

Contents

Telektronikk

Volume 94 No. 1 - 1998
ISSN 0085-7130

Editor:
Ola Espvik
Tel. + 47 63 84 88 83

Status section editor:
Per Hjalmar Lehne
Tel. + 47 63 84 88 26

Editorial assistant:
Gunhild Luke
Tel. + 47 63 84 86 52

Editorial office:
Telektronikk
Telenor AS, Telenor Research & Development
P.O. Box 83
N-2007 Kjeller, Norway
email: telektronikk@fou.telenor.no

Editorial board:
Ole P Håkonsen, Senior Executive Vice President
Oddvar Hesjedal, Vice President, Research & Development
Bjørn Løken, Director

Graphic design:
Design Consult AS

Layout and illustrations:
Gunhild Luke, Britt Kjus, Åse Aardal
Telenor Research & Development

Feature

Status

Special

International Research and Standardization
Activities in Telecommunications: Introduction,
Per Hjalmar Lehne ... 149

The EU Research Programme ACTS – A General
Description with Focus on Telenor Participation,
Rolf B. Haugen ... 150

InfoWin – Multimedia Information Window for ACTS,
Thorbjørn Thorbjørnsen and Claus Descamps 159

FERT – Forum for European R&D in
Telecommunications, Tor M. Jansen 164

Mathematical Model and Algorithms for
FABONETT/SDH, Ralph Lorentzen 135

CORBA and Intelligent Networks (IN),
Helge Armand Berg .. 119

Jada: Java, Architecture, Development and
Application, Arne Solevåg Hatlen, Øystein Myhre,
Birger Møller-Pedersen and Stig Jarle Ness 125

Guest editorial, Arve Meisingset 1

Introduction to Information Systems Architecture,
Arve Meisingset .. 3

The Urd Systems Planning Method,
Arve Meisingset .. 12

Decomposition and Granularity in Systems Planning,
Sigrid Steinholt Bygdås .. 22

The Role of Subject Graphs, Arne Solevåg Hatlen 28

Three Perspectives on Information Systems
Architecture, Arve Meisingset 32

Alliance Approach to the TMN X Interface,
Ronald Bonica .. 39

The Open Service Layer Protocol (OSLP),
Ronald Bonica ... 48

Introduction to RM-ODP – A Reference Model of
Open Distributed Processing, Håkon Lønsethagen 55

RM-ODP for Transport Network Modelling
– An Example, Håkon Lønsethagen 67

Engineering Communicating Systems,
Knut Johannessen ... 79

The TINA Architecture,
Tom Handegård and Lill Kristiansen 95

CORBA as an Infrastructure for Distributed
Computing and Systems Integration,
Håkon Solbakken (ed.), Ole Jørgen Anfindsen,
Eirik Dahle, Tom Handegård and Kjell Sæten 107

When IT managers are asked in
which area they have greatest
need for contributions, they
typically answer IT architecture.
IT architecture is considered to
be a means to control both
evolution of systems and change
of technology. A telecommuni-
cations operator typically
manages several hundreds,
maybe thousands of internal
computer systems running on
tens of different technologies.
This picture is extended with
software from different vendors
in the telecommunications
network itself, in service pro-
visioning and for communication
with vendors, partners, retailers
and customers. The IT managers
request means to manage current
and future systems to serve
the varying needs of the organ-
isation in a timely manner. As
telecom operators are replacing
much of their personnel by
computer systems, cost effective
offering and management of
these systems become critical to
the survivability of the company.

The IT architecture subject has in some way or other been
addressed since the first creation of computers. Systems plann-
ing problems have been addressed for a generation (30 years).
Still, IT architecture at large is a poorly understood subject and
some aspects have been shown relatively little attention by
academia. One reason for this may be that large systems and
large families of systems are only addressed by the industry and
they exceed the size of academic studies. Also, the effects of a
new systems plan may come ten years after introduction, when
the original plan is forgotten and the analysts are gone. The
design of individual smaller systems provides a more manage-
able and controllable size for theory development and valid-
ation. Added to this situation, the IT architecture subject is
burdened with much sloppy terminology and marketing slogans.
The fact that terminology and architectures are interwoven and
motivated by marketing and power struggles within the organ-
isation should come as no surprise to the critical reader.
Therefore, the analysts will have to face many obstacles in the
development of much needed rational approaches to IT archi-
tecture.

To make the scope of this issue clear, I have to introduce some
terms which are frequently used with overlapping and undefined
meanings. The term Information Technology, IT for short, cov-
ers a vast area of computer and telecommunications techno-
logies, media, and their usage. I will use the term Information
Systems, IS for short, to denote both manual and automatic
systems used to provide or manage information to some users.
Thus, an automatic IS denotes use of IT in a system which pro-
vides information to some users. Actually, an automatic IS
manages data only. The data may provide information and/or
knowledge to some users. When using the term IS, we consider

the high level user related
aspects of the systems and dis-
regard the low level hardware
related aspects. The term IT is
misused in most organisations,
as exemplified in the first two
paragraphs of this introduction,
as well. Organisations not pro-
ducing the technology should
use the term IS and avoid use of
the term IT.

The term Information Systems
Architecture, ISA for short, is
used to denote the overall
structuring of an information
system or a family of inter-
connected information systems.
We will decompose ISA into
two orthogonal dimensions:

• An information systems plan
provides an overview of what
systems are planned to exist
in some area and the inter-
connections between these
systems

• A system architecture pre-
scribes the structure of one
system or a class of systems.

The term system appears in both these definitions. An
information system we consider to be made up of a set of data
provided with a mechanism to enforce the consistency of these
data. An automatic information system can be centralised or dis-
tributed; however, it is the scope of the consistency enforcing
mechanism which defines the boundary of the system and the
boundaries between systems.

The assignment of functionality to systems we call evolution
planning. Evolution planning is typically operational (one year
range) or tactical (two – three years). More radical designs or
redesigns of a family of systems, i.e. information systems
planning, is considered to belong to strategic planning (typically
three or more years into the future). This issue focuses on
strategic rather than evolution planning. Also, we do not address
in any detail the assignment of functionality to systems; neither
the detailed design of user interfaces to systems. User interface
design relates to systems planning, as data and interfaces are
designed relative to tasks, and the tasks are defined relative to
the data and interfaces they will manage. Hence, tasks and
computer system boundaries have to be designed interactively,
and not in a strict sequence!

We will use the term migration planning to denote the planning
of migration from one system architecture and/or infrastructure
to another.

The term system architecture denotes the structuring of the
system IS itself, while infrastructure denotes the software and
hardware environment in which the IS is running. The term
infrastructure comprises the execution platform, as well as tools

1

Guest editorial
A R V E M E I S I N G S E T

Telektronikk 1.1998

used to develop and manage the software. The term system soft-
ware is used as a synonym to the term software infrastructure.
The infrastructure may impose restrictions on the system archi-
tecture of the IS.

Frequently, evolution and migration planning are linked, as the
functionality of a system is typically changed when the system
is being migrated. This issue of Telektronikk addresses platform
issues. Migration planning is not covered. However, needs for
migration is motivating the papers on platforms. System archi-
tecture is addressed in some of the papers, but is not covered
extensively. To separate the telecommunication network from
service provision is one of the particular architecture issues for
the telecom domain. Interoperation of alliance partners is an-
other topic. Both these topics are addressed.

The previous paragraphs define not only the scope of this issue,
but also the focus of current research on ISA in Telenor R&D.
Furthermore, the paragraphs provide some indications of the
limitations of this research, even if some planned papers are
missing. The first paper of this issue provides an introduction to
ISA. If information systems planning is paralleled with city
planning, systems planning relates to which buildings should
exist, and what communication is needed between these
buildings. The platform issue relates to which basements these
buildings should have. Even if these questions provide a limited
view on ISA, they are fundamental questions of any architecture
work, and I hope the reader will benefit from reading our
questions and answers.

2 Telektronikk 1.1998

This paper parallels information
systems architecture with city plans,
building architecture and construc-
tion. The paper discusses the merits of
systems planning and human-com-
puter interface design at large, and
discusses the dependence on organisa-
tion of users and tasks. Information
systems architecture is as conflicting
an area as city planning. The paper
will highlight some of these conflicts.
The information analyst may be pro-
vided with rationale techniques to
analyse systems and organisations,
however, for the choice of values and
loyalty there is no objective and in-
dependent position. Also, information
systems architecture is no unique field,
but consists of several sub-fields, for
which specific expertise and app-
roaches are needed. The paper makes
an attempt to distinguish these fields.

From solitude to
abundance

A traditional Norwegian house – as we
dream of it – is placed in nature, distant
from other houses. It is a white house,
accompanied with a red farmhouse, a
fruit garden, a few flowers and small pat-
ches or strips of green fields, surrounded
by a huge forest, mountains and fjords.
This solitude can be compared with the
early days of computing, when a few
computer systems were surrounded by a
mainly manual organisation. As a con-
trast to this romantic picture, Figure 1
provides a modern functionalistic view
on architecture.

In the 1970s systems developers in
Scandinavia [1] were pretty conscious of
the social environment of computer sys-
tems, how systems were used and what
co-operation between management and
employees was needed for the success of
their use. The project workers were
conscious of what work should be auto-
mated and what should not. In particular,
the critical school of systems develop-
ment contributed to making the labour
unions become constructive participants
in the development of computer systems.
This co-operation has been weakened in
the 1990s, in particular as business pro-
cess re-engineering (BPR) consultants
[2] have brought the system-theoretical
school with some new icons from USA
back to Scandinavia and thought the
news was progress. They do not seem to
have knowledge of the historical de-

velopment of Scandinavian systems
thinking from the system-theoretical
school (Langefors), via the socio-tech-
nical school (Høyer) to the critical school
(Nygaard) and design of artefacts (Ehn)
[3] (Dahlbom) [4], nor of their relation-
ships to Taylor, Mumford, Marx, Hegel
and Simon. Certainly not to activity
theory [5] and Soviet philosophy [6]
– or to John Dewey’s Theory of inquiry
(1938). These mentioned authors provide
some of the basic texts for any inquiry
into the design of manual or automatic
information systems.

A multimillion dollar BPR project in
Telenor has produced a stack a couple of
metres high of PowerPoint paper copies
and many promises in the internal press.
Nothing of this is applicable for com-
puter systems development – not even as
surveying material, and neither may such
usage have been intended. Our manage-
ment claimed that the work was urgent
and most important. However, the results
from the project, if any, are highly
questionable.

3

Introduction to Information Systems Architecture
A R V E M E I S I N G S E T

Telektronikk 1.1998

Figure 1 Hannes Meyer: Proposed design of the League of Nations’ building in
Geneva, 1927 (not built). In Hannes Meyer’s opinion a completely rational building,
where size, form and interior design are unconditionally determined by technical and
functional requirements. The ‘rationality’ is underlined right down to the method of
sketching and the choice of the print. (From Nygaard, E. Arkitektur i en forvirret tid :
Internasjonale strømninger 1968–94. Copenhagen, Christian Ejler, 1995.)

Today, a large proportion of the office
routines are automated by computers,
and reorganisation of the company is just
as much a question of organisation of
computer systems as of organisation of
people. The BPR project proves that
many organisations are willing to spend
much money on addressing computer
systems in an organisational context.

Poverty and
misconceptions

Much housing architecture in Norway is
traditional, with old brown timber styles,
white or otherwise painted houses from
early this century, and fishing villages –
all in wood. However, mass production,
panorama windows, new materials,
petrol stations, and bad functionalism
have frequently provided a poor result.
There are exceptions, like stave
churches, stone churches, Hanseatic
towns, old mining towns, a Jugend style
town, advanced functionalism from this
century and some good modern archi-
tecture of public buildings.

Many human-computer interface system
designers seem to think that anything is
good if they just use windowing, icons
and pop-up menus. However, these are
the architectural parallels to petrol
stations and shopping centres. The
graphics and contents take their models
from books for pre-school children. The
IS user interfaces are frequently of poor
quality. If the programmers tried to
publish on paper, their products – both
content and editing – would frequently
not be accepted.

Many current web-pages are cluttered
with graphics – which increase both tele-
communication transmission time and
human interpretation time. Database
applications frequently use panels with
small windows for individual fields and
tables, which clutters the overall rela-
tionships and presentation of the infor-
mation. The metaphors for desktops have
been used and misused in areas where
they do not fit, for example in database
management and process control.
Widgets appropriate for the window
frame are frequently and inappropriately
put into the window working area.
Windows are cluttered with information
– like advertisements on a shopping
centre window. This is the opposite end
of the quality scale from what is provided
by contentious and knowledgeable book
printers. Therefore, we need old

knowledge rather than new knowledge to
human-computer interaction design. We
need purity rather than overloading, and
we need to investigate recurrent patterns
other than current windows metaphors.
Consciousness about aesthetic values and
styles has to be radically improved.
Fundamental questions about the design
of user interfaces at large should be
addressed: What are good user interface
patterns of various kinds of computer
systems? Is it really true that screen
presentations should differ from paper
presentations? Should we alternatively
strive for compatibility between and
independence of media?

Information systems
planning parallelled
with city planning

Norway has few examples of consciously
planned architectures at large, where
towns and landscapes are formed arti-
ficially, to support human living. How-
ever, the common Danish-Norwegian
king Christian IV used quadratic street
plans in his many renewed town designs,
like Kristiansand and Oslo. There are a
few examples of artificial landscape
designs, like the Fredrikstad fortress and
the Vigeland park. The most striking

4 Telektronikk 1.1998

C
E

B

D

A1 A2

Figure 2 Organic growth and planned urban form diagrams.
Key: A – two characteristic kinds of Organic Growth: Western European (A1),
providing for street frontage plot development and Mesopotamian/Islamic (A2) with
housing access culs-de-sac; B – the gridiron as the usual basis of Planned Urban
Form; C – an organic growth nucleus with planned gridiron extension, loosely based
on Edinburgh; D – a planned gridiron nucleus with organic growth extension, loosely
based on Timgad; E – the special three-dimensional Western European circumstances
whereby an early medieval organic growth pattern was superimposed on the
abandoned gridiron of a temporarily deserted Roman city – based on Cirencester,
England. (From Morris, E A J. History of Urban Form : Before the industrial revolu-
tions. Longman, Scientific & Technical, Third edition, 1994.)

examples, though, are roads, railways
and bridges that have been transforming
the landscape of modern Norway.
Bridges and roundabouts have become
objects for artistic expression. Figure 2
provides some conceptions of city plans.

Information systems planning is in [7]
compared with city planning. Informa-
tion systems planning is as different from
the development of individual computer
systems as city planning is different from
building design.

City planning – or the lack of it – has
profound impact. Motorway inter-
changes, brick, asphalt, aluminium,
glass, cars, noise and exhaust can have a
devastating impact on the living condi-
tions of the inhabitants, while organic
German villages or harmonious St
Petersburg provide much richer conditi-
ons. Villages are frequently not strictly
planned, but regulated by some kind of

consensus, while St Petersburg is develo-
ped according to a grandiose plan. The
examples show the importance of choo-
sing an appropriate perspective on city
planning and of realising what interests
are being served. The unlimited power of
Peter the Great may help when develo-
ping a city plan, but more modest appro-
aches may provide just as good results.

The current situation in a company like
Telenor is that most data and functions
are already automated. Some computer
systems are up to 20 years old, use old
technology, are adapted to an organisa-
tion extinct many years ago, and are not
supporting new technology in the tele-
communication network. Neither may
they support new services to the cus-
tomer, new organisation of work, and
service management by the customers
themselves. Examples of such mis-adap-
tations exist, even if this is not a balanced
presentation of IS in Telenor. However,

these are some of the reasons why IS
architecture is listed as the highest prio-
rity work item by most IS managers [8]
[9]. The prescription used for this disease
is frequently to provide a business infor-
mation framework [10] [11] [12] [13] to
survey all systems, data and work pro-
cedures of the entire organisation and to
implement procedures for requirement
capture and implementation. These
approaches are at great risk of controlling
everything, but creating nothing. A
focused approach on a problem area
which needs attention can be much more
successful than attempts at developing a
grandiose plan for everything. The pre-
ferred degree of integration can be diffe-
rent for components of one system, for
systems within one business unit, for
business units within one corporation, for
partners within an alliance, for vendor-
customer relationships and for competing
parties requiring some co-operation.
Each kind of co-operation may need
different focus and approaches to sys-
tems and communication planning. Note
that still other techniques may be needed
to define software components and iden-
tify commonalities and differences to
support reuse and sales of software com-
ponents to customers having similar but
different needs.

Organisation struggle

Frequently, IS architecture is by the IS
managers considered as a means to
empower the IS department itself. By
introducing strict management pro-
cedures, the IS department hopes to
acquire control of the situation and not to
be dependent on the unpredictable will of
the business units only. The IS depart-
ment has often been frustrated by the
business units introducing new tech-
nology in the network and for service
provision, and only thereafter ask for
administrative support by computer sys-
tems. Therefore, a co-ordinated business,
technology and computing strategy is
sought for. Also, a corporation wide IS
department can claim to have a more
global perspective than the individual
business units. However, the business
units are created to provide more indi-
vidual freedom and flexibility than what
can be achieved by one centralised
organisation. The business units are
established in a period of great change in
technology, services, markets, regula-
tions and competition. The divergence of
the corporation into business units can
provide the corporation with dynamic

5Telektronikk 1.1998

Box 1 Terms and definitions

Systems planning - identification and delimitation of what systems should
exist, and identification of the relationships between
systems

Communication planning - identification and standardisation of communication
flow, contents and means

Evolution planning - planning of transition from current systems to
planned systems

Systems framework - the analysis and design environment provided to the
developer, within which he undertakes his work

System architecture - structuring of each system as seen by the system
developer as the primary user of the architecture

System development - surveying, analysis, design, implementation, testing
and installation of an individual system or a com-
ponent of a system

Change management - management of change requests, analysis of change
effects, management of changes and provision of the
changed system

Infrastructure - the total environment in which a system is running
and supported

Platform - the hardware, software and middleware on which the
system is running

Migration planning - planning of transition from current infrastructure to
new infrastructure

Software portfolio planning - planning of software components to be provided to
some market, and which can be variously configured
in customer systems

powers to compete with small inde-
pendent companies [14]. This indicates
that centralisation of the IS department
and the split of the corporation into
several business units may serve con-
flicting interests. The conflicting direc-
tions can also be interpreted as attempts
by the top management to ‘ride two
horses’ into an uncertain future, or it
shows lack of a clear strategy. The IS
analysts will in this situation be forced to
choose between conflicting interests, as
described by the critical school of sys-
tems development – there is no inde-
pendent and objective position. However,
the analyst can investigate consistency
and consequence of choices, and he may
try to balance conflicting interests. The
identification and formulation of strate-
gies and perspectives are central themes
and means of power struggle.

Current IS architecture work has replaced
much of the previous ‘data modelling’
work. During the 1980s several organisa-
tions attempted to define and harmonise
use of terms throughout the entire corpo-
ration. Some of this work proved very
useful, like introduction of organisation
wide customer identifiers, product identi-
fiers, etc. However, most of the work

lacked focus and priorities. New data
definitions were developed for systems
to be implemented 5–10 years into the
future, and proved to be non-appropriate
or forgotten when needed. A more
focused approach to defining data for
emerging systems only, and to co-ordi-
nate data only when found beneficial and
urgent could have produced better cost-
benefit. The data administration of the
1980s centralised power and bureaucracy
within the IS departments without pro-
ducing the prospected benefits. De-
centralisation of data administration to
individual business units with co-ordina-
tion between business units only when
needed could have produced better
results and a more sustainable organisa-
tion of the work. The central data admi-
nistrator in the IS department could then
have concentrated on initiation, teaching,
supervision and co-ordination, without
being responsible for managing his own
data administration people and their
tasks.

During the 1990s, IS architecture has
received much of the attention given to
data administration during the 1980s.
The challenges being addressed are
greater than those facing the designer of

individual systems. The reasons for this
are the greater size of the problem of
analysing the whole corporation rather
than an individual system, problems with
choice of an appropriate level of detail,
abstraction versus the concrete, organisa-
tion dependence versus independence,
technology dependence versus indepen-
dence, and short term versus long term
planning. The risks for misconceptions,
unfocused organisation of work, and use
of inappropriate techniques are very
high. Only a small portion of the efforts
put into IS architecture will produce use-
ful results. Also, little or no appropriate
education in – and knowledge of – the
field is available. A manager may be sur-
prised by this situation; however, if he
compares with city planning, he should
not be surprised. Despite the risks, mis-
adaptions between computer systems and
to the organisation of the company make
IS architecture work most needed.

Information system
architecture paralleled
with building design

A traditional Norwegian home applies a
functional layering of its floors: The
cellar is used as washroom and as food
store for potatoes, cabbage, canned food,
etc. The ground floor contains the
entrance, living rooms and the kitchen.
The bedrooms and a bathroom are found
on the first floor. The loft is used to store
away unused furniture, carpets and
maybe dried meet and fruit. Figure 3
shows some architectural patterns.

Similar functional layering software
architectures are being developed for
computer systems; however, their role
and purpose are more unclear. Software
architecture is concerned with the organi-
sation of software systems, functions and
data as perceived by the end users and
developers.

The client-server architecture arrived
with personal computers and work-
stations allowing more computing to take
place in the client. Fat clients have been
found easy to implement, but thin servers
are not found very efficient for serving
many users simultaneously. Fat servers
can be efficient, but provide in principle
not much different from IBM 3270
alphanumeric and graphical dialogues on
dumb terminals available in the early
1970s. Today, this is called network
computing. More balanced architectures

6 Telektronikk 1.1998

Figure 3 Construction materials: characteristic room sizes, height of building and
size of openings in walls, as constrained by traditional ‘local vernacular’ materials
and technology, related to the scale of the human figure.
(From Morris, E A J. History of Urban Form : Before the industrial revolutions. Long-
man, Scientific & Technical, Third edition, 1994.)

have most often been inefficient to
implement, because functions have to be
carefully split between the nodes, and the
interaction between the nodes is fre-
quently command-based. The three-tier-
architecture provides a principal split bet-
ween external presentation, application
and internal storage of data. However, it
has the same difficulties with providing
efficient development as with balanced
client-server architectures. The reason for
the difficulty may be that they do not
distinguish between specification and
implementation. This is accomplished by
the three-schema architecture [15]; while
the specifications are split into external
schemata, application schema, and in-
ternal schemata, the execution archi-
tectures can be generated in various ways
automatically. Unfortunately, not many
developers and tool vendors know the
three-schema architecture. The three-
schema architecture realises that software
can be nested [16], becoming more
abstract than housebuilding. Both usage
and development/compilation dimen-
sions of software can be realised by simi-
lar or identical transformations, and this
way, the software can be put in series and
parallel [17], as well.

The subject software architecture is in
[18] split into four categories: (i) archi-
tectural description languages, (ii) codifi-
cation of architectural expertise, (iii)
frameworks for specific domains, and
(iv) formal underpinnings for archi-
tecture. The book uses the specification
language Z, based on predicate calculus,
for the first category. As exemplified in
the Urd method – see next paper – the
difficulty is not only what language
should be used, but what notions should
be described in an architecture. The book
describes the following architectural
styles of the second category: pipes and
filters, data abstraction and object-ori-
ented organisation, event-based and
implicit invocation, layered systems,
interpreters, process control, distributed
processes, subroutine organisation, state
transitions, reference architectures for
specific domains, and heterogeneous
architectures. Within the second cate-
gory, the book provides a design space
for user-interface architectures. Other
papers of this issue of Telektronikk pro-
vide contributions to the third category,
on the data-oriented, distributed and tele-
com sub-domains. The fourth category
provides means to reason on architec-
tures.

Frameworks

I believe building architects can special-
ise in different kinds of buildings, and
they can have menus for what kinds of
features have to be provided for these
buildings. These menus are not prototype
designs of the buildings, but they are
frameworks for various designs.

While a software architecture prescribes
the structure of the final systems, a
framework prescribes the structure of the
specifications of these systems, functions
and data. We use the term management
framework when this structure aims at
describing and controlling the whole cor-
poration and not just the structure of the
existing and planned software systems,
functions and data. The management
framework aims at providing the IS
architects with control of their total
environment.

For software systems there are frame-
works, reference models, architectures or
prototype designs which apply to specific
application areas, like user-interface soft-
ware or database applications. Also, there
are frameworks for distributed databases,
distributed processing, long transactions,
telecommunication services, telecommu-
nication management, telecommunica-
tion networks, and object orientation. For
some areas there are competing frame-
works, and some are overlapping. Some
areas are specific, and some are believed
to be very generic.

Open Distributed Processing, ODP, [19]
provides a framework for specifying and
implementing communicating systems.
However, the overall architecture of the
final system is provided in the computa-
tional viewpoint of the ODP specifica-
tions. Hence, ODP is called a framework
and not an architecture; however, the
framework can be considered to be a
meta-architecture of the final systems,
functions and data. The three-schema
architecture applies the same three layers
both in the architecture and in its meta-
architecture. ODP does not contain any
layer or viewpoint similar to the external
layer of the three-schema architecture,
nor does the pure three-schema archi-
tecture contain any layer for partitioning
and communication. Hence, the two
architectures/frameworks overlap, but
do not completely cover each other.

Some frameworks can be used in several
different ways. The ODP reference
model can be understood as follows: the

enterprise viewpoint contains all business
policies as well as requirements on the
systems of the studied application
domain; the information viewpoint con-
tains all data definitions, their behaviour
– and grouping into systems, screens and
reports; the computational viewpoint
contains the vertical partitions of these
definitions; the engineering viewpoint
contains the horizontal configuration of
the systems; while the technology view-
point contains the implementation
designs. Each viewpoint is a complete
specification of the entire application
domain from one perspective; only the
technology viewpoint is needed to imple-
ment the systems.

[20] provides a different interpretation of
use of the ODP reference model: the
enterprise viewpoint contains an identifi-
cation of functions or tasks to be supp-
orted by the systems; the information
viewpoint contains data definitions and
constraints on the behaviour, but not
functional derivations; while the com-
putational viewpoint contains the pro-
cessing prescriptions and interfaces be-
tween processes; the engineering view-
point defines the functions needed to
support distribution; while the tech-
nology viewpoint identifies the tech-
nology needed to implement the systems.
Here all viewpoints are needed to pro-
vide a complete specification, and refe-
rences are made between viewpoints to
provide completeness.

The two interpretations of the ODP refe-
rence model may produce totally diffe-
rent specifications and implementations.

James Martin provides a management
framework in his book [10] together with
prescriptions for development processes
and methods. The Telenor Business
Information Architecture, BIA, [11] and
the BT Tile Architecture [12] primarily
provide management frameworks for
business processes, tasks, data defini-
tions, functions and systems, and not
elaborate methods. In particular, BIA has
a strong focus on business goals. On the
other hand, the Urd method takes busi-
ness plans and overall organisation of
the corporation for granted, and analyses
software systems and their organisation
only. Urd provides no management
framework.

Frameworks can be specified as view-
points, roles, function blocks, data
schemata, data flow, control flow, prece-
dence relationships, predicates, objects or

7Telektronikk 1.1998

other. Even if some initial comparisons
of frameworks – and architectures – are
provided in this issue of Telektronikk, we
have rather shallow knowledge of how to
specify frameworks, what are the
(hidden) implications of use of different
specification techniques, what scope of
validity is provided by each framework,
which benefits and drawbacks do they
provide, and how are the frameworks
compared and evaluated. These questions
may not only be of academic interest, but
can have huge practical implications on
how planning and development work is
pursued – and on the final designs.

Methods

A method should define the goal for a
piece of work, and a way of undertaking
the work to achieve the goal. Both focus
on the goal and conscious control that the
work leads to the goal are important to
produce effective results.

In the mid-1970s, I participated in using
the ISAC [21] method to analyse a large
portion of the information handling in
Telenor. We made decompositions on up
to seventeen levels, some nodes in some
graphs were trivial, others were very
complex, without us knowing this. We,
as analysts, felt that we lost control of the
abstract decomposition, and we had just
vague ideas about how to use the analysis
results in the subsequent design. Much
work on large systems is like this, you
can feel lost, and then some magic hap-
pens – provided by a key designer, who
takes responsibility and provides what is
needed irrespective of the theory predi-
cated.

A specification of automatic information
systems is comparable to a scientific
theory in the way it corresponds to
people outside the automatic system,
how it describes the managed application
area, and how it prescribes the structure
and behaviour of the automatic informa-
tion system itself. See a separate paper
on these three dimensions in this issue of
Telektronikk. A method for developing
and validating the specifications of auto-
matic information systems is comparable
to a philosophy of science, and much
could be learned, but is not yet done, by
comparing these.

The ISAC method [21] is primarily a
method for the development of individual
systems, but addresses some aspects of
systems planning, as well. The Urd

method provides an approach to systems
planning only, and no approach to ana-
lysis and design of individual systems.

An approach to systems planning and
development can be evolutionary or
revolutionary. The analysts have to con-
sider carefully what is the most appro-
priate time perspective and approach.
The choice will depend on the situation:
market needs, user requests, reorganisa-
tion of work, change of technology,
change of communication interfaces to
other systems, and change of data defi-
nitions and entities of the application
domain. The Urd method provides both a
corrective and an idealistic design phase.
Even if evolutionary design is not the
purpose of this approach, it provides
‘evolutionary’ intermediate results on the
road to developing a revolutionary new
design for the application area.

Process organisation

The approach to design a house is
dependent on what tools and prefabri-
cated elements are available. So also
for information systems.

A method is a way of thinking, while a
process prescribes how work may be
organised into separate activities, i.e.
phases, steps or other, to achieve the
goal. Activities should provide some
visible useful results to somebody, and
should be delimited by some reporting
and decision. The process structure is
influenced by the method used, but steps
in the method may not be identical to
steps in the process, e.g. you may do sur-
veying, analysis and some design in one
and the same step of the process. [22]
provides an overview of state-of-the-art
of process definition (research).

The Urd method primarily prescribes
organisation of activities, i.e. process
organisation, but contains method state-
ments, as well. The Urd subject analysis
phase contains both analysis of data and
design of subjects in one and the same
phase.

Engineering

Building construction involves a lot of
engineering and handicraft professions
in areas like insulation, dampproofing,
electricity supply, water supply, car-
pentry, plumbing, light planning, heat-
ing, locksmithing, painting, colour plan-
ning, interior planning, decoration, etc.

Larger buildings require many more pro-
fessions, like statics, material sciences,
fire planning, ventilation, automation,
accommodation, car parking, industrial
architecture, hotel architecture, super-
market architecture, etc.

Most contributions from software people
are really on engineering issues and not
on the more high level architecture
issues. Therefore, implementation and
architecture issues are frequently con-
fused. The implementation issues can
comprise choice of communication
protocols, database management tools,
repositories, screen definition languages,
programming language (styles), etc.

Portfolio planning and
globalisation

In times gone by, building elements were
typically hand-crafted on location.
Today, new building elements are typi-
cally produced in specialised factories,
collected into modules by module pro-
ducers, and installed by a professional
team in accordance with a standard
architecture.

Software vendors will typically sell their
software to many organisations. The IS
department will typically want to reuse
their objects, modules, systems and infra-
structure within several user organisation
units. The reuse can be cost-effective for
vendors and customers alike. However,
there are a lot of concerns to be made:
The software should fit into an existing
organisation, business, culture and langu-
age, and it should co-operate with exist-
ing objects, modules and systems, which
most often are different for different
organisations. How to identify areas for
reuse, how to define elements suited to
reuse, how to provide infrastructures for
reuse, and how to incorporate reuse con-
siderations into methods and tools are
important questions. Use of one (kind of)
system to support several business units
is not and should not be the normal
answer to these questions. Portfolio
planning is an important topic, concerned
with the product planning, co-ordination
and marketing from the development
organisation. Portfolio planning should
not be confused with systems planning of
the customer organisations, e.g. in the
business units of the corporation. How-
ever, it is the co-ordination of portfolio
and systems plans that can provide the
benefits to the corporation.

8 Telektronikk 1.1998

way that the particularities are not re-
vealed, and they provide no means of
comparison, generalisation and adjust-
ment. No surprise, this lack of con-
structiveness is called ‘logical’.

In the Urd method great care is taken to
survey and analyse the concrete aspects
of the organisation, its routines, data and
systems, without going into a too deep
level of detail. Also, a concrete systems
plan, with reference points between sys-
tems, is provided as the end result. Data
(relationships), with their subordinate
behaviour (called methods in object
oriented languages), are grouped into
systems.

The approach and perspective taken in
the Urd method are distinctively different
from that of approaches which identify
functions of the application domain [10]
[11] [12] [21]. Frequently the function
oriented approaches do not distinguish
between manual and automated tasks,
and they do not provide rules for what
should be considered one or two func-
tions – in sequence, or in parallel. The
final outcome of using the approach may
be a set of functions and groups of data.
These functions and groups may in no
direct way relate to systems and their
interconnections. Hence, separate
mappings from these notions to design
notions are needed. As mentioned, the
results of applying the Urd approach and
some other approaches can be very diffe-
rent. This proves that the analysts must
be conscious about what perspective and
which approach to choose for their sys-
tems planning.

The Urd method may be appropriate for
co-ordinated design of a family of sys-
tems. However, Urd is inappropriate for
design of communication solutions be-
tween more independent organisations
and systems. For this purpose, a broker
kind of solution will be more appropriate.
This issue of Telektronikk provides two
papers on this topic, but provides no
method for planning and co-ordinating
such exchange of information. The ana-
lysis method needed may be dependent
on the solution envisaged.

Change and use

It is being claimed that the most perma-
nent entity in Oslo is the continuing con-
struction work. That the construction
work is everlasting may be true. How-
ever, while each construction project

lasts typically for some months, each house
may last for tens or hundreds of years.

Large automated information systems
may have a typical lifetime of twenty
years. There is no indication that this
typical lifetime has changed significantly
over the history of computing or that it
will change in the near future. However,
the time periods between new versions
may change depending on software en-
vironments, tools, developer organisa-
tion, and end user organisation wish and
capability to adopt the new versions.

There has been a lot of talking, thinking
and implementation of modularisation of
houses. However, the effects at large are
hard to spot. It is typically small entities
like doors, windows, mirrors, toilets,
wallpaper, etc. which are reused, and
their effects are enormous.

Notions like modularisation, reuse,
object-orientation, etc. have been very
popular in programming. Certainly, a
‘divide and conquer’ strategy has been
needed to implement any large system,
including use of software developed by
others. Reuse of application independent
software, and of application dependent
data types, is certainly used. However,
the frequency and benefits of real reuse
of application dependent code is un-
certain, and it is more uncertain what
‘preparation for unpredictable change’
can mean. What does reuse mean? Can
centralisation of code do much the same
as inheritance? Can copying of code do
much the same? Is reuse within and be-
tween applications not so much of inte-
rest? Will the real benefits come from
standardisation of data types and objects
for entire application areas, and down-
loading and configuration of these more
or less ready-made applications?

Some schools [24] advocate adoption of
generic software, which is specialised by
the users themselves. Web-sites and
drawing packages are examples of this.
Web-sites can become large for a large
user group, and hence, personalised
tailoring should be discouraged. Drawing
applications may be prepared for smaller
user groups, and invites tailoring.

A person may design and build a small
cottage without an architect, and he may
decorate and adapt the room to his
usage. However, when it comes to larger
and maybe more long-lasting construc-
tions, architects and engineers are
needed.

9Telektronikk 1.1998

The enterprise is not the only possible
scope of portfolio and systems planning.
The aim of component technology is to
provide software components that can be
reused in various environments. The
entire globe can be the marketplace [23].
Effective use of component software
raises a set of fundamental questions:
Will a designer first have to write a de-
tailed specification before he can search
for a component, which he can use? If
the implementation is generated auto-
matically from the specification, what is
then the benefit? How should a compo-
nent be prepared for specialisation and
extensions? How will a component
depend on other components and their
environment, and how will the designer
learn about this, and be guided in his
designs? Will the designer operate as a
librarian, rather than as a creative de-
signer? Will there be reuse of compo-
nents within certain schools or applica-
tion areas, in which the designers get
specialised training, and not much across
these schools? The standardisation of the
telecommunication management frame-
work, TMN, within the International
Telecommunication Union, ITU, may
define such a school. Future TMN soft-
ware may be based on downloading
TMN object definitions from the ITU web.

Design implications

Systems planning may have as good or
devastating impact as city planning, and
the implications of alternative designs
are at least as poorly understood.

Information systems planners need to
choose design perspective and serve the
interests of different stakeholders just as
consciously as any city planner. How-
ever, you may know a good city plan
when you see it, but it is hard to tell what
characteristics make a good city plan.
Computer systems planners need to
acquire knowledge of what is a good sys-
tems plan. The Urd method aims at iden-
tifying systems in which consistency of
data has to be enforced, and which serve
the manual organisation in the best way.

Some approaches to systems planning
[11] claim to ‘provide the glue to bring
together any fragmented organisation’.
However, this may neither be an appro-
priate goal, nor may the approach pro-
vide techniques to analyse similarities
and dissimilarities between organisation
units. Frequently, they do the opposite,
they decompose tasks and data in such a

We believe that the situation is similar
for information systems. Systems plan-
ning and system development for large
systems are separate professions re-
quiring a large set of surveying, analysis
and design techniques in addition to
knowledge about technology, organisa-
tion and specific application areas. New
technology, like webs and other generic
software, may change the borderlines
between what requires high expertise and
what can be handled by more novice
developers or the end users themselves,
but the need for the information systems
architects and engineers remains.

A particular problem for large organisa-
tions is the cascading of changes.
Changes may cascade within one system
due to a poor structure of the system.
More challenging is the cascading of
changes between systems. Here, detailed
repositories are needed to trace effects of
changes via several systems. Change
management systems are needed to co-
ordinate the changes, and responsibilities
and costs of changes have to be shared.

Maintenance

Every owner of a house knows the costs
of maintenance.

So does the owner of an information sys-
tem. The speculations on reuse have
frequently been motivated by hopes or
intentions to reduce maintenance costs.
However, there are reports [25] telling
that adaptive maintenance can reduce the
maintainability of the program code.
Therefore, after some time, replacement

of a family of systems can provide bene-
fits which cannot be obtained by adaptive
maintenance. Finally, replacement of
systems can be cheaper than the initial
development of these systems. This is an
additional reason for pursuing long range
strategic and idealistic planning of infor-
mation systems, and not just short to
medium term adaptive maintenance. The
planner should note, however, that the
new systems should not just replace the
old ones, but provide new features and
utilise opportunities not addressed by the
old systems.

Aesthetics

Building architecture is not only con-
cerned with functionality, but is con-
cerned with aesthetic values, as well.
Figure 4 provides some example building
designs which are believed to be nice.

The aesthetic aspects of information sys-
tems architecture are in particular poorly
understood. Should aesthetic aspects of a
systems plan or a system design have any
significance? What does it mean? Does it
mean simplicity, understandability, sym-
metry, richness, or whatever? If object-
orientation is considered good, is then the
architecture good as long as it uses
object-orientation? Is it our beliefs about
the values that matter, or are there some
more fundamental properties of the archi-
tecture itself that makes it nice or good?
These are some of the practical and
philosophical questions which should be
addressed concerning the aesthetic
aspects of information systems.

References

1 Bansler J. Systems Development in
Scandinavia : Three theoretical
schools. Scandinavian Journal of
Information Systems, 1, August 1989.

2 Hammer M, Champy, J. Reengineer-
ing the corporation : a manifesto for
business revolution. London, Nicho-
las Brearly, 1993.

3 Ehn, P. The Art and Science of
Designing Computer Artifacts.
Scandinavian Journal of Information
Systems, 1, August 1989.

4 Dahlbom, B, Mathiassen L. Compu-
ters in Context : The Philosophy and
Practice of Systems Design. Cam-
bridge, Blackwell, 1993.

5 Bødker, S. A Human Activity App-
roach to User Interfaces. Human-
Computer Interactions, 4 (4), 1989.

6 Bakhurst, D. Consciousness and
Revolution in Soviet Philosophy :
From the Bolsheviks to Evald Ilyen-
kov. Cambridge, Cambridge Univer-
sity Press, 1991. ISBN 0-521-40710-
9.

7 Veryard, R. Information coordina-
tion : the management of information
models, systems and organizations.
Englewood Cliffs, NJ, Prentice Hall,
1994. ISBN 0-130099243-7.

8 Lederer, A L, Salmela, H. Toward a
theory of strategic information sys-
tems planning. Journal of Strategic
Information systems, 5 (3), 1996.

9 Gottschalk, P. A Review of Litera-
ture on Implementation of Strategic
Information Systems. Norsk Informa-
tikk-Konferanse, NIK. Trondheim,
Tapir, 1996. ISBN 82-519-1381-0.

10 Martin J, Leben J. Strategic Informa-
tion Planning Methodologies. Engle-
wood Cliffs, NJ, Prentice Hall, 1989.
ISBN 0-89435-358-6.

11 Telenor IT. Business Information
Architecture. Oslo, unpublished.

12 Furley, N. The BT Operational Supp-
ort Systems Architecture. BT Tech-
nology Journal, 15 (1), 1997.

10 Telektronikk 1.1998

Boje Lundgaard and Lene Tranbjerg:
Housing units at Blangstedgård, 1988

Heinrich Tessenow: Town house project,
1911

Figure 4 From Nygaard, E. Arkitektur i en forvirret tid : Internasjonale strømninger
1968–94. København, Christian Ejler, 1995.

13 Modelware International. Introduc-
tion to the IFW A/B Level Data
Model. 1998.

14 Katz, H (ed). Telecommunications :
restructuring work and employment
relations worldwide. Itacha, ILP
Press, 1997.

15 Griethuysen, J J van (ed). Concepts
and Terminology of the Conceptual
Schema and the Information Base.
Geneva, ISO, 1982. (ISO TC97/SC5
N692.)

16 ITU-T. Data-Oriented Human-Com-
puter Interface Specification Tech-
nique : scope, approach and refe-
rence model. Geneva, ITU, 1993.
(ITU-T Recommendation Z.352.)

17 Meisingset, A. A Data Flow App-
roach to Interoperability. Telektro-
nikk, 89 (2/3), 52–59, 1993.

18 Shaw, M, Garlan, D. Software Archi-
tecture. Englewood Cliffs, NJ, Pren-
tice Hall, 1996. ISBN 0-13-182957-
2.

19 ITU-T. Reference Model of Open
Distributed Processing. Draft.
Geneva, ITU, 1995. (Recommenda-
tion X.901.)

20 ITU-T. Application of the RM-ODP
framework. Geneva, ITU, 1996.
(ITU-T Recommendation G.851.1.)

21 Langefors, B. Theoretical Analysis of
Information Systems. Oslo, Universi-
tetsforlaget, 1966.

22 Conradi, R, Chunnian, L. Revised
PMLs and PSEEs for Industrial SPI :
Object-Oriented Technology. In:
Object-oriented technology :
ECOOP/97 workshop reader, Jyvas-
kylä. J Bosch, S Mitchell (eds.).
(Lecture Notes in Computer Science;
1357.) Berlin, Springer, 1997.

23 Murer, T. The Challenge of the
Global Software Process : Object-
Oriented Technology. In: Object-
oriented technology : ECOOP/97
workshop reader, Jyvaskylä. J Bosch,
S Mitchell (eds.). (Lecture Notes in
Computer Science; 1357.) Berlin,
Springer, 1997.

24 Mørch, A. Evolving a Generic Appli-
cation into a Domain-oriented Design
Environment. Scandinavian Journal
of Information Systems, 8 (2).

25 Kaasbøl, J J. How evolution of in-
formation systems may fail : many
improvements adding up to negative
effects. European Journal of Infor-
mation Systems, 6 (3), 1997.

11Telektronikk 1.1998

Arve Meisingset is Senior Research Scientist at
Telenor R&D. He is currently working on informa-
tion systems planning, formal aspects of human-
computer interfaces and middleware standard-
isation. He is ITU-T SG10 Vice Chairman and the
Telenor ITU-T technical co-ordinator.

e-mail:
arve.meisingset@fou.telenor.no

This paper summarises a method for
the identification and delimitation of
computer systems within one business
unit. The method defines what systems
should exist within an application
area, defines the subject contents of
these systems and the boundaries
between the systems. A more detailed
exposition of the method is found in [1].

1 Systems planning

Systems planning comprises specifica-
tion and initiation of development of a
family of systems, while system develop-
ment comprises specification and de-
velopment of individual systems only.

Our approach to systems planning is
abstract in the sense that it identifies sub-
jects (being aggregates of data classes),
activities and systems at a high level,
without addressing the detailed design of
data, functions and use of the individual
systems.

Our systems planning approach com-
prises the identification of:

• systems

• subject contents of systems

• reference points between systems

• applications of systems

• co-operation between applications

• manual activities

• routines and data flow between
activities and systems

• opportunities, costs and impact

• priorities.

Our approach is constrained by premises
given by:

• business planning; choice of business
areas, markets and market strategies

• high level organisation; future split
into business units and degree of co-
ordination.

Systems planning addresses the use of
computer systems, and does not address

• IT architecture; principles, technical
solutions and organisation of IT
support

• role of development projects; identifi-
cation and prioritisation

• role of maintenance work; identifica-
tion and prioritisation.

Our approach has a main stream, de-
picted in Figure 1.1, but feedback loops
must be observed. As an example, oppor-
tunities and constraints of the computer
systems may provide ideas for change of
the business plan and of the high level
organisation.

Our systems planning method is de-
veloped to facilitate internal systems
planning

• in one business unit

• for business units which already have
several computer systems

• for strongly data oriented applications.

The method does not address

• co-ordination between loosely coupled
business units

• systems planning for new business
units/functions

• highly mathematical or process
oriented applications.

Our systems planning method is con-
strained by the use of decentralisation as
a political means of splitting the enter-
prise into several business units, but

allows centralisation of systems and acti-
vities as a means to improve efficiency
within a business unit. However, systems
can be partitioned into (co-operating)
applications as a means of decentralisa-
tion within that business unit.

The method takes

• existing systems
• existing organisation of work
• problems and opportunities

as its starting points.

The method delivers applicable inter-
mediate results by

• identification of problems and oppor-
tunities

• overlap between existing systems

• a corrective systems plan

• an idealistic systems plan.

We believe systems planning should take
surveying of existing knowledge of sys-
tems, applications and activities as the
starting point. Our analysis method
focuses on the identification of subjects
which in principle can form a data base
each.

Our idealistic design method groups sub-
jects into systems to support the most
efficient design of activities and routines.

12

The Urd Systems Planning Method
A R V E M E I S I N G S E T

Telektronikk 1.1998

Business
planning

High level
organisation

Systems planning

IT architecture

System
develop-

ment

Func-
tionality

Mainte-
nance

Func-
tionality

Systems
planning
takes this as
a premise

Systems
planning
does not
comprise
this

Figure 1.1 The main planning stream

Problems and
opportunities

Surveying

Analysis

Corrective design

Idealistic design

Overlap

Corrective
systems plan

Idealistic
systems plan

Figure 1.2 Phases in systems planning

13Telektronikk 1.1998

1 System

A system is a computer system which
can enforce the integrity of its own
data. A system is in the systems plan-
ning defined to be a collection of data
types (aggregated into subjects); there-
fore, we do not consider properties of
the system related to external user
functionality or internal storage and
accessing of data.

2 Application

An application is an instantiation of (a
vertical partition of) a system together
with a (horizontal and/or vertical parti-
tion of) a set of data instances. Applica-
tions can be independent, loosely
coupled or integrated, i.e. strongly
coupled within the scope of the system.

3 Subject

A subject is an aggregation of data
types which in principle can make up
an autonomous system. A subject is
defined to contain a set of references
between object classes, with asso-
ciated object classes and name
bindings.

4 Reference point

A reference point indicates communi-
cation needs/redundancy between sub-
jects or systems. An object class which
belongs to several subjects or systems
is called a reference point. A reference
point can be n-ary.

5 Name binding

A name binding prescribes that in-
stances of the subordinate object class
are identified locally to an instance of
their superior object class by their
relative distinguished name. Name
bindings used in the systems planning
can form trees of object classes only,
never networks.

6 Reference

A reference is a pointer attribute from
one object class to one other object
class. Pointers can be one-way or two-
way, i.e. two mutually dependent one-
way pointers. All references are binary.

7 Object class

An object class can contain attributes
(single- or multi-valued) and references

and can be associated to other object
classes by name bindings.

8 Interface

The communication paths between
applications are called interfaces. Inter-
faces can exist between applications
within one system or of different sys-
tems. Interfaces are binary. There can
be several interfaces for each refe-
rence point, and vice versa. Interfaces
can be one-way or two-way.

9 Activity

An activity is a task which is carried out
within one organisation unit (at the
lowest formal level of the organisation
hierarchy) without awaiting communi-
cation from other organisation units.
The activities of the systems planning
are really activity types.

10 System activation

A system activation is the use of a sys-
tem by an activity (or other system acti-
vation) which provides results to the
same or other activities (or system acti-
vations). The system activations in the
systems planning are really system
activation types.

11 Data flow

A communication path between activi-
ties and/or system activations is called
a data flow. Data flows can be one-way
or two-way. Data flows can convey
control and is then called control flow.
Data flows in the systems planning are
really data flow types. While reference
points can be n-ary, data flows are
binary only.

12 Routine

A routine is a set of data flows between
activities and system activations which
follows one input data flow to the busi-
ness unit. Routines are in the systems
planning considered not to contain
loops even if they may be visiting the
same organisation unit several times.
Note that routine graphs depict data
flows between activities and system
activations, while data flow graphs
depict data flow between organisation
units and systems. Routines in the sys-
tems planning are really routine types.

Box 1 – Terminology
The analysis work in all phases is a top-
down decomposition of relations and
dependencies. This knowledge is used in
a bottom-up design.

The method is not abstract in the sense of
being independent of organisation, rou-
tines and data design. Our method relates
to concrete organisations, routines and
data designs.

We do not believe in

• the existence of a universal method for
all systems planning

• an all-comprehensive planning of all
systems of an enterprise

• simultaneous application of a phase/
step to all systems.

We believe planners should choose tech-
niques and application areas according to
specific needs:

• the planning method should be ad-
justed to the specific problems of the
application area

• the planning should focus on the sys-
tems and applications considered to be
of greatest importance

• use of phases/steps to different appli-
cation areas need not be synchronised.

Systems plans frequently end up as
‘paper results’ without sufficient focus
and determination on implementation.
Therefore, the systems plan should be
anchored by the customer, who must be
engaged in prioritisation and start-up of
implementation projects.

