The coding and multiplexing are done on the
transport channel level. Channel coding is performed in several
stages, and the coding is different according to the different ser-
vice requirements. This is shown for the different options of
UTRA FDD in Figure 12. The coding schemes for TDD is
similar.

Figure 9 Traffic burst structure in UTRA TDD

Slot: 0,625 ms; 2 560 chips

Traffic burst 1
Guard
Period

(96)

Data
61 (976)

Midamble
(512)

Data
61 (976)

Traffic burst 2
Guard
Period

(96)

Data
69 (1104)

Midamble
(256)

Data
69 (1104)

Figure 10 Control channel frame structure in UTRA TDD

Guard
Period

(96)

Data
21 (336)

Midamble
(512)

Data
21 (336)

Slot: 0,625 ms; 2 560 chips

Traffic
burst 1

Traffic
burst 2

Guard
Period

(96)

Data
21 (336)

Midamble
(512)

Data
21 (336)

Extended Guard Period
(1 280)

Extended Guard Period
(1 280)

312,5 µs 312,5 µs

Beacon
CH

RACH
TDD
BCCH /
RACH
multipleks

UL DLDL

Slot #0 Slot #1
Switching point

129Telektronikk 1.1999

Convolutional
coding

Service req.
BER ~10-3

Outer
interleaving

Turbo
coding

Service-specific
coding

Reed-Solomon
coding

Convolutional
coding

Service req.
BER ~10-6

Figure 12 Channel coding for UTRA FDD

Figure 11 Coding and multiplexing of transport channels

Channel coding +
optional TC multiplex

Coding +
interleaving

Static rate matching
Rate

matching

Inner interleaving
(inter-frame)

Interleaving
(optional)

Transport-channel
multiplexing Multiplex

Dynamic rate matching
(uplink only)

Rate
matching

Inner interleaving
(intra-frame) Interleaving

Coding +
interleaving

Rate
matching

Interleaving
(optional)

TC TC TC TC

CCTrCH

The different codes used are:

Inner coding and interleaving of layer 2 data:

• Convolutional code, code rate 1/2 or 1/3;

• Low-delay services: intra-frame (10 ms) interleaving;

• Higher allowable delay: inter-frame (15 frames, 150 ms).

Outer coding and interleaving of layer 2 data:

• Rate 4/5 Reed-Solomon code over GF(28);

• Symbol wise, inter-frame block interleaving.

Turbo coding:

• Rate 1/2 or 1/3.

Rate matching

Rate matching is a technique used to adapt the varying offered
bit rates of the transport channels to the available bit rate of the
uplink and downlink dedicated channel.

Two types of rate matching are implemented in UTRA:

• Static rate matching is carried out on a slow basis every time
a transport channel is added to or removed from the connec-
tion. It is used to adjust the coded transport channel bit rate in
order to fulfil the minimum transmission quality and to match
the total bit rate after multiplexing to the channel bit rate of
the up- and downlink DPDCH.

• Dynamic rate matching (uplink only) is carried out on a
frame-to-frame (10 ms) basis. It is used to match the total
instantaneous rate of the multiplexed transport channels to
the channel bit rate of the uplink DPDCH.

Modulation

The modulation method specified for UTRA is Quadrature
Phase Shift Keying – QPSK, with pulse shaping: The pulse
shaping filter specified is a root raised cosine (RRC) with roll-
off α = 0.22 in the frequency domain.

UTRA – GSM interoperability

One of the goals for UTRA has been the ability to inter-operate
with the existing GSM access method. When talking about
inter-operability, not only co-existence has been required, but it
should also be possible to roam and perform handover between
networks operating on the two access techniques. The handover
requirement necessitates a common entity on the radio frame
structure. This is shown in Figure 13. A so-called 26-multiframe
in GSM is used to carry the full rate traffic channel, TCH/F.
This can be synchronised to a UTRA multiframe of 12 frames,
which enables multimode mobile stations to monitor both net-
works in a structured manner.

Power Control

Power Control (PC) is crucial for a CDMA network to function
properly due to the so-called near-far problem. Three types of
power control are implemented in UTRA:

The closed loop PC (both up- and downlink) is used to adjust
the MS output power to meet uplink SIR target. It is performed
on time slot level (0.625 ms). It has a variable step size of 0.25
– 1.5 dB, with a dynamic range of 80 dB on uplink and 30 dB
on downlink.

The SIR target adjustment (both up- and downlink) is per-
formed by the outer loop PC, and based on estimated con-
nection quality. An open loop PC also exists (uplink only) in
order to adjust the output power on the physical random access
channel (PRACH).