Compared to alternative approaches, our
method provides

• less detailed analysis than [2]

• more detailed analysis than [3]

• top-down surveying followed by
bottom-up design, as opposed to top-
down-only approaches, like [3]

• identification and delimitation of sys-
tems, as opposed to identification of
functionality only, like [3], [4].

We do not think that a cook book for
systems planning can provide a unique
guide to obtaining a good plan. In order
to obtain successful results, a good cook
is needed as well, and the planners have
to choose elements from the cook book
which are relevant to the needs of their
application domain. Choice of the app-
ropriate level of detail for the planning is

difficult, because enough information is
wanted to make informed decisions,
while we want to leave the detailed
design to the following implementation
projects. The cook book identifies ele-
ments which should be surveyed and
analysed in order to make rational design
choices.

Several terms are assigned a special
meaning in our method. See Box 1 –
Terminology.

2 Surveying

The objective of the surveying phase is to
identify problems and opportunities with
existing systems and activities.

Figure 2.1 shows the steps in the survey-
ing phase.

2.1 Delimitation

The scope of the study is decided to-
gether with the IT co-ordinator of the
business unit to be studied. This step
should provide

• identification of a list of interrelated
systems to be studied

• identification of the owner organisa-
tion unit of each individual system.

2.2 System survey

This survey should be carried out for
each system identified in the previous
step. The survey can be accomplished by
questionnaires to the owner organisation
units. The questions comprise

• problems with existing systems and
their use

• opportunities within the total applica-
tion domain

• data flow between systems

• problems related to data flow

• impact of technology, organisation or
market change

• user organisation units (at the lowest
formal level) of the system

• identification of persons to be inter-
viewed in each user organisation unit.

2.3 User survey

The user survey should be undertaken in
each user organisation unit identified in
the previous step. The survey is accom-
plished by interviews with the experts
identified.

The user survey comprises:

• areas of responsibility of the user
organisation unit

• all systems used within the entire user
organisation unit

• problems related to use of each indi-
vidual system

• opportunities related to these systems

• candidate manual activities to be auto-
mated

• data flow between this user organisa-
tion unit and other units

• data flow between systems; if this
information is easily obtained

• problems related to data flow

• critical success factors in each organi-
sation unit

• impact of technology, organisation and
market change

• identification of real users of data
managed by the systems identified in
the delimitation step.

This step surveys the entire user organi-
sation unit, and not only use of the sys-
tems identified in the delimitation phase.

The purpose of this enlarged scope of the
survey is to provide information on the
users’ total need for system support.

The purpose of making a distinction be-
tween (system) users and data users is
that the system/terminal users are fre-
quently not the real users of data. The
data users can be customers, sales per-
sonnel, technicians and managers who do
not use the systems themselves.

2.4 Usage survey

This survey should be undertaken for
each (kind of) data user. The survey can
be accomplished by interviews of the
data users. This survey need only be
undertaken if the system users cannot
provide satisfactory information of need
for data.

The usage survey comprises:

• tasks of the data user

• data needed for the tasks

• problems related to data use

• systems providing data to the different
tasks

• problems related to data delivery

• critical success factors for the data user

• impact of technology, organisation or
market change.

2.5 Problem identification

This step summarises

• problems
• opportunities

within the studied application domain.

This step can be organised into three sub-
steps:

14 Telektronikk 1.1998

System survey

User survey

Usage survey

Problem
identification

Delimitation

Figure 2.1 Surveying

Problem domain X
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

Problem domain Y
yyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyy

Figure 2.2 Report on
project candidates

• extraction of problems and opportuni-
ties from the questionnaire replies and
interview reports

• identification of project candidates
from the extracted information

• organisation of the project candidates
into appropriate problem domains.

The results from this step should be com-
piled into a report which is presented to
the customer (steering group and other
sponsors of the project). The results
should also be validated through a hear-
ing among system owners and interview
persons. The customer makes decisions
concerning immediate actions based on
the results.

3 Analysis

The objective of the analysis phase is to
identify a set of subjects which can be
implemented as autonomous databases.

The subject analysis starts with a correc-
tion of the existing data structures.
Therefore, the result of the analysis
depends on the design choices made, but
provides an abstraction over the data
designs, as well. The subject analysis is
independent of the usage of data and the
external design of systems. Therefore,
the subject analysis is labelled data
oriented, not function oriented.

We recommend that the analysis is
carried out on a per system basis, due to
the size and complexity of each system.

This, however, leads to a need for har-
monising subject graphs into a unified
subject graph at a later stage.

The subject analysis is split into four
steps, as shown in Figure 3.1.

3.1 Correction of data structure

The purpose of this step is to develop a
harmonised and simplified data structure
per system.

The step is carried out like a reengineer-
ing per system, and the work is based on
the following information sources:

• database schema, as the primary
source, if available

• system documentation

• user documentation

• user interface.

The result is documented in Graphic
GDMO, ITU-T draft Rec. Z.360 [5],
using

• object classes
• references
• name bindings.

Z.360 is used due to its support of name
bindings and references to express
dependencies between object classes.
Value classes, attribute classes, structure
records, etc. are removed from the
graphs. Inheritance is removed by
copying into the subclass.

3.2 Subject design

The purpose of this step is to design a
subject graph for each data structure
graph (for every system) from the pre-
vious step.

A subject graph comprises a set of sub-
jects and reference points between these
subjects. The subjects are disjunct aggre-
gates of references between object
classes. The references are aggregated in
such a way that constraints can be en-
forced within a subject, and there is no
need for co-ordination across subjects.

A data structure graph for a subject com-
prises

• references which are existentially
dependent on other references within
the subject

• associated references, i.e. references
related to an object class within the
subject and which otherwise would
have been isolated in a separate subject
for this reference

• object classes which are related by
references within the subject

• name bindings to the mentioned object
classes together with all recursively
superior object classes and name
bindings.

The same object classes and name
bindings can belong to several subjects.

If each subject is implemented in a sepa-
rate database, then global distinguished
names are needed to refer between the
databases. Therefore, object classes (con-
taining these names) are used as refe-
rence points between subjects. If one
object class is used to refer between more
than two subjects, then this object class
represents an n-ary reference point.

Note that in subject design, references
are aggregated into subjects, which each
in principle could form an autonomous

15Telektronikk 1.1998

Subject design

Unified subject
graph

Systems overlap

Correction of
data structure

Figure 3.1 Analysis

Path

Object class
Name binding

Course

Link

Station

Node

Two-way reference

Figure 3.2 Graphic GDMO

Course networkSubject

Link network

Binary
reference

point

Ternary
reference point

Node Course

Figure 3.3 Subject graph

database. Subject design is, therefore,
distinguishable from clustering tech-
niques of object classes in repositories.

3.3 Unified subject graph

The objective of this step is to collect
and harmonise subject graphs from all
systems into one unified subject graph
for the entire systems family. The sys-
tems planners must consider that

• different names may have been
assigned to similar subjects in
different systems

• identical names may have been
assigned to different subjects in
different systems

• the data structures of different systems
may not be harmonised.

The unification of subject graphs will
result in

• a splitting and/or grouping of subjects

• renaming and/or redefinition of sub-
jects

• creation, deletion and/or redefinition of
reference points.

3.4 Systems overlap

The objective of this step is to identify
overlaps between systems.

The step can be divided into three substeps:

• make a list of all subjects of the uni-
fied subject graph

• create a subject-system-matrix

• identify and summarise overlaps.

The results from the subject analysis are
collected in a report to the customer
(steering group and other sponsors).
The customer makes decisions based on
the report.

4 Corrective design

The aim of corrective design, Figure 4.1,
is to harvest immediate results from the
surveying and subject analysis without
having to wait for a final idealistic design.

Corrective design takes the subject-
system-matrix as its starting point.
Corrective design requires acquisition of
knowledge from development and main-
tenance personnel; typically an expert per
system is needed. If these experts cannot
take active part in the corrective design,
they have to be interviewed by systems
planners.

4.1 Subject co-ordination

Subject co-ordination addresses the
handling of subjects across system
boundaries. This step aims at removing
overlaps between systems and to improve
the communication between systems.

The subject co-ordination can be divided
into four substeps:

• co-ordination and consistency control

• discussion of vertical partitioning

• discussion of horizontal partitioning

• consider joining or partitioning of sub-
jects.

Co-ordination and consistency control
shall

• ensure that subject and data definitions
are co-ordinated and correctly inter-
preted across systems

• summarise and co-ordinate results
across systems.

The project workers will typically
encounter the following obstacles
during the analysis:

• different systems use different data and
subject definitions

• different systems use different or iden-
tical labels of the same or different
data and subjects.

The project may find it convenient to
identify a co-ordinator for each subject or
a set of subjects across all systems.

Discussion of vertical overlap is under-
taken for each subject which is spread
across two or more systems. The sub-step
comprises:

• identification of characteristics of the
overlap

• assign ownership to the subject to one
system

• consider if the redundancy between
systems should be removed

• consider if data should be moved from
one system to another

• reconsider the interfaces between sys-
tems.

Discussion of horizontal overlap is
undertaken for each subject which spans
two or more systems. The sub-step com-
prises consideration of

16 Telektronikk 1.1998

Path

Existential
dependency Course

LinkNode

Link network

Figure 3.4 Data structure graph per
subject with indication of existential

dependencies

System S1 S2 S3 S4 S5

Subject
T1 x x x
T2 x x
T3 x
T4 x
T5 x x x
T6 x
T7 x x
T8 x x x
T9 x x

T10 x x x x
T11 x
T12 x
T13 x

Figure 3.5 Subject-system-matrix

Systems
co-ordination

Actions

Subject
co-ordination

Figure 4.1 Corrective design

• whether the span of the subject across
several systems is due to horizontal
partitioning of a data type

• co-ordination and communication
between systems.

The last substep, ‘consider joining or
partitioning of subjects’, reconsiders and
summarises joining or partitioning of
each subject across all systems in which
it is contained.

4.2 Systems co-ordination

This step is carried out for each system
and can be divided into two sub-steps:

• consideration of partitioning each sys-
tem into applications

• summarising the recommendations for
each system.

The project must consider if it is app-
ropriate to carry out the first sub-step.
A system can be horizontally partitioned
into

• several independent and non-over-
lapping applications

• several autonomous, but communi-
cating applications

• several dependent and partly over-
lapping applications.

The second sub-step summarises

• proposals for redistribution of func-
tionality between systems

• proposals for changes of each system

• implications for development, admi-
nistration and use of the systems.

Proposals for move of functionality be-
tween systems can be documented in a sys-
tems co-ordination graph. See Figure 4.2.

4.3 Actions

The results from Corrective design are
reported to the customer and other
sponsors of the project. Decisions
concerning implementation must be
made by the organisations responsible
for each system.

5 Idealistic design

The purposes of idealistic systems plan-
ning are

• to develop an idealistic systems plan,
which will serve as a vision for sub-
sequent development projects

• to develop an application plan for each
system

• to redesign activities and routines

• to develop cost and impact analyses.

The objective of the planning is to design
the most efficient manual and automatic
processing of data. This is achieved by
moving activities as close to the cus-
tomer as possible. Aggregation of sub-
jects into systems is done in such a way
that the routines are not hampered by a
need to access several systems. New
requirements are met by incorporating
new data definitions and redesign of
activities and routines.

5.1 Redesign of data and
subjects

This step comprises:

• definition of data for new needs

• redesign and harmonisation of data of
existing systems.

New data definitions are considered to
belong to one or more hypothetical sys-
tems. This step is carried out like an
iteration of the three first steps of the
analysis phase. The result of the work is
documented in a unified subject graph
for the (new and old) data definitions.

5.2 Identification of routines

A routine comprises all data flow which
results from one data flow input to a
business unit until data leave this busi-
ness unit.

17Telektronikk 1.1998

System 1 System 2

System 3

Data exchange

Part
to be

moved

System Subject

Figure 4.2 Systems co-ordination graph
Identification
of routines

Routine surveying

Unified subject
graph

Subject design

Correction of
data structure

Routine analysis

Redesign of
routines

Unification of
routines

Subject use

Subject grouping

System design

Design of
applications

Evolution
planning

Evaluation

Final report

Planning,
evaluation
and
reporting

Design

Subject
use and
grouping

Surveying,
analysis
and design
of routines

Redesign
of data and
subjects

Figure 5.1 Idealistic design

A data flow graph, from the information
collected during the Surveying phase, is
developed – as an intermediate result –
for

• all systems

• all user organisation units

• all data flow between these systems
and units.

The final results from this step are

• identification of all inputs to the busi-
ness unit

• prioritisation of which routines to be
analysed in which sequence.

5.3 Routine surveying

Each routine is surveyed by interviewing
expert users and by acquisition of routine
descriptions. Note that there are fre-
quently discrepancies between routine
descriptions and the actual routine.

The routines are documented in enume-
rated notes. Note that a routine can visit
an organisation unit several times.

The level of detail of the routine survey-
ing has to be considered in each indi-
vidual case; however, the surveying has
to distinguish organisation units at the
lowest formal level.

The results from the surveying can be
documented in informal routine graphs.

5.4 Routine analysis

In this step a routine graph is developed
for each routine. See Figure 5.3. All
work carried out in one organisation unit

without intermediate communication
with other units is defined to be one acti-
vity.

The routine graphs depict activities, sys-
tem activations (including use of manual
files), and data and control flows be-
tween these. Furthermore, vertical lines
between activities indicate that they are
undertaken in the same organisation unit
and vertical lines between system activa-
tions indicate that they are of the same
system.

5.5 Redesign of routines

The purpose of this step is to design the
most efficient allocation of work to orga-
nisation units and sequencing of work for
each routine. This objective can typically
be met by moving work as close to the
initiation of the routine as possible. Note
that reallocation of work frequently will
imply change of access to systems.

The redesign is documented in routine
graphs of the same kind as used in the
routine analysis. Note that vertical lines
indicate alternative work flow in case the
intermediate communication (possibly
via systems) to other organisation units is
not needed.

5.6 Unification of routines

This step studies

• harmonisation of routines
• linking of routines

with the corresponding updating of rou-
tine graphs. Centralisation and decentral-
isation are essential questions of this
step.

The resulting graphs are called unified
routine graphs.

5.7 Subject use

In this step every subject is listed for
each data flow between activities and
system activation in each unified routine
graph. The subjects, which are depicted
in the unified routine graphs, refer to the
unified subject graph.

The resulting graphs are called routine-
subject-graphs. A collection of subjects
can be referred to as a subject set.

5.8 Subject grouping

The purpose of this step is to identify
subject groups which can serve as sys-
tems. The group of subjects used by one
activity forms the starting point for the
grouping. This way, work is not ham-
pered by one activity having to access
several systems.

Sometimes the tasks contained in an acti-
vity are so loosely coupled or subjects
are so seldom accessed that the subjects
can be organised into several subject

18 Telektronikk 1.1998

Business unit

Systems

Data flow

Organisation units

Figure 5.2 Data flow graph with
initiation of two routines

System activations

Data flow

Activities

Control flow

Figure 5.3 Routine graph

System activations

Subject

Activities

Subject set

Figure 5.4 Routine-subject-graph

Subject group 1
xxxx
xxxx
xxxx
xxxx

Subject group 2
xxxx
xxxx

Subject group 3
xxxx
xxxx

Figure 5.5 Subject groups

groups or systems per activity. We want
to design disjunct subject groups or sys-
tems. Since the needs of some activities
can be in conflict, some subjects may be
split on several subject groups/systems or
joined into several subject groups/sys-
tems. The resulting subject groups are
documented in named lists and are de-
coupled from the activities.

5.9 Systems design

This step produces the main result from
the entire systems planning work.

Based on the results from the previous
step, this step proposes

• new, redesigned and existing systems
• reference points between systems.

The results are documented by

• one systems graph, see Figure 5.6
• a subject graph for each system.

5.10 Design of applications

This step will propose

• vertical and horizontal partitioning of
systems into applications

• introduction of controlled redundancy
between applications of each system

• introduction of controlled redundancy
between systems

• interfaces and co-ordination mecha-
nisms between applications

• interfaces and co-ordination mecha-
nisms between systems.

The results are documented in

• an application graph for each system
• a subject graph for each application.

The project will have to consider if the
tasks of this step can be postponed to the
subsequent development projects.

5.13 Final report

The results from idealistic design are
collected into

• recommendations to the steering group
and other interested parties

• documentation to developers.

See contents of the systems plan in sec-
tion 1, Systems planning.

The results should be validated by IT
support, IT co-ordinator, system owners
and expert users before final decisions in
the steering group or higher level bodies.
The decisions should be anchored by a
binding IT strategy and concrete de-
velopment initiatives by the customer.

References

1 Saxlund, G et al. The Urd Systems
Planning Method. Kjeller, Telenor
R&D, 1996. (Report N 52/96.)

2 Martin, J. Strategic Information
Planning Methodologies. Englewood
Cliffs, NJ, Prentice Hall, 1989. (ISBN
0-89435-358-6.)

3 Telenor IT. BIA : Business Informa-
tion Architecture. http://info.telenor.no.

4 Furley, N. The BT Operational Sup-
port Systems Architecture Frame-
work. British Telecommunications
Engineering, 15 (4), 1996.

5 ITU-T. Report of the meeting held in
Geneva from 10 to 18 April 1996.
Geneva, ITU, 1996. (COM 10-R 4-E.)

19Telektronikk 1.1998

System 1 System 2

System 3 System 4

Figure 5.6 Systems graph
with reference points

Appl. 1.1 Appl. 1.3

Appl. 1.2

System 1

Figure 5.7 Application graph
with data flow

Arve Meisingset is Senior Research Scientist at
Telenor R&D. He is currently working on informa-
tion systems planning, formal aspects of human-
computer interfaces and middleware standard-
isation. He is ITU-T SG10 Vice Chairman and the
Telenor ITU-T technical co-ordinator.

e-mail:
arve.meisingset@fou.telenor.no

5.11 Evolution planning

This step will propose a migration path
from the current systems to implementa-
tion of the proposed systems plan.

The project will have to choose between
a revolutionary or evolutionary migration
strategy.

5.12 Evaluation

The objective of this step is to develop a
cost-benefit evaluation of the proposals
from the previous steps. This step shall
produce

• cost estimates

• economic and other benefits from the
proposals

• implications for personnel and other
implications.

Since the idealistic plan is long range and
strategic, the benefits can be long range,
as well. Therefore, it may be difficult to
undertake an economic analysis. In this
case, it may be more appropriate to pro-
vide strategic considerations on techno-
logical, organisational, regulatory or
market changes.

20 Telektronikk 1.1998

Box 2 – Method overview

System
developm.

Funct.
atity

Main-
tenance

Funct.
atity

The method
does not

comprise this

Delimitation Problem
identification

Usage
surveying

User
surveying

Systems
surveying

High level
organisation

Business
planning

Surveying

Analysis

Actions
Systems

co-ordination
S ubject

co-ordination

Corrective design

Unified
subject graph

Subject
design

Correction
of data

Idealistic design

System
overlap

Unified
subject graph

Subject
design

Correction of
data structure

Unification
of routines

Redesign
of routines

Routine
analysis

Routine
surveying

Final reportEvaluation
Evolution
planning

Subject use Subject
grouping

System design Design of
applications

Identification
of routines

Systems planning

IT architecture
Planning for a family
of systems

Functionality is
decided per system

Dotted boxes
can be skipped

The method
presupposes

this

21Telektronikk 1.1998

Box 4 – Example Subject graph

Box 3 – Example Systems graph

Customer
system

Traffic
system

Network
system

Organization
system

Map systems

Service bus. units Network bus. units

Common

Optimisation
systems

Cable
system

Station
system Fabonett

Sambands-
nummer

Hendelse

Prosjekt

Dokument

Instans
Nett-

leverandør

Samband Mp.sb.

Adresse

Strekning

Ekstremt
medium

Sambands-
avgr. Plan

Kurs

Gruppe

Transm.-
system

Kopling

Utstyr

Mp.tr.sys. Radiolinje Mp.gruppe

Ordre

Stasjon Rad

Uts.enh

Funksjon

Hylle
Stativ

Blokk
Utstyr Sek.par

Sb.sys.pkt

Hendelse +Trab s.sys

Katalognr

+Gruppe

+Kurs

Samband

Linje

+Samband

+Mp.sb.

Sak

Dok Sak.inst.

Gruppe

Trans.sys

Uts.rel.

Kanal

Område

Ks.sek.

KOpl.pkt.

Kurs

Kurspar

Plan

Sent.omr

Ext.tr.med

Samb.ag.

Samb.sek.

Jur.pers.

+O.lj.nr.

Mp.samb

Anropsnr.

StrekningSb.bunt

+Sentral

+Sb.bunt

Hvk.

Knutepkt.

22 Telektronikk 1.1998

This paper addresses the granularity
problem of systems planning. Five sys-
tems planning methods are presented,
and their granularity levels are identi-
fied according to a granularity level
hierarchy.

In the 1970s many organisations started
to computerise their data and processes.
Now, twenty years later, they experience
information system chaos. Purchasing of
new systems seldom takes the existing
systems into account, and while new
computerised systems are added to the
system portfolio, old systems are seldom
removed. To ensure that the computer-
ised information systems fit together and
support the business in the best way
possible, information systems planning
should be performed.

‘Strategic information systems planning’,
or ‘systems planning’ for short, has been
defined as “the process of identifying a
portfolio of computer-based applications
that will assist an organisation in exe-
cuting its business plans and realising its
business goals” [1]. Systems planning is
a complex and critical task, and it is often
unsuccessful, partly because the plan is
not followed [1].

The literature provides various systems
planning methods, see for example [2],
[3], [6] or [7]. Methods differ in scope
and granularity. Some methods, like
Martin [2], have the whole enterprise as
its scope, while others, like the Urd
method [3], have a business unit or a set
of systems within the business unit as its
scope.

Regardless of scope, systems planning is
a complex task. To get an understanding
of a complex problem area, it can be
beneficial to decompose it into smaller
parts that are easier to deal with. This
approach is called ‘top-down’. When
every problem part is understood, you
must put the parts together to get a new
picture, which provides a better design or
a better understanding of the problem
area. This approach is called ‘bottom-
up’.

The problem of decomposition is when
to stop decomposing. How do we know
that we have reached the necessary level
of detail? In the case of composition, the
question is at which level of detail do we
start? If we analyse too many details, we
may get lost, and never come up with a
systems plan. If we analyse too few

details, we may not be able to address the
real problems. This is the heart of the
granularity problem. Because systems
planning precedes system development,
it should not require a detailed analysis
of each new system. The detailed analy-
sis should be left for the system develop-
ment activity. However, for the systems
planning results to be useful in sub-
sequent system development projects, it
must be so detailed that the conclusions
become trustworthy. The granularity
problem of systems planning can there-
fore be seen as how to compromise be-
tween planning efforts and quality of the
resulting systems plan. There may not be
one general solution to this problem, and,
as this paper shows, different systems
planning methods provide different
answers to the granularity problem.

In this paper we present five methods for
systems planning. To be able to compare
the granularity levels of various methods,
we have identified nine general granula-
rity levels, see Table 1. We have
arranged the granularity levels in a hier-

archy, but are aware of the fact that the
levels do not always define a strict scale.
Another difficulty with the comparison is
that even if two methods address the
same granularity level, one can do this in
an abstract way, while the other does it in
a concrete way. Nevertheless, we find the
hierarchy helpful in visualising and com-
paring the granularity levels of the
methods. The reader should, however, be
cautious when using the diagrams.

ISAC

The ISAC method was widely used in
Scandinavia during the 1970s. It is in fact
a system development method, which
incorporates systems planning aspects as
well. It is presented in this paper, because
it provides a comprehensive general
framework for analysing information
systems.

ISAC was the name of a research group
at the Royal Technical High School and
the University of Stockholm, in the early

Decomposition and Granularity in Systems Planning
S I G R I D S T E I N H O L T B Y G D Å S

Granularity Granularity level entity class Typical number
level no. of entities

8 Enterprise 11)

7 Business Unit 5 – 100

6 Organisation Unit / System 50 – 10002)

5 Activity / Function 500 – 20003)

4 Subject 100 – 5004)

3 Entity / relationship 1000 – 2000

2 Attribute 5000 – 10,000

1 Process description 5000 – 10,000

0 Detailed implementation 5000 – 10,000

Table 1 Granularity level hierarchy

NOTES:

1) To come up with this hierarchy, we have considered an enterprise of large
national and medium international size, like Telenor. Please note that the granu-
larity levels will not always constitute a strict hierarchy.

2) We assume that each system supports the activities of one business unit only.

3) We do no generalisation of functions and activities across business units or
systems.

4) A subject is a collection of relationships with corresponding peer entities. Sub-
jects are (unlike functions) unified across systems, that means that they are only
counted once even if they are used by several systems.

23Telektronikk 1.1998

seventies. The group developed a method
for information system development
based on the work of Børje Langefors.

The scope of the ISAC method is an
organisation or organisation unit. This
relates to the granularity levels 6 to 8 in
Table 1. Within this scope it is the people
related to the organisation (unit) and the
problems they experience in their work
that are important. ‘People’ includes the
following roles: user, manager, worker,
customer and fonder.

The design philosophy is compositional
or bottom-up in the sense that it is
assumed that the solutions to sub-
problems within the organisation will
give the solutions to the organisation’s
problems as a whole [5]. During the
analysis, however, you will work top-
down, decomposing functions and in-
formation.

The ISAC method has an initial phase (I)
called Change Analysis. The purpose of
this phase is to identify if the organisa-
tion needs an automated information sys-
tem at all. In other words, ISAC does not,
like most other methods, assume that the
development of an information system is
the solution to an organisation’s prob-
lems [5]. Another interesting difference
from most methods is, as stated by
Avison and Fitzgerald in [5], that:

“Need is established only if it is seen
that an information system benefits
people in their work, so that pure
financial benefit to the organisation,
or some other benefit, is not thought to
be an indication of need for an infor-
mation system.”

The purpose of the second phase (II),
activity studies, is to delimit the informa-
tion system. To do this, activities that
will be supported by the system are iden-
tified and analysed. Information needed
by the activities, and the information
flows between the activities are identi-
fied.

The third phase (III) is called information
analysis. In this phase the contents and
tasks of the information system are
analysed. For each task, input and output
information sets are analysed. (An infor-
mation set is a data flow or a data store.)
The analysis consists among other things
of precedence and component analysis of
each information set. The analysis may
look quite similar to functional decompo-
sition, but the reasoning process is diffe-

rent; ISAC’s precedence analysis identi-
fies the input information necessary to
produce the information set studied.
When the input information set is identi-
fied, the output information set derivable
form this input is identified. If the two
output information sets are identical, the
analysis stops. To be able to reason about
the transformation between input and
output information sets, the structure of
the information sets must be known. This
structure is analysed in the component
analysis. When precedence and com-
ponent analysis are taken down to the
lowest level of decomposition, the logic
of the resulting processes (transforma-
tions) is analysed. Descriptions of the
information processes are then made. A
Process description is a detailed descrip-
tion of the prerequisites, conditions, per-
mitted states for conditions and required
actions for the process.

In the ISAC method, an information sys-
tem is not necessarily computerised. In
the fourth phase (IV) of the method, it is
decided for each process, if it will be
automated or not. Related automated or
manual processes are grouped. A group
of automated processes defines a pro-
gram. To perform data program design,
Jackson Structured Programming (JSP) is
recommended. ISAC also recommends
that the workers design their own manual

routines. The elementary information sets
that are a result of phase III, are aggre-
gated into permanent or temporal data
sets, based on their functional depen-
dencies, and messages, files or databases
are designed.

In the method’s last phase (V), the equip-
ment-independent system design from
phase four is adapted to fit the particular
equipment chosen.

To summarise, the ISAC method add-
resses systems planning aspects, and
ends with a detailed system development.
Figure 1 illustrates the process. Bars illu-
strate granularity levels, parentheses illu-
strate alternatives (that is and/or alterna-
tives), and arrows illustrate transitions.

Urd

In 1993 the Telenor Network business
unit asked Telenor R&D to develop an
idealistic systems plan for the key infor-
mation systems of the business unit. The
project started out searching for a suit-
able method in literature, but did not find
one single method that fulfilled the
needs. Some methods, like Inmon’s
Information Paradigm [4] was considered
to be more suitable for financial than
telecommunication information systems.
This was due to the fact that operational

I II III IV V

Phases

8

7

6

5

4

3

2

1

0

G
ra

ni
la

ri
ty

 le
ve

ls

ISAC

Figure 1 Granularity levels in the different phases of the ISAC method
Bars illustrate granularity levels, parentheses illustrate alternatives (that is and/or

alternatives), and arrows illustrate transitions.

24 Telektronikk 1.1998

data in telecommunication systems are
more complex to handle than Inmon
suggests, and therefore his categories
provide inappropriate splits of data. As
an example, several points of time must
be handled to establish a circuit, and this
data may not be split on several data-
bases. Other methods, like Martin’s
Information Systems Planning [2], was
considered to be too detailed for the
purpose of this project. Inspired by litera-
ture, the project developed its own
method, called the Urd method. Urd is
described in more detail elsewhere in this
issue of Telektronikk.

According to the Urd method, a systems
plan should give answers to the follow-
ing important questions: which systems
and data do a business unit really need,
and how should the data and systems be
organised to support the business unit in
the best possible way?

The Urd method focuses on a family of
concerned systems within a business
unit. Surveying and analysing are per-
formed top-down and the design bottom-
up. During the analysis existing systems
are decomposed into data objects and
relations, and grouped into subjects (for
more details see [3]). The subjects are

used to compose new systems in the
idealistic design phase.

The purpose of the first phase (I), survey-
ing, is to identify problems and oppor-
tunities related to the systems. System
owners, system users and data users are
interviewed during this phase. Beside the
systems, information flow between sys-
tems and between systems and organisa-
tion units are studied. The lowest granu-
larity level of this phase is systems and
organisation units.

The second phase (II), data subject analy-
sis, is performed to identify overlaps of
the systems data. Entities and relation-
ships are studied and grouped into sub-
jects, see [3] for a definition of subject
and more information on the grouping.
The subjects are used as building blocks
when new systems are identified, in the
last phase (IV).

Corrective systems planning, the third
phase (III), is optional. The purpose of
this phase is to reduce overlap in existing
systems, while waiting for the realisation
of a more idealistic systems plan.
According to the method, entities and
relationships are the correct granularity
level of this phase. In practice, however,
the project experienced that attributes

had to be studied to be able to decide if a
subject overlap indicated a real overlap
in data instances or not. The reason why
this detailed level is necessary is because
the analysis results now are used in
design of improvements of current sys-
tems. A graph showing data flow be-
tween systems and ownership of subjects
summarises the results of this phase.

The last phase (IV) of the method is
called idealistic systems planning. A new
systems plan for the application area of
the system family studied is constructed.
The intention is to support the business
unit in the best possible way. Routines
are analysed and redesigned. Subjects are
assigned to redesigned activities (that are
analysed at organisation level only). Sys-
tems are then designed as the set of sub-
jects that serve the redesigned activities
in the best possible way. Finally, cost-
benefit analysis and migration plans are
developed.

To summarise, the Urd method is only a
systems planning method, even though
some system design aspects are add-
ressed in the optional third phase. The
granularity levels are illustrated in
Figure 2.

Information Strategy
Planning

James Martin presents a method for
information strategy planning in his book
Strategic Information Planning Methodo-
logies [2]. The scope of this method is
the whole business or enterprise. The
method is top-down. Involvement of top-
management in the planning process is
regarded as crucial for the ability to
implement the systems plan. Top man-
agement is directly involved in perform-
ing the first four phases of the method.
The method consists of six phases, pre-
sented below. The business areas, which
are identified in the last phase of the
method, are subjects for further planning
studies.

The phases are:

I Linkage Analysis Planning. The pur-
pose of this phase is to formulate a
strategic business vision.

II Entity-Relationship Modelling. This
phase is performed to get a better
understanding of the enterprise. In
addition it provides a complete list of
the functional areas, functions and
activities that constitute the enterprise.

8

7

6

5

4

3

2

1

0

G
ra

ni
la

ri
ty

 le
ve

ls

I II III IV

Phases

Urd

Figure 2 Granularity levels in the different phases of the Urd method. Phase 3 is optional

25Telektronikk 1.1998

Figure 3 Granularity levels in the different phases of the Information Strategy
Planning method

Figure 4 Granularity levels in the different phases of the Information Co-ordination
method

III Technology Impact Analysis. The
purpose here is to give top manage-
ment an overview of potential oppor-
tunities and threats due to technolo-
gical changes1.

IV Critical Success Factor Analysis.
Through this phase focus is put on
the most important activities for the
enterprise. Based on the results from
this phase, decision support systems
for the enterprise should be designed.

V Goal and Problem Analysis. In this
phase the information needs of the
organisation units within the enter-
prise are identified.

VI Business Area Identification. Busi-
ness Areas of the enterprise, and the
data and functions that belong to
each business area are identified.
Overlap in data and functions be-
tween business areas are minimised.

The Information Strategy Planning
method does not deliver a complete
systems plan. Systems plans are prepared
by performing an analysis of each of the
business areas identified during the last
step of this method. We may therefore
look at the method as a prescription of an
initial part of the systems planning pro-
cess.

Information Co-ordination

In his book, Information Co-ordination –
the management of information models,
systems and organisations [6], Richard
Veryard presents an organic planning
method. The term organic refers to the
idea of gradual change towards a more
idealistic solution, see [6]. Veryard pre-
fers to call the result of this method a
strategy, and not a plan. The scope of the
method is the business/enterprise. The
phases of this organic planning method
are:

I Discover business objectives and
goals. This is performed through a
discussion with top management,
which also aims to identify the busi-
ness’ strengths, weaknesses, threats
and possibilities.

1 Our granularity level hierarchy does
not cover technology, like new hard-
ware components. We have given this
phase granularity level 6, only because
the discussions are performed at the
organisation unit level.

I II III IV V

Phases

8

7

6

5

4

3

2

1

0

G
ra

ni
la

ri
ty

 le
ve

ls

VI

Information Strategy Planning

I II III IV V

Phases

8

7

6

5

4

3

2

1

0

G
ra

ni
la

ri
ty

 le
ve

ls

VI

Information Co-ordination

26 Telektronikk 1.1998

II Build a high-level conceptual model
of the business’ functions and enti-
ties. This model is called information
architecture.

III Survey existing and planned systems,
and the interfaces between them. This
includes comparison with the infor-
mation architecture to ensure quality
and usefulness, and discussions with
top management to identify the main
problems and opportunities.

IV Establish a set of system develop-
ment principles and procedures, and
establish the support groups and
technical infrastructure necessary to
support them.

V Identify and prioritise between some
important projects, necessary to per-
form the next three to five years.

VI Tactical planning, that is identify
some small and medium sized pro-
jects to be performed during the first
year (in parallel with the more im-
portant ones identified above).

This method addresses systems planning
only, and not system development. The
systems plan is of a tactical, not ideal-
istic, nature. We define tactical planning

to have a perspective of three to five
years, while idealistic planning has a
perspective of five or more years.

Business/enterprise
modelling

Katz presents a way of doing business or
enterprise modelling [7] where one goal
is to minimise data sharing between work
processes. Another goal is to ensure that
data users are satisfied with data quality.
The scope of the method is the business
or enterprise. The first part of the work,
identifying all processes of the enter-
prise, can be performed top-down by
decomposing the business functions. The
last part of the work is performed
bottom-up. This includes clustering data
to minimise data sharing between pro-
cesses. In his paper [7], Katz does not
divide his method into distinct phases. To
be able to compare the granularity of his
method with the others, we have identi-
fied five phases, as follows:

I Process identification. This includes
decomposition of business functions
and identification of the data that
each business process uses.

II Interviews. This phase involves
employees from all over the enter-
prise. One of the goals of the inter-
views is to find out if data users are
satisfied with data quality or not.

III Design of an integrated systems
architecture. This phase includes
clustering data to identify business
processes. The data is grouped in a
way that minimises data sharing be-
tween business processes.

IV Simulation. This is performed to
reveal which of the business pro-
cesses that will benefit the most from
the suggested changes.

V Tactical project identification. The
projects necessary to implement the
integrated information systems archi-
tecture are identified.

The business/enterprise modelling
method is a systems planning method
only, and not a system development plan.
We have presented the method as it will
be performed if an integrated systems
architecture is the chosen solution. This
will not always be the case, see [7].

Conclusions

The granularity level diagrams show that
the method with the lowest granularity
level (level 0) is the ISAC method. The
reason for this is that ISAC includes sys-
tem development, and this requires more
details than systems planning. We find
the next granularity level up (level 2) in
the Urd method. This is because the third
phase of Urd (the optional one) contains
system design aspects, which belong to
system development as well. For the
other methods, granularity level 3,
entity/relationship, seems to provide the
sufficient details. This is true for the Urd
method, too, when the optional phase is
skipped.

In Urd, level 3 is used to design subjects
at level 4. The idealistic design is then
based on level 4. The other methods pre-
sented in this paper do not address level
4. Constructing a subject can be seen as a
parallel to normalising relations due to
functional dependencies in the relational
model. The difference is that while
normalisation in the relational model
focuses on functional dependencies be-
tween attributes, Urd focuses on func-
tional dependencies between relation-
ships. The third phase of the business/
enterprise modelling method includes
clustering, and is probably based on simi-

8

7

6

5

4

3

2

1

0

G
ra

ni
la

ri
ty

 le
ve

ls

I II III IV

Phases

V

Business enterprise modelling

Figure 5 Granularity levels in the different phases of the Business/enterprise
modelling method

27Telektronikk 1.1998

lar ideas about functional dependencies
as the relational model.

The diagrams show that all the methods,
except Urd, start with granularity level 8,
the enterprise level. The reason for this is
that the scope of this method is a systems
family of one of the enterprise’s organi-
sation units, and not the enterprise as a
whole, as for the other methods. This
method is the only idealistic or strategic
systems planning method of the five
methods presented. It may also be an
operational systems planning method
(with a one-year perspective), if the third
phase is performed. The information co-
ordination and the business/enterprise
modelling methods are tactical systems
planning methods. The information
strategy planning method does not de-
liver a systems plan. This method con-
stitutes a framework for organising data
and functions in an enterprise.

Systems planning methods differ, in
scope and granularity. Four of the
methods presented in this paper go
through exactly the same granularity
levels, but in different order and through
a different number of phases. It is never-
theless significant which of the methods
we use. As we have just stated, the
methods serve different purposes. When
choosing a systems planning method, the
most important thing to do is to ensure
that the method we choose is able to
answer the problem we want to solve. If
we need a framework, like the one the
information strategy planning provides,
we do not choose Urd. Do we need a sys-
tems plan, we do not choose to do infor-
mation strategy planning. And, if we
need a systems plan, we have to find out
if it should be an operational, tactical or
idealistic plan.

References

1 Lederer, A L, Salmela, H. Toward a
theory of strategic information sys-
tems planning. Journal of Strategic
Information systems, 5, 237–253,
1996.

2 Martin, J, Leben, J. Strategic Infor-
mation Planning Methodologies.
Englewood Cliffs, NJ, Prentice Hall,
1989. ISBN 0-89435-358-6.

3 Saxlund, G et al. The Urd systems
planning method. Kjeller, Telenor
FoU, 1996. (Report FoU N 52/96.)

4 Inmon, W H. Data architecture : the
information paradigm, 2nd ed.
Boston, Mass., QED Technical
Publishing Group, 1992.
ISBN 0-13-850538-1.

5 Avison, D E, Fitzgerald, G. Informa-
tion Systems Development : Metho-
dologies, Techniques and Tools.
Oxford, Blackwell Scientific Publica-
tions, 1988. ISBN 0-632-01645-0.

6 Veryard, R. Information coordina-
tion : the management of information
models, systems and organizations.
Englewood Cliffs, NJ, Prentice Hall,
1994. ISBN 0-130099243-7.

7 Katz, R L. Business/enterprise
modelling. IBM Systems Journal, 29,
509–525, 1990.

Sigrid Steinholt Bygdås has been employed by
Telenor R&D as Research Scientist since 1992.
She has been working with models and methods
for systems planning, system development and
CASE tool evaluation. Her current interests are in
systems plan implementation and software archi-
tecture.

e-mail:
sigrid.bygdas@fou.telenor.no

28 Telektronikk 1.1998

This paper presents the notion of sub-
ject graphs, which is a way of part-
itioning a data structure into candidate
autonomous databases. Subject graphs
are used in the Urd method – a sys-
tems planning method. An overview of
Urd can be found in another paper in
this issue of Telektronikk.

Purpose and overall
process

In the Urd method, the term ‘system’ is
defined to be the data that is enforced as
one consistent whole. This means that a
system contains all the data needed for an
application area, and the rules of con-
straints needed to maintain consistency
between these data. This definition of

system insists on consistency within the
system’s boundaries, but a system cannot
guarantee complete consistency of data
that is communicated between different
systems.

According to Urd, the first step in the
process of making a systems plan is to
survey the applications in the application
area. The survey consists of interviewing
the application owners, users of the appli-
cations and users of the data extracted
from each application. The goal is to iden-
tify problems and possibilities with the old
applications and usage of the applications.

The subsequent step is to analyse the
identified applications. The goal is to
identify overlap between systems, i.e.
common data across two or more sys-
tems. To achieve this, subject graphs are
constructed.

To design subject graphs, we start with a
data structure graph for each system.
Some of the systems do not have a docu-
mented graph, and for these a graph must
be developed. Other systems do have a
data structure graph, but not in a suitable
form. Often, the data definitions of a sys-
tem are found in various forms. Ex-
amples could be anything from database
scripts, conversion documentation, user
documentation, to plans for a new sys-
tem. The documentation may not be con-
sistent and is frequently not up to date.
To analyse the data structure, all the
documentation must be transformed into
the same notation.

An alphanumeric notation is not very
suitable for getting an overview of the
data definitions, thus a graphical notation
is required. The notation used is a subset
of Graphic GDMO (Guidelines for the
Definition of Managed Objects) [4].
Figure 1 shows a small data structure
graph expressed in Graphic GDMO,
showing examples of all the constructs
that we use.

Note especially that there are no attri-
butes in the data structure graph. Very
often multivalued attribute groups are
separated as different entities. These
attribute groups are removed from the
graph. This way, we get a more compact
data structure graph, focusing on the
central object classes.

Once a system’s data structure is pro-
vided in a common notation, it is pos-
sible to perform a subject analysis on the
data structure. The result is a subject

The Role of Subject Graphs
A R N E S O L E V Å G H A T L E N

Trial
Connection
Termination

Point

Link
Connection

Link

Managed Object
Class

Name Binding
Two-way reference
One-way reference

Name

Figure 1 A small example data structure graph, showing the subset of Graphic
GDMO that we use. At the bottom of the figure is a legend explaining the symbols
used in the graph

Trial
Connection
Termination

Point

Link
Connection

Link
Transportation

Termination

Link Link
connection

Figure 2 To the left the data structure graph presented in Figure 1 is shown, with indications of sub-
ject definitions (the two coloured areas). The corresponding subject graph is shown to the right. The
subject graph consists of two subjects, Transportation and Termination. The names are ‘arbitrary’
names, indicating the type of data the subjects consist of. Link and Link Connection are the two object
classes that are needed in both subjects because of the name binding between them. Thus, they define
reference points between the two subjects

29Telektronikk 1.1998

graph per system. The transition from the
data structure graph in Figure 1 to a sub-
ject graph is shown in Figure 2.

Having performed a subject analysis for
all relevant applications, the resulting
subjects from all the subject graphs are
collected in a subject-system matrix, as
shown in Figure 3. If two subject graphs
contain the same or very similar subjects,
this is considered a subject overlap.

Subset of Graphic GDMO

A specification using GDMO or another
alphanumeric notation is usually very
elaborate and difficult to overview.
Graphic GDMO provides the overview
for a GDMO specification. Graphic
GDMO does not show the complete
GDMO specification, however, and thus
it can only be used as a supplement to the
alphanumeric specification, and is indeed
meant only as a supplement.

For systems planning, however, the level
of details provided by Graphic GDMO
suffices.

Graphic GDMO is used because of its
distinction between name bindings (con-
tainment) and references. In addition to
the symbols presented in Figure 1,
Graphic GDMO has constructs for view-
ing attributes of managed object classes,
and relations between managed object
classes, such as inheritance (derived
from), containment (name bindings),
references and relationships with con-
straints. The complete specification of
Graphic GDMO is defined in ITU-T
recommendation Z.360 [4].

Subject graphs

A subject is a collection of associations
(references, relationships and name bind-
ings) between object classes. A subject
graph is a collection of subjects, each
covering a connected fragment of a sys-
tem’s data structure, with reference
points between them.

Each reference or relationship can only
participate in one subject. This rule does
not apply to name bindings.

Between the subjects are reference
points. A reference point is an object
class that forms one end of two or more
associations located in different subjects.
A reference point can be binary or n-ary,
i.e. an object class is related to two or
more subjects.

Figure 4 shows a generic example of a
subject graph. Here, subjects S2 … S5
contain one or more relationships in
which object class A takes part. The
object class A is said to be a reference
point between subjects S2 ... S5. In the
same manner, the object class B is a
reference point between S1 and S5, and
C between S2 and S3.

Let A be an object class participating in
more than one relationship within subject
S3. This multiplicity does not change the
nature of the reference point – S3 still
only ‘participates once’ in reference
point A. Thus, reference point A defines
the data that must be communicated be-
tween the two subjects, if the subjects are
included in different systems. It does not,
however, define the data that must be
communicated to perform a given opera-
tion, or the sequence of the data commu-
nication.

The purpose of defining subject graphs is
to identify ‘natural’ vertical partitions of
the data, i.e. a fragment of the data struc-
ture that in principle could be imple-
mented as a separate database.

When designing a subject graph, each
system is analysed separately from the
others. The purpose of this is to keep the
scope of the analysis to a manageable
size. However, it is important to keep in
mind that all the subject graphs are to be
compared and joined across several sys-
tems. Thus, identifying similar subjects is
vital.

Subject design criteria

There are few formal criteria for defining
which information should be grouped
into one subject.

The main criterion is to group existen-
tially dependent associations into the
same subject. This way, existential con-
straints can be enforced within a subject,
and does not require references to other
subjects. The term existential dependency
corresponds to functional dependency in
the relational model.

Another grouping criterion is that
superior name bindings1 of an object
class should be present if a reference or
relationship to the same object class is
included in the subject. Figure 2 shows
an example of this. Here, the name bind-
ing between Link and Link Connection is
included in the same subject as the two-
way reference between Link Connection
and Connection Termination Point.

Sometimes there will be “loose” relation-
ships (or object classes) in a data struc-
ture, i.e. a relationship that does not have
any strong dependency to other parts of
the data structure and does not strictly fit
into any subject. These relationships
could be kept as separate subjects, but
may be included in a subject together
with other data with which it is fre-
quently used.

1 A superior name binding is also known
as an identifying name binding, i.e. a
name binding that is used to identify
instances of an object class, without
which the object instance could not be
uniquely defined.

System System A System B
Subject

S1

S2

S3

S4

S5

X

X

X

X

X

X

X

Figure 3 An example subject-system
matrix, showing five subjects, of which
one (S3) exists in system A only, two sub-
jects (S2 and S5) exist in system B only,
and two subjects (S1 and S4) indicate an
overlap, as they are present in both systems

S1

S2 S5

S3 S4

B

A

C

Figure 4 A generic subject graph, show-
ing five subjects S1 ... S5, connected with
three reference points A, B and C

30 Telektronikk 1.1998

Use of subjects

The purpose of using subject graphs is to
introduce a high-level view of the data,
without having to address all the details
of the data structure and the specific
differences of data structures within each
system.

However, there are fundamental diffe-
rences between subject graphs and data
structure graphs. A node in the subject
graph corresponds to a set of edges –
associations – in the data structure graph,
and an (n-ary) edge – a reference point –
in the subject graph corresponds to a
node (an object class) in the data struc-
ture graph. Thus, a subject graph is a
dual hyper graph of the data structure
graph.

The purpose of subject graphs – to define
minimal candidate systems and needs for
communications between these – seems
to be clear. However, we have only
experiences from one large project in
using the graphs, and in this project we
did not gain enough experience with uni-
fication across several systems. Accord-
ing to the experiences, we have noticed
that the contents of ‘similar’ subjects in
different subjects are most likely to be
different, but having identified the sub-
jects, it is believed to be more feasible to
harmonise two subjects than harmonising
two (or more) data structures.

The introduction of new technology, new
services and new data standards may
introduce new data structures that need to
be harmonised with existing systems.
Old and new data structures can be very
different. Unification on subject level is
then believed to be more appropriate for
systems planning work, than at class
level. However, for providing the unifi-
cation of subjects, the discussion and
detailed comparison have to be made at
class level.

In the Urd method, subject graphs are
developed per system, analysed for over-
lap and then unified across the system.
This is not the only conceivable app-
roach, as the data structures could have
been unified before development of the
unified subject graphs. However, this
would require working with more de-
tailed designs during the systems plan-
ning work.

Comparison with other
kinds of grouping

When doing strategic planning, we seek
to avoid too many details. In some tech-
niques, such as [2], this is achieved by
abstracting similar object classes into one
abstract object class, often called a ‘cen-
tral’ object class. It is stated that this
abstract object class represents all objects
with the same common factors. This is
not the case with subjects, as subjects are
collections of associations, where the
content of the collection is known.

The Urd method is to be used in strategic
planning. The bottom-up approach of
Urd is another difference from the top-
down approach of some strategic plan-
ning work. By using subject graphs, a
bottom-up approach is forced, requiring
the designers to identify the real data
types (object classes) and associations in
an application area, instead of using
generalised, i.e. less detailed abstrac-
tions. It is believed that a bottom-up
approach at this level yields a better
result.

In [1], William Inmon suggests a method
for collecting data from an organisation’s
computer systems. Inmon’s procedure
suggests grouping the data according to
their usage. The data are divided into two
categories, one for operational data, and
another for data used in decision support.
The latter category is then divided into
atomic, departmental and individual data.

The goal of the grouping is to enable
usage of data for new purposes. Inmon’s
grouping differs from the grouping of
data into subjects, in at least two ways:
First, the data in a subject are grouped
according to usage. Second, the subjects
do not necessary become databases,
several subjects can later be joined into
one database.

In [2], Martin and Leben describe
methods for strategic information plan-
ning, and techniques to support the acti-
vities in this method. They define entity-
relation (ER) models associating func-
tions with business units and data enti-
ties. As with Inmon, these criteria for
grouping entities differ from the criteria
for grouping information into subjects, in
that subjects are organisation indepen-
dent. However, in an idealistic design
phase of the Urd method, subjects are
grouped into systems according to their
usage in manual routines.

Clustering [7, 8] is a much-used term for
techniques for grouping data. Clustering
might look similar to defining subject as
it defines clusters of data items used in
the same operations. However, the ob-
jective is typically to minimise the num-
ber of page references in a disk opera-
tion, or to localise object instances that
are used in the same transactions. In both
cases, the objective is to increase the per-
formance of a system. Clustering
schemes are concerned with object
instances and attributes, thus operating
on a more detailed level than subject
graphs. Clusters also differ from subjects
in that subjects are class level collections,
whereas most clustering techniques
group data instances. There are schemes
for class level clustering, but they usually
have the same goal of minimising remote
references, as with instance level cluster-
ing.

When using subjects as a basis for
implementing computing systems, sub-
jects might be joined on class level and
partitioned on instance level, according
to some distribution criteria. Thus, clus-
tering is used for a different purpose than
subjects and gives very different results.

Usefulness

The “Use of subjects” sections have
identified several applications for subject
graphs. Identifying overlaps across sys-
tem borders, supporting the harmonisa-
tion of computer systems and identifica-
tion of possible partitions of distributed
applications.

However, subject graphs are probably
not the universal medicine for all
harmonisation problems2. When con-
structing subject graphs for a set of re-
lated systems, person-dependency might
be a problem. To ensure that subject
graphs are comparable – and this is
usually a requirement when analysing an
application domain – the designers must
work closely together, having at least an
indication of the common fragments of
the data model in different systems.

Neither does subject graphs present a
general solution for the problem of
schema integration or migration. It is
quite possible to make data structures
completely incompatible with others, and

2 And neither has this been the intention
of subject graphs or Urd.

31Telektronikk 1.1998

mapping fragments into subjects does not
present a solution for integrating two
different models, or migrating data from
one data model to another model.

We have, however, good reasons to be-
lieve that construction of subject graphs
can be helpful in giving a simplified view
of possible overlaps across systems
within an application area. With the
bottom-up nature of constructing subject
graphs one could be more confident of
the completeness of the overview, i.e.
that every part of the systems’ data struc-
tures are included, than with a top-down
approach.

References

1 Inmon, W H. Data architecture : the
information paradigm, 2nd ed.
Boston, Mass., QED Technical
Publishing Group, 1992. ISBN
0–99435-358-6.

2 Martin, J, Leben, J. Strategic Infor-
mation Planning Methodologies.
Englewood Cliffs, NJ, Prentice Hall,
1989. ISBN-0-13-850538-1.

3 Meisingset, A. Graphic GDMO.
Telektronikk, 93, (2), 94–96, 1997.

4 ITU-T. A Graphic GDMO. Geneva,
ITU. (ITU-T Recommendation
Z.360.)

5 ITU-T. Information Technology :
Open Systems Interconnection :
Structure of Management Informa-
tion : Guidelines for the Definition of
Management Objects. Geneva, ITU,
1992. (ITU-T Recommendation
X.722.)

6 ITU-T. Information Technology :
Open Systems Interconnection :
Structure of Management Informa-
tion : General Relationship Model.
Geneva, ITU. (ITU-T Recommenda-
tion X.725.)

7 Meisingset, A. The Urd method.
Telektronikk, 94 (1), 12–21, 1998
(this issue).

8 Everitt, B R. Cluster analysis. Hal-
stad Press, 1993.

9 Javin, A K, Dubes, R C. Algorithms
for Clustering Data. Prentice-Hall,
1988.

Arne Solevåg Hatlen is Research Scientist at
Telenor R&D, where he has been involved in sys-
tems planning and systems planning methodo-
logy work in the area of Telecommunications
Management Network (TMN). His main interests
are object-orientation in design and implementa-
tion, and he is currently working in a Telenor R&D
project dealing with the object web and middle-
ware technologies for the Internet.

e-mail: arne.hatlen@fou.telenor.no

This paper proposes three perspectives
on the end user data managed and
provided by a computer system. The
proposed perspectives are normative
and not descriptive, as current prac-
tice frequently deviate much from the
proposed norm. The purpose of the
proposal is to present principles which
can serve as subject for discussion as
well as guidelines for design and use.

Introduction

The end user data define what the system
looks like as seen from the outside. The
three perspectives define how these data

relate to the application domain, the end
user organisation, and how the data relate
to each other. Hence, the perspectives
provide theories for how a system can
relate to the outside world and how the
system of data can be structured.

The modelling dimension states how data
relate to entities in the application
domain, e.g. the telecommunication net-
work, being managed by the data of the
system, see Figure 1. The correspon-
dence dimension states how the organisa-
tion of data into systems, functions and
screens relate to business units, organisa-
tion units and tasks. The classification
dimension states how data relate to their
data definitions, meta data definitions,
etc. The reader should be warned that
many approaches provide neither model-
ling nor correspondence, even if they
(inappropriately) use terms like ‘models’
and ‘tasks’. Also, there are many alterna-
tive (mis)conceptions about classification
and instantiation.

Each of the subsequent sections provides
theories for the three dimensions. Even if
the sections provide a technical definition
of the three dimensions, the reader
should note that they define profound
characteristics of a system in an applica-
tion and usage context.

Figure 2 provides a framework for inter-
pretation of the dimensions. The frame-

work defines the formats needed for the
mapping of data between two media. Not
all formats and all transformations are
needed in every information system (IS),
however, it is these transformations
which make ISes interesting and useful
to most users. If data are only replicated
between systems, then only the middle
layer(s) of the framework is (are) needed.

A more complete exposition of the
framework illustrated in Figure 2 is
found in [1].

The reader should note that the corre-
spondence theory of human-computer
interface design prescribes an organisa-
tion dependence between organisations
and systems. This theory is contradictory
to theories of virtual organisations claim-
ing independence of locations and orga-
nisational boundaries. The organisation
dependence can be illustrated by the
following realistic example: Suppose a
telecommunication corporation is split
into a service business unit and a network
business unit. In order to support the
independence of these business units and
their rights to choose products from and
deliver services to competing organisa-
tions, the systems should be split on
these two units – the service business
unit may need a service management sys-
tem, the network business unit may need
a network management system, and they
may exchange data automatically via an

32

Three Perspectives on Information Systems Architecture
A R V E M E I S I N G S E T

Telektronikk 1.1998

Application domain

Manual
organisation
and other
systems

Data of a
system

Modelling

Correspon-
dence

Classi-
fication

Figure 1 Perspectives on information
systems

TS OS TS DS PS

Lr Cr Tr Or Tr Dr Pr

LS

CP TP OP TP DP
IP

CS

LP PP

System schema

External schema Application schema Internal schema

Mapping between sets of data

Two-way data flow

Set of data

Processor

Colours have

no significance

External processor Application processor Internal processor

L = Layout T = Terminology D =Distribution
C = Contents O = Concept P =Physical
-S = Schema -r = Processor -P =Population

Figure 2 The data translation reference model

electronic order handling system. If,
alternatively, the business units were
merged, both service and network man-
agement could most efficiently be pro-
vided by one integrated system for this
unified business unit, and the split be-
tween management systems was not
needed. There is no generic information
system architecture (ISA) or approach
which is robust to such organisational
changes, but there may be software archi-
tectures, tools and development tech-
niques which can simplify reorganisation
of systems when needed.

The three proposed principles provide
linguistic deep structure, system theo-
retical contributions to human-computer
interface design. The principles relate to
language theory. The modelling theory
relates to denotational semantics. The
correspondence theory relates to corre-
spondence semantics. The classification
theory provides a copy ‘semantics’. The
author prefers to reserve the term
‘semantics’ for the denotational version
only. It is outside the scope of this paper
to provide parallels to philosophy, lin-
guistics and formal language theory.

The Model Theory for
Human-Computer Inter-
action Design

This section adapts model theory inter-
pretation of language statements to
human-computer interaction design.

Background

Statements can be categorised into the
following three kinds: 1) Commands,
like ‘Remove the diskette!’ and ‘Perform
x + 1’; 2) Questions, like ‘What is the
customer number?’ and ‘If x < 3’; and 3)
Informative statements, like ‘Customer 1
has phone number 3’ and ‘x = 2’.

Here we will deal only with informative
statement. Informative statements state
an association between terms.

Some terms or combination of terms can
denote a phenomenon in some applica-
tion area, e.g. the combination of terms
‘circuit name A-B 1’ can denote a unique
circuit in a network of some administra-
tive domain. The total expression ‘circuit
name A-B 1’ is said to denote, model or
describe this phenomenon. However,
each of the component terms, A, B and 1,

of the expression may not denote, model
or describe any phenomenon.

Some terms or combination of terms can
be created to provide an overview of
other terms, e.g. ‘circuit group A-B 1’
may be created to provide an overview of
the constituents ‘circuit A-B 1’, ‘circuit
A-B 2’ and ‘circuit A-B 3’ between the
same two nodes – A and B – in the net-
work. The combination ‘circuit group
A-B 1’ constitutes a derived data item
and may not denote a directly observable
phenomenon in the network. Therefore,
this combination is said to describe/
model nothing.

If data denote something, then the map-
ping is considered to be 1:1. In any case,
there is a functional mapping (n:1) from
phenomena to data. If the relationships
between or behaviour of the phenomena
are modelled, then the mapping is iso-
morphic, i.e. the modelled relationships
and behaviours are preserved as associa-
tions among the data. This property of
the mapping makes the data become a
model of the described world.

Note that in this text we will only discuss
denotation/description/modelling map-
pings between terms and phenomena. We
will neither discuss assertion mappings
from statements to propositions/facts nor
the assignment of truth values derived
from these mappings.

Several terminologies may be used to
describe identical or overlapping worlds,
e.g. ‘circuit A-B 1’ may denote the same
phenomenon as ‘samband 12345’ in
another terminology. The requirements
for functional mappings from phenomena
to any data and isomorphic mappings to
describing data apply to every termi-
nology.

Rather than introducing mappings be-
tween phenomena and data in each termi-
nology, an intermediate conceptual level
between phenomena and terms can be
introduced. A functional and isomorphic
mapping is introduced between pheno-
mena and concepts at the conceptual
level. Each concept can then be mapped
by an isomorphic mapping to a term in
some terminology. These mappings must
be stated explicitly, e.g. ∃ !x (Denotes
(circuit A-B 1, x)∧ Denotes (samband
12345, x)) states that there is exactly one
x (∃ !x) such that x is denoted by either of
the compound terms ‘circuit A-B 1’ or
‘samband 12345’. The two denotation
mappings state the formal semantics, i.e.

the common formal meaning, of the two
syntactical expressions. If this mapping
is not stated, then the data do not model
anything in the formal sense. The data
are then just inscriptions, not descrip-
tions.

If no formal denotational semantics is
provided, the data may still be intended
to model something in the informal
sense. However, the data designers and
end user operators must take great care to
ensure that the mapping to each indi-
vidual real world phenomenon is com-
monly understood and shared by the
users of the data. This implies that

• each individual phenomenon is
uniquely baptised, labelled or other-
wise distinguished from other pheno-
mena

• classes are clearly defined, explained,
related to other classes and exposed to
all users concerned.

Guidelines

The following modelling guidelines
apply to the design of data of the applica-
tion layer of the HMI reference model:

1 There should be a functional mapping
from phenomena in the application
area to application layer data.

2 If the application layer data describe
some phenomenon, then this mapping
should be isomorphic.

3 The application layer should include
centralised definitions of all alpha-
numeric, graphical or other termino-
logies used within the application,

33Telektronikk 1.1998

circuit group A-B 1

circuit A-B 1

circuit A-B 2

circuit A-B 3

circuit A

samband 12345

Denotes

Phenomena

Concepts

Terms

Figure 3 Use of Ogden’s triangle to
depict mappings between terms, concepts
and phenomena. Some terms denote con-
cepts, which model phenomena

including synonymy mappings be-
tween terminologies or mappings to
common concepts.

4 There should be a homomorphic (n:1)
mapping from data instances to data
classes in the application layer.

5 The application layer should contain
all relevant derivation rules between
and constraints on the data.

ITU-T Recommendation Z.352 Appen-
dix I [2] provides additional guidelines
for data design. Both basic and derived
data are defined, managed and provided
from some user needs. Analysis of user
tasks may help to identify such needs;
however, the tasks may as well be de-
fined to manage data already defined, or
the tasks may support needs outside the
boundary of the task analysis. Therefore,
data must be provided from a market
point of view and not from a restrictive
task analysis only.

The following modelling guidelines
apply to the design of the contents layer
of the HMI reference model:

1 The contents of screens and reports
found in the contents layer should con-
tain no other data than those defined in
the application layer of the application,
and permissible manipulation com-
mands on these data. The contents of
each screen and report is typically a
subset of the information contained in
one application system.

2 The contents of each screen and report
should form one connected graph.
There should be a homomorphic (n:1)
mapping from the contents graph to
the corresponding application layer
data. See additional note in principle
(5).

3 The contents of each screen and report
should form a tree, possibly with refe-
rences between nodes in this tree or to
nodes outside the tree.

4 Any data object from the application
layer can form the root of one or more
contents trees.

5 Referenced data objects in the applica-
tion layer may become subordinates in
a corresponding contents tree. There-
fore, the contents of the contents layer
may not have identical structure to the
corresponding subset of the application
layer. However, there is no transforma-
tion of data formats between the two
layers.

6 If an object is listed subordinate to its
superior objects, then local distin-
guished names can be used. If sub-
ordinate objects are listed without their
superior objects, then global distin-
guished names are used. However, it
is permissible to list objects and their
superior in reverse order, using local
distinguished names only, if this is
properly indicated to the user.

7 There should be a homomorphic (n:1)
mapping from data instances to data
classes in the contents layer.

Item (5) corresponds to the use of sub-
clauses in natural language: The main
clause refers to an item which has some
characteristics, defined in the subsequent
subclause. For example, ‘Circuit has
End-point, which is a Station and has
Name and Address’ In the application
layer ‘Circuit’ and ‘Station’ are two
different object classes. ‘Circuit’ has an
attribute ‘End-point’ referring to
‘Station’. ‘Station’ has two attributes
‘Name’ and ‘Address’.

The given principles for contents design
apply both to data classes and data
instances. These principles address how
informative statements of the application
layer are mapped into the contents layer
to maintain the information stated in the
application layer.

The following modelling guidelines
apply to the design of the layout at the
human-computer interface:

1 The root node of the contents tree
should be clearly indicated in every
presentation.

2 The context in which the presentation
is provided, e.g. indication of system
name, function name, etc., should
clearly be indicated in every presenta-
tion.

3 The layout – alphanumeric, graphic or
other – should clearly indicate how all
the data items relate to each other and
the correct sequences of these refe-
rences, e.g. <John, 12345>=/=<12345,
John>.

4 The layout should clearly indicate the
class of every data item presented and
the relations between these classes.

5 Class labels appear as headings or icon
types at the HCI.

6 References between objects should –
both in alphanumeric and graphical
presentations – be clearly distin-

guished from the presentation of the
referenced object itself, such that the
user can distinguish creation/modifica-
tion/deletion of a reference to an object
from creation/modification/deletion of
the object itself.

7 Subordination, superiority and glo-
bality of objects, attributes and values
should be clearly indicated.

8 Fonts, sizes and colours may be
changed in the mapping from the con-
tents layer to the layout. However, the
basic data types should not be altered.

Rationale

The rationales for the given modelling
principles are to make

• data understood and easy to manipu-
late by the users of the data

• the data definitions, structure and for-
mats harmonised and recognisable
throughout all presentations

• the structure of the data visible and
recognisable to the users of the data

• the data uniquely interpretable by the
users of the data

• the mappings between instances and
classes visible, such that classes can be
inferred from instances and vice versa

The Correspondence
Theory for Human-Com-
puter Interaction Design

This section provides a correspondence
theory interpretation of language state-
ments to human-computer interaction
design.

Background

Correspondence theory is concerned with
the contexts in which statements are
uttered, and with the correspondence
mappings between a statement and its
contexts.

The statement ‘Person 1 has phone num-
ber 3’ may assert a state of affairs in
some given application area. Aspects of
this assertion/denotation mapping were
discussed in the previous section. In this
section we will discuss the contexts
explaining why this statement is uttered
and assign the statement to the appro-
priate contexts. Statements have both

34 Telektronikk 1.1998

senders and receivers; however, this dis-
tinction will not be used in this section.

Identical statements may be stated in dif-
ferent contexts. The statement ‘Person 1
has phone number 3’ may be provided to
a telephone user who wants to phone Per-
son 1. The information may be provided
in a paper directory, by the enquiry ser-
vice, as information in an e-mail, in a
technical paper, or appear in a service
provision task of a telecom operator.
Even if, in this case, the final use of the
information is much the same, the
organisational contexts in which the
statement is uttered and used are very
different. If identical information is given
in two different administrative domains,
both denotations and terminology can be
different. Identical terms can refer to dif-
ferent instances and to different classes.
Therefore, the knowledge of the corre-
spondence to the organisational contexts
is required to provide a complete and
unique interpretation of the statements.

A modern organisation is considered to
be an information system. This means
that we will consider the organisation to
consist of manual and automatic informa-
tion processing. In this context we will
disregard classical organisations contain-
ing labour like ditch digging, transport,
production, etc. in manual or automatic
form. We will constrain ourselves to
manual and automatic information pro-
cessing only. If other labour takes place
in the organisation, we will only study
the information processing part.

The correspondence theory of human-
computer interaction design addresses
the mapping between statement produc-
tion to or from the computer and the
organisation of manual tasks of the users
and user organisation.

Computer systems should not be de-
signed for a given organisation of manual
work only. Also, a manual organisation
should not just adapt to a given computer
system. Rather, both the computer sys-
tem and the surrounding manual organi-
sation should be designed interactively,
such that the best use of both automatic
and manual resources could be achieved,
ref. the system theoretical school for sys-
tems development.

The design of human-computer inter-
faces must realise the different strengths
and weaknesses of automatic and manual
information processing, ref. the socio-

technical school for systems develop-
ment.

Finally, a designer of human-computer
interfaces has to realise and balance dif-
ferent and conflicting interests by diffe-
rent user groups and individuals, ref. the
critical school for systems development.
This last point implies that human-com-
puter interfaces should not only be
evaluated in a laboratory setting, but
must be evaluated in an organisational
setting of terminal operators, operator
organisation, management, customers
and others.

To define the user groups and stake-
holders of an information system is no
trivial task, and the user groups tend to
change as time passes. For example, tele-
com service customers may at first not be
considered candidate operators of the
human-computer interface. However,
later they may be managing their own
services over the interface. Even in the
first case, they are real users of the data,
which the telecom terminal operators
may not be.

In addition to the above concerns, the
human-computer interaction designer
should bear in mind which perspective
on the system is imposed by alternative
designs and systems development
methods. A process oriented design may
put users and systems in a strict work
flow. Typically, this provides a high
degree of automation and little flexi-
bility. A tool perspective put the main
responsibility for undertaking tasks on
the users, while the system is used to
support this work. The tool perspective
may not provide a high degree of auto-
mation, but may provide great flexibility
in work flow and use of the system. ITU-
T Recommendation Z.352 [2] recom-
mends a data-oriented approach: In this
case, the computer system is an editor on
data, which may model some Universe of
Discourse. This is a tool perspective on
human-computer interaction design.
Recommendation Z.352 Annex A.3 Data
design indicates how processes/functions
can be automated within a pure data-
oriented approach. In this case, the com-
puter system acts as a process control
system.

Principles

The following correspondence guidelines
apply to the structuring of the application
layer of the HMI reference model:

1 Business planning of market segments
and market strategy is normally con-
sidered to be outside the scope of
human-computer interaction design.
However, business planning can pro-
vide premises for human-computer
interaction design, and human-com-
puter interaction opportunities may
affect business planning.

2 The overall organisation of the corpo-
ration into business units is normally
based on business planning, and is
considered to be outside the scope of
human-computer interaction design.
However, business units are con-
sidered to be the legal customers of
computer systems. Therefore, the
scope of a computer system is defined
by the individual business unit. This
does not prohibit the system being
used by customers outside the business
unit itself. The business unit normally
forms the maximum scope of interest
for a systems directory of any user
within the business unit.

3 A computer system is defined to
enforce its data as one consistent
whole, i.e. the system will guarantee
that a statement p and ¬p will not be
kept simultaneously in a system at any
moment of time. If such conflicting
statements are provided, they must be
provided from different systems.
Occasionally, several business units
may co-operate and act as a customer
of one computer system, but normally
a business unit will require freedom to
organise its own manual and automatic
information processing. This flexibility
is what makes it an autonomous busi-

35Telektronikk 1.1998

Organisation of
people and tasks

Correspon-
dence

between
organisation

of tasks
and the
human-

computer
interface

Statements
and terms

Figure 4 While the basic structures of
statements and terms are given by their
modelling roles, selection, overall struc-
ture and ordering are controlled by the
organisation of people and tasks

ness unit. This independence of busi-
ness units does not prohibit several
business units acquiring identical sys-
tems holding different data, and sys-
tems of different business units may
exchange information, but consistency
of data is not guaranteed at any time.
Every user should be made explicitly
aware of which systems he is using
and the borderlines of these systems,
as this can affect his work within each
system. A system can be either cen-
tralised or distributed; however, this is
not relevant to the user as long as con-
sistency throughout the entire system
is enforced. If consistency is not en-
forced, then there are several systems.

4 Maximum flexibility of work organisa-
tion is achieved if as much work as
possible is moved to the business
facing office within the business unit.
This redesign of work flow forms a
premise for design of systems bounda-
ries. The systems should normally be
designed to support all work on a rou-
tine within one office of the business
unit and minimise the need to shift be-
tween several systems to carry out this
work. However, conflicting needs be-
tween several routines and offices have
to be observed. This principle observes
the need to take routine design as a
premise for the design of systems
boundaries. Intermediate organisation
levels between the corporation and
business units are normally not rele-
vant to human-computer interaction
design, and intermediate levels be-
tween business units and offices (i.e.
the formal organisation units at the
lowest level) are normally not relevant.

Note that correspondences are stated be-
tween systems and organisational units.
Organisational units have real objective
and observable existence, while business
processes and tasks have no objective
existence, unless they are defined relative
to organisational units. Business pro-
cesses and tasks can be considered to
make up an alternative organisation
structure; however, they are not autho-
rised to constitute one. Therefore, system
plans and system designs cannot be
designed from the perspective of abstract
business processes and tasks, but should
be designed from the perspective of an
existing or planned organisation of the
corporation.

The following correspondence guidelines
apply to the design of the contents layer
of the HMI reference model:

1 One individual user or user group will
typically have rights to use several
functions within one system. The parti-
tion into functions should not unneces-
sarily hinder the user to perform seve-
ral tasks simultaneously. Therefore,
functions should be defined more from
an access rights perspective than iden-
tification of individual tasks. However,
sometimes dangerous operations may
be moved into a separate function to
avoid possibly harmful, but permis-
sible operations.

2 Modelessness is achieved by not
tailoring and sequencing a set of ope-
rations to a task. Modeless dialogues
are created to obtain flexibility and,
hence, non-correspondence between
human-computer interaction designs
and tasks. If greater control is wanted,
then screen pictures can be ordered
into one or more alternative sequences,
corresponding to steps of the tasks of
the individual or typical user.

3 The design of layout and contents of
each screen picture is constrained by
the modelling guidelines in the pre-
vious section. However, some freedom
exists to further tailor the human-com-
puter interface to the tasks. This is
obtained by ordering the information
in the most appropriate sequence for
performing the task without violating
the modelling guidelines. However,
the user can also benefit from having
the information presented in a harmo-
nised sequence across several tasks.
Therefore, contentious choices of
trade-offs between harmonisation and
tailoring must be made.

4 Great flexibility is provided to the end
user if he can perform any permissible
command to a data item in every place
it appears. This provisioning should
not be constrained by function borders.

The following correspondence guidelines
apply to the design of the layout layer of
the HMI reference model:

1 Great flexibility and tailoring can be
achieved simultaneously by allowing
the user himself to perform the
tailoring. The tailoring can include
means to state selection and projection
of data in any screen picture and report
– alphanumeric, graphic and other –
and means to create minor modifica-
tions of fonts, colours, sizes and
graphical layout. These changes should
be local to the individual user and not
affect other users or constraints or
derivations enforced by the system.

Rationale

The rationales for the given corre-
spondence principles are to provide

• correspondence to the concrete organi-
sation of human work

• understanding of these bindings and
lack of such bindings

• efficient support of the work being
done

• flexibility in the organisation and
undertaking of the work

• flexibility in the design of the com-
puter system.

The Classification Theory
of Human-Computer Inter-
action Design

This section provides a theory of how the
form of data instances and classes should
relate to each other from a human user
point of view.

Background

Most programming and specification
languages require a human or computer
interpretation of the statements in those
languages in order to produce or validate
the permissible form of a data instance
item. Typically, the prescriptions contain
keywords and constraints which may not
make it straightforward to validate the
form of a given data item. Also, use of
different word orders in the prescriptions
and the corresponding data instances can
contribute to these difficulties. This is
exemplified in Figure 5. See details in [3]
and [4].

Use of various kinds of inheritance (of
Object Class, Name Binding, Relation-
ships, Packages, Attributes and data
value types) can make it very difficult to
validate forms of a data instance, as
pieces of the prescription are spread
out on many remote statements.

The example in Figure 5 shows Object
Class labels, Package labels and Attri-
bute labels being defined in separate and
independent statements (and templates),
which refer to each other. This use of
independent templates requires that all
labels (circuitGroup, namePkg, name)
are globally unique. If, alternatively, the
Attribute Class were defined in-line
within the Object Class template, e.g.

36 Telektronikk 1.1998

circuitGroup Object Class
name Attribute Class,

then the Attribute Class label, e.g. name,
could have been reused with a different
meaning and different value set within a
different Object Class label. This could
provide a means to define name scopes
within superior labels, and the prescrip-
tion could get a structure identical to that
of its instances.

Note that name scoping in Predicate cal-
culus is different from what is exempli-
fied above; constants are globally unique,
while variables are unique within the
scope of their quantifier. Predicate cal-
culus provides no means of defining
terms (constants and variables) within the
scope of superior terms. Also, Predicate
calculus provides no means of instantia-
tion. However, it provides means to vali-
date non-consistency – of p and ¬p. Note
that two unrelated statements p and q are
consistent. This is different from instanti-
ation, as well, as instances are only per-
missible if they are instances of some
explicitly defined class.

Principles

The following principles apply to the
correspondence between data instances
and data classes as seen at the human-
computer interfaces:

1 End users need access to data classes
to validate their form prior to imple-
mentation, for end user help and as an
access means to data instances.

2 Data subordination (to other data, as
indicated by indentation in the above
examples) should be used to define
name spaces of data classes and data
values; hence, (the end user form of)
data are organised into data trees,
where each data item has a superior
data item and can have several sub-
ordinate data items – this applies to
both instances and classes.

3 The syntactical form of data classes
should be homomorphic to that of their
instances, i.e. several instances can be
of the same class, and if instance b is
subordinate to instance a, then the
class of b must be subordinate to the
class of a, and if instance b has a refe-
rence c to a, then the class of b must
have a reference c to the class of a; the
homorphism requirement implies that
class labels are copied into instances
and appear in every instance, and
implies that significant duplicates are
frequently used.

4 The root node of a data instance tree is
referred to as a population relative to
the corresponding root node of its data
class tree. This root node is referred to
as a schema relative to a corresponding
root node of a data instance tree. A
schema may have several populations,
and a population may have several
schemata – even if this is not typical.

37Telektronikk 1.1998

Interpreter/
compiler

Object Class circuitGroup
Characterized By namePkg

Package namePkg
Attribute name

Attribute name
etc.

Prescription

Executable
process

circuitGroup
name

Validation
result

Classes

Data instances

Figure 5 Non-homomorphic classes. The example depicts lack of compliance between
the structure of data instances (e.g. circuitGroup containing name) and the corre-
sponding specification containing prefix keywords (e.g. Object Class), extra constructs
(e.g. Package), (lack of) indentations (e.g. of Attribute), and maybe word orders (e.g.
Object Class statements, Package statements and Attribute statements in different
sections)

Termination

S

Graphic specifiation

(Station

P

System
Schema

Group
Group

Alphanumeric specifiation

Termination<>´´

S<>´´Group

Station

P<>´´(Population

Population
Group

Group
Group

Group

Group
Group

Station

Figure 6 Example system containing one population and its schema; recursion is used
to prescribe the Group hierarchy

5 Schema references can be made from
class data to other data; hence, end
users may access class data and
instance data by the same means. This
implies that the syntactical form of
classes and instances must be identical,
and classes may not be marked with
labels like Object Class, Attribute
Class, etc.

6 A schema reference can be used to
define recursion by referring to a
superior node in the data class tree.

7 Use of inheritance should be avoided,
since this can be provided by the
mapping from Application to External
schemata, while Schema references,
including recursion, and data type refe-
rences only are used within the pre-
scription, e.g. the Application schema.

Figure 6 exemplifies how data may relate
to each other in a data tree.

Rationale

The classification theory of human-com-
puter interaction provides

• direct end user access to and inter-
pretation of specifications without
complex transformations and inter-
pretations

• use of local labels in the formal speci-
fications, being typical for headings at
the human-computer interfaces

• use of significant duplicates, being
typical for graphic symbols at the
human-computer interfaces

• definition of schema and population
data relative to each other, providing
equal access to population and schema
data

• avoidance of use of inheritance and
interpretation of its implications.

References

1 Meisingset, A. A data flow approach
to interoperability. Telektronikk, 89
(2/3), 52–59, 1993.

2 ITU-T. Data oriented human-
machine interface specification tech-
nique : scope, approach and refe-
rence model. Geneva, ITU, 1993.
(ITU-T Recommendation Z.352,
03/93.)

3 ITU-T. Draft Recommendation Z.35x
and Appendices to Draft Recommen-
dations. Geneva, ITU, 1992. (CCITT
COM X-R 12.)

4 ITU-T. Draft Answers to Q1, 2 and
3/10. http://www.itu.ch/Standardiza-
tion, SG10, Reports/. Also published
in: Meisingset, A. The HMI specifi-
cation technique. Kjeller, Telenor
R&D, 1996. (Report N 54/96.)

38 Telektronikk 1.1998

Arve Meisingset is Senior Research Scientist at
Telenor R&D. He is currently working on informa-
tion systems planning, formal aspects of human-
computer interfaces and middleware standardi-
sation. He is ITU-T SG10 Vice Chairman and the
Telenor ITU-T technical co-ordinator.

e-mail:
arve.meisingset@fou.telenor.no

Telecommunication service providers
maintain alliances through which they
resell each other’s services. By lever-
aging the alliance’s reach and diver-
sity, each alliance partner offers a
complete portfolio of global services to
its customers.

Alliance success depends upon inter-
operability among alliance partners.
Therefore, the alliance must maintain
a discipline through which alliance
partners exchange orders, trouble
reports, performance reports and
usage reports. To this end, the Inter-
national Telecommunications Union
specifies the Telecommunications
Management Network (TMN) X Inter-
face.

This paper presents an alliance app-
roach to the TMN X Interface. Two
principles guide the alliance approach.
First, the X Interface must not com-
promise alliance partner autonomy.
Second, the X Interface must facilitate
inter-operability. Interface specifica-
tions must be publicly available and
the interface must not be so complex
as to preclude any organization from
joining the alliance.

Introduction

Market demands motivate telecommuni-
cations service providers (SPs) to resell
each other’s services. The resale agree-
ment can include two or more SPs. In the
simplest case, a customer purchases ser-
vice from a main service provider (MSP).
As the MSP cannot support the service
using its own network resources, it estab-
lishes a separate service agreement with
another SP. The MSP purchases service
from the SP and resells the service to its
customer.

In the most complex case, a customer
purchases service from an MSP. The
MSP divides the service into com-
ponents, determining that it can provide
selected components while it cannot pro-
vide others. The MSP provides selected
service components and purchases the
remaining components from one or more
SPs.

Each SP, in turn, divides the service
request that it receives into components.
The SP can provide selected components
while it cannot provide others. Therefore,
the SP provides selected service com-
ponents and purchases remaining com-
ponents from peer SPs.

Figure 1 illustrates both simple and com-
plex resale.

In order to maintain the business arrange-
ment described above, SPs must support
a suite of SP-to-SP protocols. ITU-T
Recommendation M.3010 [1] identifies
the SP-to-SP protocol suite as the X
Interface.

This paper explores technical require-
ments for the X Interface. It extends the
X Interface framework presented in ITU-
T Recommendation M.3320 [2].

The following sections provide indepen-
dent views of the X Interface. The first
section defines business requirements.
The second presents inter-operability
requirements in terms of the Telecommu-
nications Management Network (TMN).
The third section identifies impediments
to TMN development and the final sec-
tion presents a pragmatic, alliance app-
roach to the TMN X Interface.

Business Requirements

Seamless Service

The MSP must present a seamless
service to the customer. In a seamless
service, the customer maintains a single
service agreement with the MSP and the

MSP manages service agreements with
SPs on the customer’s behalf. The cus-
tomer can, but need not, be aware that
SPs contribute to the service.

Typically, service agreements include the
following:

• Service activation scheduling require-
ments

• Trouble reporting and trouble resolu-
tion requirements

• Service availability requirements

• Quality of service requirements

• Performance reporting requirements

• Billing and pricing requirements.

Therefore, the X Interface must support
automated exchange of the following
information between SPs:

• Order entry and order tracking infor-
mation

• Trouble reporting and trouble manage-
ment information

• Performance information (quality of
service and service availability)

• Billing and usage information.

The X Interface may be extended to
support the real-time exchange of service
effecting network events.

39

Alliance Approach to the TMN X Interface
R O N A L D B O N I C A

Telektronikk 1.1998

Customer

MSP

SP SP SP SP SP

SP SP

MSPCustomer

Simple Resale Complex Resale

Figure 1 Simple Resale versus Complex Resale

Autonomy

Each SP is an autonomous fiscal entity.
Therefore, each SP retains the right to
manage its own resources. For example,
when an SP receives a request for ser-
vice, that SP determines which resources
will be assigned to the service and when
those resources will be deployed. The
requesting organization cannot directly
allocate resources owned by the service
providing organization.

As each SP is an autonomous fiscal
entity, each SP retains the following
rights:

• The right to maintain its own re-
sources. Resources include network
resources and operational support
systems.

• The right to operate its support sys-
tems according to local policy. For
example, each SP determines the hours
during which its operational supports
systems are available and the hours
during which they are off-line for
preventive maintenance.

• The right to maintain its own data base
of record. The data base of record
describes all services that the SP has
requested through the X Interface or
provided in response to requests
received through the X Interface.

Although the SP acknowledges the
existence of another data base at the
remote end of the X Interface, the SP
views its own data base as the “data
base of record”. SPs need not trust
each other to maintain a data base of
record.

• The right to specify the technology
that supports its enterprise. Therefore,
the X Interface must specify a suite of
protocols, not a suite of products.

Furthermore, the X Interface must be
simple. Integration with SP operational
support systems must not be time con-
suming or expensive. The X Interface
must employ only the most commonly
available technologies. SPs should not be
required to embrace new, complex or
exotic technologies in order to partake in
the X Interface.

Security

The X Interface must provide the follow-
ing security features:

• authentication
• non-repudiation
• privacy.

Authentication assures a message re-
ceiver of the message originator identity.
It protects both the originator and the
receiver from malicious parties that mas-
querade as the message originator.

Non-repudiation assures the message
receiver that the message originator can-
not deny having sent the message. Pri-
vacy assures both the message originator
and the message receiver that unautho-
rized third parties cannot access message
contents.

TMN Requirements

TMN Overview

Recommendation M.3010 presents gene-
ral architectural requirements for a Tele-
communications Management Network
(TMN). Figure 2 introduces TMN func-
tional blocks and reference points.

M.3010 defines the following functional
blocks:

• Work Station Function (WSF) – “The
WSF provides the means to interpret
TMN information for the management
information user.”

• Operations System Function (OSF)
– “The OSF processes information
related to the telecommunications
management for the purpose of moni-
toring/coordinating and/or controlling
telecommunications functions in-
cluding the management function.”

• Network Element Function (NEF)
– “The NEF is a functional block
which communicates with the TMN
for the purpose of being monitored
and/or controlled.”

• Q Adaptor Function (QAF) – “The
QAF block is used to connect as part
of the TMN those non-TMN entities
which are NEF-like and OSF-like.”

• Mediation Function (MF) – “The MF
block acts on information passing from
the OSF to the NEF (or QAF) to
ensure that the information conforms
to the expectations of the function
blocks attached to the MF.”

M.3010 also defines the q, x, f, m, and g
reference points. A similarly named
interface (Q, X, F, M and G) services
each reference point. The q and x refe-
rence points are relevant to this paper.

40 Telektronikk 1.1998

WSF

OSF

MF

TMN

QAF NEF

f

f q3

qx

qx
qx

q3

q3

q3

g

m

WSF

OSF

MF

TMN

QAFNEF

f

fq3

qx

qx
qx

q3

q3

q3

g

m

x x

Figure 2 Illustration of Reference Points Between Management Function Blocks
From CCITT M.3010, Figure 5/M.3010

M.3010 defines the q reference point as
follows:

The q reference points serve to deline-
ate a logical part of the information
exchange between function blocks as
defined by the information model
mutually supported by those functions.

M.3010 identifies two q reference point
subclasses. These are the q3 subclass and
the qx subclass.

By contrast, M.3010 defines the x
reference point as follows:

The x reference points are located be-
tween the OSF function blocks in diffe-
rent TMNs. Entities located beyond the
x reference point may be part of an
actual TMN (OSF) or part of a non-
TMN environment (OSF-like). This
classification is not visible at the x
reference point.

Although M.3010 states that “the proto-
col definition should seek to minimize
the difference between TMN interfaces”,
it also recognizes that the Q and X Inter-
faces are not identical. The X Interface
must support the above stated business
requirements, particularly those require-
ments that address autonomy and secu-
rity.

In order to support above stated require-
ments, the TMN framework specifies
that the Q and X Interfaces typically
operate upon unique subsets of the man-
agement information model. Further-
more, the TMN framework supports
multiple communications services across
both the Q and X Interfaces.

Management Information
Domains

The Q and X Interfaces typically operate
upon unique subsets of the TMN infor-

mation model. The TMN framework
divides OSFs and the information model
elements into the following layers:

• Element management layer (EML)
– “The EML manages each network
element on an individual basis and
supports an abstraction of the functions
provided by the NE (network element)
layer.”1

• Network management layer (NML)
– “The NML has the responsibility for
the management of all network ele-
ments, as presented by the EML, both
individually and as a set. It is not con-
cerned with how a particular element
provides services internally.”

• Service management layer (SML)
– “The service management layer is
concerned with, and responsible for,
the contractual aspects of aspect of the
services that are being provided to
customers or are available to potential
new customers.”

• Business management layer (BML)
– “The business management layer has
the responsibility for the total enter-
prise and is the layer at which agree-
ments between operators are made.
This layer normally carries out goal
setting tasks rather than goal achieve-
ment, but can become the focal point
for action in cases where executive
action is called for.”

Figure 3 illustrates layered OSFs com-
municating through the Q Interface. In
the figure, the Business OSF causes the
Service OSF to create, modify and
destroy service layer objects by sending
messages across the Q Interface. The
Business OSF also causes the Element
Management OSF to create, modify and
destroy element management layer
objects by sending messages across the
Q Interface.

By contrast, the X Interface is typically
restricted to communication between ser-
vice layer OSFs. Using the X Interface,
an MSP causes an SP to manipulate ser-
vice layer objects within the SP domain.
The SP service layer OSF causes the SP
network layer OSF to manipulate SP net-
work layer objects by sending messages
through the Q Interface.

41Telektronikk 1.1998

1 As the network element layer resides
outside of the OSF domain, it is not
included in this list.

OSF

MF

NEF

q3

OSF

OSF

OSF

q3

q3

q3

q3

q3

Business
OSF

Service
OSF

Network
OSF

Element
Management
OSF

NE
Functions

Business
Management
Layer

Service
Management
Layer

Network
Management
Layer

Network
Element
Management
Layer

Network
Element
Layer

Figure 3 Example of a TMN OS functional hierarchy
From M.3010 Figure II-1/M.3010

Therefore, the MSP cannot determine
when or how the SP realizes the service
in terms of network layer objects. The SP
retains functional autonomy.

Restricting the X Interface to service
layer interactions insulates the MSP from
SP network and network element layer
details. Technical autonomy is enhanced
in that the MSP and SP can model the
network and network element layers dif-
ferently, without affecting their ability to
interact at the contractual, service layer.
Figure 4 illustrates SPs (in this case,
value added service providers) inter-
acting at the service layer.

The TMN framework permits the service
layer of one TMN to communicate with a
lower layer of another TMN when the
problem domain permits. For example,
the service layer of one TMN may com-
municate with the network layer of an-
other TMN when functional autonomy
between TMNs is not required and when
it is not economical to build a service
layer OSF in the second TMN.

M.3010 warns that “implementation of
such an architecture may require very
strong access control mechanisms.”
Figure 5 illustrates inter-layer communi-
cation across the X Interface.

Communication Services

Recommendation M.3320 states that the
following communication services are
available to the TMN X Interface:

• Interactive Services
• File Transfer Services
• Directory Services
• Store and Forward Services.

Interactive Services

Using interactive services, SPs access
objects that reside within each other’s
domains. As the name implies, inter-
active services support near-real-time
access. In order to support interactive
services, SPs maintain a manager/agent
relationship.

Figure 6 illustrates the manager/agent
relationship. In the figure, the managed
system maintains managed objects and
agent software. Managed objects provide
an abstracted view of a managed
resource. For example, if the managed
resource is a frame relay switch, man-
aged objects might represent frame relay
permanent virtual circuits. Agent soft-
ware accesses managed resources in
order to maintain managed objects.

Agent software represents managed
objects through a hierarchic data struc-
ture called the Management Information
Tree (MIT). The manager and agent must
agree upon the structure of managed
objects before communicating through
the interactive service. An ASN.1 Man-
agement Information Base (MIB) defini-
tion formalizes the structure of managed
objects.

In order to access managed objects, the
manager sends messages to the agent.
The agent, in turn, performs management
operations on the manager’s behalf.

According to Recommendation Q.812
[3], the Common Management Informa-
tion Service Element (CMISE) [4] pro-
vides interactive services for the TMN X
Interface. The following is a list of
CMISE primitives:

• M-CREATE – create a managed object
instance

• M-DELETE – destroy one or more
managed object instances

• M-GET – retrieve selected attributes
from one or more managed object
instances

• M-SET – modify selected attributes for
one or more managed object instances

• M-ACTION – perform an object spe-
cific operation upon one or more
managed object instances

• M-CANCEL-GET – cancel a pre-
viously issued M_GET operation

• M-EVENT-REPORT – register for
notification when one or more
managed object instances change.

Most CMISE primitives operate upon
one or more managed object instances.
In order to specify which instances the
primitive operates upon, the manager
“scopes” its requests. Scoping relies
upon the hierarchic nature of manage-
ment information.

42 Telektronikk 1.1998

OSF

OSF

TMN3

OSF

MF

NEF

OSF

OSF

OSF

q

Business
Management
Layer

Service
Management
Layer

Network
Management
Layer

Network
Element
Management
Layer

Network
Element
Layer

OSF

OSF

OSF

OSF

TMN2

TMN1

xx

Figure 4 Examples of Value Added Services
From M.3010 Figure II-2/M.3010

When the manager issues a request, it
specifies a point on the hierarchic MIT,
called the base object. It also specifies to
which of the following the requested
action should be applied:

• the base object only

• the (n)-level subordinated to the base
object

• the base object and all of its sub-
ordinates down to and including the
(n)-level

• the base object and all of its sub-
ordinates.

The manager can exempt selected object
instances from the operation by “filter-
ing”. For example, using a single
M_DELETE primitive, a manager can
destroy all object instances subordinate
to a base object except those with attri-
bute “A” equal to five.

The manager/agent relationship is asym-
metric. For example, only the manager
can issue an M-CREATE request. In
order to support symmetric relationships,
both systems (managed and managing)
must be equipped with both manager and
agent software.

Figure 7 depicts upper layer protocol
profile for interactive services.

File Transfer Services

SPs access each others files using the file
transfer service. Specifically, SPs exe-
cute the following actions upon files that
reside in another SP’s domains:

• Create/delete file

• Read file attributes (e.g., creation time,
last modification time)

• Open/close file

• Read/write contents.

Recommendation Q.812 identifies the
file transfer service for the TMN-X Inter-
face as being provided by File Transfer,
Access and Management (FTAM) [5].
Specifically, the following FTAM file
structures are supported across the X
Interface:

• Unstructured text files (FTAM-1 docu-
ment type)

• Unstructured binary files (FTAM-3
document type)

• Sequentially ordered files (NBS-6
document type).

Because the X Interface supports only
the above listed file structures, FTAM
random access capabilities are not avail-
able at the X reference point. (FTAM
random access capabilities apply only to
document types FTAM-2 and FTAM-4
documents.)

Figure 8 depicts upper layer protocol
profile for file transfer services.

Directory Services

The directory service allows distribution
of management information over a poten-
tially unlimited number of OSI end sys-
tems. Despite its physical distribution,
the end user or application invoking the
directory service perceives management
information as a single physical unit.

43Telektronikk 1.1998

OSF

OSF

TMN3

OSF

MF

NEF

OSF

OSF

Business
Management
Layer

Service
Management
Layer

Network
Management
Layer

Network
Element
Management
Layer

Network
Element
Layer

OSF

OSF

TMN1

TMN2 x

x

Figure 5 Examples of Inter-TMN OS functional connectivity
From M.3010 Figure II-3/M.3010

Manager
Management operations

Notifications

Agent

Performing
management
operations
Notifications
emitted

Local system
environment Managed

object

Managing
open system Communicating Managed open system

Figure 6 Interaction between Manager, Agent and objects
From M.3010 Figure 8/M.3010

Recommendation Q.812 defines the
directory services for the TMN-X Inter-
face as being provided by the X.500
series of recommendations.

Store and Forward Services

Although Recommendation M.3320
states that store and forward services are
available to the X Interface, it provides
no specifics. Therefore, the current docu-
ment provides a generic description of
store and forward services.

When an application submits a protocol
data unit (PDU) to the store and forward
service, the store and forward service
executes the following actions:

• Assign a sequence number to the PDU.

• Commit the PDU and sequence
number to persistent storage

• Return the sequence number to the
application.

When the application receives the
sequence number, it is certain that the
PDU will be delivered to the remote
application as soon as possible. It is also
certain that PDUs will be delivered to the
remote application in the same order in
which they were submitted to the local
store and forward service entity.

Although the application can query the
PDU delivery status, it cannot retract the
PDU from the store and forward entity.
The following is a list of PDU delivery
status:

• Pending transmission – the PDU is
awaiting transmission from the local
store and forward entity to the remote
store and forward entity.

• Pending delivery – the PDU has been
received and made persistent by the
remote store and forward entity. It is
awaiting delivery to the remote appli-
cation.

• Delivered – the PDU has been de-
livered to the remote application.

Impediments to a TMN X
Interface

The communication services described
above are feasible if all SPs maintain a
data base of record that is organized
according to TMN sanctioned informa-
tion models. In this case, the mapping
between data base of record and manage-
ment information tree is trivial. The

44 Telektronikk 1.1998

FTAM (ISO 8571)

Layer 7

ACSE
X.227, ISO 8650

(X.217, ISO 8649)

ISO Presentation Layer

X.209, ISO 8826 BER
kernel

X.226, ISO 8323
(X.216, ISO 8822)

ISO Session Layer

kernel, duplex
X.225, ISO 8827

(X.215, ISO 8326)

X.224, ISO 8073
8073/AD2

X.224, ISO 8073

Layer 6

Layer 5

Layer 4

Figure 8 Protocol profile for network management which
uses file transfer

From Q.812, Figure 2/Q.812

SMASEs (further study)

Layer 7
CMISE

ISO 9596-1,Version 2
ISO 9595-1,Version 2

ROSE
X.229, ISO IS 9072-2

(X.219, ISO IS 9072-1)

ACSE
X.227, ISO 8650

(X.217, ISO 8649)

ISO Presentation Layer

X.209, ISO 8826 BER
kernel

X.226, ISO 8823
(X.216, ISO 8822)

ISO Session Layer

kernel, duplex
X.225, ISO 8327

(X.215, ISO 8326)

X.224, ISO 8073
8073/AD2

X.224, ISO 8073

Layer 6

Layer 5

Layer 4

Figure 7 Protocol profile for network management which
uses transaction function

From Q.812, Figure 1/Q.812

CMISE agent simply provides remote
access.

Unfortunately, many SPs do not maintain
a data base of record that is organized
according to TMN sanctioned informa-
tion models. The following are common
causes of deviation:

• Many SPs maintain legacy systems
that pre-date TMN sanctioned infor-
mation models.

• Market pressures motivate SPs to pro-
vide services before standards bodies
codify a corresponding information
model.

• Support systems distinguish them-
selves from one another through
unique data base organizations.

Therefore, the CMISE agent must imple-
ment complex adaptation functions in
order to compensate for the “impedance
mismatch” between data base of record
and management information tree. Typi-
cally, adaptation function development is
very costly and adaptation software is not
reusable.

The impedance mismatch problem is
well known to CMISE application de-
velopers. Because of the impedance mis-
match problem, many CMISE agents do
not implement scoping, filtering, or event
forwarding registration.

An Alliance Approach

Having examined SP business require-
ments and TMN inter-operability re-
quirements, we can formulate a prag-
matic, alliance approach to the TMN X
Interface. The alliance approach extends,
but does not deviate from, the canonical
TMN X Interface described above.

The alliance approach contains informa-
tion, management protocol and transport
aspects. Information aspects address
which objects are to be shared by SPs
through the X Interface. Management
protocol aspects address how SPs coordi-
nate management functions (e.g., order
management, trouble management).
Communication aspects address how SPs
communicate with each other.

Information Aspects

Objects shared through the X Interface
must be sufficiently well defined that SPs
cannot misinterpret their meaning. In

order to achieve the required level of
specificity, each object definition must
include the following:

• A concise textual description

• A complete list of attributes, with a
concise textual definition for each
attribute

• A complete list of methods, with a
concise textual definition for each
method.