Handover

Handover (HO) has been mentioned earlier when discussing the
UTRA – GSM interoperability. A total of three different hand-
over concepts are defined in UTRA:

The principle of soft handover is shown in Figure 14. This is the
really novel technique in UTRA compared to GSM. In normal
traffic, the mobile station communicates with more than one
base station. This set of BSs is called an active set of base sta-
tions. This technique can be used within one network.

130 Telektronikk 1.1999

Figure 13 UTRA – GSM interoperability on the radio protocol level

GSM TCH/F

UTRA FDD/TDD

"26-multiframe" = 120 ms

12 UTRA frames = 120 ms

131Telektronikk 1.1999

Mobile movement

1
1

1
1

1
1

1
1

00 12 10

Current active set

New active set

Figure 14 Soft handover (HO) in UTRA

Additionally, handover can be performed between cells to
which different number carriers have been allocated, between
cells of different overlapping layers using different carrier fre-
quencies, and between different UTRA operators/systems using
different carrier frequencies. Then, so-called UTRA to UTRA
hard handover is used.

And, finally, as mentioned earlier, hard handover from UTRA to
GSM is possible.

Additional features and options

A lot of things can be said about the new radio interface for
UMTS, and some features and options are mentioned here.

Adaptive antennas

Adaptive or ‘smart’ antennas are spatio-temporal filters that
can be implemented at the base station. This makes it possible
to reduce interference, extend the range, or in the most sophisti-
cated technique, introduce an additional dimension in the access
space; so-called Space Division Multiple Access – SDMA. De-
scribing adaptive antenna techniques is beyond the scope of this
article. A good overview can be found in [4].

Downlink transmit diversity

Transmitter diversity is a means to significantly improve capac-
ity and coverage on both FDD and TDD, without the need of a
second receiver chain in the MS as conventional receiver diver-
sity implies. Transmit diversity means sending on two (or more)
antennas at the base station in order to introduce diversity in the
received signal. In many ways, this is the reciprocal method to
conventional receiver diversity. In UTRA, two different tech-
niques are defined:

Orthogonal Transmit Diversity (OTD) utilises code division
transmit diversity. In this method the coded bits are split into
two data streams to be transmitted via two separate antennas.
By using different orthogonal channelisation codes on the two
antennas, the orthogonality between the two output streams is
maintained. A small additional processing is required at the
mobile station.

Time Switched Transmission Diversity (TSTD) and Selection
Transmit Diversity (STD) are both so-called time division trans-
mit diversity methods. This means that the signal is switched
between the antennas in one of two ways. In TSTD the signal is
switched according to a pattern decided by the base station. In
STD the switching is dependent on signalling received by the
mobile station.

MS – MS transmission; relaying

The UTRA TDD design is sufficiently flexible to support both
simple relaying and advanced relaying protocols such as Oppor-
tunity Driven Multiple Access (ODMA). Relaying is a widely
used technique for packet radio data transmission in both com-
mercial and military systems. The potential of relaying is among
other things to improve coverage by reduced effective path loss
and to increase capacity by lower transmission power and asso-
ciated inter-cell interference. Relaying means that MS – MS
transmission must be enabled. This is possible within the UTRA
TDD frame structure.

Final comments

The new radio access technique for UMTS, namely UTRA as
defined by ETSI, has inherent great potential and flexibility to
support the needs for future mobile multimedia services. Simple
trials are already taking place, and it is believed that early com-
mercial deployments will commence already in 2001 – 2002.

References

1 ETSI. The ETSI UMTS terrestrial Radio Access (UTRA)
ITU-R RTT Candidate Submission. Attachment 2 – Updated
System Description. September 1998.

2 Eriksen, J, Svebak, O D. Code Division Multiple Access –
hot topic in mobile communications. Telektronikk, 91 (4),
99–108, 1995.

3 Prasad, R, Ojanperä, T. An overview of CDMA Evolution
toward Wideband CDMA. IEEE Communications Survey.
Fourth Quarter 1998. 25.02.99. [online]. URL:
http://www.comsoc.org/pubs/surveys/4q98issue/prasad.html

4 Pettersen, M, Lehne, P H. Smart antennas – the answer to
the demand for higher spectrum efficiency in personal com-
munications systems. Telektronikk, 94 (2), 54–64, 1998.

132 Telektronikk 1.1999

Per Hjalmar Lehne (40) is Research Scientist at
Telenor Research & Development, Kjeller. He is
working in the field of personal communications,
with a special interest in antennas and radio wave
propagation for land mobile communications.

e-mail: per.lehne@fou.telenor.no