Concise object modeling is a monu-
mental task. As object model size in-
creases, so do the following:

• the probability that the object model
contains one or more imprecisely de-
fined objects

• the probability that the object model is
internally inconsistent

• the probability that some aspect of the
object model will be misunderstood by
an SP.

Therefore, the object model shared
through the X Interface must include as
few objects as possible. In order to
restrict model size, as well as preserve
SP autonomy, shared objects must be
restricted to the TMN service layer.

Each object shared across the TMN X
Interface is categorized as either service
specific or service independent. Service
specific objects define the services that
SP purchase from one another. They con-
tain contractual attributes, configurable
attributes, performance attributes and
usage attributes.

Contractual attributes define service type,
service availability dates, service avail-
ability requirements (e.g., mean time be-
tween failures) and quality of service
requirements. Each contractual attribute
contributes to the service price. Con-
figurable attributes specify additional
service definition parameters that do not
contribute to service price.

Performance attributes define metrics for
availability and quality of service. Usage
attributes define metrics for usage based
billing.

Each time the SP community agrees to
support a new service through the TMN
X Interface, it must define at least one
new service specific object. The SP com-
munity should seek object modeling
guidance from the most widely accepted
standards. For example, the objects that

describe Internet service should resemble
MIB-II [6].

Service independent objects represent
generic operations between SPs. Service
independent objects include the follow-
ing:

• Order
• Trouble report
• Performance report
• Usage report.

Service independent objects should be
defined by international standards when-
ever possible. For example, ITU-T
Recommendation X.790 [7] defines the
trouble report and several associated
objects (e.g., contact).

If widely accepted international stan-
dards are not available, the SP commu-
nity should define service independent
objects with guidance from emerging
standards. For example, the Open Service
Layer Protocol [8] draws upon ITU-T
Draft Recommendation M.3208.1 [9] and
emerging Network Management Forum
proposals in order to define the order
object.

Above all, service independent objects
must be simple. They must support
simple management protocols.

Management Protocol Aspects

The X Interface must support single state
and multi-state protocols. Single state
protocols support automated exchange of
performance and usage information.
Single state protocol supports the follow-
ing scenario:

• The SP creates a service independent
object within its own data base of
record. The service independent object
represents a performance report or
usage report.

The SP also creates zero or more ser-
vice dependent service objects. It asso-
ciates the service independent objects
with the service dependent object.

• The SP sends a message to the MSP
informing the MSP that the new
objects have been created.

• The MSP creates identical objects
within its data base of record.

• The MSP sends a confirmation mes-
sage to the SP.

45Telektronikk 1.1998

In a single state protocol, the SP can send
messages to the MSP in batch mode. In
this case, the MSP can confirm reception
of the entire batch with a single message.

Multi-state protocols support the follow-
ing scenario:

• The MSP creates a service independent
object within its own data base of
record. The service independent object
represents an order or trouble report.

The MSP also creates zero or more
service dependent objects. It associates
the service independent objects with
the service dependent object.

• The MSP sends a message to the SP
informing the SP that the new objects
have been created.

• The SP creates identical objects within
its data base of record.

• The SP processes the objects contained
by its data base of record according to
local policy. It updates object status
and engineering details as appropriate.

• Each time the SP updates the objects
contained by its data base of record, it
sends a status update message to the
MSP. Each status update message
contains a status indication and all
engineering detail specified by the SP.

• The MSP receives the status update
message and updates the correspond-
ing objects in its data base of record.

• When the MSP receives a status
update message that indicates the order
has been completed or the trouble
ticket has been closed, the MSP sends
the SP a message indicating whether or
not it is satisfied with how the manage-
ment operation has been executed.

Once the MSP sends its initial message
to the SP, the MSP’s ability to communi-
cate with the object contained by the SP
data base of record is extremely limited.
Specifically, the MSP can

• monitor status update messages sent
from the SP

• synchronize its copy of the data base
object with the SP copy by requesting
a retransmission of the last status
update message

• send a message to the SP that appends
free form text to the object. The
message can also escalate an issue
or defer a trouble ticket.

In order to modify or cancel a manage-
ment operation (i.e., order or trouble
ticket), the MSP must create a new object
within its data base of record. The new
object supersedes or cancels the original
object. The MSP sends a message to the
SP and the SP creates an identical object
within its data base of record. The SP
processes both objects according to the
scenario described above.

Multi-state protocols minimized the
impedance mismatch effect that is
characteristic of CMISE. SPs execute
only a few course-grained operations
upon objects that reside in each others
domain. Therefore, SPs need not imple-
ment complex adaptation functions that
map every possible view of their man-
agement information tree to their data
base of record. SPs implement only a
small set of adaptation functions that
support object creation, status update
reporting, and operation closure.

The Open Service Layer Protocol
(OSLP) is a multi-state protocol that sup-
ports ordering. The Open Trouble Man-
agement Protocol (OTMP) is a similar
multi-state protocol that supports trouble
management. OSLP is presented in an-
other paper [8] in this issue of Telektro-
nikk, while OTMP is not yet published.

Communication Aspects

The Basic Encoding Rules (BER) de-
scribed in ITU-T Recommendation
X.209 [10] provide OSI presentation
layer services to both single state and
multi-state protocols.

All currently defined single state proto-
cols send BER encoded messages
through the file transport service while
all currently defined multi-state protocols
send BER encoded messages through the
store and forward service. In the future,
however, new single state protocols that
employ store and forward services may
be developed. Similarly, new multi-state
protocols that employ file transfer ser-
vices may be developed.

The File Transfer Protocol (FTP) de-
scribed in IETF RFC 959 [11] provides
file transfer services to upper layer appli-
cations. This augmentation to the com-
munication services described in Q.812
is justified by the following arguments:

• FTP provides services commensurate
with those provided by the FTAM sub-
set profiled in Q.812.

• FTP is available in the public domain.

• FTP has gained much wider commer-
cial acceptance than FTAM.

46 Telektronikk 1.1998

Performance
TBD

ISO Presentation Layer
X.209, ISO 8826 BER

Transmission Control Protocol
IETF RFC 793

OSLP

OTMP Usage
TBD

ISO Presentation Layer
X.209, ISO 8826 BER

APT Store & Forward File Transfer Protocol
IETF RFC 959

Internet Protocol
IETF RFC 791

Figure 9 Unified View of the Alliance Approach to the
TMN X Interface

Store and forward services are provided
by the Alliance Point-to-Point Transport
Protocol (APT). APT is defined in the
OSLP documentation suite.

Lower layer services are provided by the
Transmission Control Protocol (TCP)
[12] and the Internet Protocol (IP) [13].

As stated in Recommendation M.3320,
SPs maintain pair-wise agreements re-
garding encryption and security adminis-
tration. Because each SP is constrained
by its national security and encryption
policy, it may not be possible to specify a
single, global security policy.

Figure 9 depicts a unified view of the
alliance approach to the TMN X Inter-
face.

Conclusions

The X Interface approach proposed
herein is an expedient solution. Although
it is less robust than the canonical imple-
mentation described in Recommendation
M.3320, it permits SPs to reap benefits
from the TMN architecture in the short
term.

References

1 ITU-T. Principles for a Telecommu-
nications Management Network.
Geneva, ITU, 1992. (ITU-T Recom-
mendation M.3010.)

2 ITU-T. Management Requirements
Framework for the TMN X Interface.
Geneva, ITU, 1997. (ITU-T Recom-
mendation M.3320.)

3 ITU-T. Upper Layer Protocol Pro-
files for the Q3 and X Interface.
Geneva, ITU, 1996. (ITU-T Recom-
mendation Q.812.)

4 ISO. Information Processing Systems
: Opens Systems Interconnection :
Common Management Information
Protocol Specification (CMIP).
Geneva, 1995. (ISO 9595-1 version
2.)

5 ISO. Information Processing Systems
: Open Systems Interconnection :
File Transfer, Access and Manage-
ment, Part 1: General Introduction.
Geneva. (ISO 8571-1.)

6 IETF. Management Information Base
for Network Management of TCP/IP-

based internets. MIB-II, 3/91. (RFC
1213.)

7 ITU-T. Trouble Management Func-
tion for ITU-T Applications. Geneva,
ITU, 1995. (ITU Recommendation
X.790.)

8 Bonica, R P. Open Service Layer
Protocol (OSLP). Telektronikk, 94
(1), 48–54, 1998 (this issue).

9 ITU-T. TMN Management Services
for Dedicated and Reconfigurable
Circuits Network : Leased Circuit
Services. Geneva, ITU, 1997. (ITU-T
Draft Recommendation M.3208.1.)

10 ITU-T. Specification of Basic Enco-
ding Rules for Abstract Syntax Nota-
tion One (ASN.1). Geneva, ITU,
1988. (ITU-T Recommendation
X.209.)

11 IETF. File Transfer Protocol (FTP).
1985. (RFC 959.)

12 IETF. Transmission Control Proto-
col. 1981. (RFC 793.)

13 IETF. Internet Protocol. 1981. (RFC
791.)

47Telektronikk 1.1998

Ronald P. Bonica is a member of the MCI Internet
Engineering Team. He is currently under contract
to the Concert Frame Relay Team and partici-
pating in the Concert Alliance Interface Standards
effort. His interests are TMN and Internet archi-
tecture.

e-mail:
rbonica@mci.net

48 Telektronikk 1.1998

Market demands motivate telecommu-
nications service providers to resell
each other’s services. In order to
manage the resale environment, ser-
vice providers must agree upon a suite
of protocols through which they can
exchange management information.
The protocol suite must support order
management, trouble management,
performance reporting and usage
reporting.

The Telecommunications Management
Network (TMN) X Interface addresses
the required protocol suite in general
terms. Another article in this issue of
Telektronikk proposes “an alliance
approach” to the protocol suite. This
paper presents the Open Service Layer
Protocol (OSLP), an order manage-
ment protocol that applies the alliance
approach to the TMN X Interface.

OSLP services are organized into
layers. The lower layer provides a
stateless protocol through which ser-
vice providers exchange order infor-
mation. The upper layer is a signifi-
cant extension to the TMN X interface
in that it maintains persistent informa-
tion concerning the state of subcon-
tracted orders.

Introduction

OSLP supports the automated exchange
of ordering information across Service
Provider (SP) boundaries. It complies
with the Alliance Approach to the TMN
X Interface [1].

OSLP maximizes inter-operability and
autonomy among SPs. It maximizes
inter-operability by specifying a concise
service order syntax. The concise service
order syntax includes a service indepen-
dent component and many service speci-
fic components. The service independent
component codifies a generic order
object. The generic order object specifies
all order attributes and the states through
which each order must progress en route
to completion. The service independent
component also specifies several generic
objects that are associated with orders
(i.e., contact, location).

A service specific component describes
each service that SPs offer to one an-
other. For example, one service specific
component describes the frame relay
service, while another describes the IP
service. Service specific components
include all service configuration para-
meters (e.g., bandwidth, quality of
service).

OSLP contributes to SP autonomy by
maintaining an environment in which
each SP retains the following rights:

• The right to manage its own network
resources. Although SPs request ser-
vices using OSLP, they cannot dictate
which network resources will support
the service or when those resources
will be deployed.

• The right to operate its support sys-
tems according to local policy. For
example, each SP determines the hours
during which its operational supports
systems are available and the hours
during which they are off-line. OSLP
adapts by sending each message
through a point-to-point store and
forward service.

• The right to security. OSLP messages
are encrypted to ensure authentication,
non-repudiation and privacy.

• The right to maintain its own data base
of record. An SP’s data base of record
describes all services that the SP has
requested via OSLP or provided in
response to OLSP requests.

Although the SP acknowledges the
existence of another data base at the
remote end of the OSLP interface, the
SP views its own data base as the “data
base of record”. SPs need not trust
each other to maintain an accurate data
base of record.

• The right to progress orders as per
local policy. Although OSLP defines a
generic order object and the states
through which orders progress en route
to completion, it does not specify
which activities occur in each state.

• The right to specify the technology
that supports its enterprise. As OSLP
restricts itself to communication re-
garding TMN service layer objects,
SPs are free to model business, net-
work and network element layer
objects as per local policy.

Furthermore, OSLP relies upon only
the most widely accepted standards
(e.g., TCP, IP) for lower layer services.
SPs need not embrace new, costly or
exotic technologies in order to imple-
ment OSLP.

The following sections describe signifi-
cant aspects of OSLP.

The OSLP Business
Relationship

OSLP formalizes the business relation-
ship depicted in Figure 1. In the figure,
the customer contracts with a main ser-
vice provider (MSP) for service.

The MSP submits an order to its local
service layer operation systems function
(SL-OSF). The MSP’s SL-OSF divides
the order into service components and
identifies components that the MSP can
provide using its own network resources.
The MSP network might provide all
components, selected components, or no
components.

The MSP’s SL-OSF sends a request for
locally provided components to a local
network layer operation systems function
(NL-OSF). The MSP’s NL-OSF provi-
sions and manages the locally provided
service components as per local policy.

The MSP’s SL-OSF also identifies ser-
vice components that the MSP cannot
provide using its own network resources.
Using OSLP, the MSP orders those ser-
vices from a peer service provider (SP).

The Open Service Layer Protocol (OSLP)
R O N A L D B O N I C A

SL-OSF

NL-OSF

Network

c
o
n
f
i
g

t
r
o
u
b
l
e

p
e
r
f
o
r
m

b
i
l
l
i
n
g

OSLP

Customer

SL-OSF

NL-OSF

Network

c
o
n
f
i
g

t
r
o
u
b
l
e

p
e
r
f
o
r
m

b
i
l
l
i
n
g

OSLP

MSP SP

Figure 1 The MSP/SP Relationship

49Telektronikk 1.1998

When the SP SL-OSF receives its OSLP
order, it determines whether its local net-
work can fulfil the entire request. If so,
the SP SL-OSF sends a message to its
local NL-OSF. The SP’s NL-OSF pro-
visions the order as per local policy.

When the SP’s NL-OSF fulfils the
request, it sends a completion message to
its local SL-OSF. The SP SL-OSF re-
ceives the completion message and sends
an OSLP completion message to the
MSP’s SL-OSF. The MSP accepts the
services and the SP bills the MSP for
services rendered.

When the MSP SL-OSF receives com-
pletion messages from the SP’s SL-OSF

and its local NL-OSF, it reports service
fulfilment to the customer. The customer
accepts the service and the MSP bills the
customer.

OSLP messages contain TMN service
layer objects only. Therefore, the MSP
can request services using OSLP, but
cannot dictate which network resources
will support the service or when those

resources will be deployed.

OSLP messages describe service
connections and service end-
points. A service endpoint is an
interface through which a party
outside of the SP network inter-
face interfaces with the SP net-

work. User-to-network interfaces
implement an endpoint through which
users interface with the SP network. Net-
work-to-network interfaces implement an
endpoint through which peer networks
interface with the SP network.

OSLP messages never describe how an
SP connects endpoints within its own
network, because TMN assigns such
details to the network layer. OSLP mes-
sages never include internal implementa-
tion or routing details.

OSLP codifies only those messages that
pass between the MSP’s SL-OSF and the
SP’s SL-OSF. Organizations can imple-
ment their internal service layer to net-
work layer interface using either proprie-
tary protocols, the canonical Q3 Interface
[2] or an OSLP variant that addresses
network layer objects.

Subcontracting Relationships

SPs receive requests for services that
they cannot provide using their

own network resources. When
an SP receives such a request,
it can either reject or subcon-
tract the request. If the SP
rejects the request, it sends an
OSLP message to the MSP
indicating order rejection.

If the SP subcontracts the request, it
executes the following procedure:

• Divide the request into com-
ponents

• Identify service components
that the local network can
support

• Send a request for locally supported
components to the local NL-OSF

• Identify a secondary SP for the re-
maining service components

• Send an OSLP service request to the
secondary SP

• Send the MSP an OSLP message
informing it of the subcontracting
arrangement

• Receive an OSLP completion message
from the secondary SP

• Send an OSLP acceptance message to
the secondary SP

• Receive a completion message from
the local NL-OSF

• Send an OSLP completion message to
the MSP.

In short, the primary SP maintains an
original contract with the MSP and a sub-
contract with the secondary SP. The
primary SP assumes the SP role with
respect to the original contract and the
MSP role with respect to the subcontract.

Figure 2 depicts the subcontracting rela-
tionship.

Complex and Recursive
Subcontracting

In the example above, the primary SP
requests services from a single secondary
SP. In complex cases, the primary SP
divides the original request into many
parts and requests service components

Figure 2 Subcontracting

Secondary
SP

MSP Role

Primary
SP

MSP

SP Role

MSP Role

SP Role

Original
Contract

Sub-
contract

Secondary
SP

MSP Role

Primary
SP

MSP

SP Role

MSP Role

SP Role

Original
Contract

Sub-
contract

Secondary
SP

MSP Role

SP Role

Sub-
contract

Figure 3 Complex Subcontracting Figure 4 Recursive Subcontracting

Primary
SP

Tertiary
SP

MSP Role

MSP

SP Role

MSP Role SP Role

Original
Contract

Second
Sub-contract

MSP Role

SP Role

Secondary
SP

First
Sub-contract

50 Telektronikk 1.1998

from two or more secondary SPs. Figure
3 illustrates complex subcontracting.

Furthermore, the subcontracting rela-
tionship is recursive. The secondary SP
can subcontract services from yet another
SP. Figure 4 illustrates recursive subcon-
tracting.

All subcontracting details are relayed
upstream to the MSP.

OSLP Services

OSLP services are organized into the fol-
lowing layers:

• Primitive services
(provided by the lower layer)

• Subcontracting services
(provided by the upper layer).

Primitive services are stateless. Although
MSP and SP applications employ primi-
tive services to exchange order informa-
tion, the OSLP primitive layer does not
maintain a data base of outstanding
orders. MSP and SP applications must
maintain a data base of outstanding
orders and manage these orders as per
local policy.

OSLP provides one set of primitive ser-
vices to MSPs and another set of primi-
tive services to SPs.

Subcontracting services are statefull.
When a primary SP divides an incoming
order into components and subcontracts
each component to a secondary SP, the
primary SP’s OSLP subcontracting layer
records the incoming order and all com-
ponent orders in a local data base. The
primary SP’s subcontracting layer also
forwards all component orders to the
secondary SPs.

When secondary SPs achieve provision-
ing milestones, they update their order
status and send the primary SP an OSLP
message notifying it of the update. The
primary SP’s OSLP subcontracting layer
executes the following actions:

• Update the component order status in
the local OSLP data base

• Re-evaluate the status of the original
order received from the MSP

• Store the original order status in the
local OSLP data base

• Send the MSP an OSLP message indi-
cating the original order status and the
status of all component orders

• Inform the primary SP’s higher level
applications of new order status.

The subcontracting service constitutes a
significant extension to the canonical
TMN X Interface. Specifically, the sub-
contracting service introduces the con-
cept of a statefull, persistent transaction.
Although the subcontracting service is
optional, it is useful to SPs that engage in
subcontracting.

OSLP MSP Services
(Primitive Layer)

OSLP provides the following services to
MSPs:

• MSPs create, modify and cancel orders
using OSLP.

• MSPs annotate orders with free form
text using OSLP.

• MSPs escalate and de-escalate order-
ing issues using OSLP.

• MSPs query order status using OSLP.

• OSLP notifies the MSP when SPs
completes provisioning milestones.

• MSPs accept completed services using
OSLP.

• OSLP notifies the MSP when an SP
unilaterally re-engineers a service.

• OSLP notifies the MSP when an SP
annotates an order with free form text.

• OSLP notifies the MSP when the SP
requests de-escalation.

Order Creation

MSPs create the following order types:

• Bid request
• Provisioning request.

SPs respond to a bid request with the fol-
lowing:

• An estimated completion date (manda-
tory)

• Engineering details (supplied at SP
discretion)

• A price (supplied upon MSP request).

SPs respond to a provisioning request by
provisioning and testing the requested
service. SPs inform the MSP each time a
provisioning milestone is completed.

Each order, regardless of type, contains
zero1 or more service components. Each
service component contains an action,
service independent details, and service
specific details.

MSPs request the following service
actions:

• Install a new service
• Change an existing service
• Discontinue an existing service.

MSPs specify the following service inde-
pendent details for each service:

• Service identifiers (e.g., access circuit
identifiers)

• Service type (e.g., IP access, X.25
access)

• Contact details

• Billing details.

A single OSLP order can contain compo-
nents that specify different actions and
service types. For example, an MSP can
request the following using a single
OSLP order:

• Installation of an IP service
• Discontinuation of an X.25 service
• Modification of a frame relay service.

The SP cannot charge for any component
of an order until all components of order
are complete and accepted by the MSP.

Using OSLP orders, the MSP can queue
multiple actions against a single service.
For example, on a single day, an MSP
can:

• Schedule a circuit for installation in
January

• Schedule the same circuit for upgrade
in February

• Schedule the circuit for disconnection
in March.

Order Modification and Cancellation

MSPs create orders that supersede or
cancel other orders. The SP responds
twice. First, the SP responds to the initial
order, specifying that it is aborted at
MSP request. Next, the SP responds to

1 A supplier might place an order with
no service components in order to
update contact information.

51Telektronikk 1.1998

the modifying or canceling order, speci-
fying that it is in progress or complete.

OSLP does not permit MSPs to modify
or cancel orders directly. MSPs must
issue a new order that supersedes or
cancels an existing order.

Order Annotation

MSPs can append annotations (i.e., free
form text) to an order at any time. OSLP
forwards the annotations to the supplier.

Using annotations, MSPs can escalate
ordering issues to the SP’s management.
MSPs can also de-escalate issues when
they have been notified that the issue has
been resolved.

OSLP notifies the MSP of annotations
generated by the SP. OSLP also notifies
the MSP when the SP requests de-escala-
tion.

Order Status Inquiry

MSPs query the status of their orders by
sending the SP an OSLP message. SPs
respond to the OSLP query by re-evalu-
ating the order’s status and sending an
OSLP status update message to the MSP.
The OSLP status update message in-
cludes all service details that were pro-
vided by the SP, including the order
status.

Milestone Notification /
Order Status Update

OSLP notifies MSPs when SPs achieve
the following provisioning milestones:

• The SP has claimed the order. The SP
will fulfil the order without subcon-
tracting.

• The SP has distributed the order. The
SP will fulfil the order, but has sub-
contracted some or all of the order to
secondary SPs.

• The SP has subcontracted the order.
The SP will fulfil the order, but has
subcontracted some or all of the order
to secondary SPs. The secondary SPs
(or their SPs) have claimed their por-
tions of the order.

• The SP has engineered the order. For
example, the SP has assigned access
ports.

• The SP has completed the order. It has
provisioned and tested the service.

• The SP has failed the order due to
order ambiguity or inability to provide
the requested service.

• The SP has aborted the order at the
MSP’s request.

Order Acceptance / Rejection

After OSLP notifies the MSP that the SP
has provisioned and tested the service,
the MSP must either accept or reject the
service within a configurable time
period. If the MSP accepts the service or
fails to take action within the configur-
able time period, the SP initiates the
billing process.

If the MSP rejects the service, the MSP
and SP must negotiate the issue outside
of OSLP. Typically, the SP resolves the
problem, and the MSP accepts the ser-
vice at a later date.

Re-engineering Notification

OSLP notifies the MSP when an SP uni-
laterally re-engineers a service. The SP
can re-engineer the service in response to
a failure condition or in conjunction with
a network grooming effort. The SP also
can re-organize support staff, assigning
new support contacts to a service.

SP Services (Primitive Layer)

OSLP provides the following services to
suppliers:

• OSLP notifies the SP of incoming
orders.

• SPs notify the MSP of milestone com-
pletion using OSLP.

• OSLP notifies the SP of incoming
status inquires.

• SPs respond to status inquires using
OSLP.

• OSLP notifies the SP when the MSP
accepts service order completion.

• SPs notify the MSP of unilateral ser-
vice re-engineering using OSLP.

• SPs annotate orders with free form text
messages and distribute annotations to
MSPs using OSLP.

• SPs request de-escalation of ordering
issues using OSLP.

• OSLP notifies the SP when the MSP
annotates an order with free form text.

• OSLP notifies the SP when the MSP
escalates or de-escalates an ordering
issue.

These services are symmetric with those
provided to MSPs.

Subcontracting Services
(Subcontracting Layer)

The subcontracting service integrates
MSP and SP services. The subcontract-
ing service includes:

• Order binding
• Delayed order binding.

The following example illustrates order
binding:

An MSP orders a frame relay perma-
nent virtual circuit (PVC) from a
primary SP. The PVC connects an
endpoint in London to an endpoint in
Rome. The primary SP cannot fulfil the
order using its own network resources.
Therefore, it divides the order into two
components. One component connects
the London endpoint to a frame relay
network-to-network interface (NNI) in
Milan. The other component connects
the Roman endpoint to an NNI that is
co-located with the first NNI in Milan.

The primary SP assigns one service
component to a secondary SP in Eng-
land and the other to a secondary SP
in Italy. Using OSLP subcontracting
service, the primary SP creates a new
order representing each service com-
ponent and binds the new orders to the
original order from the MSP.

The OSLP subcontracting layer
records the original order and the new
orders in its local data base. It sends
one new order to the secondary SP in
England and the other to the second-
ary SP in Italy.

As the secondary SPs provision their
components, they send status update
messages to the primary SP. When the
primary SP’s subcontracting layer
receives these messages, it re-evalu-
ates the status of the original order
from the MSP.

The primary SP’s subcontracting layer
composes a status update message that
includes information concerning the
original order, as well as the two new
orders. The primary SP’s subcontract-
ing layer sends this message to the
MSP as well as to the primary SP’s
higher lever applications.

52 Telektronikk 1.1998

In the example above, the primary SP
chooses the NNI at which the two PVC
segments meet. Therefore, the primary
SP issues complete service orders to both
secondary SPs, simultaneously, specifying
a network-to-network interface for each.

Business policy can require that one or
the other secondary SP specifies the net-
work-to-network interface. Therefore,
OSLP supports delayed order binding.
The following frame relay example illu-
strates delayed order binding:

An MSP orders a frame relay PVC
from a primary SP. The PVC connects
an endpoint in London to an endpoint
in Rome. The primary SP cannot fulfil
the order using its own network
resources. Therefore, it divides the
order into two components. One com-
ponent connects the London endpoint
to an unspecified NNI. The other com-
ponent connects the Roman endpoint
to another unspecified NNI.

The primary SP assigns one service
component to a secondary SP in Eng-
land and the other to a secondary SP
in Italy. It updates the Italian service
component, specifying it must provide
an NNI that interfaces with the English
SP’s network.

Using the OSLP subcontracting ser-
vice, the primary SP creates a new
order representing each service com-
ponent and binds the new orders to the
original order from the MSP. The pri-
mary SP also “delays” transmission of
the English SP’s order.

The OSLP subcontracting layer
records the original order and the new
orders in its local data base. It sends
one new order to the secondary SP in
Italy and defers transmission of the
other new order.

As the secondary SP in Italy provisions
its component, it sends status updates
messages to the primary SP. When the
primary SP’s subcontracting layer
receives these messages, it re-evalu-
ates the status of the original order
from the MSP.

The primary SP’s subcontracting layer
composes a status update message that
includes information concerning the
original order, as well as the two new
orders. The primary SP’s subcontract-
ing layer sends this message to the
MSP as well as to the primary SP’s
higher lever applications.

When the primary SP application
detects that the secondary SP in Italy
has assigned an NNI, it updates the
order to the secondary SP in England
and removes the delay. The primary
SP’s subcontracting layer sends the
order to the SP in England and order
processing continues.

OSLP Architecture
The following are OSLP architectural
goals:

• Maximize the number of SPs that can
partake in the protocol

• Maximize the number of views
through which SPs can access each
other’s ordering information using the
protocol.

These goals are in conflict. As the proto-
col becomes more robust, and offers a
larger number of access views, it also
becomes more difficult and costly to
integrate with SP legacy systems. As the
protocol becomes more difficult and
costly to integrate with SP legacy sys-
tems, the number of SPs that can partake
in the protocol decreases.

Therefore, OSLP provides the minimum
number of access views required to sup-
port order management. Specifically,
OSLP implements a multi-state protocol.

Multi-state protocols support the follow-
ing scenario:

• The MSP creates an order within its
own data base of record.

• The MSP sends a message to the SP
informing the SP that the new order
has been created.

• The SP creates an identical order with-
in its data base of record.

• The SP processes the order contained
by its data base of record according to
local policy. It updates order status as
appropriate.

• Each time the SP updates the order
contained by its data base of record, it
sends a status update message to the
MSP. The status update message con-
tains all SP provided order attributes,
including status.

• The MSP receives the status update
message and updates the correspond-
ing order in its data base of record.

• When the MSP receives a status
update message that indicates the order

has been completed, the MSP sends
the SP a message indicating whether or
not it is satisfied with the service
rendered.

Once the MSP sends its initial message
to the SP, the MSP’s ability to communi-
cate with the order contained by the SP
data base of record is extremely limited.
Specifically, the MSP can:

• Monitor status update messages sent
from the SP

• Synchronize its copy of the order with
the SP copy by requesting a retransmis-
sion of the last status update message.

• Send a message to the SP that appends
free form text to the order. The mes-
sage can also escalate an ordering
issue.

In order to modify or cancel an order, the
MSP must create a new order within its
data base of record. The new order super-
sedes or cancels the original order. The
MSP sends a message to the SP and the
SP creates an identical order within its
data base of record. The SP processes
both orders according to the scenario
described above.

Multi-state protocols minimized the cost
of integration with legacy systems. SPs
execute only a few course-grained opera-
tions upon orders that reside in each
others SP’s domain. Therefore, SPs need
not implement complex adaptation func-
tions that map OSLP messages to every
possible view of their legacy data base of
record. SPs implement only a small set of
adaptation functions that support order
creation, status update reporting, and
order closure.

The OSLP Protocol Data
Unit (PDU)

Organizations initiate and progress
orders by exchanging OSLP PDUs. In
OSLP, the initiating organization as-
sumes the MSP role and the order reci-
pient assumes the SP role.2

2 The distinction between the MSP orga-
nization and the MSP role is impor-
tant. Recall that in a subcontracting
arrangement, the primary SP assumes
the SP role with respect to the original
contract and the MSP role with respect
to the subcontract (see Figure 2)

53Telektronikk 1.1998

Header field description Supplied by:

Organization identifier for the MSP role MSP role

Order identifier assigned by the MSP role MSP role

List of contacts that represent the MSP role MSP role

Organization identifier for the SP role MSP role

Order identifier assigned by the SP role SP role

List of contacts that represent the SP role SP role

Organization identifier for the MSP MSP role

Order identifier generated by MSP MSP role

Order type (i.e., request bid with pricing information,
request bid without pricing information or request provisioning) MSP role

Order disposition (i.e., new order, supersede previous order,
cancel previous order) MSP role

OSLP message type (See details below) MSP role

Order due date MSP role

Order estimated completion date SP role

Order status (See details below) SP role

Date and time of last status update SP role

Order confirmation status (See details below) MSP role

Subcontracting details (i.e., a list of orders sent to secondary
SPs in order to fulfil current order) SP role

List of annotations to current order MSP or SP role

The OSLP PDU contains a header and a
payload. The header represents service
independent order attributes while the
payload represents a list of specific ser-
vices that are being ordered.

Most header values are supplied by the
MSP role at order creation time. Selected
attributes are supplied by the SP role.
Table 1 describes the OSLP header
fields.

The following are OSLP message types:

• OSLP Service Request (OSR)

• OSLP Provisioning Status Update
(OPSU)

• OSLP Ping (OPNG)

• OSLP Provisioning Completion Con-
firmation (OPCC)

• OSLP Re-engineering Notification
(OREN)

• OSLP Free Form Text (OTXT).

The OSR Message

The MSP role creates a service order
within the SP data base of record by
sending an OSR messages.

The OPSU Message

The SP role sends the MSP role one or
more OSPU messages between OSR
reception and order completion. The SP
role sends an unsolicited OSPU message
each time it achieves a provisioning
milestone. It also sends an OPSU mes-
sage in response to each status inquiry
received from the MSP role.

The OPSU message specifies order status
and engineering details. Table 2 defines
order status values.

The OSLP Ping Message (OPNG)

The MSP role sends the SP role an
OPNG message order to request a status
update regarding a particular order. The
SP responds to the OPNG message with
an OPSU message.

OPSU Provisioning Completion
Confirmation (OPCC) Message

The MSP role sends the SP role an
OPCC message in response to an OPSU
(complete) message. The OPCC message
indicates whether or not the MSP role
concurs that the service has been pro-
visioned as requested. Upon receiving a

Table 1 OSLP Header Attributes

Status Description

Initial The order has been created, but not acted upon.

Claimed The SP role has determined that it can provide the entire locally,
without subcontracting.

Distributed The SP role has determined that it cannot provide the entire ser-
vice without subcontracting. Therefore, the SP role has subcon-
tracted at least a portion of the request to one or more secondary
SPs.

Subcontracted The SP role has determined that it cannot provide the entire ser-
vice without subcontracting. Therefore, the SP role has subcon-
tracted at least a portion of the request to one or more secondary
SPs. The secondary SPs have claimed their portion of the order.

Engineered The SP role has engineered the service request (e.g., assigned
access ports).

Complete The SP role has provisioned and tested the service.

Accepted The MSP role has accepted service delivery. Billing may begin.

Failed The SP role has determined that it cannot provide the service.

Aborted The SP role has aborted the service request at the MSP’s request.

Unknown The SP role has received a status inquiry for an unknown order.

Table 2 OSPU Service Request Status Values

54 Telektronikk 1.1998

positive OPCC message, the SP role ini-
tiates the billing process. Upon receiving
a negative OPCC message, the MSP and
SP roles resolve the issue outside of
OSLP.

If the SP role does not receive an OPCC
message (either positive or negative)
within a configurable period, it assumes
that the service has been provisioned as
requested and initiates the billing process.

The OSLP Re-engineering (OREN)
Message

The SP role sends the MSP role an
OREN message to indicate a unilateral
change in engineering details after trans-
mission of the OPSU (complete) mes-
sage. Changes can represent network
grooming efforts or emergency repair
actions.

OREN messages are propagated
upstream to the MSP organization.

The OSLP Free Text Message
(OTXT)

The OTXT message can serve any of the
following functions:

• Carry free form text regarding an order

• Manage escalation of an issue to SP
role management.

Either the MSP or SP role can send an
OTXT message at any time.

OSLP Stack

OSLP is a multi-state protocol that does
not require robust interactive communi-
cations services. Therefore, OSLP does
not rely upon services provided by the
Common Information Service Element
(CMISE).

Furthermore, OSLP does not require
object location services. Therefore,
OSLP also does not rely upon services
provided by X.500 or the Common
Object Request Broker Architecture
(CORBA).

Alternatively, OSLP relies upon services
provided by the stack depicted in Figure 5.

The Basic Encoding Rules (BER) de-
scribed in ITU-T Recommendation
X.209 provide OSI presentation layer
services.

Point-to-point store and forward services
are provided by the Alliance Point-to-
Point Transport Protocol (APT). APT is
defined in the OSLP documentation
suite.

Lower layer services are provided by the
Transmission Control Protocol (TCP)
and the Internet Protocol (IP).

As stated in Recommendation M.3320
[3], SPs maintain pair-wise agreements
regarding encryption and security admi-
nistration. Because each SP is con-
strained by its national security and en-
cryption policy, it may not be possible to
specify a single, global security policy.

Conclusions

OSLP provides a mechanism through
which SPs exchange ordering informa-
tion. As OSLP’s architecture minimizes
the cost of integration with legacy order
management systems, it encourages a
wide community of SPs to partake in the
protocol.

References

1 Bonica, R P. Alliance Approach to
the TMN X Interface. Telektronikk,
94 (1), 39–47, 1998 (this issue).

2 ITU-T. Principles for a Telecommu-
nications Management Network.
Geneva, ITU, 1992. (ITU-T Recom-
mendation M.3010.)

3 ITU-T. Management Requirements
Framework for the TMN X Interface.
Geneva, ITU, 1997. (ITU-T Recom-
mendation M.3320.)

ISO Presentation Layer
X.209, ISO 8826 BER

Transmission Control Protocol
IETF RFC 793

OSLP Primitive Service

APT Store & Forward

Internet Protocol
IETF RFC 791

OSLP Subcontracting Service

Higher Level Application

Figure 5 OSLP Supporting Stack

Ronald P. Bonica is a member of the MCI Internet
Engineering Team. He is currently under contract
to the Concert Frame Relay Team and partici-
pating in the Concert Alliance Interface Standards
effort. His interests are TMN and Internet archi-
tecture.

e-mail:
rbonica@mci.net

Distributed processing has become
increasingly important in the last
decade, due to the need for inter-
connecting existing systems, new
organisational trends, and intra- as
well as inter-organisational co-opera-
tion. RM-ODP aims at providing a co-
ordinating framework for the stan-
dardisation of Open Distributed Pro-
cessing.

1 Introduction

The joint ISO/ITU standardisation of
RM-ODP, Reference Model of Open
Distributed Processing, aims at providing
a co-ordinating framework for the stan-
dardisation of Open Distributed Process-
ing. This framework identifies an archi-
tecture that supports distribution, inter-
working and portability. These factors
are the basis for providing the benefits of
distributed information processing in an
environment of heterogeneous enabling
technology. The main users of RM-ODP
are considered to be standards writers
and architects of open distributed sys-
tems.

Besides distribution of possibly remote
processes, distributed systems are charac-
terised by the following inherent charac-
teristics [1]:

• Concurrency, i.e. components exe-
cuting in parallel

• Lack of global state, i.e. the entire
global state of a distributed system
cannot be precisely determined

• Partial failures, i.e. any component
may fail independently of any other
components

• Asynchronisity, i.e. communication
and processing activities are not driven
by a single global clock, and related
events in a distributed system cannot
be assumed to take place at a single
instant.

With these aspects taken into account,
RM-ODP must in addition to hetero-
geneity, also consider and provide for
autonomy, openness (enabling both
portability and interworking), integration
(incorporating various systems and
resources into a whole), and flexibility.
The issue of autonomy deals with the
situation where the systems are spread
over a number of autonomous manage-
ment or control authorities (organisa-
tional units or administrative domains),
without any central point of control.

Flexibility, addresses several issues, such
as continued operation of legacy systems,
support of a system’s evolution, as well
as capabilities facilitating run-time
changes and reconfigurations.

The RM-ODP standards are organised
into four parts.

• Part 1 [1], Overview; provides an over-
view of RM-ODP, including its moti-
vation (partly covered above), scope,
justification and explanation of key
concepts, and an outline of the archi-
tecture, including explanatory material.
This part is not normative.

• Part 2 [2], Foundations; contains the
definition of concepts and analytical
framework for normalised description
of (arbitrary) distributed processing
systems. The level of detail is limited
to what is necessary and sufficient as a
basis for Part 3. This part is normative.

• Part 3 [3], Architecture; contains the
specification of the required characte-
ristics that qualify distributed process-
ing as open. These are constraints to
which ODP standards must conform.
It uses the descriptive techniques from
Part 2. This part is normative.

• Part 4 [4], Architectural semantics;
contains a formalisation of the central
ODP concepts defined in Part 2. The
formalisation is achieved by in-
terpreting each concept in terms of
constructs of different standardised
formal description techniques. This
part is normative.

This paper, whose aim is to provide an
introduction to RM-ODP, is predomi-
nantly based on these four parts. In addi-
tion, this article also attempts to identify
and discuss some of the challenges and
still open issues related to RM-ODP.

The development of RM-ODP has been
based on several sources [5], of which
the ANSA Research Program has made a
significant contribution. The idea of di-
viding the problem domain of open dis-
tributed processing into five projections
to handle complexity, is discussed in [6].
These projections, which correspond to
the five viewpoints of RM-ODP, is a key
element in the ANSA Architecture, con-
sisting of a set of six frameworks add-
ressing most aspects of distributed
systems design and implementation.

55

Introduction to RM-ODP
– A Reference Model of Open Distributed Processing

H Å K O N L Ø N S E T H A G E N

Telektronikk 1.1998

Technology

Viewpoint Engineerin
g

Viewpoint

Enterprise Viewpoint

C
om

putational

 V
iew

pointIn
fo

rm
at

io
n

 V
ie

w
po

in
t

Objectives,
Enterprise objects,

Roles,
Policies, Actions,

Non-functional reqs.

In
fo

rm
at

io
n

ob
je

ct
s,

S
em

an
tic

s,
R

el
at

io
ns

hi
ps

,
C

on
st

ra
in

ts
,

S
ta

te
 c

ha
ng

e

Dist
rib

uted proce
ss

ing

infra
str

uctu
re,

exe
cu

table engineerin
g

objects
,

Dist
rib

utio
n

tra
nsp

arencie
s

F
unctional

decom
position,

C
om

putational objects,

Interfaces,

Interactions

Implementation

and computing

technology,

Technology dependent

testing

ODP System

Figure 1 RM-ODP Viewpoints

RM-ODP Part 1 states: “A viewpoint is a
subdivision of the specification of a com-
plete system, established to bring
together those particular pieces of infor-
mation relevant to some particular area
of concern during the design of the sys-
tem”. The five RM-ODP viewpoints
(viewpoints on the system and its en-
vironment) are (se also Figure 1):

• the enterprise viewpoint, which is con-
cerned with the business activities of
the specified system, by focusing on
purpose, scope, and policies

• the information viewpoint, which is
concerned with the information that
needs to be stored and processed, and
the semantics of the information

• the computational viewpoint, which is
concerned with distribution by add-
ressing functional decomposition into
computational objects which interact at
interfaces

• the engineering viewpoint, which is
concerned with the mechanisms and
functions supporting distribution of the
computational objects and their inter-
action

• the technology viewpoint, which is
concerned with the choice of imple-
mentation and computing technology.

The viewpoints should not be considered
as layers of functionality, nor should a
fixed order be assigned to them accord-
ing to design methodology. In addition to
the five viewpoints, the framework de-
fined by RM-ODP comprises a viewpoint
language for each viewpoint, specifica-
tion of functions required to support
ODP systems, and a set of transparency
prescriptions. The latter shows how to
use the ODP functions to achieve distri-
bution transparency. Each viewpoint
language defines the concepts and rules
for specifying ODP systems from the
corresponding viewpoint. The combina-
tion of the computational language, the
engineering language, and the trans-
parency prescriptions determine the
architecture of the ODP systems.

A goal of the framework is to allow dif-
ferent parts of the design to be worked
on separately. However, it should also
clearly identify those parts of the design
that constrain other parts. The mecha-
nism of viewpoints is one of the two
main structuring approaches adopted by
the ODP architecture, while distribution
transparencies provide the other.

Distribution transparencies deal with a
number of concerns and aspects that are
direct results of distribution, such as
remoteness, failure, etc. The ODP frame-
work addresses these concerns by identi-
fying generic means to make these
aspects transparent to the application
designers and developers. RM-ODP
defines the following transparencies
(along with related requirements and
solutions that satisfy them):

• access transparency, – masks the dif-
ferences in invocation mechanisms and
data (message) representation to en-
able interworking between distributed
processes of heterogeneous techno-
logy. This transparency is generally
inherent to the distributed infrastruc-
ture.

• failure transparency, – masks from an
object (see below for a definition of
‘object’ and ‘interface’) the failure and
possible recovery of other objects (or
itself) to enable fault tolerance. If this
transparency is provided, the designer
can work under the assumption that
this class of failure does not occur.

• location transparency, – masks the use
of information about location in space
when identifying and making associa-
tion between object interfaces. When
this transparency is provided, identifi-
cation of object interfaces is achieved
by naming based only on a logical
view.

• migration transparency, – masks from
an object the ability of a system to
change the location of that object.
Migration of objects is often used to
achieve load balancing and reduce
latency.

• relocation transparency, – masks from
an interface the relocation of another
interface bound to it. Relocation
allows system operation to continue
even when migration or replacement of
some objects creates transient incon-
sistency.

• replication transparency, – masks the
use of a group of mutually behaviour-
ally compatible and synchronised
objects to support an interface. Repli-
cation is often used to enhance perfor-
mance and availability.

• persistence transparency, – masks
from an object the deactivation and
reactivation of other objects (or itself).
The state of an object must be per-
sistently stored even when processing
and memory resources cannot be allo-

cated to the object, or as a means to
facilitate recovery.

• transaction transparency, – masks
from an object the co-ordination of
activities amongst a configuration of
dependent objects to achieve con-
sistency.

The transparencies may be provided for
by a generic distributed infrastructure.
This infrastructure or distributed pro-
cessing environment, provides ODP
functions coping with the transparencies.
By implementing these functions as part
of a generic infrastructure, software reuse
is achieved by letting the ODP functions
be (re-)used by several applications. The
notion of middleware, which in the last
few years has become an established
term in the industry, is used to designate
software providing the generic distri-
buted infrastructure. Various middle-
wares, however, may offer a subset of
the above list of transparencies, as well
as additional functions and services.

The remainder of this paper is structured
as follows: Section 2 briefly presents the
fundamental and generic (modelling)
concepts of RM-ODP. Sections 3, 4, 5, 6,
and 8 present the five RM-ODP view-
points and corresponding viewpoint lan-
guages, in the order as indicated above.
In addition, distribution transparencies
and ODP functions are covered in more
detail in section 7. Section 9 provides an
introduction to the issue of architectural
semantics. A discussion is provided in
section 10, on what is believed to be
open issues related to RM-ODP. Con-
cluding remarks are given in section 11.
An example of a way of using RM-ODP
is provided in a separate paper in this
issue of Telektronikk [7].

2 Foundations
– The Common
Modelling Concepts

The ODP Architecture1 is defined in Part
3 of RM-ODP. It defies a viewpoint
language for each of the five viewpoints.
The concepts identified in each of the
viewpoint languages are based on and
possibly refine the generic modelling
concepts defined in Part 2, Foundations.

In addition to providing interpretation of
a few terms or concepts generally appli-
cable to any modelling activity, Part 2
makes the following categorisation of
concepts;

56 Telektronikk 1.1998

• basic modelling concepts, – concepts
for modelling the ODP systems. Any
viewpoint language must relate to
these concepts.

• specification concepts, – concepts re-
lated to the relevant specification lan-
guage. These concepts are not intrinsic
to the distributed system, however,
some systems may directly rely on
specifications of for example a con-
ceptual specification.

• structuring concepts, – concepts that
relate to various aspects of designing
and description of distributed systems,
such as their various system architec-
ture properties and policies, organisa-
tion of objects, naming issues, issues
related to activity and behaviour, as
well as management.

• conformance concept, – concepts
necessary to interpret the notion of
conformance to ODP based standards
and of conformance testing.

2.1 Basic modelling concepts

By the basic modelling concepts, ODP
introduces a general object-based model.
However, this does not imply that the
object-oriented modelling style is
adopted2. An object is an abstract model
of an entity. An object is further charac-
terised by its unique identity, by its state,
its encapsulation, and its behaviour.
Encapsulation ensures that the state of
the object may only be accessed via one
or more interfaces of an object. Other-
wise, only internal actions may alter the
state of an object.

At this generic level, few assumptions
are made, and an object may be of any
level of granularity, complexity, and
allow internal parallelism. Interactions
between objects are not constrained and
may include both asynchronous (which
implies concurrency) and various syn-
chronous interactions.

Interactions among objects may only
occur on the object interfaces. An inter-
face identifies a set of possible interac-
tion types, and may be considered as a
service of the object. This set of possible
interactions represents a part of the
object’s behaviour. An object may have
multiple interfaces, which allow func-
tional separation as well as distribution
of the object’s points of interaction.

The above mentioned properties of an
object, provide well defined separation
between objects. That is, every depen-
dency among objects is captured by a
corresponding interface. This further
allows a compatible object, as perceived
by its environment, to replace another
object without influencing the environ-
ment of the original object.

2.2 Specification Concepts

While an ODP system in general can be
described by the basic modelling con-
cepts as a collection of related, interact-
ing objects, the specification concepts
introduce several additional concepts that
may be related to requirements placed on
any specification language used for the
specification of an ODP system.

Among these concepts are the important
notions of composition and refinement.
Composition and its dual, decomposition,
of specifications can be a useful means of
the modelling and design process. A dis-
tinction between composition of objects
and composition of behaviours is made.
Refinement is the process of transform-
ing one specification into another more
detailed specification.

Furthermore, the notions of type and
class are defined, as well as the corre-
sponding notions admitting hierarchies
of types or classes, i.e. subtype/supertype
and subclass/superclass. The notions of
template and instantiation of a template
also fall into the category of specification
concepts.

2.3 Structuring Concepts

While the specification concepts allow
structuring of specifications, the struc-
turing concepts on the other hand are
concerned with structuring and properties
of the ODP systems as such.

In addition to various concepts used for
organising and relating sets of objects,
such as configuration, domain, group,
reference point, and epoch, this part also
defines several fundamental concepts
related to naming, and transparencies, as
well as policies – the latter will be
covered in more detail with respect to the
enterprise viewpoint. Management con-
cepts such as application management,
communication management, manage-
ment information, managed and man-
aging roles, and notification are also
defined.

An important policy concept is that of
environment contract, which is a contract
between an object and its environment.
Constraints related to quality of service
(QoS), usage, and management are intro-
duced. These notions are important to the
enterprise and the computational view-
points. QoS constraints include temporal,
volume (e.g. throughput), and depen-
dability constraints (e.g. availability,
reliability, maintainability, security and
safety). Usage and management con-
straints include issues related to location
as well as distribution transparencies.
Non-functional requirements is a fre-
quently used expression denoting these
constraints.

While the concepts of behaviour and
activity were identified as basic
modelling concepts, concepts related to
structures of activities, as well as con-
cepts related to contractual behaviour
(related to contracts among sets of
objects) are defined in this part. Several
categories of roles are also identified
related to causality of object interaction.
Causality, e.g. producer vs. consumer, is
an issue particularly relevant to the
computational viewpoint.

Of particular importance in open distri-
buted processing is the concept of bind-
ing between object interfaces. A binding
is a contractual context, which is the
knowledge that a particular contract is
established between two or more inter-
faces, and hence between their support-
ing objects, and implies that a particular
behaviour of this set of objects is ex-
pected.

57Telektronikk 1.1998

1 A general description of the notion of
architecture at this level of abstraction
was not found in RM-ODP Part 2.
However, it becomes evident from the
usage of terms in the documents that
while the ‘ODP (Architectural)
Framework’ identifies the (frame of)
overall elements encompassed by the
ODP Architecture, the notion of ODP
Architecture itself designates both the
framework and the concepts and rules
defined as part of each element of the
framework.

2 An object-oriented modelling style
must include the concept of inheritance
[8] and possibly polymorphism (gene-
ric operation) [9].

2.4 Conformance Concepts

Distributed systems are potentially very
complex, the components are hetero-
geneous and may undergo individual
evolution, and several administrative
domains may be involved. This com-
plexity puts a great challenge on ex-
pression of conformance requirements
and on conformance assessment and
testing.

Conformance relates statements of a
specification (a standard) to observable
events and behaviour of the correspond-
ing implementation at certain confor-
mance points. The RM-ODP identifies
several classes of reference points in the
architecture. Such a reference point is a
potential conformance point. If so de-
clared by some specification, this point
must then be accessible to testing of con-
formance.

RM-ODP identifies four classes of refe-
rence points of which a reference point
potentially may be identified as a confor-
mance point:

• programmatic reference point, – at
which a programmatic interface can be
established to allow access to a func-
tion. A programmatic interface is an
interface which is realised through a
programming language binding.

• perceptual reference point, – at which
there is some interaction between the
system and the physical world, e.g. a
human-computer interface.

• interworking reference point, – at
which an interface can be established
to allow communication between two
or more systems or components. Inter-
working conformance involves inter-
connection of reference points.

• interchange reference points, – at
which an external physical storage
medium can be introduced into the
system. The storage medium may be
used to interchange information from
one system to another.

3 The Enterprise View-
point and Language

The enterprise viewpoint allows an ODP
system to be represented in the context of
the enterprise in which it operates. The
aim is to identify requirements of a sys-
tem in terms of objectives, policy state-
ments and obligations by the various
roles identified in the enterprise view-

point. This viewpoint further identifies
activities to be realised by the system as
well as the various contracts with its
environment. The motivation for a sepa-
rate viewpoint to express these issues, is
based on the idea of decoupling the set of
objectives for the system from the way
they are realised.

The concepts of ‘community’ and ‘fede-
ration’ are defined by this viewpoint
language. A community represents the
ODP system and the environment in
which it operates. A community will
identify the scope of the system relative
to this community. The following ele-
ments constitute a community:

• the enterprise objects comprising the
community

• the roles fulfilled by each of those
objects

• policies governing interactions
between enterprise objects

• policies governing the creation,
deletion, and usage of resources by
enterprise objects

• policies governing the configuration
and structuring of enterprise objects
and assignment of roles to enterprise
objects

• policies relating to environment con-
tracts, governing the system.

An enterprise object can fulfil roles asso-
ciated with different communities. This
is determined by the environment con-
tracts on which a corresponding commu-
nity is based. An enterprise object ful-
filling a role is defined and constrained
by permissions, obligations, and prohibi-
tions associated with that role. These
aspects, expressing policies of an object
may change dynamically according to
interactions between objects. In the
enterprise viewpoint, actions between
objects relating (and changing) obliga-
tions, permissions, and prohibitions to
associations between objects are of parti-
cular interest. Furthermore, objectives
and policies related to resource usage,
accounting, and non-functional require-
ments are identified within the enterprise
viewpoint.

Enterprise objects may be owned and
controlled by different authorities or
administrative domains. A federation is a
particular community where objects are
associated with different authorities. The
objective of a federation will typically
depend on joint and co-ordinated activi-

ties. The autonomy of enterprise objects
must be considered when describing the
rules for the establishment of a federa-
tion, the joining to a federation, as well
as the cessation of federation participa-
tion. The policies related to delegation,
security and trust are of particular
interest to communities describing
federations.

All four classes of reference points, as
described in section 2.4, may be subject
to enterprise specification. Conformance
statements in the enterprise language in
terms of a particular set of objectives and
policies must be related to a reference
point identifiable in the engineering
viewpoint. By observing the behaviour of
the system at this reference point, the
interactions with the system may be
interpreted in the enterprise language
terms to check conformance.

4 The Information View-
point and Language

The information viewpoint is focused
toward the information that needs to be
stored and processed by the system, that
is, the semantics of this information as
well as the semantics of the information
processing in an ODP system. The infor-
mation language defines the generic con-
cepts, rules and structures to be used in
this viewpoint. An information specifica-
tion defines the information and seman-
tics in terms of a configuration of infor-
mation objects and their relationships,
the behaviour of those objects, and the
environment contracts for the system.

Furthermore, the motivation for the
information language is to facilitate the
correct interpretation of information con-
veyed while interacting among com-
ponents of an ODP system. If com-
ponents of a distributed system are not
founded on a common understanding of
the common information among the
communicating components, the system
is not likely to behave as expected.

The information objects represent entities
that occur in the real world, in the ODP
system, or in other viewpoints. An
atomic information object represents a
basic information element, while com-
plex information is represented as a com-
posite information object containing
encapsulated information objects. Hence,
an information object being a component
of a composite object cannot be a com-
ponent of another.

58 Telektronikk 1.1998

The information language comprises
three schemata. An information object
template may reference any of these
schemata:

• invariant schema, – a set of predicates
on one or more information objects
which must always be true for the
entire life-time of the objects. Thus,
the invariant schema constrains the
possible states and state changes of the
corresponding objects.

• static schema, – the state of one or
more information objects, at some
point in time, subject to the constraints
of any invariant schema.

• dynamic schema, – the allowable state
changes of one or more information
objects, subject to the constraints of
any invariant schema.

Typically, the identified state change will
go from one static schema to another
static schema, and as such, model the
behaviour of the system in terms of the
state space of which it operates. Allow-
able state changes can be subject to
ordering and further temporal constraints.
A dynamic schema can involve the crea-
tion of new information objects or the
deletion of information objects.

While the invariant schema may be
regarded as the specification of the types
that will always be satisfied of one or
more information objects, the static
schema is the specification of the types
of one or more information objects at
some particular point in time. The types
specified by the static schema are thus
subtypes of the types specified in the
invariant schema.

Distribution and localisation are not con-
sidered by the information specification.
However, the notion of interface is not
prohibited as part of an information spe-
cification. No assumptions may, how-

59Telektronikk 1.1998

Signal interface
signature

for each signal
interface type

a finite set of
Action template(s)

one for each signal type
in the interface

Signal name

a finite number of
Parameter(s)

Causality
either initiating or

responding

Flow name

Information typeStream interface
signature

for each signal
interface type

a finite set of
Action template(s)

one for each flow type
in the interface

Causality
either initiating or

responding

Signal name

Parameter type

Operation
interface
signature

for each
operation

interface type

a finite set of
Annoncement
signature(s)

(is an Action template)
one for each operation type

in the interface that is an
annoncement

a finite set of
Interrogation
signature(s)

(is an Action template)
one for each operation type

in the interface that is an
interrogation

Causality
either client (initiating) or server

for the interface as a whole

Invocation name

a finite number of
Parameter(s)

Invocation name

a finite number of
Parameter(s)

a finite set of
Action signature(s)

one for each
termination type

Parameter name

Parameter type

a finite number of
Parameters(s)

Parameter name

Parameter type

Parameter name

Parameter type

Termination name

Figure 2 Interface signatures

ever, be made about the location of the
interface or about the interface appearing
as such in an implementation.

Conformance relative to a conformance
point must be based on observations at
some engineering reference point(s). The
behaviour at this reference point must be
consistent with a particular set of in-
variant, static, and dynamic schemata as
identified by the corresponding confor-
mance statements.

5 The Computational
Viewpoint and
Language

The computational language and the en-
gineering language have got the most
attention in the RM-ODP specifications.
While the enterprise and information

viewpoints deal with distribution at a
high level only, that is, what constitutes a
system, the computational as well as the
engineering viewpoints explicitly add-
resses distribution. The computational
viewpoint is concerned with the deci-
sions of how to distribute the job of the
system by a functional decomposition
into computational objects. On the other
hand, the mechanisms for interaction
among distributed components are pro-
vided by the engineering viewpoint.

The computational language identifies an
object model, which in broad terms de-
fines what kinds of interfaces an object
can have, how interfaces may be bound
to each other, and the kinds of interac-
tions that may take place at the inter-
faces. The goal of the computational
language is to enable a component speci-
fier to express constraints on distribution

of an application only in terms of en-
vironment contracts, i.e. interfaces and
interface bindings. The degree of distri-
bution, e.g. replication, or any other
dependency on realisation of distribution
need not be expressed in the computa-
tional language. This will promote open
interworking and portability of com-
ponents.

5.1 Computational interfaces
and object interactions

The computational language identifies
three types of interfaces; operational,
stream, and signal interfaces. These cate-
gories of interfaces correspond with the
three forms of interactions that can take
place between computational objects.
Each interaction must occur at one of the
established (bond) interfaces of a com-
putational object. The forms of inter-
actions are:

• signals, which are the elementary
atomic interactions. A signal is con-
sidered as an atomic action shared
between an initiating object and a
responding object, resulting in a one-
way communication from the initiating
object to the object accepting the com-
munication.

• operations, which from a client object,
request an invocation of some function
at the server object. Furthermore, there
are two types of operations;

i) interrogation, where the server
returns a response (termination) to
the client object, and

ii)announcement, where no response
by the server back to the client is
expected. An announcement may be
used to report some event or state
change.

• flows, which is an abstraction of a
continuous sequence of interactions,
resulting in conveyance of information
from a producer object to a consumer
object. Flows can be used to model, for
example, audio and video streams as
part of a multimedia telecommunica-
tions service.

Notice that the notion of client and server
as associated with interrogations and
announcements are merely roles. Thus, a
server object as seen relative to an inter-
rogation may emit an announcement to
the corresponding client object. In that
case, this client object takes the server
role with respect to the mentioned
announcement.

60 Telektronikk 1.1998

Box 1 – Binding between computational interfaces

A binding between computational interfaces is an abstraction of an established com-
munication path between the interfaces. The notion of explicit binding is used when
explicit actions are needed to establish a binding. An explicit binding action allows
explicit handling of the binding, including means to express configuration and QoS.
Implicit bindings on the other hand, are assumed when the specification notation
does not offer means of expressing binding actions. Implicit binding is only defined
for operation interfaces. It involves creation of the appropriate client operation inter-
face, binding the client interface to the server interface, and invocation of the server
object, using the client operation interface.

Any binding action must ensure that the bound interfaces are of the same kind, e.g.
operational, and that they have complementary causality, e.g. client interface against
a server interface. Moreover, the types of the signatures must also be compatible.

Explicit bindings are either primitive bindings or compound bindings. A primitive bind-
ing is a binding directly between two computational objects. The corresponding bind-
ing action is parameterised using one identifier of each of the two interfaces involved.
One of these interfaces is an interface belonging to the computational object initiating
the binding. A primitive binding action is atomic in the sense that either the binding
will be established or it will fail.

A compound binding involves a dedicated binding object. A binding object is itself a
computational object, however, constrained by a set of rules for compound bindings.
A binding object is a means to bind more than two computational objects, and further
to allow controlling the configuration of the binding as well as controlling QoS related
aspects.

By appropriate parameters, the compound binding action identifies the desired bind-
ing object template to be used and the interfaces of the computational objects to take
part in the compound binding. The interfaces to be bound must be assigned roles
corresponding to the formal role parameters of the binding object template. The be-
haviour of the binding object is expressed in terms of these roles.

The initiator of the compound binding action may in subsequent interactions with the
other computational objects disseminate the identifier of the binding object control
interface and information about the state of the binding object. At that time, the other
computational objects can also access the control interfaces of the binding object and
manipulate the binding object.

Whereas participants of a flow or an
operation may have an inconsistent view
of an interaction at different times,
especially when failures have occurred,
there is no concept of partial failure of
signals. A signal either fails or succeeds
identically for both participants in the
interaction. Modelling operations and
flows in terms of signals may be neces-
sary in order to enable consideration of
end-to-end quality of service (QoS)
characteristics.

A computational specification will spe-
cify a set of computational object tem-
plates, which comprises a set of com-
putational interface templates. Both the
interface and the object templates com-
prise associated behaviour specifications
and environment contract specifications.
In addition, an interface template con-
tains one of either a signal, an opera-
tional, or a stream interface signature.
These signatures and their comprised
elements can be considered the core of
the computational language. Each of the
interface signatures and their comprised
elements are illustrated in Figure 2. The
relationship between table cells is a
‘comprises’ relationship. The plural (s)
indicate a ‘many’ cardinality of the rela-
tionship.

The notion of complementary interface,
say Y is complementary to X, indicates
that interface signatures are identical
except for the complementary causality.

Parameters identifiable in a signal or
operation signature can take values iden-
tifying computational interfaces or com-
putational interface signature types. The
latter then makes the type system of the
computational signatures higher order.

A computational specification defines an
initial configuration of computational
objects and their behaviour. This con-
figuration will change as computational
objects or interfaces are instantiated or
deleted, binding actions are performed,
or control functions on binding objects
are effected.

The computational language is associated
with several categories of structuring
rules. Various naming rules constrain the
context and scope of names in computa-
tional specifications. Furthermore, the
template rules identify the various kinds
of actions performed by computational
objects, the failure rules identifying
potential points of failure in computa-
tional activities, and the portability rules

identifying aspects that must be con-
sidered when designing a portability
standard.

The structuring rules that relate to distri-
bution transparent interworking are of
particular importance. They are the inter-
action rules, which have been considered
in this subsection, the binding rules, and
the type rules. The latter two are de-
scribed in the accompanying text boxes.

6 The Engineering View-
point and Language

While the computational viewpoint is
concerned with specification of abstract
computational components or objects, the
engineering language is concerned with

how to realise these abstract objects and
how to enable interactions among these
realised engineering objects.

The engineering language is based on a
mapping where each computational
object is realised as one or several basic
engineering objects. One basic engineer-
ing object, or the set of basic engineering
objects, realising a computational object,
can only correspond to that computa-
tional object. Accordingly, there is a one-
to-one correspondence between an en-
gineering interface and a computational
interface (except when engineering
objects are replicated).

The engineering language also defines
concepts and rules that model the distri-
buted infrastructure, which enables exe-

61Telektronikk 1.1998

Box 2 – Interface signature typing and subtyping

Computational interfaces are strongly typed. This enables early (e.g. compile-time)
consistency checking between interface specifications and implementations. The
type rules in RM-ODP are focused on subtyping rules for the various kinds of com-
putational interface signatures, i.e. signal, operation, and stream signatures.

The notion of subtyping is particularly important with respect to evolution of systems.
A desired property is to enable replacement of an interface or a component (e.g. a
computational object) without any noticeable difference to its environment. Usually,
one would like to replace a server object without having to change (several) client
objects. Replacement without any noticeable difference to the environment is the
ideal goal related to the notion of substitutability. In Part 2, Foundations, this property
is called behavioural compatibility. The notion of interface type and interface subtype
ideally captures all aspects of an interface specification necessary to ensure substi-
tutability; an interface may replace another interface if the first is an interface subtype
related to the interface type of the second.

However, typing and subtyping in RM-ODP, as well as in other object models like the
CORBA object model [10], are based on types associated with interface signatures
only. The notion of interface signature types captures the syntactic aspects of the
interface specifications as well as type consistency of the parameters of the inter-
faces. Additional aspects related to interface behaviour or environment contracts of
the interface are not covered by the typing of interface signatures. Hence, the signa-
ture subtyping rules only define a set of minimum requirements for achieving substi-
tutability.

The semantics of flows and composition of flows related to stream interfaces may be
application dependent, thus RM-ODP does not prescribe a complete set of subtyping
rules for stream interface signatures.

Intuitively one can say that the subtyping rules are based on the idea of avoiding
unexpected kinds of interactions. As an example, considering operation interface sig-
nature types having the server causality3: X is a signature subtype of Y, if for every
interrogation in Y there is a corresponding one in X with the same name, the same
number and name of the corresponding parameters; and each parameter type in Y is
a subtype of the corresponding parameter type in X; and for every termination in Y,
there is a corresponding one in X with the same name, the same number and name
of the corresponding parameters; and for every parameter result type associated with
the termination in Y, the corresponding result type in X is a subtype of the one in Y.

3 RM-ODP does not relate the subtyping rules for operation interfaces to the causality of the inter-
face. The resulting problems this causes are pointed out by Sinnott and Turner in [11].

cution of the basic engineering objects as
well as interactions among these objects.
The distribution transparencies are pro-
vided by this enabling infrastructure. The
allocation of basic engineering objects to
computing and storage facilities (system
resources) is a concern of the engineering
viewpoint. This issue is relevant when
considering for example system struc-
tures and how to balance processing
load as well as means for increasing
resilience. This issue is the topic of
‘Engineering communicating systems’,
another article in this issue of Telektro-
nikk [12].

In addition to identifying the concept of
basic engineering object, the engineering
language identifies plain engineering

objects that are fundamental to and part
of the distributed computing infrastruc-
ture. These engineering objects have a
direct mapping to the available system
resources and model the relevant aspects
of these resources according to the in-
herent nested structure of system re-
sources. Figure 3 provides an illustration
of plain engineering objects and their
nested structure, and how basic engineer-
ing objects fit into this structure.

The notion of cluster is used to represent
a configuration of basic engineering
objects forming a unit for the purpose of
various object or cluster management
tasks. The clusters reside at the inner
level of the nested structure of engineer-
ing objects. One of these tasks is instan-

tiation of the cluster, based on a cluster
template representing a configuration of
basic engineering objects, the initial state
of the objects and the initial bindings
associated with these objects.

The task of checkpointing is also asso-
ciated with the concept of cluster. Check-
pointing a cluster results in a cluster tem-
plate reflecting the state and structure of
the objects contained in the cluster at the
time of the checkpointing action. Cluster
checkpoints further provide a basis for
tasks such as deactivation, reactivation,
recovery and migration of clusters. The
tasks just mentioned are provided by the
cluster manager plain engineering object.

62 Telektronikk 1.1998

CLM

E E

Cluster

CLM

E E

Cluster

* * * *

Nucleus

Cluster

CPM CPM

Capsule Capsule

Client
Stub

Client
Binder

Client
Protocol
Object

#

#

#

Channel
(established)

Cluster

Capsule

Nucleus

Server
Stub

Server
Binder

Server
Protocol
Object

#

#

#
Interceptor

Node

Channel
Client Part

Channel
Server Part

Channel
(established)

Node

E :
CPM :
CLM :
* :
" :
:

Basic Engineering Object
Capsule manager
Cluster manager
Object management interface
Node management interface
Channel control interface

E

Server
interface

Client
interface

(optional)

" "

Figure 3 Example structure of engineering objects

At the next grouping level, the concept of
a capsule is used as a container for a
group of clusters. Considered in relation
to an operating system, the capsule can
be thought of as a protected process with
its own protected address space. The
cluster on the other hand can be thought
of as a segment of the virtual memory
containing objects controlled by the cap-
sule. The capsule is usually the smallest
unit of independent failure. The capsule
contains a capsule management engineer-
ing object that manages all the cluster
managers residing in the capsule. In addi-
tion to interaction with the cluster man-
agers initiating the cluster management
tasks, the capsule manager may have to
interact with other ODP functions to ful-
fil its management policy.

A capsule forms a single unit for the pur-
pose of encapsulation of processing and
storage, and can thus be considered as
occupying a portion of the processing
capacity and memory space controlled
and managed by an operating system. At
the outer level of grouping, the concept
of a node is used to designate the total
processing, storage and software re-
sources controlled by an operating sys-
tem. The internal structure of the node,
e.g. the number of processors, is of no
concern to the engineering viewpoint.

In terms of the engineering language, a
node encompasses a nucleus representing
(the kernel of) the operating system of
the node. A nucleus is an engineering
object controlling and managing the
capsules of the corresponding node. The
nucleus provides a set of node manage-
ment interfaces, one to each of the asso-
ciated capsules. It provides basic services
to the capsules such as providing com-
munication resources and generation of
unique identifiers for identification of
engineering object interfaces.

Interactions among objects in the same
cluster are efficiently provided by pro-
gramming language and run-time system
specific means. On the other hand, inter-
action among objects in different clusters
involves a configuration of engineering
objects called a channel. A channel pro-
vides support mechanisms that make it
possible to cope with inter-node commu-
nication, as well as capsule failure and
relocation of cluster from one capsule to
another, possibly of different nodes.
Three kinds of engineering objects are
involved in the establishment of a chan-
nel. The stub is concerned with the
marshalling and representation of infor-

mation carried between the basic en-
gineering objects. A stub further relies on
a binder that maintains the integrity and
state of the association with the peer
object. A protocol engineering object
provides and manages the actual commu-
nication of messages between itself and
its peer protocol object. The bindings
between basic engineering object sup-
ported by channels are called distributed
bindings. Group communication and
multicast involve multi-endpoint chan-
nels.

When a basic engineering object inter-
face is created, a corresponding en-
gineering interface reference is created.
Associated with this reference is infor-
mation about the signature type of the
interface, a communication address to be
used when establishing a binding to this
interface, and information related to
expected non-functional capabilities of
the channel used for the binding. A bind-
ing endpoint identifier is used by the
basic engineering objects, in the naming
context of a capsule, for identification
and selection of appropriate binding end-
points.

If a channel crosses an administrative
domain boundary, the channel will likely
include one or more interceptor engineer-
ing objects. The role of the interceptor
object may be to check and enforce vari-
ous policies associated with the interac-
tions, translation of interface references,
as well as checking of signature types of
the conveyed engineering interface refe-
rences.

Associated with the concepts and struc-
tures just mentioned are additional rules
that form an integral part of the engineer-
ing language. An engineering specifica-
tion must conform to these rules. In addi-
tion, an engineering specification must
identify the necessary ODP functions to
support the transparencies assumed by
the computational specification, and to
support the functional distribution of an
ODP system.

7 Distribution Trans-
parencies and ODP
Functions

As mentioned in the introduction, the dis-
tribution transparencies are fundamental
for making abstract specifications of dis-
tributed systems possible. A transparency
schema is associated with a computa-

tional specification and defines the con-
straints on the mapping from a computa-
tional specification to an associated en-
gineering specification, – the latter spe-
cifies how to realise the transparencies.
This mapping expands the computational
specification with additional behaviour,
and with ODP functions explicitly
realising the functionality masked by the
transparencies.

Although described in a separate section,
the ODP functions are – based on their
roles – naturally associated with the en-
gineering viewpoint. ODP functions can
be realised as objects or components, i.e.
groups of objects. RM-ODP indicates
dependencies among various functions.
However, RM-ODP leaves the precise
specification of these facilities to other
specification efforts. In the specification
effort by OMG4, their CORBA Object
Services can be considered as examples
of ODP functions. See another article on
CORBA in this issue of Telektronikk [13].

Access and location transparencies are
assumed to be provided by every distri-
buted processing infrastructure. These
transparencies are provided by the funda-
mental facets of the infrastructure, that is,
the channel and facilities for handling
location independent interface refe-
rences. Other transparencies can be pro-
vided in combination with these, how-
ever, based on selection by the applica-
tion developer.

ODP functions can themselves be struc-
tured and complex, and may be modelled
and specified based on the RM-ODP
itself. Depending on the objective of the
function, viewpoints such as enterprise
and information may be more or less
relevant. The computational viewpoint,
however, is relevant for specifying ODP
functions. In a computational specifica-
tion of an ODP function, one can of
course not assume the transparency to be
provided by the function to be specified.
When this function is relied upon as
being part of the infrastructure, an
abstraction of the function may be used
in a computational specification. Some of
the ODP functions identified do not have
direct correspondence with a distribution
transparency. However, these functions
provide useful services that can naturally
be associated with the infrastructure and
reused by several applications.

63Telektronikk 1.1998

4 http://www.omg.org/

The ODP functions are placed into four
categories:

• Management functions
These are the node management,
object management, cluster manage-
ment and capsule management func-
tions. These functions form an integral
part of the engineering viewpoint.

Many of the further functions below are
directly involved in supporting one or
more transparencies. With one exception,
these functions can be included in the
infrastructure on a selective basis.

• Co-ordination functions
The engineering interface reference
function is an integral part of the en-
gineering language. The other func-
tions in this category are the event
notification, the checkpointing and
recovery, the deactivation and reac-
tivation, the group, the replication, the
migration, and the transaction func-
tion.

• Repository function
The functions in this category are the
storage, the information organisation,
the relocation, the type repository, and
the trading function. The trading func-
tion is supported by a trader object
allowing other objects to announce
their capabilities. Client objects can
then search the trader for interface
references according to requested
services.

• Security functions
They are the access control, the secu-
rity audit, the authentication, the in-
tegrity, the confidentiality, the non-
repudiation, and the key management
function.

8 Technology Viewpoint

A technology specification defines the
choice and suitability of technology for
the actual implementation of the ODP
system. It will include specification of
basic components of enabling technology
possible based on implementable stan-
dards as well as specification of the com-
munication mechanisms and technology
used. The choice of technology will
influence the achievable quality of ser-
vice and other aspects related to perfor-
mance.

The issues relevant in the technology
viewpoint can to a great extent be treated
separately from the ODP systems de-
velopment process as such. However, the

technology language plays an important
role when it comes to testing of ODP
systems. The exact technology dependent
conformance points are identified in this
viewpoint, and associated with confor-
mance points and specifications in the
other viewpoints. Additional information
must be supplied in this viewpoint en-
abling correct interpretation of observa-
tions in terms of the vocabulary of speci-
fications from other viewpoints. The
additional information required for test-
ing is called IXIT – Implementation
eXtra Information for Testing.

9 Architectural semantics

As the above text indicates, the RM-ODP
architecture is a rich collection of con-
cepts, their relationships, and rules
aiming at covering every significant
aspect of distributed processing. Ideally,
the ultimate goal of this standardisation
effort should be to reach precise and
sound definitions of every architectural
element, that is, to develop an architec-
tural semantics. To achieve this, one
must formalise and provide precise
semantics for every architectural ele-
ment, covering every viewpoint as well
as relationships between viewpoints.

The architectural semantics work has
been based on interpreting given archi-
tectural concepts in terms of the semantic
model of a given formal description tech-
nique (FDT), or directly in (established)
mathematical terms.

This formalisation process is expected to
be beneficial in many respects. Sinnott
and Turner provide an account of the
benefits in addition to a discussion on
various aspects related to the idea of
architectural semantics [14]. The obvious
benefit is the avoidance of any ambiguity
associated with the architectural ele-
ments. This process also provides an
opportunity to compare the chosen FDTs,
and possibly suggest improvements to
any of the FDTs. Furthermore, if archi-
tectural semantics for each viewpoint
language is developed, this will provide a
useful starting point for using the particu-
lar FDT to specify an ODP system from
the considered viewpoint.

After reducing the ambitions as com-
pared to the initial schedule [14], the
architectural semantics work group has
recently put forward Part 4, Architectural
Semantics, for approval as an Inter-
national Standard. In this version the

architectural semantics cover the basic
modelling concepts and the specification
concept of Part 2, Foundations. Amend-
ments to Part 4 can be expected, as de-
velopments for the viewpoint languages
and a greater extent of the Part 2 con-
cepts become more complete and mature.

10 Discussion

The work with RM-ODP has come to a
milestone as Part 2 and Part 3 of RM-
ODP have reached the level of inter-
national standard/recommendation in
1995. However, it is expected that new
ODP standards will be developed to
address specific areas of concern [15].
These efforts may in turn result in the
need for revising the RM-ODP architec-
ture, as well. The following will raise a
few issues indicating where RM-ODP
can be made more specific. However, as
will be explained, this may depend on the
intended use of the ODP architecture. It
is not within the scope of this paper to go
into detailed discussions of these issues –
merely an introduction will be given.

10.1 Viewpoint correspon-
dence and viewpoint
relevance

The goal of the RM-ODP framework and
architecture is to cover all kinds of distri-
buted processing. As this is a very ambi-
tious goal, it should not be of great sur-
prise that the ODP viewpoints have diffe-
rent significance as related to various
application or system domains.

In this section, the information and
computational viewpoints will be con-
sidered. These viewpoints are particu-
larly important as they together contain
every functional aspect of a system or
reference point, such as the definition of
information structures and constraints,
and identification of computational units.
RM-ODP does not prescribe any precise
way of achieving a mapping or ensuring
consistency between the two viewpoints.
In many cases, the mapping between the
two viewpoints is non-trivial, and de-
pending on the kind of system or applica-
tion domain in focus, the role of the two
viewpoints and the way they map to-
gether will differ. This will be exempli-
fied in the next few paragraphs.

In the application domain of network
management, the information viewpoint
plays a dominant role. An entire informa-
tion specification can be associated with

64 Telektronikk 1.1998

a reference point between a managing
and a managed system, and it specifies
the managed system as perceived from
this reference point. Another paper in this
issue of Telektronikk provides an example
of how to use RM-ODP in the network
management application domain [7].

On the other hand, consider for example
real-time telecom systems. In this appli-
cation domain, the computational view-
point will have a dominant role, as
numerous communicating components or
computational objects are specified. For
a discussion of using RM-ODP for the
specification of GSM, see Hellan et al.
[16]. In their discussion, they show how
an information specification can be used
to specify constraints related to associa-
tions among computational objects as
well as how various information ele-
ments are associated with various com-
putational objects. In this application
domain, the information specification
becomes “fragmented”, as different parts
of the information specification relate to
and place constraints on different com-
putational objects.

In the case of network management, the
correspondence between an information
specification and a computational speci-
fication is simple, when considered from
a high level. In this case, a computational
object can be considered to correspond
with an entire system. However, the re-
finement of such a high level compu-
tational object under the constraint of an
information specification, into a set of
potentially distributed interacting lower
level computational objects is non-trivial.

The notion of “an ODP system” is used
extensively throughout the RM-ODP
specifications. Part 1 states: “A view-
point is a subdivision of the specification
of a complete system, established to
bring together those particular pieces of
information relevant to some particular
area of concern during the design of the
system”. Developing a clever system- or
systems architecture is by itself a chal-
lenging task, and systems or sub-systems
can be related in complex ways. Rela-
tionships among viewpoint specifications
then become more complex and the one-
to-one case can no longer be assumed.
Complex relationships among viewpoint
specifications have not been addressed
by RM-ODP.

In addition to putting the focus on the
system, it can also be feasible to identify
interworking reference points5 (IRPs)

between systems, and develop precise
specifications of these. One challenge not
covered by RM-ODP is then how to
relate an IRP specification with corre-
sponding specifications of the distributed
components realising the IRP. This issue
is analogous to refinement of a high level
computational object into a set of lower
level computational objects.

10.2 Multiparty Interworking
Reference Points

The notion of an IRP specification is use-
ful in regard to specification of a binary
reference point between two systems
such as a managed and a managing sys-
tem. Such a specification is essentially an
information specification6, and a model-
based specification technique [17] is
appropriate. However, cases exist where
an interaction between two systems may
relate to the state space and interactions
with one or several other systems, as
well. This situation is often characterised
by the systems being autonomous, and
that each system has their own dedicated
view of the state space of each of the
other systems.

In this case, the notion of IRP can be
used to specify co-ordinated interwork-
ing and behaviour among several sys-
tems. A multiparty IRP specification can
then be considered as a specification of
multiparty inter-system interworking. A
combined use of a model-based and an
interaction-based formal specification
technique should be considered for the
specification of multiparty IRPs.

Although transient inconsistencies
among the systems cannot be avoided,
one can avoid permanent inconsistencies.
This can be achieved by means of gene-
ric consistency preserving mechanisms
(transactions).

10.3 Reusing and combining
specifications

Reusing and “merging” several generic
specifications represents a particular
challenge. The generic specifications
may need to be customised and profiled
by excluding some features and adding
other features. In addition, optionality
from the generic specification will often
be resolved. Features from the various
generic specifications may correlate in
unexpected ways. The introduction of
viewpoint relative specifications compli-
cates these matters. RM-ODP does not
address the challenge of reusing and
combing viewpoint specifications.

10.4 Flexibility and evolution

Flexibility was identified as one of the
objectives of RM-ODP. Support of sys-
tems evolution is an integral aspect of
flexibility. The relevance of systems
evolution will vary from application
domain to application domain. However,
precise logistics of application versions
and corresponding IRP specifications is
required to support systems evolution.

RM-ODP Part 2 identifies the notion of
epoch as a period of time for which an
object displays a particular behaviour. A
change of epoch may be associated with
a change of the type of the object. In this
sense, the notion of epoch can be related
to type evolution, versioning and extensi-
bility. However, RM-ODP does not go
into any detail regarding the issue of
evolution. In particular, the co-ordinated
evolution of related viewpoint specifica-
tions is a challenging task that needs to
be addressed.

11 Conclusion

The RM-ODP standards have provided
significant contribution to the progress of
distributed processing. The five view-
points with their corresponding lan-
guages, as well as the generic RM-ODP
concepts and rules, represent an im-
portant base of insight in this field.

However, several challenges related to
specification and modelling of distri-
buted processing and systems still remain
open. Depending on application domain,
rigorous ways of relating information
viewpoint specifications and computa-
tional viewpoint specifications are
needed. Refinement, composition, and
evolution of multiple viewpoint specifi-

65Telektronikk 1.1998

5 RM-ODP states that an interworking
reference point is an interaction point.
An interaction point is a location
where a set of interfaces exists. The
notion of interworking reference point
(IRP) as adopted in this discussion is
assumed not to be constrained by a
unit of distribution or a location in
space. Thus, the set of interfaces com-
prising an IRP can be distributed.

6 In [7], the author argues that it is use-
ful to extend such an information spe-
cification using the interface construct.

cations must be addressed. These funda-
mental relationships among specifica-
tions must be developed in order to
provide an adequate set of specification
tools.

In addition to the RM-ODP standardisa-
tion community itself, other arenas will
also contribute to the further develop-
ment of RM-ODP. Significant develop-
ments are made by the Object Manage-
ment Group (OMG), for example
through its work on the Unified Model-
ling Language (UML), and the Business
Object Architecture. Other arenas
making contributions are various work-
shops and conferences such as
FMOODS7 and the OOPSLA8 works-
hops on Object Oriented Behavioral
Semantics. As many of the open issues
are related to concepts and rules con-
cerning specification expressiveness,
semantics and specification relationships,
the just mentioned efforts will also con-
tribute to the further development of for-
mal specification techniques.

12 References

1 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Overview. Geneva,
ITU, 1997. (ITU-T Rec. X.901.)
(Common text with ISO/IEC.)

2 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Foundations. Geneva,
ITU, 1995. (ITU-T Rec. X.902.)
(Common text with ISO/IEC.)

3 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Architecture. Geneva,
ITU, 1995. (ITU-T Rec. X.903.)
(Common text with ISO/IEC.)

4 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Architectural Seman-
tics. Geneva, ITU, 1997. (ITU-T
Draft Rec. X.904.) (Common text
with ISO/IEC.)

5 Linington, P F. RM-ODP : The
Architecture. In: Raymond, K, Arms-
trong, L (eds.). (ICODP ’95) Pro-
ceedings Third IFIP International
Conference on Open Distributed
Processing. London, Chapman &
Hall, 1995.

6 Iggulden, D et al. Architecture and
Frameworks, APM.1017.02. Archi-
tecture Projects Management Ltd,
UK, 1994.

7 Lønsethagen, H. RM-ODP for Trans-
port Network Modelling : An Ex-
ample. Telektronikk, 94 (1), 55–66,
1998 (this issue).

8 Wegner, P. Dimensions of object-
based language design. In: Procee-
dings of the OOPSLA’87, 168–182,
1987.

9 Snyder, A. The Essence of Objects :
Concepts and Terms. IEEE Software,
1993.

10 OMG. The Common Object Request
Broker : Architecture and Specifica-
tion, Revision 2.2. February 1998.

11 Sinnot, R O, Turner, K J. Type
Checking in Open Distributed Sys-
tems : a Complete Model and its Z
Specification. In: Rolia, J et al. Pro-
ceedings of the IFIP/IEEE inter-
national conference on Open Distri-
buted Processing and Distributed
Platforms (ICODP/ICDP’97),
Toronto, Canada, May 1997.
London, Chapman & Hall, 1997.

12 Johannessen, K. Engineering com-
municating systems. Telektronikk, 94
(1), 79–94, 1998 (this issue).

13 Solbakken, H et al. CORBA as an
infrastructure for distributed com-
puting and systems integration.
Telektronikk, 94 (1), 107–118, 1998
(this issue).

14 Sinnott, R O, Turner, K J. Applying
formal methods to standard develop-
ment : the open distributed process-
ing experience. Computer Standards
& Interfaces, 17, 1995.

15 Milosevic, Z, Bearman M. Towards a
new ODP Enterprise Language. In:
Rolia, J et al. Proceedings of the
IFIP/IEEE international conference
on Open Distributed Processing and
Distributed Platforms (ICODP/
ICDP’97), Toronto, Canada, May
1997. London, Chapman & Hall,
1997.

16 Hellan, J K et al. On the Applica-
bility of an ODP-compatible Frame-
work to the Specification of GSM.
In: The Fifth TINA Conference,
Melbourne, Australia, Feb. 1995.

17 Goldsack, S J, Kent, S J H (eds).
Formal Methods and Object Tech-
nology. Berlin, Springer, 1996.

66 Telektronikk 1.1998

7 IFIP International Conference on For-
mal Methods for Open Object-based
Distributed Systems
http://www.cs.ukc.ac.uk/research/net-
dist/fmoods/

8 ACM Conference on Object-Oriented
Programming Systems, Languages and
Applications.
http://www.acm.org/sigplan/oopsla/

Håkon Lønsethagen is Research Scientist at
Telenor R&D, Kjeller, Network and Service
Management Platform Unit. Currently, his focus
is access network management and ATM trans-
port network management. His research interests
are systems architecture, systems evolution and
specification techniques.

e-mail:
hakon.lonsethagen@fou.telenor.no

The following provides an example to
illustrate one way to use RM-ODP1.
The example is taken from the net-
work management application
domain. This approach of using RM-
ODP has been developed by ITU-T
SG152. Comments will be made
throughout the example both with
respect to this particular way of using
RM-ODP as well as to what the gains
and advantages are of using RM-ODP
in this application area. A few com-
ments will also be made with respect to
the TINA-C3 work and their use of
RM-ODP.

1 Introduction

This example is based on the “Simple
Subnetwork Connection Configuration”
management application as defined by
ITU-T SG15 in Recommendations
G.852.1, G.853.2 and G.854.1 [6, 7, 8].
This represents one management applica-
tion of several, where many are still
under development. SG15 has developed
a methodology based on RM-ODP suit-
able for the purpose of transport network
modelling which is documented in a
separate recommendation G.851.1 [9].
With respect to the notion of logical
layered architecture as suggested by
TMN (M.3010 – [10]) these specifica-
tions address the network management
layer.

The example will select and present parts
of these recommendations to demonstrate
the main features of each RM-ODP
viewpoint and corresponding language.
Discussion of detailed issues of these
languages will not be made. Comments
will be made at the end of the example
raising a few issues related to this app-
roach.

The SG15 specification effort is based on
a generic functional architecture of digi-

tal transport networks – G.805 [11].
G.805 defines architectural concepts re-
lated to functional aspects of transport
network resources, such as topological
components, transport entities and trans-
port processing functions.

In order to provide some background
information, Figure 1 introduces the net-
work architectural entities used in this
example. Some of the definitions are
“simplified” to avoid the need of pre-
senting the entire G.805 model.

2 Enterprise Viewpoint

In general terms, the enterprise viewpoint
is concerned with the business activities
of the specified system by focusing on
purpose, scope, and policies. The fol-
lowing statement reflects the role of the
enterprise viewpoint as considered by
SG15. “The enterprise viewpoint is in-
cluded in the network model in order to:

• document the use of the various por-
tions of the model based on communi-
ties of common functions (applica-
tions); and

• provide a way of specifying the re-
quirements upon which the model is
defined.”

A community specifies the scope of the
specific management application in
focus, and comprises a set of roles, a set
of actions, and a set of policies to satisfy
the common objective, or contract, that is
shared between the roles. A community
description represents a set of potential
community contract instances, each of
which reflects a particular selection of
service features available, and each based
on negotiation. Thus, a contract repre-
sents a service with an associated quality
that is offered in a client/provider rela-
tionship by the provider to its client.

Figure 2 shows the example in the left
column. Comments are provided in the
right column to explain the most im-
portant concepts used in the correspond-
ing description. These comments do not
provide an exhaustive presentation of rele-
vant issues with this respect. The metho-
dology document itself (G.851.1 – [9])
should be conferred for a more complete
presentation. Comments may also be lo-
cated in-line with the example. Italics will
be used for this purpose. Comments in
italics in the right column, reflect related
comments by the author. This scheme will
be used for the other examples as well.

The rationale behind the enterprise view-
point is to provide a de-coupling of

67

RM-ODP for Transport Network Modelling – An Example
H Å K O N L Ø N S E T H A G E N

Telektronikk 1.1998

- topological component: An architectural component used to describe the trans-
port network in terms of the topological relationships
between sets of points within the same layer network.

- transport entity: An architectural component which transfers information
between its inputs and outputs within a layer network.

- characteristic information: A communication signal and specific transport format
which is transferred on a transport entity.

- layer network: A topological component that includes both transport
entities and transport processing functions that de-
scribe the generation, transport and termination of a
particular characteristic information.

- port: It consists of a pair of associated input/output
(sink/source) of a transport entity.

- subnetwork: A topological component used to effect routing of a
specific characteristic information within a specific layer
network.

- subnetwork connection: A transport entity that transfers information across a
subnetwork, it is formed by the association of ports on
the boundary of the subnetwork.

Figure 1 Example G.805 definitions

1 Reference Model of Open Distributed
Processing [1–4]. See another paper
in this issue of Telektronikk for an
introduction to RM-ODP.

2 The work on network level manage-
ment of transmission systems has been
transferred to SG4 Question 18 for the
study period 1997–2000.

3 TINA-C: Telecommunications Informa-
tion Networking Architecture Consor-
tium. RM-ODP is one of the foundations
of TINA [5]. http://www.tinac.com/

objectives and requirements of an ODP
system from its realisation. The above
example illustrates how this aim is
accomplished. Furthermore, note that the
enterprise viewpoint descriptions are
application-driven. An important inten-
tion of this approach is not to be pre-
scriptive about the information elements
introduced.

68 Telektronikk 1.1998

COMMUNITY sscc “Simple Subnetwork Connection Configuration”

1 PURPOSE
“The objective of the community is to configure point-to-point subnetwork connections
between pairs of ports, which have been previously populated on the boundary of a
subnetwork.”

2 ROLE

caller “This role reflects the client of the actions defined in this community. One
and only one caller role occurrence may exist in the community.”

provider “This role reflects the server of the actions defined in this community. One
and only one provider role occurrence must exist in the community.”

port “This role reflects the G.805 port resource used in the actions defined in this
community. Zero or more port role occurrences may exist in the community.”

sn “This role reflects the G.805 subnetwork resource used in the actions
defined in this community. One and only one sn role occurrence must exist
in the community.”

snc “This role reflects the G.805 subnetwork connection resource used in the
actions defined in this community. Zero or more snc role occurrences may
exist in the community.”

3 POLICY
OBLIGATION OBLG_1
“The provider shall support such viewing of the resource properties and relationships
which have been identified and allowed in the service contract with the caller.”

4 ACTION
4.1 sscc1 “Setup Point-to-Point SNC”
“This action sets up a point-to-point subnetwork connection between two ports on the
same subnetwork.”

ACTION_POLICY
OBLIGATION OBLG_1
“This action must be provided in respect to all the action policies or it fails. In the event
the action fails, the provider shall report to the caller which action policy has been violated.”

OBLIGATION OBLG_2
“The caller shall identify two ports which must be part of the community.”

A community comprises six elements:
Purpose, Role, Policy, Action (with
action policies), Activity and Contract

This clause introduces the purpose and
objective of the community as a whole.

A caller role represents the behaviour of
an enterprise object that defines the ser-
vice requests of a given service.

This clause introduces all the roles in the
community.

A provider role represents the behaviour
of an enterprise object that performs the
service requests of a given service.

Other roles of a service represent be-
haviour of enterprise objects, reflecting
the involvement of resources in the con-
text of this service.

These statements give the overall poli-
cies associated with the community.

The ACTION clause provides a list of
actions which support the purpose of the
community.

These policies are associated with the
corresponding action, and should state
the role and information involved. It is
the intent not to be prescriptive about
the information in the enterprise view-
point.

Figure 2 Example enterprise

The enterprise viewpoint does not iden-
tify computational interfaces. However,
the notion of a community implies an
abstract, high level “interface” between
roles – in this case the caller and the pro-
vider role. Whenever such an interface is
described, one must make some design
decisions about information and func-
tionality associated with this abstract

interface. This becomes clear if one tries
to use a formal language for the enter-
prise specification. Thus, the position of
an enterprise specification relative to an
information and a corresponding com-
putational specification only becomes a
matter of level of detail or specialisation
of the specifications.

69Telektronikk 1.1998

The ACTIVITY clause is used in the
case where the client has to address
several related (ordered) actions to the
provider as part of a service feature.

A contract is the result of negotiation
reflecting the agreed selection from the
set of service features provided by the
service provider.

OBLIGATION OBLG_3
“In case of service establishment, the provider shall inform the caller of the subnetwork
connection identifier that is unique in the community for the duration of the subnetwork
connection.”

PERMISSION PERM_1
“The caller may provide a user identifier for the requested subnetwork connection.”

OBLIGATION OBLG_4
“If PERM_1 is part of the contracted service, then the provider shall use the user identi-
fier, if provided, as a unique subnetwork connection identifier when communicating with
the caller.”

OBLIGATION OBLG_5
“If PERM_1 is part of the contracted service and if the user identifier is not unique in
the provider context, then the provider shall reject the user identifier and inform the
caller of the rejection.”

PERMISSION PERM_2
“The caller may specify the characteristics of the requested transport service (e.g.
bandwidth, directionality, route selection criteria, availability, etc.). These are contract
and technology specific.”

PROHIBITION PROH_1
“The provider shall not satisfy the request if one or both the ports are already used in a
subnetwork connection.”

4.2 sscc2 “Release Point-to-Point SNC”
“This action is used to release a simple point-to-point subnetwork connection.”

ACTION_POLICY
OBLIGATION OBLG_1
“This action must be provided in respect to all the action policies or it fails. In the event
the action fails, the provider shall report to the caller which action policy has been
violated.”

OBLIGATION OBLG_2
“The caller shall uniquely identify an existing subnetwork connection via its subnetwork
connection identifier.”

OBLIGATION OBLG_3
“The provider shall inform the caller of the subnetwork connection identifier of the sub-
network connection which has been released.”

5 ACTIVITY
“None.”

6 CONTRACT
“Service features subject to negotiation as part of the service contract shall include:
- degree of visibility of resource (their properties and relationships); and
- other features which are for further study.”

The above remark is valid considering
the functional aspects of an enterprise
specification. In addition, an enterprise
specification also provides a means of
capturing high level requirements and
objectives associated with the computing
infrastructure and other non-functional
aspects. Infrastructure and other non-

functional aspects have not been focused
in the SG15 work.

TINA-C has adopted a somewhat diffe-
rent approach with respect to the enter-
prise viewpoint. A particular enterprise
viewpoint description template has not
been developed. However, various TINA
documents play the role of an enterprise

description as they describe business
models where stakeholders are identified
representing actors or agents of the ODP
(TINA) system. The associated objec-
tives and requirements are identified at a
general service independent level, and
non-functional aspects are also con-
sidered to some degree. The TINA busi-
ness model and requirements documents

viewpoint specification

70 Telektronikk 1.1998

2.2.16 subnetwork
2.2.16.1 Informal description

DEFINITION
“A subnetwork information object represents a G.805:1995 subnetwork (see
G.805:1995 definition).”

ATTRIBUTE
signalIdentification

“A subnetwork carries a specific format. The specific formats will be defined in the
technology specific extensions.”

2.2.16.2 Semi-formal description
subnetwork INFORMATION OBJECT CLASS
DERIVED FROM networkInformationTop;
CHARACTERIZED BY

subnetwork PACKAGE
BEHAVIOUR
subnetworkPackageBehaviour BEHAVIOUR
DEFINED AS
“<DEFINITION>”;;
ATTRIBUTES
signalIdentification;;;

2.2.16.3 Formal description
…

2.2.16.4 Potential relationships
<linkBinds>
<linkConnectionIsTerminatedBySubnetworks>
<snIsPartitionedBySn>
<subnetworkHasSubnetworkConnections>
<subnetworkIsDelimitedBy>
<topologicalComponentIsDelimitedBy>

Figure 3 Example common information specification

The information specification provides
an informal, a semi-formal and a formal
specification of the specified information.
The formal specification technique is
based on Z [15]. The formal part will not
be elaborated on.

The semi-formal part uses GDMO with
“MANAGED OBJECT CLASS” keyword
changed to “INFORMATION OBJECT
CLASS” and the following restrictions:
- no access specifier can be assigned

to attributes;
- the REGISTERED AS clause is not

required;
- no ACTIONS or NOTIFICATIONS can

be specified;
- the WITH ATTRIBUTE SYNTAX

clause shall not be used.

For further details refer to G.851.1
Annex B. ([16] provides an introduction
to GDMO.)

The concept of potential relationships is
used in the common information specifi-
cation to indicate the possible relation-
ship types that may apply to the object
class or its subclass. Application specific
specifications will state which of these
relationship types will be used in the
management application in question.
The relationship types are included in
the common specification to provide
clarity and readability. The list is not
intended to be complete.

thus set the stage for further TINA infor-
mation and computational specifications.

From the above discussion, it is con-
cluded that requirements capture is the
foremost objective of the enterprise
viewpoint.

3 Information Viewpoint

The information viewpoint is concerned
with the information that needs to be
stored and processed, and the semantics
of the information.

G.853.2 “Subnetwork connection man-
agement information viewpoint” [7]
represents the information specification
related to the enterprise specification in
G.852.1. However, G.853.2 is in turn
based on a management application inde-
pendent common information specifica-

tion G.853.1 “Common elements of the
information viewpoint for the manage-
ment of a transport network” [12]. The
common information specification is a
management application independent
description of information objects and
relationship classes, representing G.805
transport network resources. G.853.1
then provides a basis for application
specific information specifications. The
latter can extend the common classes by
specifying additional subclasses. Addi-
tional relationship classes can also be
specified in application specific informa-
tion specifications.

The specification templates used are
modifications of the GDMO [13] and
GRM [14] templates respectively. The
modification of GDMO will be explained
along with the example presented. GRM
is extended with the opportunity of pro-

viding more than just one object class
label in the “COMPATIBLE WITH”
clause. By this opportunity, one avoids
the need of writing down “duplicate”
relationships.

Figure 3 shows an example selected from
G.853.1, the common information speci-
fication. It is provided to show one
example of an information object class
definition specified in the common infor-
mation specification.

An example illustrating the full structure
of an information specification is pro-
vided in Figure 4. This example is se-
lected from G.853.2 Annex A: “Informa-
tion viewpoint for the simple subnetwork
connection management”. Thus, this is
an example of a management application
specific information specification. The
example shows selected parts of G.853.2

71Telektronikk 1.1998

3 Import
<“Rec.G.853.1”,INFORMATION_RELATIONSHIP: subnetworkIsDelimitedBy>
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,PURPOSE>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_1>

<“Rec.G.853.1”,INFORMATION_RELATIONSHIP:
subnetworkConnectionIsTerminatedByPointToPoint>
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,PURPOSE>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_2>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:PROH_1>

<“Rec.G.853.1”,INFORMATION_RELATIONSHIP: subnetworkHasSubnetworkConnections>
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,PURPOSE>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_3>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_4>

<“Rec.G.853.1”,ATTRIBUTE:userLabel>
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_3>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:PERM_1>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_4>
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,OBLIGATION:OBLG_2>

4 Information object class definition
4.1 ssccSubnetwork
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ROLE:sn>

4.1.1 Informal description
DEFINITION

“This object class is derived from subnetwork.”
RELATIONSHIP

“<subnetworkIsDelimitedBy>”,
“<subnetworkHasSubnetworkConnections>”

4.2 ssccSubnetworkConnection
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ROLE:snc>

4.2.1 Informal description
DEFINITION

“This object class is derived from subnetworkConnection.”
ATTRIBUTE

userLabel
“This attribute is used to identify the ssccSubnetworkConnection”

RELATIONSHIP
“<subnetworkIsDelimitedBy>”,
“<subnetworkConnectionIsTerminatedByPointToPoint>”,
“<subnetworkConnectionHasTSC>”,
“<subnetworkHasSubnetworkConnection>”

1 Diagrams of information objects and relationship classes

subnetworkConnection

ssccSubnetworkConnection

Inheritance diagram

2 Label references
(Label references are used to provide local names of information entities specified in other documents.
For example:)

Full label reference Local label reference

<“Rec.G.853.1”,INFORMATION_OBJECT: subnetwork> <subnetwork>

The Import clause provides a list of infor-
mation entities or concepts which have
been specified in other documents. Cor-
responding to each information concept
a relevant part of an enterprise specifi-
cation is referenced. This approach illu-
strates how correspondence between
the enterprise and the information view-
points is provided.

(In the following only the informal
descriptions will be presented.)

Diagrams are provided for readability.
(This example does not show all
diagrams of Annex A.)

(The ‘sscc’ prefix is used throughout the
Recommendation and is an abbreviation
for simple subnetwork connection con-
figuration.)

(Label references are also used in other
clauses, as will become evident below.
The label reference structure and syntax
will not be covered in any more detail here.)

The mandatory relationships for this
management application are listed in the
RELATIONSHIP section. The relation-
ships are selected from the list of poten-
tial relationships of the common informa-
tion specification.

Additional relationships may be defined
in application specific specifications.
The relationship
<subnetworkConnectionHasTSC>
is an example of this possibility. The
actual definition will be done below.

Figure 4 Example information viewpoint specification (panel 1 of 3)

72 Telektronikk 1.1998

4.3 ssccSubneworkTPBidirectional
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ROLE:port>

4.3.1 Informal description
DEFINITION

“This object class is derived from ssccSubnetworkTPSink and ssccSubnetworkTPSource.”

4.4 ssccSubnetworkTPSink
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ROLE:port>

4.4.1 Informal description
DEFINITION

“This object class is derived from subnetworkTPSink .”
RELATIONSHIP

“<subnetworkIsDelimitedBy>”,
“<subnetworkConnectionIsTerminatedByPointToPoint>”

4.5 ssccSubnetworkTPSource
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ROLE:port>

4.5.1 Informal description
DEFINITION

“This object class is derived from subnetworkTPSource .”
RELATIONSHIP

“<subnetworkIsDelimitedBy>”,
“<subnetworkConnectionIsTerminatedByPointToPoint>”

4.6 serviceCharacteristics
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,PERMISSION:PERM_2>

4.6.1 Informal description
DEFINITION

“This object class reflects all the characteristics associated with the requested quality of the
transport service relevant to the subnetwork connection establishment. This object class will
be refined due to the (transport) technological dependent characteristics.”

RELATIONSHIP
“<subnetworkConnectionHasTSC>”

5 Information relationship definitions
5.1 subnetworkConnectionHasTSC
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1,PERMISSION:PERM_2>

5.1.1 Informal description
DEFINITION

“The subnetworkConnectionHasTSC relationship type describes the association between a
subnetwork connection and the related quality of Transport Service Characteristics.”

ROLE
transportQualified

“Played by instances of the ssccSubnetworkConnection information object class and sub-
classes”

transportQualifier
“Played by an instance of the serviceCharacteristics object class.”

INVARIANT
inv_1

“Several objects playing the transportQualified role may be involved in the relationship.”
Inv_2

“Only one object playing the transportQualifier role may be involved in the relationship.”

(These roles are relationship roles [14]
and should not be confused with roles
as identified in the enterprise viewpoint.)

(TP – Termination Point)

(From G.853.1 [12]: The subnetworkTP-
Sink information object is an abstraction
that represents the potential termination
of a transport entity and the associated
unidirectional port. It also represents the
potential for connection across sub-net-
works. Correspondingly, the subnet-
workTPSource represents the potential
origin of a transport entity.)

Figure 4 Example information viewpoint specification (panel 2 of 3)

73Telektronikk 1.1998

6 Static schemas
6.1 ssccNotConnected
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1, OBLIGATION:OBLG_2>,
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1, PROHIBITION:PROH_1>,
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc2, OBLIGATION:OBLG_2>

6.1.1 Informal description
DEFINITION

“The ssccNotConnected schema defines a schema type with two non-connected subnet-
workTP information object subtype candidates to the point-to-point connection manage-
ment service.”

ROLE
involvedSubnetwork

“Played by an instance of the ssccSubnetwork information object type or sybtype.”
potentialAEnd

“Played by an instance of the ssccSubnetworkTPSink,
ssccSubnetworkTPSource or
ssccSubnetworkTPBidirectional object types or subtypes.”

potentialZEnd
“Played by an instance of the ssccSubnetworkTPSink,
ssccSubnetworkTPSource or
ssccSubnetworkTPBidirectional object types or subtypes.”

INVARIANT
INV_1

“The object playing the potentialAEnd and potentialZEnd roles are involved in an
instance of the subnetworkIsDelimitedBy relationship type with the object playing the
role involvedSubnetwork.”

INV_2
“The object playing the potentialAEnd role is not involved in any instance of the sub-
networkConnectionIsTerminatedByPointToPoint relationship type or subtype.”

INV_3
“The object playing the potentialZEnd role is not involved in any instance of the sub-
networkConnectionIsTerminatedByPointToPoint relationship type or subtype”

6.2 ssccConnected
…

7 Dynamic Schemas

7.1 ssccNotConnected_ssccConnected
This information concept is related to the following enterprise entities:
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1 >.

7.1.1 Informal description
DEFINITIOIN

“This dynamic schema expresses the transition of two non-connected extremities
toward two connected extremities ”

PRE-CONDITIONS
<ssccNotConnected>;

POST-CONDITIONS
<ssccConnected>;

7.2 ssccConnected_ssccNotConnected
…

8 Attributes
“None”

Figure 4 Example information viewpoint specification (panel 3 of 3)

A static schema is used to define a state
of a system (of this kind) at an instance
of time. This global/generic (compound)
state involves one or more attributes of
one or more information objects. A set of
static schemata is used to describe the
pre-condition of a global system state
transition. Likewise, a set of static
schemata is used to describe the post-
condition of a transition. It is only neces-
sary to specify the static schemas that
are of interest.

The DEFINITION clause provides the
overall semantic of the global state.

The ROLE clause identifies all the static
schema roles used in descriptions of
invariants (see below), and which object
classes that can play each of these
roles.

The INVARIANT clause provides the
applicable attribute value constraints.
These constraints can be within an
object or between objects through re-
lationship constraints.

A dynamic schema identifies a particular
transition between compound states
(described by static schemata).
Transitions (dynamic schemata) will be
referenced and further described in a
corresponding computational specifica-
tion.

Attribute types will typically be defined in
the common information specification for
reuse by other information specifications.
The semi-formal description of attribute
types are based on the ATTRIBUTE
template of GDMO excluding the WITH
ATTRIBUTE SYNTAX clause.

Annex A to illustrate how this specifica-
tion in turn corresponds to a correspond-
ing computational specification.

The example illustrates how elements of
an enterprise specification are referenced

from an information specification, thus
providing correspondence between the
two viewpoints. Furthermore, one can
observe that information entities have
been identified and described (pre-
scribed), possibly by using a formal

language. Note that an information speci-
fication defines one (logically centra-
lised) state space and its constraints of
an abstract system. Although possible
transitions of that state space of such a
system can be identified in an informa-

74 Telektronikk 1.1998

2 simple SNC performer interface
The simple subnetwork performer manages the set-up and release of subnetwork connections. The
simple SNC performer interface is required to satisfy the enterprise requirements stated in:

<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc1 >,
<“Rec.G.852.1”,COMMUNITY:sscc,ACTION:sscc2 >.

This interface provides basic connection set-up functionality. The operation ssccSetupSubnetworkCon-
nection sets up a subnetwork connection, and the operation ssccReleaseSubnetworkConnection re-
moves the subnetwork connection.

COMPUTATIONAL_INTERFACE simpleSncPerformerIfce {
OPERATION <ssccSetupSubnetworkConnection>;

<ssccReleaseSubnetworkConnection >;
}

2.1 sscc set-up SNC
This operation sets up a simple subnetwork connection between a single A-End snTP or nTP, and a
single Z-end snTP or nTP.

OPERATION ssccSetupSubnetworkConnection {
INPUT_PARAMETERS

subnetwork : SubnetworkId ::= (ssccSnIfce)
– If the performer is associated with only one subnetwork, the subnetwork parameter of this operation is
redundant and may be removed as an engineering optimization.

snpa : SnTPId ::= (snTPIfce);
snpz : SnTPId ::= (snTPIfce);
dir : Directionality;
suppliedUserLabel : UserLabel;
serviceCharacteristics : CharacteristicsId ::=

(serviceCharacteristicsIfce);

Fully qualified label reference Local reference used

<“Rec.G.853.1”,INFORMATION_RELATIONSHIP: <subnetworkIsDelimitedBy>
subnetworkIsDelimitedBy>

…

<“Rec.G.853.2”,STATIC_SCHEMA:ssccNotConnected> <ssccNotConnected>

Fully qualified ASN.1 production reference Local reference used

“M.3100 : 199x : ASN1DefinedTypesModule”::Failed Failed

“M.3100 : 199x : ASN1DefinedTypesModule”::Directionality Directionality

“M.3100 : 199x : ASN1DefinedTypesModule”::UserLabel UserLabel

0 Computational interfaces to satisfy simple subnetwork connection configuration community
enterprise requirements

The simple subnetwork connection configuration enterprise requirements are met by the interfaces spe-
cified in this Annex.

1 Label references
The following information relationships, static schema, and ASN.1 productions are referenced in this
Annex:

In the parameter declaration to the left,
snpa is the name of the formal para-
meter, SnTPId is the name of the para-
meter type, and “::= (snTPIfce)” declares
the parameter type to conform to the
snTPIfce interface signature type. The
indirect type assignment is introduced to
allow mapping from communication
domain independent interface types to
communication domain dependent inter-
face types.

(Example label references.)

(snTP – subnetwork termination point.
nTP – network termination point. nTP is
a generalisation of networkTTP and net-
workCTP. TTP – trail termination point.
CTP – connection termination point. For
further explanations, conf. G.853.1 [12].)

Figure 5 Example computational

75Telektronikk 1.1998

OUTPUT_PARAMETERS
newSNC : SNCId ::= (sncIfce);
agreedUserLabel : UserLabel;

RAISED_EXCEPTIONS
incorrectSubnetworkTerminationPoints : SEQUENCE OF SnTPId;
subnetworkTerminationPointsConnected : SEQUENCE OF SnTPId;
invalidTransportServiceCharacteristics : NULL;
failure : Failed;
wrongDirectionality : Directionality;
userLabelInUse : UserLabel;

BEHAVIOUR
INFORMAL

…
SEMI_FORMAL

PARAMETER_MATCHING
subnetwork : <ssccNotConnected, ROLE:involvedSubnetwork> AND

<ssccConnected, ROLE:involvedSubnetwork> ;
snpa : <ssccNotConnected, ROLE:potentialAEnd> AND

<ssccConnected, ROLE:connectedAEnd> ;
snpz : <ssccNotConnected, ROLE:potentialZEnd> AND

<ssccConnected, ROLE:connectedZEnd> ;
dir : <ssccConnected, ROLE:involvedSubnetwork, ATTRIBUTE: directionality> ;
newSCN : <ssccConnected, ROLE:involvedPointToPointSubnetworkConnection>;
suppliedUserLabel : <ssccConnected, ROLE:involvedSubnetwork,

ATTRIBUTE: userLabel> OR <> ; – – The user does not have to supply a
user label value

agreedUserLabel : <ssccConnected, ROLE:involvedSubnetwork,
ATTRIBUTE: userLabel> ;

serviceCharacteristics : <ssccConnected, ROLE:involvedServiceCharacteristics> ;

PRE_CONDITIONS <ssccNotConnected> ;
POST_CONDITIONS <ssccConnected> ;

EXCEPTIONS
IF PRE_CONDITION <inv_1> NOT_VERIFIED RAISE_EXEPTION

incorrectSubnetworkTerminationPoints ;
IF PRE_CONDITION <inv_2> NOT_VERIFIED RAISE_EXEPTION

subnetworkTerminationPointsConnected ;
IF PRE_CONDITION <inv_3> NOT_VERIFIED RAISE_EXEPTION

subnetworkTerminationPointsConnected ;
IF POST_CONDITION <inv_1> NOT_VERIFIED RAISE_EXEPTION failure ;
IF POST_CONDITION <inv_2> NOT_VERIFIED RAISE_EXEPTION failure ;
IF POST_CONDITION <inv_3> NOT_VERIFIED RAISE_EXEPTION failure ;
IF POST_CONDITION <inv_4> NOT_VERIFIED RAISE_EXEPTION userLabelInUse ;

;
}

2.2 sscc release SNC
…

A parameter matching clause specifies
the set of information objects or attri-
butes that are intended to be bound to
the parameter. It specifies an informa-
tion object, either directly or as a ROLE
played in an information relationship,
possibly via a static schema role as in
this example, or an attribute value of an
information object.

(<inv_x> refers to invariants of the corre-
sponding static schema. See Figure 4,
panel 3.)

(While input parameters are provided in
the invocation by the caller, the output
parameters are provided in the corre-
sponding termination by the provider.)

viewpoint specification

tion specification, no decision has been
made as to how the transitions relate to
interfaces of a corresponding computa-
tional or engineering specification. More-
over, specific operations and their para-
meters are not part of this specification.

TINA has adopted a similar approach of
using GDMO in combination with GRM
for the information viewpoint [17].
However, TINA allows specification of
operations as a part of the information
viewpoint.

4 Computational View-
point

The computational viewpoint is con-
cerned with distribution by addressing

functional decomposition into computa-
tional objects which interact at interfaces.

This section will follow up the two pre-
vious ones, and shows an example where
computational interfaces for the simple
subnetwork connection configuration
management application are defined. The
example is based on selected parts of
G.854.1 “Computational interfaces for
basic transport network model” [8]. Al-
though SG15 has developed a template
for specifying computational objects, this
has not been used in G.854.1. It has been
stated that computational objects are only
defined for an application if the required
interactions between the interfaces (i.e.
between the engineering objects realising
the interfaces) need to be standardised.

The specification approach makes a dis-
tinction between communication domain-
independent computational specifications
and communication domain-dependent
computational specifications. The latter
being related to a communication domain
like CORBA/IIOP [18], OSI Systems
Management/CMIP [19, 20], etc. The
difference between the two is that the
first only uses ASN.1 [21] abstract syn-
tax4, while the latter uses a particular
syntax which will be used in the en-
gineering realisation as well. In addition,
a communication domain dependent spe-
cification must introduce a common
“top” interface type from which the other
interfaces are derived. For example for
the GDMO/CMISE [13, 22] engineering
style, this would resemble the GDMO
“top” managed object class [23]. Figure 5
shows a communication domain-inde-
pendent specification case.

In this example, we have seen how inter-
faces and operations have been intro-
duced as well as associated operation
exceptions. Although not demonstrated,
additional sequencing constraints regard-
ing operation sequences may be added in
this viewpoint. The example has demon-
strated how parameter values are asso-
ciated with information entities ex-
pressed in an information specification.
Behavioural constraints have been ex-
pressed by referencing static schemata of
the information specification.

TINA has also developed a specification
language for the computational view-
point [24, 25]. This is a superset of the

CORBA IDL [18], allowing specification
of computational objects. The TINA
approach does not provide a “parameter
matching” facility for stating correspond-
ence with an information specification.

5 Engineering Viewpoint

The engineering viewpoint is concerned
with the mechanisms and functions sup-
porting distribution of the computational
objects and their interaction.

The focus of the engineering viewpoint, as
interpreted by SG15, is the infrastructure
technology specific specifications of inter-
faces and basic engineering objects and
how these are grouped into clusters. Non-
functional requirements from enterprise
specifications must be considered and
accommodated when making decisions
about basic engineering objects and how
they are grouped into clusters and capsules.

Thus far, SG15 has not prescribed any
specific engineering specifications.
However, their methodology presented in
recommendation G.851.1 indicates a way
of mapping from the information and
computational specifications to GDMO,
which in turn can be implemented using
CMISE/CMIP. Mappings to other infra-
structure specific specifications are for
further study.

It is interesting to note the difference in
the way SG15 and TINA-C interpret what
is a computational object vs. what is a
basic engineering object. SG15 considers
CORBA IDL [18] objects and GDMO
Managed Objects as engineering objects,
while TINA-C considers their ODL lang-
uage [25] (a super set of CORBA IDL) as
a computational language.

6 Comments

The above examples have given an indi-
cation of how the RM-ODP can be
applied within one specific application
domain, that is, the field of network
management. In this field, the modelling
and specification of information repre-
senting the resources to be managed is of
utmost importance. This is reflected by
the importance of the information view-
point and the common information speci-
fication G.853.1 [12]. The essence of the
distributed management system is de-
scribed in this viewpoint, the information
to be manipulated and its semantics, and
relationships and constraints, static as
well as dynamic.

A thorough assessment of the RM-ODP-
based approach developed by SG15 as
compared with other approaches will not
be undertaken here. However, a few
comments are made, comparing the
SG15-approach with the more traditional
OSI Systems Management [19] approach.

The following can be considered as main
contributions of the SG15 approach as
compared with the OSI Systems Manage-
ment approach:

• The introduction and use of the enter-
prise viewpoint for documenting re-
quirements, policies and scope.

• Enabling information specifications
without any coupling to distribution,
centralisation or implementation.

• Enabling specification of computa-
tional interfaces and a mechanism of
referencing elements of a correspond-
ing information specification, thus
mapping behaviour and constraints
specified in the information viewpoint
to the computational viewpoint.

To illustrate the difference between this
approach and the OSI Management
approach, Figure 6 is provided. Figure 6
(a) shows the OSI Management app-
roach. In the figure, the notion of inter-
working reference point (IRP)5 is intro-
duced. The concept is used here to desig-
nate the interworking between two sys-
tems. In the OSI Management case, an
IRP specification will correspond to a
management information specification
using GDMO.

In the OSI Management approach, it is
assumed that the communication be-
tween the managing and the managed
systems is provided by the MIS-user pro-
cesses in the manager and the agent role
respectively. This solution does not sup-
port the notion of multiple computational
interfaces associated with a MIS-user or
a managed system. This results in a cen-
tralised solution for the management
interactions.

76 Telektronikk 1.1998

4 Only a subset of ASN.1 is allowed, to
provide easier translation to other syn-
taxes.

5 RM-ODP states that an interworking
reference point is an interaction point.
An interaction point is a location
where a set of interfaces exists. The
notion of interworking reference point
(IRP) as adopted in this discussion is
assumed not to be constrained by a
unit of distribution or a location in
space. Thus, the set of interfaces com-
prising an IRP can be distributed.

The goal of the SG15 approach has been,
among others, to relieve this constraint.
Instead of assuming interactions with an
agent being constrained to one location,
the SG15 approach is assuming a “distri-
buted agent”, facilitated by a set of pos-
sibly distributed computational/engineer-
ing interfaces. This is illustrated in
Figure 6 (b), where IRPB includes a set
of associated interfaces (interface bind-
ings). The managed system (or more pre-
cisely, the agent process) does not have
to be located in one node any longer (nor
be considered as an entity at all).

At an abstract level, the managed as well
as the managing distributed system, can
be considered as a high level computa-
tional object. The encapsulated state
space of this computational object can be
specified as perceived at one of its sup-
porting IRPs (e.g. IRPB), and the be-
haviour of interactions on an IRP can be
specified in terms of changes to this state
space. In this way, an IRP is only one
view of the state space encapsulated by
the computational object (the managed
distributed system). The figure further
illustrates a sub-structure of such a
computational object. This sub-structure
is just an example, as there exist nume-
rous ways of realising such a distributed
system (computational object). The in-
ternal structure of this high level com-
putational object will be hidden from the
specification of the IRP.

Extending information
specifications with interfaces

The SG15 approach, by the combination
of information and computational inter-

face specifications, provides a means of
stating IRP specifications of the kind
illustrated in Figure 6 (b). However, as
the above example has shown, one facet
of the SG15 information specification is
that it does not identify any operations or
interfaces. These are instead identified in
the computational viewpoint. However,
it is a rather elaborate task to relate a
computational specification to the infor-
mation specification. Accordingly, it is
also a challenging task for the reader to
comprehend and relate the separate spe-
cifications.

Therefore, it could be a good idea to
extend information specifications by
allowing the notion of interfaces to be
used with such specifications. The RM-
ODP definition of the information view-
point and language does not preclude the
use of interfaces within the information
viewpoint. A mechanism allowing speci-
fication of sequencing constraints among
operations may also be useful.

The issue of extending information speci-
fications with interfaces is not exclusive-
ly relevant to the field of network man-
agement. As long as it is appropriate to
use a model-based specification tech-
nique [26] (i.e. the specification tech-
nique assumed for the information lan-
guage), and one wants to specify a sys-
tem from the perspective of an IRP, it
can be useful to extend such an IRP-
related information specification with
interfaces. In such a case, an interface
instance has a natural correspondence
with the lifetime of an information object
(instance) or the system instance itself.
Due to the correspondence between inter-

faces and information objects, it seems
natural to develop an interface construct
to be used with the information language.
Pre- and post-conditions related to the
existence of information objects will then
also naturally apply to the existence of
corresponding interface instances, as
well.

An information specification with inter-
faces and sequencing constraints can be
considered as a refinement of the corre-
sponding information specification with-
out these constructs. By enabling this
refinement step within one language, the
refinement task will be easier and more
manageable, particularly due to improved
readability. IRP specifications, or infor-
mation specifications with interfaces, can
be considered as a merge of the informa-
tion and the computational viewpoints.
Furthermore, it will be possible to com-
pile such an information specification
and generate stubs and skeletons for en-
gineering objects according to the chosen
infrastructure technology.

The formal specification language Z or
any object-oriented extensions of Z [27],
extended with an interface construct and
a means of expressing sequencing con-
straints, seems to be an attractive lan-
guage for the specification of IRPs. By
using a formal language, the support for
various consistency checking can be
taken advantage of.

To conclude this section, the issue of
generic interface is addressed. Although
not shown in the above example, the
computational specification G.854.1
includes several interface specifications

77Telektronikk 1.1998

MIS-user
(agent role)

Managed open system

MIS-user
(manager role)

Managing open system

IRPA IRPB

MIS-user An application making use
of systems management
services [19].

IRP Interworking Reference Point.

Managing (distributed) open system

Managed distributed open system

(a) (b)

Interface binding

Computational - or
Basic Engineering
Object

(Engineering) Node

Figure 6 OSI Management vs. distributed management

used for reading (querying) information.
Often, significant specification effort is
needed to allow sufficient capabilities for
querying information. A more efficient
approach as seen from a specification
perspective, is to provide a generic inter-
face allowing queries based on a query
language. This way, query types do then
not need to be specified in advance, and
may be dynamically developed and in-
voked on the interface. However, non-
functional requirements associated with
the use of this general purpose interface
are likely to be needed.

7 References

1 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Overview. Geneva,
ITU, 1997. (ITU-T Rec. X.901.)
(Common text with ISO/IEC.)

2 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Foundations. Geneva,
ITU, 1995. (ITU-T Rec. X.902.)
(Common text with ISO/IEC.)

3 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Architecture. Geneva,
ITU, 1995. (ITU-T Rec. X.903.)
(Common text with ISO/IEC.)

4 ITU-T. Information technology :
Open distributed processing : Refe-
rence Model : Architectural Seman-
tics. Geneva, ITU, 1997. (ITU-T
Draft Rec. X.904.) (Common text
with ISO/IEC.)

5 TINA-C. Overall Concepts and Prin-
ciples of TINA, Version 1.0. 1995.

6 ITU-T. Management of the transport
network : Enterprise viewpoint for
simple subnetwork connection man-

agement. Geneva, ITU, 1996. (ITU-T
Rec. G.852.1.)

7 ITUT-T. Subnetwork connection
management information viewpoint.
Geneva, ITU, 1996. (ITU-T Rec.
G.853.2.)

8 IUT-T. Management of the transport
network : Computational interfaces
for basic transport network model.
Geneva, ITU, 1996. (ITU-T Rec.
G.854.1.)

9 ITU-T. Management of the transport
network : Application of the RM-
ODP framework. Geneva, ITU, 1996.
(ITU-T Rec. G.851.1.)

10 ITU-T. Principles for a Telecommu-
nications management network.
Geneva, ITU, 1996. (ITU-T Rec.
M.3010.)

11 ITU-T. Generic functional architec-
ture of transport networks. Geneva,
ITU, 1995. (ITU-T Rec. G.805.)

12 ITU-T. Common elements of the
information viewpoint for the man-
agement of a transport network.
Geneva, ITU, 1996. (ITU-T Rec.
G.853.1.)

13 ITU-T. Information technology :
Open Systems Interconnection :
Structure of Management Informa-
tion : Guidelines for the definition of
managed objects. Geneva, ITU,
1992. (ITU.T Rec. X.722.) (Common
text with ISO/IEC.)

14 ITU-T. Information technology :
Open Systems Interconnection :
Structure of management information
: General Relationship Model.
Geneva, ITU, 1995. (ITU-T Rec.
X.725.) (Common text with
ISO/IEC.)

78 Telektronikk 1.1998

Håkon Lønsethagen is Research Scientist at
Telenor R&D, Kjeller, Network and Service
Management Platform Unit. Currently, his focus
is access network management and ATM trans-
port network management. His research interests
are systems architecture, systems evolution and
specification techniques.

e-mail:
hakon.lonsethagen@fou.telenor.no

15 Spivey, J M. The Z Notation : A
Reference Manual, 2nd ed. Prentice
Hall, 1992. (International Series in
Computer Science.)

16 Kåråsen, A-G. The structure of OSI
management information. Telektro-
nikk, 89 (2/3), 90–96, 1993.

17 TINA-C. Information Modeling Con-
cepts, Version 2.0. April 1995.

18 OMG. The Common Object Request
Broker : Architecture and Specifica-
tion, Revision 2.2. February 1998.

19 ITU-T. Information technology :
Open Systems Interconnection : Sys-
tems management overview. Geneva,
ITU, 1992. (ITU-T Rec. X.701.)

20 ITU-T. Common management infor-
mation protocol specification for
CCITT applications. Geneva, ITU,
1991. (ITU-T Rec. X.711.)

21 ITU-T. Information technology :
Abstract Syntax Notation One
(ASN.1) : Specification of basic nota-
tion. Geneva, ITU, 1994. (ITU-T
Rec. X.680.) (Common text with
ISO/IEC.)

22 ITU-T. Common management infor-
mation service definition for CCITT
applications. Geneva, ITU, 1991.
(ITU-T Rec. X.710.)

23 ITU-T. Information technology :
Open Systems Interconnection :
Structure of management information
: Definition of management informa-
tion. Geneva, ITU, 1992. (ITU-T
Rec. X.721.) (Common text with
ISO/IEC.)

24 TINA-C. Computational Modelling
Concepts, Version 3.2. May 1996.

25 TINA-C. ODL Manual, Version 2.3.
July 1996.

26 Goldsack, S J, Kent, S J H (eds.).
Formal Methods and Object Techno-
logy. Berlin, Springer, 1996.

27 Stepney, S, Barden, R, Cooper, D.
Object Orientation in Z. Berlin,
Springer, 1992.

This paper presents a framework for
configuration design of object-oriented
communicating systems. System
characteristics depend on the distri-
bution of computing tasks between
computing resources and many distri-
bution schema are normally valid.
Selection of the best overall distri-
bution schema is a difficult optimiza-
tion problem that has been studied in
the context of file allocation and task
allocation. Each distribution schema
requires a specific support from the
distributed processing environment.
QoS attributes are used to guide the
refinement of a computational view-
point specification into an engineering
viewpoint specification. Using work-
load information, hierarchical cluster
analysis is proposed as a heuristic
method to select and modify engineer-
ing clusters.

1 Introduction

The size and complexity of communi-
cating systems span from a few com-
puters interconnected on a local area net-
work to global telecommunications net-
works. However, whatever the size and
complexity, all communicating systems
are interconnected by a network. Al-
though the capacity of both wide area
and local area networks is rapidly in-
creasing, network interconnection
usually results in different communica-
tion characteristics than communication
within a single machine; lower band-
width, longer message delay, other
failure semantics, other security threats,
etc. Design and configuration of commu-
nicating systems must take into account
the network characteristics. Often, addi-
tional software components are required,
e.g. in order to handle faults, to what
would be necessary with a single com-
puter. Also, the configuration of system
components depends on the network
characteristics.

In this paper, we use the term “engineer-
ing” to denote the assignment of com-
puting tasks to computing resources,
normally with the objective to achieve
the overall best possible service. Com-
municating systems are not new, and
there is a rich literature on engineering
aspects such as task allocation (assign-
ment) (e.g. [34, 2, 42, 7]) and load
balancing (e.g. [29, 6]). The large
volume of work related to engineering is
an indication of the theoretical challenge,
the practical requirements, as well as the

diversity in considerations and system
constraints.

In this paper, the focus is on object-
oriented communicating systems and
architectures. Some of the current re-
search into architectures and techno-
logies for future telecommunication sys-
tems, e.g. the Telecommunication Infor-
mation Network Architecture (TINA)
[5], is based on object-orientation. Man-
agement of telecommunication networks
and services is a domain where object-
oriented technology is increasing in
importance. Many teleoperators have or
have had systems dedicated to the man-
agement of a specific technology. This
scenario is illustrated in Figure 1 where
each technology (PDH, PSTN, etc.) is
managed by one or more systems consti-
tuting a vertical slice through the logical
management layers of the TMN architec-
ture [23]. The result is (hopefully) a tech-
nically efficient solution within each
domain. However, the overall architec-
ture lacks horizontal integration, result-
ing in more difficult management across
domains. Integration between systems is

facilitated by manual operations, and the
organizational efficiency suffers. In
addition, some data elements are nor-
mally replicated between management
domains, and the lack of integration
makes it more difficult to maintain con-
sistency. Hence, reduced data quality is
a likely result of the vertically integrated
architecture. Horizontal integration is
required to achieve common manage-
ment between technology domains. This
scenario is shown in Figure 2 where
some element management aspects are
still handled by technology specific sys-
tems, while network and service manage-
ment functions are handled by generic
(technology independent) management
systems. The result is better organiza-
tional efficiency with reduced need for
manual operations. Horizontal integra-
tion also contributes to better data qua-
lity. However, the technical efficiency
may be reduced with increased distance
between components, which was (or
would be) located together with vertical
integration. A communication architec-
ture based on the principle of a software
bus for interaction between objects, e.g.

79

Engineering Communicating Systems
K N U T J O H A N N E S S E N

Telektronikk 1.1998

Service
management

Network
management

Element
management

PDH SDH PSTN ISDN ATM . . .

PDH

Service
management

Network
management

Element
management

Order handling Accounting/
billing

Customer
care

Network
topology

Path
management

Traffic
management

Fault Test Configuration Security

SDH PSTN ISDN ATM . . .

. . .

. . .

. . .

Figure 2 Horizontal management integration

Figure 1 Vertical management system integration

CORBA [37], offers great flexibility in
location of objects. By using technology
based on this principle together with pro-
per engineering, we may aim for both the
functionality resulting from horizontal
integration and the performance provided
with vertical integration.

Components of communicating systems
can fail during operation, and the load on
the systems will change over time. In
both cases, there is a need for reconfigu-
ration. Efficient reconfiguration is only
possible with support from the run-time
environment. Communicating systems
are able to continue operation with some
reduction in performance and dependa-
bility1 with one or more failures. Perfor-
mability analysis (e.g. [36, 20]) is the
analysis of the combined effect of perfor-
mance and dependability on operational
systems, and a performability manager
[16] can use this analysis to maintain a
required service level.

In principle, the capabilities that allow
reconfiguration of systems in response to
failures and change in load also make it
possible to tune performance while the
systems are in operation. Hence, it could
naïvely be assumed that engineering is of
minor importance during the develop-
ment phase. Although communicating
systems may allow reconfiguration
during operation, this freedom is nor-
mally restricted by the components of the
system. These components are identified
and designed as part of the system de-
velopment, when different system struc-
tures are analyzed to select the best set of
components. The knowledge that is
gained through this analysis is also of
value when the system is put into opera-
tion. Further, more fundamentally, the
engineering effort during development
establishes confidence that the system –
with specific configurations – will be
able to meet service requirements.

In general, system specifications (or
some parts of these) can be classified as
being either functional or quantitative.
The functional specification prescribes
“what the system shall do” while the
quantitative specification defines “how
well”. In this paper, the functional speci-
fications are taken as given, and concepts
and techniques are presented that facili-
tate quantitative modelling during the
development phase.

1.1 Outline

The reference model for open distributed
processing (RM-ODP) is a useful frame-
work for design of distributed systems
and is presented in section 2.

The next subsection presents an overview
of the allocation problem of object-ori-
ented systems. The object model itself is
sufficient for functional analysis (e.g.
specification validation), but information
about the computing infrastructure
(nodes and network) is required for quan-
titative analysis. Hence, objects must be
associated with concrete computational
resources.

Interaction between objects must be
supported by a run-time environment
where the objects are assigned to differ-
ent nodes. The required support from the
infrastructure can be expressed as quality
of service attributes as explained in sec-
tion 3.

Performance engineering is a central part
of a quantitative analysis, and techniques
are available for use during system de-
velopment. Important concepts from
performance engineering are presented
in section 4.

In section 5, the general concepts from
performance engineering and analytical
system analysis is applied to communi-
cating systems. Workload modelling is
presented together with system and
model constraints, and possible solution
techniques are identified.

1.2 The problem

Engineering of communicating systems
is concerned with allocation of entities –
in this case objects – to the computing
resources that are available. The alloca-
tion should result in a configuration that
meets the requirements to the services.
Requirements at a high level can be
stated in terms of functionality, quality
and cost. Performance and dependability
are aspects of quality and can be ex-
pressed as constraints (e.g. average inter-
active response time less than ∆ seconds)
associated with the functional require-
ments and capabilities. Often, we seek a
system configuration (or architecture)
that minimizes the total cost of the sys-
tem. Engineering the distribution of com-
municating systems is clearly an opti-
mization problem. In operational re-
search this type of problem is generally

known as the assignment problem [46].
The problem is visualized in Figure 3,
where application objects map to nodes
(the computing resources) which are
interconnected by some communication
network. An optimal solution to the
allocation problem as formulated is not
trivial. Even so, the above problem state-
ment is a simplification. The problem is
actually modified by the solution to the
problem: interaction between application
objects assigned to different nodes must
be supported by distribution support
objects not present in the original model.
Distribution support objects perform
basic communication functions (which
are always required) and support the
required quality of service associated
with interactions. Distribution support
objects are often allocated to the same
node(s) as the supported application
objects, but can also be assigned to sepa-
rate nodes. This is shown in Figure 4.

2 Open Distributed
Processing

The reference model for open distributed
processing (RM-ODP) [25, 26] is both a
framework for discourse and a basis for
specification of concrete architectures for
object-oriented distributed processing.
This section identifies and describes the
sub-set of these concepts that is impor-
tant to engineering of communicating
systems2. General introductions to ODP
concepts are found in [40, 33].

2.1 Viewpoints

This section provides a brief discussion
of viewpoints and their relevance to dis-
tribution engineering. A number of
different abstractions of a system is pos-
sible. These abstractions are called view-
points in RM-ODP and are formed by a
selected set of architectural concepts.
The reference model identifies five view-
points as necessary and sufficient:

• Enterprise viewpoint
The purpose and policies of the ODP
system are issues in the enterprise
viewpoint. In our context, the security
policy is of particular interest.

80 Telektronikk 1.1998

2 RM-ODP use the term “system” in a
general sense as “something of inte-
rest as a whole or as comprised of
parts” [25].

1 The functionality of a system can be
reduced when components fails, i.e.
the availability of functions is reduced.

81Telektronikk 1.1998

Objects

Physical
resources

mapping

Node

Link

Figure 3 The assignment problem

cluster assignment

object assignment
(implied)

= application object

cluster

= distribution support
object

Figure 4 The effect of distribution on the assignment problem

• Information viewpoint
The information viewpoint is con-
cerned with the static and dynamic
aspects of information in the ODP sys-
tem and will not be addressed further.

• Computational viewpoint
In the computational viewpoint, an
ODP system is a collection of objects
interacting at interfaces. Hence, the
computational viewpoint enables dis-
tribution (e.g. partitioning, fragmenta-
tion and communication). Concepts
from this viewpoint are discussed
further in section 2.2.

• Engineering viewpoint
The focus of the engineering viewpoint
is on the mechanisms and functions in
an ODP system that supports distribu-
tion. In a sense, the computational
abstraction prepares for distribution
(interaction between objects are ex-
posed) while the engineering view-
point provides a grouping of objects
into larger units (clusters) that can be
distributed within an ODP system.
Concepts from this viewpoint are dis-
cussed further in section 2.3.

• Technology viewpoint
This abstraction is close to implemen-
tation, and the technology that is se-
lected for the implementation. The
technology viewpoint will not be dis-
cussed further in this paper. However,
a more complete engineering analysis
than presented in this paper, will also
take into account technology specific
parameters.

The computational and engineering
viewpoints are essential in our context,
and key concepts from these viewpoints
are described in the following two sub-
sections.

2.2 Computational viewpoint

The computational viewpoint is an
abstraction which focuses on objects
interacting at interfaces. Interactions can
be of three kinds: signals, operations and
flows3. Signals are atomic interactions
with unidirectional communication. The
structure of a flow is important to both

the producer and the consumer(s) of the
flow. However, with respect to the distri-
buted processing environment, a flow is
an abstraction with no visible, internal
structure.

Operations are either announcements or
interrogations. Announcements are inter-
actions (sent) from a client to a server,
while interrogations consist of two inter-
actions: first, an invocation by the client
on the server and secondly, a termination
returning information to the client.

In order for an interaction to take place
between two (or more) objects, a binding
must be established between the objects.
A binding is either explicit, i.e. estab-
lished through a binding action of a
requesting object, or implicit, i.e. estab-
lished when required by the infrastruc-
ture of the distributed system. A direct
(primitive) binding is possible between
two objects, while a binding between
more than two objects is performed by
a separate binding object.

2.3 Engineering viewpoint

The engineering viewpoint prescribes an
implementation in terms of engineering
objects, nodes, nucleus, capsules and
cluster, and relations between these con-

cepts. A node contains a nucleus (e.g. the
operative system), a number of capsules
and a capsule manager. Each capsule is a
collection of objects forming a single
unit for the purpose of encapsulation of
processing and storage, e.g. an applica-
tion process. Each capsule may contain a
number of clusters together with a cluster
manager. The cluster is a collection of
engineering objects forming a distribu-
tion unit (e.g. distribution functions apply
to clusters, not to single objects).

Bindings between engineering objects
are either local or distributed. A channel
is required for a distributed binding. The
channel is a configuration of special en-
gineering objects (stubs, binders, proto-
col objects and interceptor objects) be-
tween interfaces. A stub object is res-
ponsible for local transformations of the
interactions in the channel, the binder
objects maintain a distributed binding
between the interacting objects, the pro-
tocol objects perform the communication
protocol functions, and the interceptor
object may perform required transforma-
tions as well as monitor and enforce poli-
cies on the permitted interactions. An
example channel is shown in Figure 5.

In the engineering viewpoint specifica-
tion, a particular allocation of objects to
clusters is selected from the set of pos-

82 Telektronikk 1.1998

3 RM-ODP distinguishes between inter-
actions that may not be visible and
interfaces that are visible. This distinc-
tion is reflected in the terminology.
Hence, a “flow” is an interaction that
can be made visible across a “stream”
interface.

Server

Stub

Binder

Protocol

Client

Stub

Binder

Protocol
Inter-
ceptor

Control
interfaces

Channel

interactions

Figure 5 Channel in support of distributed binding

sible allocations allowed by the compu-
tational viewpoint specification. In this
paper, the allocation of object to clusters
is called the distribution schema. It
should be noted that the distribution
schema does not (necessarily) include
assignment of clusters to capsules (pro-
cesses) on particular nodes. However,
derivation of the distribution schemata is
based on a (possibly idealized) specifica-
tion of available computing resources.

2.4 Distributed processing
environment and distri-
bution services

An attractive feature of ODP systems is
the (promised) set of capabilities offered
by the distributed processing environ-
ment (DPE). These capabilities are avail-
able to construction of ODP systems
either explicitly, as services (ODP func-
tions), or implicitly through distribution
transparencies.

Distribution transparencies allow the
developer to focus on the design and
build of his local functions without
having to know the implementation or
location of co-operating functions. In
effect, a distribution transparency hides
supporting services as well as implemen-
tation issues from the developer. The
result is reduced complexity as seen from
an application perspective, but at the cost
of increased complexity of the infra-
structure [43]. The reference model (RM-
ODP) identifies the following transpar-
encies:

• Access transparency masks differences
in data representation and invocation
mechanisms (i.e. protocols).

• Failure transparency masks from an
object the failure of other objects (or
the object itself) to enable fault tole-
rance.

• Location transparency masks the use
of location information from binding
actions.

• Migration transparency masks from an
object the systems’ capability of
moving that object.

• Relocation transparency masks reloca-
tion of an interface from other inter-
faces bound to that interface.

• Replication transparency masks the
use of replicated objects in support of
an interface.

• Persistence transparency masks from
an object the activation and deactiva-

design to detailed implementation. Each
level of abstraction makes some charac-
teristics of the system visible, while other
characteristics are disregarded. We use
the term “non-functional” to denote
requirements or properties associated
with the functional aspects that are de-
fined at a lower level of abstraction.
These properties are used (together with
other information) to guide the refine-
ment or transformation into a more de-
tailed specification. Location of objects
and clusters (the computing tasks) is seen
as a refinement of the computational spe-
cification into an engineering specifica-
tion.

The notion of “non-functional” require-
ments is similar to QoS as used in [22],
which identifies QoS requirements on
objects (e.g. capacity), on interactions
(e.g. timeliness and security) and asso-
ciated with content (e.g. integrity). How-
ever, on operations only a subset of the
QoS characteristics identified in [22] is
relevant (e.g. stream oriented require-
ments such as jitter may not be relevant).

In general, QoS requirement can be
stated as attributes from three per-
spectives:

• Offered
These are QoS attributes associated
with an interface supported by a server
object and thus available for inspection
and selection by a client.

• Required
These are QoS requirements expressed
by client objects and which must be
met by server objects (and the distri-
buted processing environment) to have
a successful binding.

• Expected
A server object may express QoS
requirements to be met by the client
object. Such requirements are less
intuitive than offered and required
QoS, but are equally relevant. One
example is traffic shaping on broad-
band stream interfaces. Another ex-
ample is a banking application where
the bank expects the client (customer)
to support security services (e.g.
authentication and integrity) on inter-
actions.

In addition, the agreed QoS is the nego-
tiated QoS between the client and the
server based on the required, offered and
expected QoS requirements.

83Telektronikk 1.1998

tion of other objects (or the object
itself).

• Transaction transparency masks co-
ordination between objects to achieve
consistency.

In contrast to distribution transparencies
which are hidden from the application,
ODP functions (also known as DPE ser-
vices) are accessed directly from the
application code, and are a collection of
functions that are applicable to the con-
struction of distributed processes [26].
The reference model identifies four
groups of ODP functions:

• Management functions
These functions are related to manage-
ment of nodes, objects, clusters and
capsules.

• Co-ordination functions
This group includes functions for event
notification, checkpoint and recovery,
object grouping, replication, object
migration and transaction processing.
Note: While migration transparency
masks from the object that it is being
moved, the DPE provides capabilities
allowing other objects to control object
migration.

• Repository functions
Storage functions, relocation function
and trading functions are part of this
group. A trader is a support service
matching requests for service with
objects offering a compatible service
[27].

• Security functions
The reference model identifies a set of
security services equivalent to the
security services defined in the secu-
rity framework [5], i.e. authentication
and access control, integrity and con-
fidentiality, non-repudiation as well as
security audit and key management.

The capabilities of the DPE reduces the
burden on the developer. However, in a
deployed ODP system, distribution ser-
vices are activated and will influence the
performance of the system. The effect of
this influence is not obvious and is an
additional challenge to performance en-
gineering.

3 Refinement of
specifications

During development, a system is defined
at several levels of abstraction from an
initial high level specification through

The following subsections describe how
security and dependability requirements
are expressed as QoS attributes on inter-
faces and how model refinement is
guided by a set of transformation rules.

3.1 Security requirements

Security requirements are often expres-
sed in terms of confidentiality, integrity
and availability and are supported by
security services. A general framework
of security services is given in [24],
which identifies the following five ser-
vice classes:

• Authentication
• Access control
• Confidentiality
• Integrity
• Non-repudiation.

Each class may contain more specialized
services, and [24] identifies a total of 14
security services. Security services are
abstractions and do not (as the name
could indicate) identify any particular
type of implementation. In fact, a secu-
rity service can sometimes be realized by
different security mechanisms, depending
on the context. Encipherment is an ex-
ample of a mechanism which can support
a number of services. Some mechanisms
are pervasive, i.e. not specific to a subset
of security services, and are in principle
useful to all services. Trusted functional-
ity and audit trail are examples of such
mechanisms.

Engineering of the security requirements
can be organized into three steps:

1. First, security requirements are stated
using QoS attributes which identify
security services.

2. Second, security mechanisms are
selected to suit the distribution be-
tween client and server objects, e.g.
confidentiality using access control is
possible within a single cluster or
node, while confidentiality must be
supported by encipherment when
information is communicated across
an exposed network.

3. As the final step, a specific implemen-
tation of the security mechanism is
selected, e.g. a large number of en-
cipherment algorithms are (or may be)
available.

3.2 Dependability require-
ments

Dependability [31] is expressed by a
number of attributes; usually related to

• reliability
• availability
• safety4.

Dependability objectives are expressed in
terms of the three dependability attri-
butes, and the systems are designed to
meet these objectives through the use of
dependability techniques. Dependability
is designed by observing

• fault tolerance
• fault prevention
• fault removal
• fault forecasting.

Of these techniques, fault tolerance is the
capability of a system to continue opera-
tion (possibly with reduced performance)
in the presence of faults; a fault is
masked and not seen as a failure from the
environment (e.g. the user). The aim of
the other techniques is to remove faults
before the system is put into operation.
As we are concerned with system charac-
teristics resulting from the distribution of
objects and clusters, the techniques for
fault tolerance handling is of most rele-
vance.

While security attributes state the permis-
sible capabilities offered by an object, the
corresponding dependability attributes
state the ways in which the object is able
to fail5. A failure is manifested in a
failure behaviour (the failure semantics)
and the fault tolerant capabilities must be
constructed accordingly. Failures can be
classified as timing or value failures [8].
Timing failures can further be identified
as early, late or omission timing failures.

The failure semantic of an object is
expressed as a subset of the set of failure
classifications:

Dependability ::= SEQUENCE {

failureMode
FailureModes
OPTIONAL,

-- failureMode is only
-- present as part of the
-- offered QoS expressed
-- by a server object

availability
DependabilityMeasure
OPTIONAL,

reliability
DependabilityMeasure
OPTIONAL

}

FailureModes ::= BIT STRING {
unknown (0)
valueFailure (1),
timingFailure (2),
earlyTimingFailure (3),
lateTimingFailure (4),
omissionTimingFailure(5),
...

}

DependabilityMeasure ::= REAL

Security and dependability requirements
and characteristics can be combined into
a single QoS attribute.

3.3 Transformation rules

In principle, each object in an ODP sys-
tem can be assigned to a cluster indepen-
dently of all other objects. The number of
possibilities for assignment of n objects
to clusters is given by the number of
ways to assign n items to subsets. With
an unlimited6 number of clusters, the
number of possible distributions is given
by the Bell number [18]:

B(n) ≈ nn, for large n

With the number of clusters fixed to K,
the number of distributions is given by
[28]:

B(n +1) =
n

k

k

∑ B(n − k)

84 Telektronikk 1.1998

4 Some authors [e.g. 8] also treat infor-
mation security as an aspect of de-
pendability. However, the relationship
between dependability and security is
not fully clarified, and for the present
discussion they are therefore treated
as different properties. Safety is not
considered in this paper.

5 The failure modes of containing
cluster, capsule and node do of course
influence the possible failure modes of
an object. Hence, the specification of
failure modes on objects will be con-
sidered as requirements to be sup-
ported by the DPE.

6 The number of objects is an upper limit
on the number of clusters.

Example: With n = 50 the number of dis-
tributions is roughly 1047. If the number
of clusters is fixed with K = 5, the num-
ber “reduces” to 1032.

In practical systems, restrictions are
likely to reduce the degree of freedom in
objects assignment. However, it is
impossible to manually design an
optimal7 distribution schema of many
interesting systems. Rules are required to
guide the automated transformation of a
computational viewpoint specification
into an engineering viewpoint specifica-
tion.

Transformation rules must capture both
the characteristics of the assignment pro-
cess, as well as relationships between
QoS attributes.

Transformation rules are invoked when
object instances are allocated to different
clusters. When this happens, the inter-
actions (if any) between the objects are
examined to determine if QoS require-
ments are defined that requires a refine-
ment of the specification (see Figure 6).

A layered approach is assumed in the
transformation, i.e. the different QoS
requirements are treated as separate
transformations. Another approach is an
integrated transformation where all QoS
requirements (on one interface) are con-
sidered at the same time. There are argu-
ments in favour of and against both the
layered and the integrated approach [14].
The sequence in which the transforma-
tions are applied is significant, and the
resulting protocol hierarchies are shown
in Figure 7.

We assume that all transformation fol-
lows the second alternative to ensure that
all communication is protected as appro-
priate.

An outline of the security transformation
function is provided in Figure 8. The
result of the transformation is a sequence
of specification transformation steps.
Since a transformation may not result in
an optimal distribution (or better than the

S(n, K) = S(n −1, K −1) + K ⋅S(n −1, K)

S(n, K) =
1

K!
(−1)

K −i

i=1

K

∑
K

i

i
n

85Telektronikk 1.1998

7 With respect to some stated objective.

DISTRIBUTION TRANSFORMATION

Problem: Client object c and server object s are to be assigned to different clus-
ters.

Answer: ∆, i.e. the list of specification transformation steps to meet the QoS
requirements.

Comment: Interaction, e.g. interfaces between object c and object s are examined
to determine the need for specification transformation.

begin

∆ ← ∅ ; (* an empty set of transformations *)

if assignment(c) ≠ assignment(s) then do

forall interface ∈ interaction(c,s) ∪ interaction(s,c) do

begin

if security QoS defined on interface then

∆ ← ∆ + transformation sequence of security support;

if dependability QoS defined on interface then

∆ ← ∆ + transformation sequence of dependability support;

end

return ∆;

end

Figure 6 Distribution transformation

client object ⇔ security protocol ⇔ dependability protocol

Node A

server object ⇔ security protocol ⇔ dependability protocol

Node B

Alternative 1

client object ⇔ dependability protocol ⇔ security protocol

Node A

server object ⇔ dependability protocol ⇔ security protocol

Node B

Alternative 2

Figure 7 Security and dependability protocol hierarchies

current), backtracking is essential and
this task is made easier with a transfor-
mation sequence.

3.4 Transformation example

An example computational specification
with three objects A, B and C is shown in
Figure 9 where arrows point towards the
server object in each interaction. This
example also illustrates that the presence
of security requirements can guide the
identification of clusters. In this case,
object A expects a non-repudiation ser-
vice on the interface used by object B.
Normally, non-repudiation services are
only considered on interactions between
objects in different domains. Hence,
objects A and B are most likely assigned
to different clusters.

A concrete interpretation of this example
is the following:

Object A represents an ordering service.
Non-repudiation with proof of origin is
used to ensure the authenticity of the
purchaser (object B) and the content of
the order. Object B makes use of a sub-
scribed information service (object C)
and must present access control informa-
tion to get access. Another information
service from object C is used by object A.

This simple specification is transformed
into the engineering viewpoint specifica-
tion shown in Figure 10. In this case, the
offered and required dependability attri-
butes are compatible, and the dependa-
bility transformations are not invoked.
Authentication is supported by authenti-
cation service objects (ASO), which
generate and validate authentication
information. Access control information
is added to the interaction between B and
C by the AIO object; this information is
received by the access enforcement
object (AEO) which queries the access
decision object (ADO) to determine if
access is permitted.

The non-repudiation requirement intro-
duces a little more complication. The
non-repudiation service requires the
support of an integrity service. Hence,
between the object generating non-repu-
diation information (NGO) and the user
of this information (NUO), integrity ser-
vice objects (ISO) are inserted to ensure
the integrity of non-repudiation informa-
tion. In this case, the non-repudiation is
further supported by a trusted third party
(TTP).

86 Telektronikk 1.1998

SECURITY TRANSFORM

Problem: Client object c and server object s with security requirements shall be allocated to
different clusters.

Answer: A sequence of engineering specification transformations (∆) is provided to meet the
security QoS requirements.

Comment: Security requirements are validated and adjusted to add basic security services re-
quired by high-level security services, e.g. non-repudiation implies authentication and
integrity, and to remove redundant basic services, e.g. integrity is made redundant by
confidentiality.

Security capabilities are added to the model in the following order:

- access control
- non-repudiation
- authentication
- confidentiality
- integrity

This sequence is a design decision imbedded in the transformation rules.

begin

required_c ← {required security capabilities from c};

expected_s ← {expected security capabilities from s};

∆ ← ∅ ; (* an empty set of transformations *)

if not compatible requirements and capabilities then

error “object c and s cannot be located in different clusters with fulfilment of security require-
ments”;

sec_req ← required_c ∪ expected_s;

seq_req ← seq_req ∪ {basic services required by high level services};

for capability ∈ {access control, non-repudiation, authentication, confidentiality, integrity} do

if capability ∈ seq_req then

begin

∆ ← ∆ + new security service objects if not already present;

∆ ← ∆ + interfaces within the clusters and between the clusters;

∆ ← ∆ + remove old interface between the clusters when inline security service;

∆ ← ∆ + attach/update workload information to interfaces:

end

return ∆;

end

Figure 8 Security transformation

requires entity authenticationA

B

C

offers entity authentication,
availability > 0.995

offers entity authentication,
availability > 0.995

expects access control

requires entity authentication
availability > 0.99

offers entity authentication,
expects non-repudiation

(proof of origin)

Figure 9 Application model with security requirements on interactions

87Telektronikk 1.1998

Of course, the transformation shown in
Figure 10 is only valid – or of interest –
when the three objects A, B and C are
assigned to different clusters. Another
allocation could give a different transfor-
mation.

4 Performance engineering

The goal of performance engineering is
to establish quantitative knowledge of the
performance of a computer system. This
knowledge is expressed using a set of
performance measures for the different
characteristics of the system. In this
paper, we are concerned with perfor-
mance (real or predicted) of deployed
systems only. Other important perfor-
mance issues, e.g. related to systems
development, are not addressed. Perfor-
mance measures are always related to a
measurement context (measurement
period, time and day of measurement,
etc.) which should be stated together
with the relevant performance measure.
A classification of system performance
measures is given in Table 1.

Within the literature, both performance
evaluation and performance engineering
are encountered [15, 44]. There is no
clear distinction between these terms.
Historically, evaluation has roughly been
associated with evaluation of existing,
completed or nearly completed systems.
However, it is well known that it is
harder to remedy deficiencies in a fin-
ished product – or late in the develop-
ment process – than to remove the prob-
lems in the design, and performance en-
gineering stresses the importance of
addressing performance in the design
process [38].

The formulation of performance evalua-
tion is simple: a workload is (thought to
be) applied to the system, resulting in a
performance prediction as shown in
Figure 11. Workload is the totality of
processing requests submitted to a
system from the users during some
period of time. Information system users
are normally human, but in general the
users can be both human and machine.
Of course, a real workload can only be
applied to a real system, and during
development a model workload must be
applied to a model of the system.

Performance (P) is a function of both the
system structure (S) and the workload
(W):

P(S, W)

ISO NGO

TTP

ISO

NUO

A

ASO ASO

C

AEO ADO

B

ASO AIO

Cluster Cluster

Cluster

Cluster

Figure 10 Example application augmented with distribution support objects

Class Definition Example performance measure

Productivity Volume of work per unit time Throughput rate
(item/time unit)

Production rate

Capacity (maximum throughput rate)

Responsiveness The time between input and corre- Response time, e.g. transaction exe-
sponding output (time unit) cution time

Turnaround time, e.g. time to start a
new job

Reaction time, e.g. time between a key
is pressed and the echo is presented
on the screen

Utilization The fraction of an interval in which a Hardware module utilization (CPU, I/O,
component is used (for some purpose) ...)
(dimension-less)

Operation system utilization

Application utilization

Database utilization

Table 1 System performance measures (adapted from [15])

Three different types of performance
engineering activities can be identified
[21]:

• design
The goal of this activity is construction
of a system structure (S) which pro-
vides a requested performance (p0)
when subjected to a specified work-
load, i.e. P(S, W) ≥ p0.

• improvement
The performance of a system (S) can
be improved if it is possible to modify
the system to a new structure S’ with
P(S’, W) > P(S, W).

• comparison
When n system structures are possible,
performance prediction aims to pro-
vide an ordering between the systems:

P(S1, W) ≥ P(S2, W) ≥ ... ≥ P(Sn, W)

Several techniques are available for
performance engineering. While exact
measurements can be obtained on an
existing system, performance predication
must rely on a model of the proposed
system. Mathematical models are often
considered ‘best’, as analytical solutions
are sometimes obtainable. However, not
all mathematical models have solutions,
or unrealistic assumptions must be made
in order to produce a solution. In these
cases, simulation models are attractive.
Simulation is flexible, but at the cost of
processing and interpretation of results.
Furthermore, a simulation model (only)
gives results to some level of confidence.

Although important, performance en-
gineering is but one aspect of systems
engineering. The methods used must be
evaluated against a set of requirements
[44, 38]:

• supplement (and integrate with) exist-
ing methods

• ease of use

• rapid assessment

• sufficient precision

• lifecycle usefulness

• wide applicability

• cost-efficiency.

Based on the above requirements, a sig-
nificant part of work in performance en-
gineering applies operational analysis
[38, 10, 32] or mean value analysis [19,
44, 38, 15, 35, 32] rather than more ela-
borate (and complex) network queuing
analysis. Operational analysis is based on

relationships between observable vari-
ables over a period of operation (when
the system exists). The power of opera-
tional analysis is founded in that these
relationships are independent of distribu-
tion functions (as is Little’s result). The
utilization law serves as an example on
how operational relations are established
(notation is given in Figure 12), and is
derived as

Other operational laws are derived in a
similar manner and can be applied to
each service centre (both technical de-
vices such as CPU and disk, and human
processing tasks). The original formula-
tions of the operational laws [3] was only
applicable to open queuing networks, but
have later been extended to cover also
closed queuing networks [9].

An example illustrates the application of
operational analysis:

Assume that a system has been observed
over some time. During this observation
period, the system has been used (busy)
75 % of the time and has processed
(completed) 500 jobs (e.g. customers),
and the mean service time per job is
50 ms. At the end of the observation
period, 45 jobs are either being processed
or are waiting. What is the response time
of the system?

In this example, the throughput is

and the response time of the system is
found as

Mean value analysis (MVA) [38, 19] is a
set of computationally efficient solutions
to both open and closed queuing net-
works. Different service disciplines, e.g.
infinite service, load dependent service,
load-independent service, can be used to
construct and solve a number of system
models using MVA.

Operational variables can be considered a
sample of the corresponding stochastic
variable. A drawback with both opera-
tional analysis and MVA is that only
expectation values are computed. Higher

R =
N

X
=

45 jobs

15 jobs / s
= 3 s

X =
U

S
=

0.75

50 ms / job
=15 jobs / s

U =
B

T
=

B

T
⋅
C

C
=

C

T
⋅

B

C
= X ⋅S

88 Telektronikk 1.1998

System (S)
Performance

prediction (P)

Workload (W)

Figure 11 Performance evaluation

T observation period

Ck number of observed completions

Xk throughput

Bk busy period

Uk utilization

Nk number of customers

Mk number of interactive users

Rk residence time

Z think time (terminal user)

Vk visitation ratio

Notation

Note – A subscript denotes a specific service center
or device

Operational relationships

throughput

mean service time

utilization
U ≡

busy period

observation period
≡

B
T

S ≡
busy period

number of completions
≡

B
C

X ≡
number of completions

observation period
≡

C
T

Operational laws

Little’s law N = X ⋅ R

General response
time law

Interactive response
time law

Forced flow law Xk = Vk ⋅ X

R =
N

X
− Z

R = Rk
k
∑ ⋅V k

Figure 12 Operational analysis

order moments (e.g. variance) or distri-
bution functions of response time, uti-
lization, etc. are not available. This kind
of information is normally of significant
value when the result of analysis is inter-
preted. An example is illustrative: With
an exponential response time distribu-
tion, 22.3 % of all customers experience
a response time in excess of 50 % of the
mean value, and 13.5 % experience a
response time twice as long as the
average. If the response time had fol-
lowed an Erlang-10 distribution (i.e. the
distribution of the sum of ten identical,
independent exponentially distributed
variables), only 7.0 % of all customers
would experience a response time ex-
ceeding 50 % of average and only 5.0 %
would experience a response time ex-
ceeding twice the average. These con-
cerns are to some extent addressed with
sensitivity analysis [38] which can be
used to evaluate the influence on a given
performance measure from a change in
either a performance parameter or a sys-
tem parameter.

Operational analysis and MVA are
favoured by performance engineers who
argue [e.g. 44, 38] that these techniques
fulfil the set of requirements presented
above (ease of use, etc.). More detailed
analysis, e.g. use of queuing theory, is
sometimes based on assumptions that do
not hold for computer systems (e.g.
arrival and service time distributions).

Another reason why simpler mean value
analysis is used, is the inherent in-
accuracy in the workload parameters
(presented in the following subsection),
which reduces the utility of detailed
analysis.

4.1 Workload

Modelling of the workload is one of the
most difficult tasks of performance en-
gineering. The workload is the combina-
tion of service requests put on the system
from the environment. Performance en-
gineers often identify three types of
service based on the parameters charac-
terizing the service usage [32]:

• transaction
A transaction workload is the result of
“infrequent” service request from a
large number of users such that the
workload is independent of the number
of active users. Hence, the workload
can be expressed by a single arrival
intensity λ.

• batch
During the observation period, the
batch workload is considered to be
running. Hence, there is no arrival of
new batch jobs and the workload is
expressed by the size nj of batch job j.

• interactive (or terminal)
A transaction workload results when
the infrequent requests are applied
from a large number of users. If the
number of users is smaller or the ser-
vice request is more frequent, the
resulting workload depends on the
state, i.e. the number of active jobs.
Hence, the use of an interactive service
k is characterized by the average num-
ber of users of the service together
with the per user intensity, i.e. (nk , λk).

The total workload on a system can be
identified as a combination of transac-
tion, batch and interactive workloads.

An external service request, e.g. from a
user, can be recursively decomposed to a
sequence of requests8 on subcomponents.
This decomposition process is by some
authors called workload devolution [21].
The devolved work describes service
invocations between components and is

independent of the rate of work, and is
sometimes called a static model of the
workload. The static model together with
the dynamic invocation of services (e.g.
transaction intensity), defines the dyna-
mic workload on system components.
The static model can be derived from
inspection of the system and software
structure. Figure 13 illustrates how in-
vocation of services at some level i
results in invocation of services from
components at the next level. Service
invocation between two adjacent levels
of abstraction can be described as an ni ×
ni+1 matrix

where ni is the number of components at
level i. From this specification it is easy
to compute the invocation of the low-
level n services as

Of course, many execution graphs are not
strictly hierarchical as presented in
Figure 13. Cycles within the graph are
possible as a result of direct or indirect
recursion. In such cases, the elements of

must be replaced by the average

number of invocations with the loops
removed.9

Ci
~

C
~

= Co
~

× C1
~

×K ×Cn
~

Ci
~

= ckl()

89Telektronikk 1.1998

8 It is useful to separate between service
requests on an abstract machine and
operations on a specific physical con-
figuration. This separation allows for
mapping to different implementations
from the same basic model.

Level i-1

Level i

Level i+1

A

B C D

FE G

= (sub) component

= service

Legend:

Figure 13 Generalized system structure (example)

9 This is always possible in a real (and
stable) system where the number of
recursive invocations must be finite.

4.2 Example

A simplified example from telecommuni-
cation trouble management illustrates
workload modelling: Customers contact
a service centre to notify of some fault in
the network (e.g. missing dial tone). At
the service centre, the following opera-
tions can be performed (also shown in
Figure 14):

1 Information is retrieved on

- customer

- current network faults possibly
affecting the customer

- the customer service history

2 Testing of access equipment

3 Create trouble ticket

4 Update customer service history.

The workload can be decomposed into
database requests, CPU requirements and
communications requirements (the low-
level services). An example decomposi-
tion of one service request is shown in
Figure 14: The report failure task is in-
voked by the customer. The customer
information is always retrieved and is
always updated, while line test is only
performed for 60 % of reported failures
and repair is only requested for 30 % of
all reported failures.10 Total workload on
physical resources is then calculated as:

where the resulting vector is workload on
(CPU1, CPU2, Disk1, Disk2, Com1), and
stated in terms of CPU cycles, disk
access and message length.

5 Distribution
engineering

The objective of distribution engineering
of systems is to identify an optimal
assignment of objects to computing
resources. The next subsection explains
workload modelling of interacting
objects. Subsequently, constraints on the
optimization problem11 are identified.
Different optimization objectives are pre-
sented in section 5.3 and an overview of
possible solution techniques are given in
5.4.

5.1 Workload modelling

The workload model contains a static
part, i.e. how objects interact, as well as a
dynamic part, i.e. the frequency of inter-
action as described in section 4.1. It is
useful to classify objects as either core
objects or user objects such that there is
no interaction between user objects. The
purpose of this classification is to sepa-
rate the workload generating part, e.g. the
user objects. The total workload is then
the sum of work generated by all user
objects.

The static structure of the workload is
derived from object behaviour informa-
tion. For each run (activation) of a user
object u we record the number of invoca-
tions of operation o on core object s by

object c as Restricting the work-

load to transactions, the interaction fre-
quency between objects is then computed
as

s(c,s,o)
u

.

W
~

=

1 1 0.6 0.3

200000 0 10 0 0

100000 0 4 0 0

0 150000 0 0 3000

0 200000 0 15 0

=

300000 1500000 14 4.5 1800

90 Telektronikk 1.1998

Customer Service center

Fault expert

Trouble ticket
manager

Test
performer

Customer
database

Service
history

Current
faults

Trouble
tickets

Network

Legend: OMT [41]

Figure 14 Trouble management scenario

10All figures in the example are for illu-
strative purposes only and are not
observed from operational trouble
management.

11An overview of optimization models
can be found in [46].

Customer Report failure

Retrieve customer
information

Update customer
information

Perform line
test

Order repair

Disk1 CPU1 Disk2Com1 CPU2

1 1 0.6 0.3

15
4

10 200.000150.0003.000100.000
200.000

Figure 15 Trouble management configuration and workload (example)

where λ(s) is the aggregated activation
frequency on core object s.

Given a processing requirement

per operation o of object class C, the
resulting per time unit processing requi-
rement for core object s is computed as

The user object rate λu and the process-

ing requirement are difficult to

estimate and the uncertainty limits the
precision of the workload model. The
invocation structure su

(c,s,o) can be deri-
ved from simulation of the behaviour of
the system or directly counted from trace
information. Of course, exhaustive coun-
ting from all possible trace sequences is
not realistic in a real system. However,
the most frequent execution paths can be
expected to dominate the result. Early in
the design phase, detailed information of

the processing requirement is not

available, and educated estimates must
suffice. Hence, the workload model
needs to be revised in an iterative process
as more information is made available.

5.2 Constraints

Capacity constraints are related to pro-
cessing, storage and communication:

• The requested processing from all
objects and clusters assigned to a node
must be less than the available capa-

city of the node:

for all nodes n

where AC(n) is the set of clusters
assigned to node n and AO(c) is the set
of objects in cluster c.

• Total bandwidth requirements from
object interactions must be less than

P(s) < Cn
P

s ∈ Ao (c)
∑

c∈ AC (n)
∑

C(n)
P

Po
C

Po
C

p(s,o) = λ (s,o) ⋅ Po
C(s)

p(s) = p(s,o)
o
∑

Po
C

λ (c,s,o)
u = λ u ⋅ s(c,s,o)

u

λ (c,s,o) = λ (c,s,o)
u

u
∑

λ (s,o) = λ (c,s,o)
c
∑

λ (s) = λ (s,o)
o
∑

the bandwidth capacity CL
l available

on links between nodes:

for all links l

where mo is the mean message size for
operation o and AL(l) is the set of all
interactions routed on link l.

• Physical storage capacity CS
n of each

node must be greater than the required
storage from all objects.

for all nodes n.

In addition to the capacity constraints,
the model formulation itself has a set of
constraints, e.g.

• an object is allocated to only one
cluster

• all objects are assigned to some cluster

• a cluster is allocated to only one com-
puting node

• all clusters are assigned to some node.

Given the following definitions

Mi = cost of node i

the model constraints are formulated as

∃ i ⋅ Θi,j = 1 ⇔ Ωj = 1
for all objects j

∃ i ⋅ Ψi,j = 1 ⇔ Φj = 1
for all clusters j

for all objects j

for all clusters i

Ψi, j
j

∑ =1

Θi, j
j

∑ =1

Φi =
1, if any cluster is allocated to node i

0, otherwise

Ωi =
1, if any object is allocated to cluster i

0, otherwise

Ψi, j =
1, if cluster i is allocated to node j

0, otherwise

Θi, j =
1, if object i is allocated to cluster j

0, otherwise

s ∈ Ao (n)
∑ d(s) < Cn

S

(s,c,o)∈ AL (l)
∑ mo ⋅ λ (c,s,o) < Cl

L

which states that when an object is
assigned to a cluster, there is an object at
that cluster, etc. The model constraints
also require every object to be assigned
to only one cluster and every cluster to
be assigned to only one node.

5.3 Optimization objectives

Without consideration of performance or
dependability, a simple formulation is to
minimize cost, i.e.

subject to the constraints from section
5.2. Although performance as well as
QoS requirements are ignored, this opti-
mization objective is of some interest as
it gives a lower bound on the cost of the
system. Further, with Mi = 1, the result is
the least number of computing nodes that
is needed.

When minimization of capital cost is the
objective, performance and QoS require-
ments are included as additional con-
straints in the optimization problem, i.e.
“What is the system structure that offers
the least capital cost and which fulfils
these performance and quality charac-
teristics?”

An alternative objective is optimization
of performance and QoS, and with capi-
tal cost modelled as constraints, i.e.
“What is the system structure that offers
the best performance and quality charac-
teristics given this constraint on capital
cost?”

An objective function for process alloca-
tion which maximizes reliability is given
in [42] which is readily adapted to object
and cluster allocation.12 Reliability is
maximized when the mean number of
failure is minimized:

where γ is the failure intensity of nodes
and links, ec is the accumulated execu-
tion time of cluster c (on node n) during

min: γn
N

c
∑

n
∑ ⋅Ψc,n ⋅ec +

l
∑

(s,c,o)∈ AL (l)
∑ γ l

L ⋅mo ⋅ λ (c,s,o) ⋅ ∆t / Cl
L

min: MiΘi
i
∑

91Telektronikk 1.1998

12The formulation in [42] is more gene-
ral as each path between nodes can be
constructed by a sequence of links. In
our formulation, nodes are directly
interconnected by (virtual) links.

an interval ∆t. The first part is the
average number of node failures, while
the second part is the average number of
communication failures.

Minimization of waiting time13 is
expressed as the objective function:

where

is the waiting time at node n for opera-
tion o, µn,o is the service rate of the ope-
ration, λn,o is the activation frequency
and Λ is the total workload on all nodes.
Both the service rate and the utilization
Un depend on the number of clusters and
objects allocated to the node.

5.4 Optimization techniques

A number of optimization objectives are
presented in the previous subsection.
Assignment of objects to clusters and
clusters to nodes is at least as difficult as
assignment of files to nodes or tasks to
processors. These problems are known to
be NP-hard [45], which implies that
direct solution techniques from mathe-
matical programming are not feasible. A
number of heuristic solutions has been
proposed for allocation of files and clus-
ters in distributed databases [e.g. 11, 12,
45, 4, 39], including techniques based on

• knapsack
• branch and bound
• network flow.

Heuristic solutions of task assignment to
processors have been studied [e.g. 34, 2,
42, 7]. As task assignment and file allo-
cation are similar problems, many of the
heuristic approaches are similar. In addi-
tion, techniques from artificial intelli-
gence are used in [42], where the solu-
tion state space is examined with an
adaptation of the A* algorithm.

Solutions to difficult problems like task
assignment and object and cluster assign-
ment, can be made much more effective
with a good initial solution. The aggrega-

Wn,u =
1 / µn,u

1−Un

min:
λ n,o

Λ
o
∑

n
∑ Wn,o

ted interaction frequency between client
and server objects

can be used to form clusters such that
objects with frequent interaction are
assigned to the same cluster (and objects
with infrequent interaction are assigned
to different clusters). However, the speci-
fication transformation resulting from
assignment of interacting objects to diffe-
rent clusters, results in a modification of
object interaction. It is not sufficient to
just group objects with high interaction
rates. In addition, the capacity of nodes,
storage and links limit the number of
objects and clusters that can be assigned
to the same node. However, good initial
solutions can be found, which limits the
examined state-space and reduce the
running time.

Cluster analysis is a collection of tech-
niques used in many branches of science
to group or classify entities. In this case,
the term ‘cluster’ is different from
‘cluster’ as defined by RM-ODP, but is
a general grouping of objects based on
some measure of ‘dissimilarity’ or,
equivalently, ‘similarity’ between
objects. The result of cluster analysis
depends both on the measure of dis-
similarity and the algorithm to group
objects (see [13, 28, 1]). Definition of
the dissimilarity measure depends on the
application domain, while clustering
algorithms are applicable between
domains. However, not all algorithms are
equally suitable, and a clustering algo-
rithm should be applicable in an applica-
tion domain.

λ (c,s) = λ (c,s,o)
o
∑

In general, clustering algorithms can be
classified as hierarchical, overlapping
and partitioning. Hierarchical clustering
starts with each object allocated to one
cluster. Following this, the two most
similar clusters are merged until a single
cluster is formed (or a predefined number
of clusters is reached). Hierarchical
clustering is often illustrated a tree as
shown in Figure 16 where the height
indicates when clusters are merged.
Clusters formed by hierarchical cluster-
ing are disjoint at each level in the tree,
e.g. each object is assigned to only one
cluster. When engineering communi-
cating systems, the hierarchy of clusters
can be used to select objects to be as-
signed to ODP clusters, and to select
objects to move to other ODP clusters
when an object assignment violates con-
straints (e.g. capacity or QoS require-
ments).

Overlapping or fuzzy clustering is pos-
sible when similarity between objects is
used to assign a degree of cluster mem-
bership to objects. Fuzzy clustering is
frequently used within the fields of
pattern recognition and data mining, but
can also be applied to guide assignment
of objects to ODP clusters.

While hierarchical and overlapping
clustering start with individual objects
and gradually merge objects to larger
clusters, partitioning is a technique where
a single cluster is divided into smaller
clusters. Partitioning is generally useful
when the result is few but large clusters.
Fragmentation of tables in a distributed
database is an example where partition-
ing can be used to group attributes into
fragments that are distributed [45].

92 Telektronikk 1.1998

13As only transactions are addressed,
the throughput is in equilibrium equal
to the applied workload.

First merge

O1

Last merge

O2 O3 O4 O5 O6 O7 O8 O9 O10

Figure 16 Hierarchical clustering

How to measure similarity δ(c,s) between
two objects c and s in a system? Both the
invocation frequency between objects
δ(c,s) = λ(c,s), as well as the average band-
width requirement between objects

can be used. Message size information is
incorporated in the bandwidth require-
ment, and is most likely the best choice.
However, when ‘short’ messages are
used by prioritized applications, and
‘larger’ messages are less important, the
invocation frequency can be the better
choice of similarity measures.

Given a similarity measure, different
hierarchical clustering algorithms (or
strategies) are possible. A simple strategy
is single-link clustering. In this case,
clusters with the two most similar objects
are joined, e.g. find two objects c and s
such that

δ(c,s) + δ(s,c)

is maximized and join the clusters con-
taining objects c and s. A drawback of
this technique is that clusters can be con-
structed with little internal cohesion as
only interaction between pairs of objects
is used. This is avoided by complete-link
clustering which joins clusters such that
the similarity between all objects in the
two clusters is maximized, e.g. joint
clusters A and B such that

is maximized. Complete-link clustering
maximizes internal interaction and mess-
age exchange, while interaction between
clusters is minimized.

Given the objects from Figure 16, a
heuristic approach initially assigns all
objects to a single cluster on a single
node. Assuming system constraints are
violated, the cluster is split by reversing
the last merge operation. Hence, two
clusters with objects {O1, O2, O3, O4,
O5, O6, O7} and {O8, O9, O10} are
formed and assigned to different nodes.
In this case, the transformation rules
from section 3.3 are applied to augment
the object model with necessary distribu-
tion support objects. If constraints are
still violated, the cluster last merged is
split. In this case, the larger cluster {O1,
O2, O3, O4, O5, O6, O7} is split into {O1,
O2, O3, O4} and {O5, O6, O7}. This pro-

δ a,b() +δ b,a()()
a∈ A
b∈ B

∑

δ(c,s) = mo
o
∑ ⋅λ (c,s,o)

cess is repeated until all constraints are
satisfied (if possible).

The method outlined above is not
guaranteed to produce an optimal solu-
tion, as many possible configurations are
not investigated. However, clusters are
split such that the most similar objects
are kept together, which is good
engineering practice.

6 Conclusion

An overview of engineering principles
for communicating systems has been
presented. Optimal allocation of compu-
tational viewpoint objects to engineering
viewpoint clusters is an NP-hard problem
and heuristic solutions are necessary. As
many different distribution schema are
possible, system specifications express
requirements on the distributed process-
ing environment as QoS attributes asso-
ciated with functional capabilities. When
a particular distribution schema is se-
lected, QoS attributes are used to guide
specification refinement. The refinement
process augments the specification with
the necessary distribution support ob-
jects. Clustering of objects based on
object interaction and the bandwidth
requirement between objects are pro-
posed to help select useful distribution
schema. Each schema can be analyzed,
using analytical techniques from queuing
theory, to select the schema that is opti-
mal given an objective function and a set
of system constraints.

7 References

1 Arabie, P, Hubert, L J, De Soete, G
(ed). Clustering and classification.
Singapore, World Scientific Publish-
ing, 1996.

2 Bowen, N S, Nikolaou, C N, Gha-
foor, A. On the Assignment Problem
of Arbitrary Process Systems to
Heterogenous Distributed Computer
Systems. IEEE. Trans. Comput., 41
(3), 275–73, 1992.

3 Buzen, J P. Computational algo-
rithms for closed queuing networks
with exponential servers. Comm.
ACM, 16 (9), 527–31, 1973.

4 Ceri, S, Martella, G, Pelagatti, G.
Optimal File Allocation in a Compu-
ter Network : a Solution Method
Based on the Knapsack problem.

Computer Networks, 6, 345–57,
1982.

5 Chapman, M, Montesi, S. Overall
Concepts and Principles of TINA.
TINA Consortium, 1995. (Technical
report.)

6 Chu, T C K, Abraham, J A. Load
Balancing in Distributed Systems.
IEEE Trans. Soft. Eng., SE-8 (4),
401–12, 1982.

7 Chu, W W et al. Task Allocation in
Distributed Processing. IEEE Com-
puter, 13 (11), 57–69, 1980.

8 Cristian, F. Understanding fault-tole-
rant distributed systems. Communi-
cations of the ACM, 34 (2), 57–78,
1991.

9 Dallery, Y, Cao, X R. Operational
analysis of stochastic closed queuing
networks. Performance Evaluation,
14, 43–61, 1992.

10 Denning, P J, Buzen, J P. The opera-
tional analysis of queuing network
models. Comput. Surveys, 10 (3),
225–61, 1978.

11 Dowdy, L W, Foster, D V. Compara-
tive Models of the File Assignment
Problem. ACM Comput. Surv., 14
(2), 287–313, 1982.

12 Eswaran, K P. Placement of Records
in a File and File Allocation in a
Computer Network. In: Information
Processing ‘74. Stockholm, 1974,
304–307.

13 Everitt, B R. Cluster analysis. Hal-
stead Press, 1993.

14 Fabre, J-C, Prennou, T. Friends : A
Flexible Architecture for Implement-
ing Fault Tolerant and Secure Distri-
buted Applications. In: Second Euro-
pean Dependable Computing Con-
ference (EDCC-2). Taormina, Italy,
1996.

15 Ferrari, D. Computer Systems Per-
formance Evaluation. Prentice-Hall,
1978.

16 Franken, L. Quality of Service Man-
agement : a Model-Based Approach.
Performability modelling tools and
techniques. Centre for Telematics
and Information, University of
Twente, 1996. (PhD thesis.)

93Telektronikk 1.1998

18 Graham, R L, Knuth, D E, Patashnik,
O. Concrete mathematics, Addison-
Wesley, 1989.

19 Harrison, P, Patel, N. Performance
Modelling of Communication Net-
works and Computer Architectures.
Addison-Wesley, 1993.

20 Haverkort, B R, Niemegeers, I G.
Performability modelling tools and
techniques. Performance Evaluation,
25, 17–40, 1996.

21 Hughes, P. Performance Engineer-
ing. Trondheim, Department of Com-
puter Systems and Information
Science, Norwegian University of
Science and Technology, 1997.
(Technical Report.)

22 ISO/IEC JTC 1/SC 21/WG7 N1192.
Working document on QoS in ODP.
1997.

23 ITU. Principles for a Telecommuni-
cations management network.
Geneva, ITU, 1996. (ITU-T Recom-
mendation M.3010 (05/96).)

24 ITU. Security architecture for Open
Systems Interconnection. Geneva,
ITU, 1991. (ITU-T Rec. X.800.)
(ISO 7489-2, 1989.)

25 ITU. Open Distributed Processing :
Reference Model : Foundations.
Geneva, ITU, 1995. (ITU-T Rec.
X.902.) (ISO/IEC 10746-2, 1996.)

26 ITU. Open Distributed Processing :
Reference Model : Architecture.
Geneva, ITU, 1995. (ITU-T Rec.
X.903.) (ISO/IEC 10746-3, 1996.)

27 ITU. Open Distributed Processing :
Trading Function, Part 1 : Specifica-

tion. Geneva, ITU, 1996. (Draft ITU-
T Rec. X.950.) (ISO/IEC DIS 13235-
1. Geneva, 1996.)

29 Jain, A K, Dubes, R C. Algorithms
for Clustering Data. Prentice-Hall,
1988.

30 Kim, C, Kameda, H. An Algorithm
for Optimal Static Load Balancing in
Distributed Computer Systems. IEEE
Trans. Comput., 41 (3), 381–84,
1992.

31 Laprie, J-C (ed). Dependability :
Basic Concepts and Associated Ter-
minology. Springer, 1992. (PDCS
Tech. Rep. No. 31, May 1990.)

32 Lazowska, E D et al. Quantitative
System Performance : Computer Sys-
tems Analysis Using Queuing Net-
work Models. Prentice-Hall, 1984.

33 Linington, P. RM-ODP : the archi-
tecture. In: 3rd international IFIP
TC6 Conference on Open Distributed
Processing. 1995, 15–33.

34 Lo, V M. Heuristic Algorithms for
Task Assignment in Distributed Sys-
tems. IEEE Trans. Comput., 37 (11),
1384–97, 1988.

35 Menascé, D A, Almeida, V, Dowdy,
L W. Capacity Planning and Per-
formance Modeling. Prentice-Hall,
1994.

36 Meyer, J F. On evaluating the per-
formability of degradable computing
systems. IEEE Trans. Comput., 29
(8), 720–31, 1980.

37 OMG. The Common Object Request
Broker : Architecture and Specifica-
tion. 1995. (Technical report, re-
vision 2.0.)

38 Opdahl, A L. Performance engineer-
ing during information system de-
velopment. Trondheim, Department
of Computer Systems and Tele-
matics, Norwegian Institute of Tech-
nology, 1992. (Dr.ing (PhD) thesis.)

39 Ramamoorthy, C V, Wah, B W. The
Isomorphism of Simple File Alloca-
tion, IEEE Trans. Comp, 32 (3),
231–231, 1983.

40 Raymond, K. Reference model of
open distributed processing (RM-
ODP) : Introduction. In: 3rd interna-
tional IFIP TC6 Conference on Open
Distributed Processing, 1995, 3–14.

41 Rumbaugh, J et al. Object-oriented
modeling and design. Prentice-Hall,
1991.

42 Shatz, S. Task Allocation for Maxi-
mizing Reliability of Distributed
Computer Systems. IEEE Trans.
Comput., 41 (9), 1156–68, 1992.

43 Sienknecht, T, Martinka, J, Friedrich,
R. Murky transparencies : Clarity
using performance engineering. In:
3rd international IFIP TC6 Con-
ference on Open Distributed Pro-
cessing, 1995, 507–510.

44 Smith, C. Performance Engineering
of Software Systems. Addison-Wes-
ley, 1989.

45 Tamer Orzu, M, Valduriez, P. Prin-
ciples of Distributed Database Sys-
tems. Prentice-Hall, 1991.

46 Williams, H P. Model building in
mathematical programming. Wiley,
1993.

94 Telektronikk 1.1998

Knut Johannessen is Senior Engineer at Telenor
Nett, IT department, working with strategy for
operational support systems and IT architecture.
He is participating in ITU-T SG4 which specifies
Recommendations for TMN. He is also currently
pursuing a Ph.D. at the Department of Tele-
matics, Norwegian University of Science and
Technology with focus on architectural design of
distributed systems.

e-mail: knut.johannessen@s.nett.telenor.no

TINA is a general software architec-
ture, applicable to a broad range of
telecommunications and information
services. The architecture is based on
the principles of object-orientation,
CORBA-based distributed processing,
and separation of services from under-
lying network. The purpose is to pro-
vide for common services over diffe-
rent underlying network technologies
and rapid service development in an
open environment that encourages
third party development. This paper
provides an overview of the TINA
architecture and contrasts it with
related work in the area of multi-
media services, intelligent networks,
and broadband networks.

1 Introduction

The Telecommunications Information
Networking Architecture Consortium
(TINA-C) consists of approximately
40 telecommunications and information
technology companies from all over the
world. The consortium started in 1993
with the goal to define and validate a
software architecture that will enable
efficient introduction and management of
new and sophisticated telecommunica-
tions services. The TINA architecture is
based on object-oriented technology and
distributed computing, and incorporates
results from international standards such
as ITU/ISO RM-ODP, ITU-T TMN,
ATM Forum, and OMG’s CORBA archi-
tecture.

During the first phase of TINA-C, ex-
tending from 1993 to 1997, the TINA
architecture was developed by a Core
Team of about thirty member company
engineers located in Bellcore’s premises
in New Jersey, USA. The basic set of
TINA specifications are now considered
stable, and are available to the public
through its Web site (http://www.tinac.
com). The second phase of the consor-
tium is now starting, and is planned to
extend for three years through the year
2000.

The TINA architecture has three major
goals [1]:

• To make it possible to provide versa-
tile multimedia services

• To make it easy to create and manage
services and networks, and

• To create an open telecommunications
software component marketplace.

TINA is intended to be a general soft-
ware architecture, applicable to a broad
range of telecommunications and infor-
mation services. It is, however, speci-
fically intended to suit the following
areas of application: New broadband
networks (ATM networks and B-ISDN),
new sophisticated services (multimedia
services, multiparty conferencing, VPN
services, and IN-type services), and
nomadic communication and new mobile
networks (uniformly providing user
mobility, terminal mobility and session
mobility, UMTS, and DECT). Note that
TINA was planned and initiated before
the spectacular raise in Internet and Intra-
net technology during the recent years.
However, the TINA work has not been
unaffected by the Internet developments,
and many of the TINA results (e.g. the
Service Architecture) are, due to their
quite general nature, seen as useful in the
context of the Internet.

The TINA architecture is based on the
principles of object-orientation, distribu-
tion, and separations of concern. The
purpose of these principles is to ensure
interoperability, portability and reusa-
bility of software components, indepen-
dence from specific technologies, and to
share the burden of creating and man-
aging a complex system among different
business stakeholders, such as users, ser-
vice providers and network providers.

Object-oriented techniques focus on
reducing complexity through modulariza-
tion, encapsulation of data and methods,
and reuse of existing components. Break-
ing a complex system down into a set of
encapsulated objects reduces complexity,
and de-couples the software modules
from each other so that a change in one
component due to a change in underlying
technology, (standards, languages, pro-
grams, networks, etc.) does not affect
other components.

Distribution of service software compo-
nents over different parts of the network
can improve performance by reducing
network load and applying load balanc-
ing techniques. Furthermore, services
may be made more fault tolerant by the
application of techniques such as object
replication. Finally, distribution is to
some extent an inherent element of many
telecommunication services. A key prin-
ciple for TINA is that telecommunica-
tions services and management systems
are considered as software applications
that operate in a distributed environment.
To simplify the development of these
distributed applications TINA mandates
the use of a Distributed Processing En-
vironment (DPE). The purpose of the
DPE is to hide from the applications the
details of the underlying technologies
and distribution concerns, thus simplify-
ing the construction of distributed soft-
ware.

TINA adopts two major separations of
concern, see Figure 1. The first separa-
tion is between applications and the
underlying distributed processing en-
vironment (DPE) on which they run, as
described in the previous paragraph. The
second is the separation of applications
into a service-specific part and a network
control and management specific part.
The latter interacts with the transport net-
work. The separation into a service part
and a network part is one of the key
features of the TINA architecture. It
allows provision of common services
for different underlying network tech-
nologies, including SDH, ATM, and
radio networks.

According to the separation principles,
TINA is divided into three sub-architec-
tures: The Computing Architecture [2, 3,
4] defines the DPE and associated
modelling concepts. The TINA DPE is
based on OMG’s CORBA with adaption

95

The TINA Architecture
T O M H A N D E G Å R D A N D L I L L K R I S T I A N S E N

Telektronikk 1.1998

Service
Architecture

Network
Resource

Architecture

Computing Architecture

Transport
Network

Figure 1 The TINA architecture consists of three sub-architectures:
Computing, service, and resource architectures

for telecommunications requirements.
The Service Architecture [5] defines a set
of principles for providing services. It
uses the notion of session to offer a co-
herent view of the various events and
relationships taking place during the pro-
vision of services. The Network Architec-
ture [6] describes a generic, technology
independent model for setting up connec-
tions and managing telecommunication
networks.

The TINA Service and Resource Archi-
tectures are based on a specific model of
how business within the telecommunica-
tions domain will be conducted. The
TINA Business Model [7] describes the
different parties involved in service pro-
visioning and their relationships to each
other. A small number of roles are
defined, which reflect the major business
separations of a complex telecommunica-
tions and information market: Consumer,
retailer, broker, third party service pro-
vider, content provider, and network
provider. Within the service and resource
architectures, Reference Points are iden-
tified. Each reference point comprises a
set of interfaces describing the interac-
tions taking place between these roles.
For the most important reference points,
detailed specifications have been de-
veloped [8, 9, 10]; other interfaces are
yet to be described in detail.

2 Overview of the TINA
Architecture

This chapter provides an overview of the
different parts of the TINA architecture,
and how they fit together. It is important
to note that in a telecom system, some
parts may conform to TINA, whilst other
parts may not. For instance, it is possible
to build services that conform to the
TINA service architecture on networks
that are not consistent with the TINA
resource architecture. In this case, the
system uses the TINA service architec-
ture, but not the TINA resource architec-
ture.

2.1 The Computing Architec-
ture and DPE

The TINA Computing architecture con-
sists of three parts: Information Model-
ling Concepts [2], Computational Model-
ling Concepts [3], and DPE Architecture
[4]. The TINA computing architecture is
based on ITU/ISO’s Reference Model for
Open Distributed Computing (RM-ODP),

and the three parts corresponds roughly
to RM-ODP’s information, computa-
tional, and engineering viewpoints,
respectively.

The information and computational
modelling concepts define the concepts
and languages that are used to write
specification of TINA Reference Points
and software components. The informa-
tion and computational parts of TINA
specifications are considered comple-
mentary to each other.

The information model describes the
information-bearing entities in the appli-
cation (or component, or reference
point), their relationships to each other,
and the constraints and rules governing
their behaviour. It identifies the entities
that the application deals with and is
independent from distribution concerns.
The language used for TINA information
specifications is Object Modelling Tech-
nique (OMT) [12] for graphical specifi-
cations, and a simplified version of
GDMO for textual specifications.

The computational model focuses on the
software modules, objects, and their
interfaces. Applications consist of collec-
tions of objects that interact with each
other via interfaces. Each object provides
one or more interfaces to enable other
objects to access its capabilities.

Objects interact either by invoking opera-
tions and sending responses or by means
of stream flows. Interfaces used for the
former kind of interaction are called ope-
rational interfaces, and interfaces used
for the latter kind are called stream inter-
faces. The interactions that occur at an
operational interface is based on the
paradigm of remote procedure calls, i.e.
they are structured in terms of invoca-
tions of one or more operations and
responses to these invocations.

A stream interface is an abstraction that
represents an end-point of a continuos
information flow, such as a video or
audio flow. When objects interact via

stream interfaces, the information
exchange occurs in the form of stream
flows between the objects, where each
stream flow is unidirectional and is a bit
sequence with a certain frame structure
(data format and coding) and quality of
service parameters.

The computational objects are specified
using TINA-ODL (Object Definition
Language). TINA-ODL is a pure super-
set of OMG IDL. The major part of a
typical ODL specification of a software
module is description of the attributes
and operations it supports, using OMG
IDL.

The CORBA architecture is the basis for
the TINA DPE. The CORBA architec-
ture does not meet all the requirements of
telecommunications applications, how-
ever. Consequently, TINA-C’s work
within the DPE area has been focused on
the identification of additional require-
ments and working within the OMG to
have the current standards extended or
new standards established. Extensions
that have been addressed by TINA
include multimedia support (control of
audio/video streams), support for real-
time requirements, support for alternative
transport protocols (other than TCP/IP)
such as SS7 and ATM, extensions to
IDL, and new object services (e.g. TMN-
style notification service). Refer to [11]
in this issue of Telektronikk for more
information on CORBA and the OMG.

The DPE (Figure 3) is a layer on top of
the underlying operating system and
communications software. The DPE
nodes have basic communication capa-
bilities to set up connections between
them in order to establish communication
channels that can be used to carry opera-
tional communication between the appli-
cation objects. These communication
capabilities are in the TINA terminology
referred to as the kernel transport net-
work (KTN). The KTN can be compared
to the signalling network in traditional
telecommunication system architectures.

96 Telektronikk 1.1998

Stream flow endpoint
(source)

Stream flow endpoint
(sink)

Stream Flow

Stream StreamInterface

Figure 2 Stream interfaces and stream flows

2.2 Business Model and
Reference Points

The TINA business model and reference
points [7] consists of two parts:

1. A generic framework for specifying
interactions and contracts between
business administrative domains. This
includes templates and languages for
informational and computational speci-
fications.

2. A set of defined business roles, and
for each defined relationship between
roles, definition of reference points.

The generic framework is important to
allow for openness and flexibility. It
allows two business administrative
domains to define their own business
roles and interactions.

The defined business roles and reference
points identify components and functio-
nality that are specific to TINA. The
business roles have been identified by
analysing the current business rela-
tionships in telecommunication and
information services.

2.2.1 TINA Business Roles

The identified set of TINA business roles
are (see Figure 4):

• Consumer – a stakeholder that con-
sumes services, e.g. a private person, a
household or a company. This type of
stakeholders is the ultimate target for
the business in a TINA system. All
other types of stakeholders can be
characterised as “producers” or
“middlemen”.

• Retailer – a stakeholder that provides
(sells) different kinds of services to the
consumers. Retailers ensure ease of
access and provide quality guarantees
to consumers.

• Third Party Service Provider – a
stakeholder that provides services to
stakeholders other than consumers.

• Broker – a stakeholder that provides
information about how to find services
and stakeholders in the TINA system.
A broker provides a specific service,
which has a general use in a TINA sys-
tem.

• Network Provider – a stakeholder that
provides transport services and con-
trols and manages communication
equipment, like switches, cross-con-
nects, bridges, routers and trunks. Note
that the term ‘network provider’ must
be understood in a strict sense, not as a
synonym for Public Network Opera-
tors (PNO). The PNOs will to a large
extent operate also in the retailer busi-
ness role.

It is important to notice that one business
administrative domain, such as a PNO,
may simultaneously perform several of
the defined business roles, and internally
it might either comply with the defined
reference points, or use other proprietary
interactions.

The main activities of the consumer
business role are:

1. Obtain location of retailers, service
providers, and other consumers.

2. Initiate service relationships that
include service providers and other
consumers.

97Telektronikk 1.1998

TINA Service
Components

TINA
Applications

DPE

DPE
Implementation

kTN

Hardware

Transport
Network

Inter DPE node
interface (IIOP)

TINA Network Resource
Components

Local operating
system and
communications
software

Figure 3 TINA DPE and kernel transport network

3. Register and de-register at retailers.

4. Indicate availability to retailers, e.g.
for receiving invitations and calls.

5. Accept downloads from retailers to
upgrade the interaction capability with
the retailer. This allows tailored, non-
standardised services to be provided
by the retailer, and makes tailored ser-
vices and service functionality an issue
in the competition between retailers.

Consumers can use one or more retailers,
even at the same time. The life-time of a
relationship between a particular con-
sumer and a particular retailer can vary
from seconds to years. For example, a
consumer might use a particular service
offered by a retailer only once. Another
example is a consumer that is a faithful
client to a particular retailer for a long
time and uses the retailer as a “one-stop-
shop”.

The main objectives for the retailer busi-
ness role are the following:

1. Provisioning and management of ser-
vices

2. Collecting accounting information for
the purpose of billing for service usage

3. Establishing relationships to other ser-
vice providers, both other retailers and
third party providers

4. Value adding services from third party
providers.

A retailer can deploy a new service for
immediate use by any consumer in the
TINA system without consulting or
standardising the services with other
retailers. This is an absolute requirement
that will allow a TINA system to be an
attractive and dynamic system for the
future. Together with the downloading
capability of the consumer this enables
rapid service deployment.

A retailer can interact with other retailers
and/or third party service providers.
Often the term ‘service provider’ is used
for both. The difference between these
two roles may not be so big, but a retailer
has his own subscribers, while a third
party service provider does not. The third
party provider may be a pure content pro-
vider, providing content to be distributed
by the retailer to the subscribers of the
retailer.

A stakeholder in the business role of net-
work provider controls and manages a
transport network containing switches,
cross-connects, routers and trunks. The
transport network is controlled by TINA
Connection Management, see section 2.4.

The transport network operated by a
single network provider is unlikely to be
a global network that connects all the
consumers, retailers and third party ser-
vice providers. The global transport net-
work is most likely to be segmented into
a number of subnetworks controlled by

different stakeholders, each in the net-
work provider business role. To allow
management (set-up, removal, etc.) of
connections routed through two or more
network segments belonging to different
connectivity providers, the connectivity
providers have to federate. The same
principles that apply to NNI (network-to-
network interface) for bearer services in
traditional networks apply to federation
among connectivity providers. The refe-
rence point LNFed deals with the inter-
face between federated subnetworks
operated by different network providers.

TINA supports the concept of layer net-
works. A client/server relationship exists
between the connectivity provider that
manages the client layer network and the
connectivity provider that manages the
server layer network. The client layer
network uses resources of the server
layer network. The reference point CSLN
deals with the interface between client
and server layer networks operated by
different network providers.

Stakeholders in the broker business role
have a specific mission in the TINA sys-
tem, which is to provide stakeholders
with information on how to reach other
stakeholders and business administrative
domains and how to reach services pro-
vided in the TINA system. A broker may
act as an entity that ensures equal access
to services. It may also act much the way
an Internet search engine does. The main
objectives of this business role are:

1. Obtain location of retailers
2. Register and de-register at retailers
3. Indicate availability to retailers.

2.2.2 TINA reference points

In order for a system to become TINA
compliant, some conformance require-
ments have to be fulfilled. The confor-
mance requirements are expressed in
terms of reference points. If one or more
of the defined reference points are ful-
filled, the system is a TINA system. Two
types of conformance requirements are
relevant to TINA:

1. Interdomain reference points: Con-
formance requirements for interopera-
bility between different business admi-
nistrative domains

2. Intradomain reference points: Con-
formance requirements for TINA com-
ponents developed by different ven-
dors and to be used within one admi-
nistrative domain.

98 Telektronikk 1.1998

Broker

Consumer Retailer
3pty Service

Provider

Connectivity
Provider

Bkr

RtR

3Pty

3Pty
Ret

Bkr

TCon ConS ConS TCon

LNFedCSLN

TCon

Bkr

Bkr

Figure 4 TINA business roles and reference points. The reference points defined are
called Retailer RP (Ret), Third-party RP (3Pty), Connectivity service RP (ConS),
Client-server layer network RP (CSLN), Layer Network Federation RP (LNFed),

Retailer-to-Retailer RP (RtR), Terminal Connectivity RP (TCon), and Broker RP (Bkr)

The interdomain reference points serve
the same purpose as NNI interfaces in
B-ISDN signalling or X reference points
in TMN. They deal with interfaces be-
tween different administrative domains.

The intradomain reference points may be
compared to e.g., SSP-SCP INAP in IN
and Q interfaces in TMN. They deal with
component interworking and mainly
represent requirements on vendors. The
details of intradomain reference points
are not currently worked out in TINA,
but the service and network component
specifications [13, 14] will contain good
candidates for such reference points.

Each interdomain reference point has two
parts: Access part and usage part.

The access part contains the interfaces
that are needed to establish a contractual
relationship over an administrative
domain boundary. TINA has attempted
to define a generic access part that can be
as much as possible applicable to all refe-
rence points. This may actually not be
completely achievable because different
requirements apply to different reference
points. For example, the access part be-
tween the consumer and the retailer will
typically be asymmetric, with the retailer
providing access to the consumer, while
the relation between two network pro-
viders may be peer-to-peer and sym-
metric. The security issues may also
vary. However, the notion of access
session is useful in all cases where admi-
nistrative domains are crossed. Currently,
the asymmetric access part is defined. Its
definition is placed within the Ret refe-
rence point document [8].

Note that the separation of access and
usage parts allows the access to be con-
formant to the TINA reference point,
while the usage part can be otherwise
agreed between the involved business
administrative domains in case the TINA
defined usage parts do not fit these
business administrative domains.

The usage part depends completely on
the business roles involved and the ser-
vices to be performed.

Specifications are currently completed
for the Ret, TCon, and ConS reference
points. These reference points are defi-
ned in detail, including CORBA IDL
definitions, message sequence charts and
information models.

The Ret specification is the most com-
plex one. Ret contains the asymmetric
access part, and all the necessary inter-
faces and information to perform the ser-
vice session control between one retailer
and one or several consumers. The Ret
specification also includes the operations
needed at communication session level.
Thus, Ret contains specifications for
most of what is described in the TINA
Service Architecture. Great care has been
taken to make the specifications well
structured and modular. In fact, the spe-
cification has been divided into modules,
called feature sets, that to a large extent
can be used individually. The specifica-
tions may be worth looking into for any-
one planning to build large IDL specifi-
cations, even if they are not specifically
interested in the particular information
handled over Ret.

ConS and TCon are also fully defined
specifications, though not that complex.
TCon needs to be supplemented with
details for each technology involved.

It is likely that a lot of work done for the
currently defined reference points can be
reused for the remaining reference
points.

2.3 Service Architecture

2.3.1 Requirements

The TINA Service Architecture is de-
signed to achieve:

• Support for a wide range of services,
including IN-like services like ‘free-
phone’ and queuing services, and also
multimedia, multiparty services with
all possible payment and service con-
trol schemas

• Support for rapid service development,
including development of services that
are not standardised

• Support for tailored services

• Support for a multiplayer environment,
e.g. to allow equipment and software
from different vendors within one

business domain, and also to allow
several service domains to offer com-
pound services

• Support for service manageability,
including but not limited to customer
access to management services, e.g.
management of timetables to deter-
mine personal availability, or on-line
management of subscriptions

• Universal service access, including
global mobility, such as personal
mobility and service mobility

• Ubiquitous information access, e.g.
support to find information even when
the information server has moved to
another place.

TINA does not standardise specific ser-
vices like ‘Video On Demand’ or ‘Tele
education’. Instead, the TINA Service
Architecture provides a framework that
supports personal mobility, multiparty
services and service tailoring. The Ser-
vice Architecture covers the upper part of
Figure 4, including the relationships be-
tween consumers, retailers, brokers and
service providers.

2.3.2 Service Architecture Basics

The Service Architecture is illustrated in
Figure 6. The picture is somewhat
simplified. The objects involved are
explained as follows:

Initial Agent (IA), User Agent (UA) and
Provider Agent (PA) are the objects
related to the access part. The binding
between UA and PA is called an access
session. A session may be seen as a collec-
tion of objects collectively fulfilling a task.

The IA exists due to initial, insecure
access, and it also provides anonymous
access. Access specific UAP (as-UAP)
may be seen as a presentation tier
towards the end user.

After the logon procedure has established
an access session, the user may typically
either start a service of his own, or join

99Telektronikk 1.1998

Consumer Retailer

TINA compliant access

Proprietary usage

Figure 5 Separation of access and usage allows a standard protocol to be used for
access, while a proprietary protocol is used for service usage

an existing service session, as a reply to
an invitation. The invitation mechanism
is the linkage between the access session
and the service session. There are also
relations to ensure that the service ses-
sions controlled by an access session will
die when the access session dies.

The main objects related to service usage
are Service Session Manager (SSM),
User Session Manager (USM), and User
Application (UAP). The SSM is the core
of the service; it contains the core service
logic. Different types of SSMs will exist
for different service types. The main pur-
pose of the USM is to provide tailoring
of services for specific users. The USM
is optional, however. In case tailoring is
not an issue, it may be omitted. Other
service specific support objects, not
shown in the figure, might also exist.
In the retailer domain this may include
mixing bridges (MCU) and other con-
verters. The collection of SSM and
USMs collectively controlling a service
execution constitutes a service session.

The UAP may be service specific and
contain service logic and user interface
related functionality. The UAP may also
be more generic, like a Web browser.

In case streams are needed as part of the
service, e.g. for a Video-on-demand
service, a communication session will
be initiated.

Details of each of the three sessions – the
access session, the service session and

the communication session – will follow,
but first the example scenario illustrated
in Figure 6 will be explained. The scena-
rio is as follows:

(1) Interactions to establish an access
session.

(2) User 1 starts a service session, and
the SSM is instantiated.

(3) User 1 uses the service as a single
user information retrieval service,
e.g. to browse the video offers of the
day.

(4) User 1 invites user 2 to join his ser-
vice session.

(5) The user agent for user 2 stores the
invitation, e.g. because user 2 is
currently not logged on, or has acti-
vated ‘do not disturb’.

(6) User 2 logs on.

(7) User 2 joins the service session; this
may be done from the same terminal,
or User 2 might use another access
session from another terminal.

(8) The users exchange video interests or
other service specific information.
They also exchange more generic
information like available stream
interfaces, etc. They might possibly
negotiate the payment schema, unless
they choose a default schema. The
necessary stream bindings are then
set up through the communication
session (not shown in this figure).

Some comments related to the relation-
ships between the different sessions
might be appropriate. A service session
may be started from (i.e. controlled by)
an access session of a user. A service ses-
sion may also be started and controlled
by the retailer. The former is the normal
choice for a multimedia multiparty con-
ference, the latter is well suited for chat-
like services.

Some service sessions may be openly
announced (like ‘chat-rooms’), while
other service sessions are closed. For the
openly announced sessions, end users
may join freely, though they may still be
charged for the service usage. For the
closed sessions, the only way to even
know the existence of the service session,
is through receiving an invitation to join.

One service session might use and control
several communication sessions. This is
allowed for maximum flexibility. The ser-
vice session might even hand over the
control of a communication session to
another service session, if appropriate.

Note that the pricing for the usage of the
service is independent from the inviter/
invitee distinction. Both ‘freephone’,
‘premium charge’ or ‘split charging’ may
be in place at the service usage level. For
more advanced multiparty services the
payment schemas may be quite complex,
e.g. the ‘boss’ pays for audio, those who
wants video pay for themselves, or any
other payment schema one can imagine.

2.3.3 The Access Session and
user mobility

The access session related object User
Agent (AU) has an important role in
providing personal mobility and session
mobility. The UA acts as a personal
agent for a particular end-user. Upon
reception of an invitation to join a service
session – this may be anything from a
simple point-to-point call or a complex
multi-party-conference – the UA handles
the invitation. The UA may either:

• Send the invitation to a selected termi-
nal, e.g. depending on the type of the
service

• Re-issue the invitation to someone
else, e.g. the called user’s secretary

• Screen the invitation and ignore it

• Store the invitation, e.g. if the user is
not logged on, his terminal is switched
off, or he has activated ‘do not disturb’
functionality

100 Telektronikk 1.1998

as-UAP

PA

IA

UA

Service
Factory

as-UAP

PA

IA

UA

(1)

(2)

(6)

(7)
(2) (7)

ss-UAP ss-UAPUSM SSM USM
(3) (4)

(8)

(3)

(8)

(8) (7) (8)

(2) (7)(2)

(4) (5)

(8)

Consumer
domain

Consumer
domain

Retailer (service provider) domain

Figure 6 Example of objects related to the service architecture

• Start a service to handle the invitation
in more sophisticated ways, e.g. the
invitation may be addressed to “Big-
Company”, and based on location, type
of service. etc., the invitation may be
handed over to the appropriate service
office, much like UAN services in IN.

Note that the invitation may be sent to
one terminal, like a pager or another
small terminal, while joining of the ser-
vice session might be done from another
terminal, e.g. if the service needs a termi-
nal with a high quality screen.

TINA handles invitations and user mobi-
lity as part of a generic access mecha-
nism, and not as a particular service.
Remember also that the TINA access
session may be used together with arbi-
trary services. This allows the personal
mobility and access to be provided by
TINA, even for services that are proprie-
tary and do not use any of the generic
TINA defined interfaces in the service
session part, see Figure 5.

2.3.4 Service Session

The service session controls and mani-
pulates a service instance. TINA has
defined a number of generic service
session components and interfaces. These
generic components must be specialised
or combined with service specific com-
ponents to form specific services. The
generic interfaces include:

1. Functionality to negotiate regarding
transport connection requirements
among the involved parties in a service
session. Examples of parameters are
quality of service requirements, sup-
ported protocols, and coding formats.

2. Generic control and voting mecha-
nisms for multiparty services. This
enables one party to propose a change
in the service session, and the other
parties to vote over this proposal
before it is realised. The proposed
change in the service session may be
things like: adding another party,
establish or change a video or audio
connection, etc.

Service specific behaviour is of course
totally dependent on the type of service.
For a game service the service specific
behaviour might check that the rules of
an interactive game are followed. For a
video on demand service specific operati-
ons related to content, like browse,
rewind, stop, etc. fall into this category.
Specialisation of the generic control and

voting mechanisms mentioned above,
e.g. to handle the different parties in a
multi-party conference differently, is also
possible.

The Service Session Manager (SSM)
represents the core service logic. Diffe-
rent User Service Session Managers
(USM) represent the different customisa-
tion of the service to the different end
users. The User Application (UAP)
represents the end user in the end user
domain.

Tailoring can be done in several dimen-
sions. It can be done by the USM, as
explained above. Alternatively, it can be
done by specialising the service, i.e.
SSM, and optionally USM and/or UAP,
by adding new interfaces and/or special-
ising the behaviour of the objects.

The UAP may be service specific and
downloaded or otherwise provided from
the service provider. It may be the case
that the same UAP is used for many ser-
vices, like a web browser. But in other
cases the UAP may be specific for a par-
ticular service.

2.3.5 Communication session

In addition to the Access and Service
Sessions described above, the TINA
service architecture also defines the con-
cept of Communication Session. Simply
stated, the communication session pro-
vides a high-level view of underlying
transport networks. More specifically,
the overall goals of the communication
session are to:

• Offer a technology independent view
of the network to the service session

• Control and manage quality of service,
set-up, modifications, etc. of multiple
connections.

Some reasons why the communication
session is separated from the service
session are:

• It enables third-party control of con-
nections. For example, some users
participate in multimedia conferences
using e.g. video streams, but without
receiving the video streams them-
selves. Example: A conference man-
ager may control and pay for some
stream flows between some end users,
but without participating in all stream
flows himself.

• It enables the same communication
session entities to be used by different
services, i.e. the service tailoring may
be done at the service level without
affecting the behaviour of the commu-
nication related objects.

• It enables a service session to be sus-
pended, and the communication
session to be ended. On service re-
sumption a new communication ses-
sion can be started.

Figure 7 shows the objects making up the
communication session, and their rela-
tionship to the service session, repre-
sented by the SSM (possibly USM) and
the UAP(s).

As seen from the service session, the
communication session takes care of the
connections end-to-end between user
applications (UAPs). The communication
session related objects are Communica-
tion Session Manager (CSM) and Termi-
nal Communication Session Manager

101Telektronikk 1.1998

UAP-1 SSM UAP-2

CSMTCSM TCSM

Consumer
domain

Consumer
domain

Retailer (service provider)
domain

Figure 7 Objects involved in the Communication Session

(TCSM). These objects are further
described in section 2.4.

The TINA Service Architecture assumes
that the network is capable of informing
the services about all the necessary
events from the network. For example,
for a video-on-demand service where the
customer pays on-line for the video con-
tent, it is very important that the content
is actually delivered on-line according to
the agreement, if not, the price should be
adjusted.

2.4 Network Resource
Architecture

The TINA Network Resource Architec-
ture (NRA) defines a generic technology
independent framework for connection
control (setting up, modifying and re-
leasing connections) and for managing
telecommunications networks. It consists
of two parts, an information model called
Network Resource Information Model

(NRIM) and a computational part, the
latter identifying software components
and interfaces between them.

The NRIM is based on concepts from
ITU-T standards. It extends these con-
cepts to support different network tech-
nologies. The NRIM is intended to be
general and network technology indepen-
dent, yet it is a fact that the work has
been focused on ATM networks.

An overview of the computational speci-
fication is shown in Figure 8. The NRA
has three layers:

• The Communication Session layer
• The Connection Session Layer
• The Layer Network.

The Communication Session is the top-
most layer. It provides service software
with a simple, network independent
interface to control and manage connec-
tions, called flows at this level. The flows
extend between flow termination points.

A flow termination point is an endpoint
of a flow and may represent a hardware
device such as a microphone or a loud-
speaker, or software component. Flow
termination points are located within
terminals. Since terminals and networks
may have different capabilities, an
important part of flow establishment is
to agree on the quality of service and
coding formats, e.g. MPEG or H.261
for video, to use.

The central components within this layer
are called the Communication Session
Manager (CSM) and Terminal Commu-
nication Session Manager (TCSM). The
CSM has the overall responsibility. It
provides service components with a view
of connections that is “abstract”, i.e.
independent from specific network tech-
nologies. TCSMs run within terminals
and represent the terminals for the pur-
pose of establishment and management
of flows. The CSM thus interacts with
the TCSMs and the CC (described
below) to establish the flows.

The abstract nature of the interface pro-
vided to services by the CSM is very
important since it enables the construc-
tion of services that can run on different
underlying network technologies.

Below the Communication Session we
find the Connection Session layer. The
central component within this layer is the
Connection Coordinator (CC). The CC
provides the CSM with interfaces to
interconnect network access points. The
CC hides underlying network techno-
logies, and provides an abstract view of
the connections. It is able to use different
underlying network technologies to
establish the connections. It will pick
one or more specific underlying networks
(“layer networks”) based on the Quality
of Service requirements on the connec-
tions expressed by the CSM. Thus, the
CC is the component of the architecture
that maps the abstract, application ori-
ented QoS requirements down to require-
ments on a specific network technology,
e.g. traffic class, bit rate, end-to-end
delay, and cell delay variation. The CC
also handles inter-working between
different network technologies.

The bottom layer of the NRA computa-
tional architecture is the Layer Network.
The central component here is the Layer
Network Coordinator (LNC). It deals
with the set-up and management of con-
nections within a specific type of net-
work. The layer network may be struc-

102 Telektronikk 1.1998

SSM

Communication
Session Manager

Connection
Coordinator

Layer Network
Coordinator

NML Connection
Performer

NML
Connection
Performer

NML
Connection
Performer

NML
Connection
Performer

NE NE NE NE NE NEElements

Terminal
CSM

Terminal
CSM

Figure 8 Overview of the network resource architecture

tured as a hierarchy of subnetworks.
Each subnetwork is controlled by a
Connection Performer (CP) component.

Two noteworthy points concerning the
NRA are:

• It has a strictly hierarchical structure
and is an example of a class of connec-
tion control systems referred to as
“open signalling systems”. The idea is
to implement the network intelligence,
i.e. routing algorithms and QoS man-
agement, in computers outside the
switches. The switches themselves are
simple and “dumb” and controlled
through a simple, low level interface,
see Figure 9.

• It provides a common architecture for
control and management. This is in
contrast to traditional network systems,
where a distinction is made between
signalling and management applica-
tions, the two being based on totally
different software architectures.

3 Relationships to other
work

This chapter contrasts TINA with related
work within the areas of multimedia ser-
vices, intelligent networks and broadband
networks.

3.1 TINA and other approaches
to multimedia services

Regarding full multi-media multi-party
services, there are several existing stan-
dards in the area, like the ITU standards
H.32x for conferencing over POTS,
ISDN, LAN and IP networks. In addi-
tion, there has long been activities in ITU
SG11 for ‘call control’ of multiparty ser-
vices inside the framework of B-ISDN
signalling. The purpose of this chapter
is to contrast TINA to some of these
approaches.

3.1.1 The H.32x family

The ITU standards H.32x focus little on
conferences on demand. The conferences
are planned in advance and typically
ordered by fax or web. Also the loca-
tion/terminal of the different participants
are agreed in advance, so personal mobi-
lity is not an issue, and not explicitly
covered.

The H.32x family of systems does not
encourage individual tailoring of services

to individual users. By using generic ope-
rations, the number of interactions
among the involved parties tend to be
quite large. Normally, the service takes
several or many seconds to establish.
Payment, subscription, etc. are out of the
scope and must be handled by proprie-
tary means.

There are different versions of this stan-
dard for different types of networks. We
consider H.320 for N-ISDN and H.323
for IP as most important and will cover
them specifically.

3.1.1.1 H.320 over ISDN

H.320 standardises multimedia confe-
rencing over ISDN. In H.320 the control
operations are sent in-band. First a plain
ISDN bearer channel (B-channel) is esta-
blished from each of the conference par-
ticipants to the service provider. The ser-
vice provider negotiates the coding for-
mats, QoS, number of B-channels, etc.
with the conference participants over this
channel. After this set-up phase both con-
trol and media streams are sent over the
agreed number of B channels.

TINA, in contrast, sends control informa-
tion on a logically separate network,
which is a better approach when control
information is exchanged before the
media streams are set up. Since TINA, as
opposed to H.320, supports personal
mobility and ‘on-demand’ invitations, no
particular assumptions regarding network
technology are made at the service con-
trol level. Instead, the kTN is used to
carry the control information.

Note, though, that from the network
point of view, pure ISDN is used to

support H.320 conferencing. All the con-
ferencing related service control is done
end-to-end between the different end
users and the service provider, who is
also an end user seen from the ISDN net-
work’s point of view. The conferencing
service unit (MCU) and the software for
conference control can be owned and
operated by a service provider different
from the ISDN provider. Thus, they
separate service provider and network
provider and allow for business relation-
ships quite like the way TINA does.

3.1.1.2 H.323 over IP

H.323 standardises multimedia confe-
rencing in LANs and IP networks. H.323
share with TINA the principles of separa-
tion of “service control” from “connec-
tion control”. This is done through three
different protocols: RAS, H.245 and
H.225. H.323 does not, however, focus
on conferencing across different admini-
strative domains. The focus so far is on
conferencing within a single domain,
called an H.323 zone.

The gatekeeper is the unit providing
access control and bandwidth inside one
H.323 zone. Conferencing across several
H.323 zones is currently for further
study; this is linked to the development
of IP reservation mechanism like RSVP
and how zone or domain boarders will
affect the reservation protocols in IP.

H.323 version of conferencing addresses
many other areas as well, such as IP
multicast, and gateways between H.323
zones and basic ISDN terminals and
H.320 compliant terminals are defined.
Thus, terminals outside this H.323 zone,
placed in an ISDN network, can partici-

103Telektronikk 1.1998

4' 5'
4 5 4'' 5''1 6 3 2

Figure 9 Open signalling

Figure 10 Classical signalling

pate in this conference service without
involving any conference service at the
ISDN side.

We may note that the H.323 standard for
conferencing over IP has been developed
quickly and mainly by software com-
panies, and then put into ITU to be
‘stamped’. New versions of the standard
are under development.

3.1.2 Control of multimedia
streams in OMG

The OMG has just adopted a standard
called ‘Control of A/V Streams’1. Pro-
ducts supporting this standard are ex-
pected some time during 1998. The
OMG standard can be seen as a simpli-
fied version of the TINA concept of
communication session. The proposal is
specifically aimed at being well suited
both for ATM and for IP networks. This
illustrates how the TINA communication
session concept is well suited to fit be-
tween TINA Service Architecture and
different underlying network techno-
logies. It also relates to H.245, being sort
of a ‘CORBA-fied’ version of it.

3.1.3 B-ISDN Call Control

In B-ISDN signalling there is the concept
of ‘call control’. In addition, IN trigger-
ing mechanisms, like N-ISDN Q.1200-
CS3, are assumed in cases where more
advanced service session control is
needed. This means that service control
is split between the basic B-ISDN signal-
ling and IN. Basic B-ISDN signalling

contains generic service operations like
join, ownership control, etc. in addition
to pure connection establishment. The
proposed mechanisms for IN-triggering
are quite complex, so that e.g. personal
mobility and other service related issues
might be handled during connection
establishment, instead of prior to connec-
tion establishment.

As the focus over the last few years has
shifted towards multimedia over IP, it
may be questioned whether service con-
trol for this type of services will ever be
handled by the far less open B-ISDN
signalling system. Basic connection con-
trol may, however, be handled by B-
ISDN signalling.

3.2 TINA and IN

TINA has sometimes been referred to as
‘the next generation IN’. There is some
element of truth in this expression; there
are similarities between TINA and IN.
There are also, however, great diffe-
rences, both in scope and technical
approach. The similarities and diffe-
rences will be discussed in the following.
The considerations are related to scope,
user interface, support for mobility, and
support for rapid service development.

Both TINA and IN focus quite strongly
on value added services, like freephone
and premium rate. But unlike TINA and
H.32x conferencing services, IN is tar-
geted towards enhancing N-ISDN and
plain telephony (‘POTS’) calls between
two endpoints. Other services not based
on N-ISDN, or not based on a two party
call, are excluded from current IN. This
involves most of the multiparty and/or
multimedia services.

All IN services can be used from a plain
telephone without any extra equipment.
This usability from every phone is a
major strength with IN. As GSM phones,
ISDN phones, and palm tops become
increasingly widespread and have in-
creasingly good displays, this strength
will, however, be less important in the
future. Moreover, many services, e.g.
ticket booking, are quite clumsy to use
with the telephony interface and could
obviously be handled better with a
text/icon based user interface, more like
the one on the web.

In IN, all outgoing calls are assumed to
be placed from a telephone, and all
messages to the involved parties are sup-
posed to be delivered over voice as well.
Future multimedia services violate this
assumption, however. If a user wants to
‘call’ a ‘multi-media UTP’ number, he
might as well start from a PC, and if the
called party is not available, electronic
communication, like e-mail, may take
place instead. Under such circumstances
the basic assumptions in IN are invali-
dated, and a voice connection never
really needs to be established.

The assumption in standardised IN is that
BCSM is always used. This translates to
an assumption that every service invoca-
tion starts with the initiation of an
N-ISDN voice call. This assumption
allows personal mobility to be handled
during the establishment of the voice
connection, i.e. at the originating side for
outgoing calls, and at the terminating
side for incoming calls. In TINA, mobi-
lity is handled through interactions over
the kTN (signalling network) before
media connections are established. This
approach seems to be better sited to sup-
port a multi-media and multi-network
environment.

The most important goal of IN is to sup-
port rapid development of new services.
IN has not completely lived up to its
expectations in this area. This is partly
because services are based on standard-
ised modules called SIBs (service inde-
pendent building blocks). Deployment of
new SIBs in IN tends to require upgrades
also in the switches. Another reason is
that the BCSM and the IN-triggering
tend to make quite complex interactions
between INAP and ISUP signalling.
A third reason being that the software
development environment in IN is a
closed one, and that specialised skills are
needed to do ‘IN-programming’. This is
opposed to other approaches towards ser-

104 Telektronikk 1.1998

1 The term A/V stream in one OMG
corresponds to the more generic term
multi media stream.

1 8

2 3

7 6 5 4

NNI Signalling

UNI Signalling

vice provisioning, notably the Internet
and TINA, where open interfaces and
standard application development tools
are used.

One may suspect that very little from
existing SIBs and IN software may be
reused in future multi-media, multi-party
services. Rather, principles from H.32x
and from the TINA service architecture
may be highly relevant in such a context.

3.3 Signalling in B-ISDN and
ATM

Traditional signalling techniques come
from the telephony world and these para-
digms are still prevalent in broadband
networks. For example, the ATM stan-
dard for signalling is now Q.2931 which
is based on the narrowband ISDN Q.931
standard. The basic principles of this
signalling paradigm is illustrated in
Figure 10.

There are several limitations to Q.2931.
For this reason, there are currently
enhancements under study within ITU-T
and ATM Forum. The limitations can be
summarised as:

• The model is geared to running a
single connection within a single call.
Much more flexibility is needed to
support multimedia and conferencing
services. There is a need for complex
topologies, and some notion of a ses-
sion to encompass these multi-party
connections.

• The implementations of UNI signal-
ling have too large a footprint. All
code needed to run the protocol has to
be built into the terminal. The switch
also needs to run the entire protocol
leading to a huge amount of code
running on the switch. The code is also
all mixed up with session level logic
about what the end parties can do.

• More than the code, the specification
of the ATM-Forum UNI requires
almost 150 text book pages to define
the connection management signalling.
This is because it must define the de-
livery semantics and encoding at the
bit level. An equivalent CORBA based
interface for slightly more function-
ality requires dramatically fewer (10 or
20) pages and is mainly self documen-
ting. The expression ‘CORBA based’
automatically defines the delivery
semantics and encoding.

The TINA Network Resource Architec-
ture is based on a totally different para-
digm, often referred to as open sig-
nalling. The paradigm, illustrated in
Figure 9, allows third party providers to
develop hardware independent signalling
systems. This software utilizes low-level
open interfaces for switch control and
configuration.

The potential benefits of this architecture
are:

• The implementation is simpler, since it
is based on an underlying DPE.

• Different, more centralised approaches
to routing becomes feasible.

• A common architecture can be used
for both control (e.g. signalling) and
management.

• The architecture is well suited to sup-
port the complex connection topo-
logies needed by multimedia and con-
ferencing services

The major obstacle for the TINA NRA
and other architectures based on the open
signalling paradigm is the fact that it
differs so radically from traditional sig-
nalling systems and lacks support from
the major equipment vendors and stan-
dards bodies.

4 Future Work

The first phase of TINA-C ended in
December 1997. In January 1998 the con-
sortium embarked on a second phase with
a modified organisation. The most impor-
tant change is that the Core Team has
been dissolved. According to the plan, the
consortium will now be driven by Work-
ing Groups consisting of voluntary parti-
cipants from the member companies. The
consortium will be controlled by the Con-
sortium Forum (CF) consisting of repre-
sentatives from all member companies,
and an Architecture Board (AB). The AB
will consist of a limited number of repre-
sentatives, and is responsible for the tech-
nical coherence of the work plan, and for
setting up the Working Groups. With the
new organisation, TINA-C also intro-
duced multiple membership classes, the
idea being to increase the number of
member organisations, and especially to
encourage universities to join.

The decision to organise an extension of
TINA is clearly motivated by the fear
that the architecture and specifications
will have very little impact on the in-

dustry if the Consortium is closed now.
Firstly, there is a need to promote the
results to a wider audience than the rela-
tively closed group of companies that
have been involved so far. Part of the
strategy is to try actively to involve more
organisations in the consortium, and to
spend resources on large scale demon-
strations of services based on the TINA
architecture. Several demonstrations are
planned during 1998, involving major
companies.

Moreover, there are several unfinished
parts of the architecture. Several refe-
rence points have not been specified.
Many feel that the architecture needs
simplification, and strategies for migrat-
ing from existing telecommunications
architectures to TINA are not adequately
described.

At the time of writing, the following
Working Groups (WG) have been
established:

• DPE WG. The purpose of this WG is
to continue the clarification of the
additions required in the area of Distri-
buted Processing Environment to the
OMG specifications, and to continue
the effort to encourage adoption of
corresponding specifications by the
OMG.

• Service Management WG. The pur-
pose of this WG is to define a frame-
work for service management, recog-
nising that the service management
area is poorly covered in other forums.

• IN and TINA WG. The purpose of this
WG is to specify strategies to migrate
from services based on ITU-T IN to
TINA based services, and to promote
and contribute elements of the TINA
architecture to the groups within
ITU-T standardising IN and UMTS.

• Next Generation Mobility WG. The
purpose of this WG is to further de-
velop the work done by TINA within
the areas of personal mobility and
terminal mobility, and to contribute
the results to standardisation bodies
working with future mobile networks,
such as UMTS.

An unanswered question is whether the
best approach is to pursue the TINA
ideas within a TINA consortium, or
whether to do it within other forums,
such as the OMG Telecommunications
Domain Task Force, which includes
many of the same members, and even the
same people.

105Telektronikk 1.1998

5 Concluding remarks

The TINA architecture promotes many
principles that apparently would have
great benefits to different stakeholders in
the telecommunications industry if they
were adopted. By hiding the complexity
of the networks from the services, the
TINA architecture could help operators
develop common services over different
network technologies, and to introduce
new services more rapidly, thereby re-
ducing operations and maintenance costs.
Furthermore, the use of a generic distri-
buted processing environment ensures
portability across multi-vendor equip-
ment, the telecom industry to benefit
from advances in computing technology,
e.g. object orientation and distribution.
Finally, the use of a common architecture
for all kinds of services would enable
manufacturers to adopt a common app-
roach to services and their management.

Although many of the underlying prin-
ciples of TINA are useful, it is not cur-
rently clear that TINA as such will be
widely adopted. One of the major pro-
blems of the architecture is its huge
scope. If introduced all at once, it would
represent a revolution in the telecommu-

nications industry. That is not likely to
happen. Of course, TINA is not necessa-
rily a question of all or nothing. A system
may use only part of the TINA architec-
ture, neglecting other parts. Clear strate-
gies are lacking, however. A second
problem is the lack of industry support
outside the research organisations of the
member companies. So far, TINA pro-
ducts are non-existent. Finally, TINA
faces competition from other initiatives
with partly overlapping goals. Some of
these initiatives have a stronger industry
support and move much faster than
TINA, e.g. the OMG, the ITU-T H.32x
series of recommendations, the Java
community, and several activities within
the Internet community related to multi-
media services and future network infra-
structure.

6 References

Note: The TINA documents are available
from the TINA-C Web site
http://www.tinac.com.

1 Darmois, E, Hoshi, M. Software
Architecture for Multimedia and
Information Services. Global Com-
munications, 1997.

2 Informational Modelling Concepts,
Version 2.0. TINA-C, April 1995.

3 Computational Modelling Concepts,
Version 3.2. TINA-C, May 1996.

4 Engineering Modelling Concepts.
TINA-C, December 1994.

5 TINA Service Architecture, Version
5.0. TINA-C, June 1997.

6 TINA Network Resource Architec-
ture, Version 3.0. TINA-C, February
1997.

7 TINA Business Model and Reference
Points, Version 4.0. TINA-C, May
1997.

8 Ret Reference Point Specification,
Version 1.0. TINA-C, September
1997.

9 The ConS Reference Point, Version
1.0. TINA-C, November 1996.

10 The Tcon Reference Point, Version
1.1. TINA-C, November 1996.

11 Solbakken, H et al. CORBA as an
Architecture for Distributed Systems.
Telektronikk, 94 (1), 107–118, 1998
(this issue).

12 Rumbaugh, J et al. Object-Oriented
Modeling and Design. Englewood
Cliffs, NJ, Prentice Hall, 1991.

13 Service component specifications
part B, Version 1.0. TINA-C, Janu-
ary 1998.

106 Telektronikk 1.1998

Tom Handegård is Research Scientist at Telenor
R&D, Kjeller, where he has been employed since
1990. He has been working with Intelligent Net-
works, B-ISDN signalling, and the TINA architec-
ture. Currently, his main interests are within
various aspects of distributed object-oriented
systems, including CORBA and Java technology.

e-mail: tom.handegard@fou.telenor.no

Lill Kristiansen holds a PhD (Dr. Scient) in mathe-
matical logic from the University of Oslo in 1993.
She worked with object oriented methods and
tools applied to IN and TINA at Telenor R&D from
1993 to 1997. She is currently working as process
and methodology coordinator at Ericsson, in the
Internet/Broadband group. She is also engaged at
University Studies at Kjeller (UNIK) as associate
professor.

e-mail: etolkr@eto.ericsson.se

This article provides an overview of
the Common Object Request Broker
Architecture (CORBA) as a techno-
logy for distributed computing and
systems integration. CORBA is both
robust and commercially available. It
provides a relatively high-level solu-
tion for program-to-program commu-
nication, interoperability across diffe-
rent platforms, networks and lan-
guages, and a rich infrastructure for
developing, integrating and running
distributed applications.

There is a trend in enterprise applica-
tion development towards three-tier or
multitier architectures with thin Web-
based clients and integration of legacy
systems. CORBA fits well into this
picture, and major computer software
vendors have chosen CORBA as a key
technology for the next generation
Web.

CORBA has become an interesting
technology for telecom applications as
well. OMGs Telecom Domain Task
Force is currently working on how to
introduce CORBA in telecommunica-
tion management systems, including
systems based on TMN and SNMP,
and in Intelligent Networks (IN).

1 Introduction

The design and implementation of soft-
ware is a difficult and expensive activity,
especially when the software has to run
on a network of machines, with the over-
all functionality distributed among the
machines, and when the software has to
be integrated with other systems, such as
legacy systems or purchased systems.
This is increasingly the situation today.
To add to the complexities, today’s soft-
ware often has to deal with heterogene-
ous environments of different languages,
platforms and network protocols.

The challenges of developing distributed
software stem from fundamental prob-
lems, such as detecting and recovering
from network and host failures, and from
limitations with tools and techniques
used to build such software. The chal-
lenges of integrating systems stem from
the use of different models, languages,
interfaces and protocols.

Distributed object computing is a promi-
sing approach to distributed computing
and systems integration. It combines two
major areas in software technology: dis-
tributed computing systems and object-

oriented design and programming. Distri-
buted computing system techniques
focus on how to provide support for
resource sharing, openness, concurrency,
scalability, fault tolerance and trans-
parency [1]. Object-oriented design and
programming, on the other hand, focus
on reducing complexity through modu-
larization, encapsulation of data and
methods, inheritance, polymorphism and
reuse of existing components.

The two most widely adopted distributed
object computing models are the Com-
mon Object Request Broker Architecture
(CORBA), which is standardised by the
Object Management Group (OMG), and
the Distributed Component Object Model
(DCOM), which is being developed by
Microsoft.

CORBA defines how client applications
can invoke operations on server objects,
no matter where they are located and
who designed them, using the services of
an Object Request Broker (ORB). The
OMG has two main goals with CORBA
[2]. Firstly, to make it easier to imple-
ment software that must bridge the
boundaries of different platforms, net-
works, and languages. Secondly, to
encourage the development of open soft-
ware that can be used as components of
larger systems. The ultimate goal is to
reduce complexity, lower cost and hasten
the introduction of new software applica-
tions.

CORBA specifications and implementa-
tions have been evolving over several
years, and they are still under construc-
tion. Although the first CORBA specifi-
cation was defined in 1991, and CORBA
products have been available since 1993,
it is just in the last year or two that really
workable standards as well as complete
and robust implementations have been
produced.

The adoption of CORBA technology has
increased rapidly in the same period,
partly because of the marriage of
CORBA and Web-technology. Major
computer software vendors such as Net-
scape, Oracle, Sun and IBM have chosen
CORBA as a key technology for the next
generation Web. The new Web, called
the Object Web [3], will be used to build
and deploy full-blown business applica-
tions based on three- and multitier archi-
tectures, and thin clients running in Web-
browsers, providing a globally accessible
user interface.

Over the last two years the authors of this
article have both studied and gained
practical experience with CORBA. As
part of the ACTS ReTINA project, we
are currently building a BVPN (Broad-
band Virtual Private Network) demon-
strator using CORBA [4]. The main aim
is to test the ReTINA DPE (Distributed
Processing Environment), a real-time
distributed processing environment based
on CORBA.

The aim of this article is to provide an
overview of CORBA and how to use
CORBA to develop distributed applica-
tions. We provide an introduction to
OMG and the CORBA standard and look
into how to use CORBA to implement
applications. We present an architecture
for CORBA applications and explain
how this architecture can be enriched by
the use of Java and Web-technology. We
also describe how CORBA can be inte-
grated with database systems and Trans-
action Processing (TP) monitors, and
how CORBA can be used for systems
integration. After looking into these
general issues about using CORBA, we
present the status with respect to the use
of CORBA in telecom applications. The
last part of the article compares CORBA
with DCOM and other distributed object
technologies, and presents an overview
of CORBA products and also the future
directions for CORBA.

2 OMG and CORBA

OMG was founded in May 1989 as an
international industry consortium con-
sisting of eight companies: Sun Micro-
systems, Unisys Corporation, Data Gene-
ral, Canon Inc., Philips Telecommunica-
tion N.V, Hewlett-Packard, American
Airlines, and 3Com Corporation. This list
has now increased to over 700 members
world-wide, and it is the largest software
consortium in the world today. The orga-
nisation is a non-profit corporation. It
does not develop software itself, but
rather makes specifications for develop-
ment and deployment of heterogeneous
distributed systems.

In order to make a specification within a
certain area (e.g. naming service), a task
force within OMG sends out an RFP
(Request For Proposal). Each OMG
member that intends to respond to an
RFP, whether individually or jointly with
other members, must submit a letter of
intent (LOI) to respond to OMG by a
date specified in the RFP. This date is

107

CORBA as an Infrastructure for Distributed Computing
and Systems Integration
H Å K O N S O L B A K K E N (E D I T O R) , O L E J Ø R G E N A N F I N D S E N ,
E I R I K D A H L E , T O M H A N D E G Å R D , K J E L L S Æ T E N

Telektronikk 1.1998

typically 60 days before the initial sub-
mission date. Often more than one pro-
posal will be received, and a review and
voting process is conducted to select one
of them. OMG will then adopt the speci-
fication and vendors can start the imple-
mentation. Note that after a member
sends a proposal to an RFP, it must have
an implementation within six months.
Therefore, most of the adopted specifica-
tions are based on proven technology.

Sometimes a Request for Information
(RFI) is sent out prior to an RFP. The
RFI is a general request to the computer
industry, universities, and any other
interested parties to submit information
about a particular technology area to one
of the Task Forces in OMG. Based on the
responses, an RFP might be sent out.

2.1 The Object Management
Architecture

OMG has specified a high-level architec-
ture called Object Management Architec-
ture (OMA). OMA provides a framework
of services, facilities, and interfaces for
distributed systems, and it consists of
five components.

• Object Request Broker (ORB): is the
software communication bus that all
objects use to communicate.

• Object Services: provides funda-
mental, commonly used functionality
to other CORBA objects.

• Common Facilities: while Object Ser-
vices provides services to objects,
facilities provide functionality to appli-
cations. Example of such a facility is
the System Management Facility.

• Domain Interfaces: these are interfaces
for specific application fields or
domains, like telecom, finance and
health.

• Application Interfaces: are interfaces
for a specific application, and not part
of the OMG standard, since OMG does
not develop applications, and probably
never will.

The rest of this section will concentrate
on the ORB architecture and the Object
Services. While a lot of the Object Ser-
vices have been specified, the domain
interfaces and the common facilities are
the most recent areas of focus, and will
not be described in more details.

2.2 CORBA

The most important part of OMA is the
CORBA specification. It describes in
detail the interfaces and characteristics of
an ORB. It contains all the necessary
functionality to identify and locate
objects, handle connections, invoke
methods on objects, and pass data be-
tween objects. The latest revision of the
CORBA specification is CORBA 2.0,
and the major components in it are: ORB
core, Interface Definition Language
(IDL), Inter-ORB Protocol (IIOP), static
and dynamic invocations, language map-
pings, and Object Adapters. We will start
by explaining what IDL is, then give an
example of how to use CORBA (using
Static invocation), followed by a short
description of dynamic invocation, inter-
face repository, and object adapters.

2.2.1 IDL

In order for a client to communicate with
a CORBA object it needs to know what
operations or services that object can
provide. This is often called the interface
of an object and in CORBA this interface
is specified using IDL. Even though IDL
has a somewhat similar syntax to C/C++,
it is not an imperative programming
language, but a declarative language.
This means that the interface and the
implementation are separated, and the
implementation can be programmed in
any programming language with a map-
ping to IDL. Languages with a mapping
from IDL include C, C++, Smalltalk,
Cobol, and Java. A language mapping
means that each element in IDL is trans-
lated to a construct in the target language
using an IDL compiler. An interface in
IDL is for example mapped to an inter-
face in Java, and to a class in C++.

So what does IDL look like? Figure 2 is
an example from an ATM configuration
management system.

Modules are used to control name spaces.
To refer to LayerNetwork above, you
need to use the module-name:
NRCM::LayerNetwork. LayerNetwork is
an interface, inheriting methods and attri-
butes from ATMObject (not shown).
Interface inheritance is an important
feature in IDL, and it allows reuse of
existing interfaces. All the methods and
attributes in ATMObject will be inherited
into LayerNetwork. LayerNetwork adds
two methods, createSubnetwork and
updateBandwidth. The createSubnetwork

108 Telektronikk 1.1998

Object Request Broker

Application
Interfaces

Domain
Interfaces

Common
Facilities

Object
Services

Figure 1 Object Management Architecture

module NRCM {

interface LayerNetwork : ATMObject {

exception AlreadyExists { };

Subnetwork createSubnetwork(in string name)
raises (AlreadyExists);

void updateBandwidth(in string name, inout long bw);

};

};

Figure 2 IDL example

method creates a new Subnetwork object
with the name given as in parameter
name, and it returns an object reference
to the newly created Subnetwork object.
updateBandwidth takes a layer-network
name and a bandwidth (bw) as in para-
meter. bw is also an out parameter, and it
returns the available bandwidth of the
layer-network. IDL operations can raise
exceptions to indicate the occurrence of
an error. The createSubnetwork method
checks if a subnetwork with the same
name already exists, and if it does, it
gives an AlreadyExists exception back to
the calling object.

IDL is a simple, declarative interface
definition language. It does not include
features for defining object behaviour. It
allows mappings to both object-oriented
and non-object-oriented languages. It is
possible to have a mapping to for ex-
ample COBOL, which is important when
encapsulating legacy systems.

2.2.2 CORBA development process

Now that you know IDL, let us see how
you can write a client/server application.

Figure 3 shows the development process.
You start by writing the IDL in a file,
and the interfaces will be the contract
between the client and the server pro-
gram. A client programmer runs the IDL
file through an IDL compiler to produce
stub code in the selected language. He
then writes a client program which in-
vokes the operations defined in the IDL
file, and then link this code with the stubs
file. The client is then ready to go. A ser-
ver programmer will start his work by
running the same IDL file through an
IDL compiler to produce skeleton code
in his favorite language. He then imple-
ments the interfaces in the IDL file, and
compiles and links them with the skele-
ton code. Note that client and server
programmers can select different imple-
mentation languages. So what happens
when the two programs are executed?
The server program creates some
CORBA object, and the client gets a
reference to this object. It can get this
initial reference either from a Naming
Service, from a proprietary bind mecha-
nism, or by importing a stringified object
reference from a file. This object refe-
rence is really a pointer to a local proxy
that represents the object on the server.
The client does not need to know where
the real object is or anything else about
it, except that it must provide the func-
tionality specified by the IDL. The client

can be written in Java, running on Win-
dows, while the server can be written in
C++, running on Solaris. When the client
calls a method, it really calls the local
proxy, which sends a request to the ser-
ver, which calls the skeleton code, which
again calls the real implementation. The
implementation code is executed, and
then the result is returned in the opposite
direction. The strength of this approach is
that the environment in which the client
and the server execute can be completely
different, they are still able to communi-
cate with each other.

2.2.3 IIOP

CORBA 1.2, which came in 1991, did
not specify the protocol it would use for
sending requests and data between
objects. This led to a different, proprie-
tary protocol for each CORBA vendor. In
1995, the CORBA 2.0 specification was
released, and one of the most important
features was that it specified an on-the-
wire protocol for interoperability be-
tween ORBs from different vendors. This
protocol is called Internet InterOrb Proto-
col (IIOP), and it is running over TCP/IP.
An IIOP packet consists of all the infor-
mation an ORB needs, the target object,
the operation being called, and the para-
meters in the call. IIOP provides the pro-
tocol, but something more is also needed
in order to provide interoperability be-
tween different ORBs. The object refe-
rences that each ORB uses must be stan-
dardised. CORBA 2.0 does this by speci-

fying an Interoperable Object Reference
(IOR). This means that if you have an
IOR to an object, you can talk to it. It
contains information about the machine-
name and the port of the server, the name
and the type of the called object and so on.

2.2.4 Dynamic Invocation and
Interface Repository

Static invocation is appropriate for pro-
ducing client/server application software.
However, sometimes you want to be able
to talk to an object without knowing its
interface at development time. This is the
case for tool-builders who want to make
tools that list methods and attributes and
possibly invoke methods on any object.
OMG has called this dynamic invocation
and it is provided in CORBA 2.0 by
using what is called Interface Repository
(IR). Whenever you compile an IDL file,
you can specify that you want the meta-
data to be inserted in the IR. A client that
wants to use the object without having
the IDL file, can then ask the IR for the
metadata and construct a call to the
object at runtime. The drawback with
dynamic invocation is that it is cumber-
some to program and fortunately most
client/server application programs do not
have to use it.

2.3 CORBA Services

The idea behind the CORBA Services is
to provide fundamental services to appli-
cation objects. OMG has defined the

109Telektronikk 1.1998

IDL

IDL
Compiler

IDL
Compiler

Client developer Server developer

Client
"stub"

Server
"skeleton"

Client Server

Figure 3 The CORBA development process

interfaces (in IDL) and the semantics of
each of the services. The implementa-
tions of the services are not standardized,
and it is up to each vendor to make sure
they deliver the functionality specified by
OMG.

There are 17 object services as per today,
and more might be added later. The 17
services are: Collection, Properties, Con-
currency control, Query, Event notifica-
tion, Relationships, Externalization, Ini-
tialization, Security, Licensing, Startup,
Life cycle, Time, Naming, Trader, Per-
sistence, and Transactions. Below is a
description of some of the most impor-
tant services.

Naming: This service is often compared
to the white pages in a telephone direc-
tory. It allows a client to find an object
based on a name. A server can register
various objects by giving them a name,
and the client asks the Naming Service
for an object reference by specifying a
name.

Event: This service is used for sending
asynchronous events between objects.
An object can ask the event service to be
notified when a specific event occurs,
like an attribute changing value in an-
other object. The sender and the receiver
of the event do not have to know about
each other, and it allows one-to-many
communication.

Trader: This service can be compared to
the yellow pages in a telephone directory
where it is possible to find objects based
on some search criteria. It can also be
compared to a Web-site search engine
that returns object references instead of
URLs.

Security: In all systems and especially in
distributed systems, security is an all-
important issue. CORBA addresses these
issues in the Security Service. It is con-
cerned with confidentiality and integrity
of the data, accountability of users and
availability of a system. Unlike some of
the services mentioned above, security is
an integrated part of the system and not
just a standalone service.

Transaction Service: See section 3.4.

3 Using CORBA

In this section we will look into how to
use CORBA in the realisation of appli-
cations.

3.1 Three-tier architecture

Traditionally, client-server applications
have mostly been based on two-tier
architectures; either with all the applica-
tion logic on the desktop, the server run-
ning only the DBMS, or with a slightly
thinner client and some application logic
on the server, e.g. in the form of DBMS
stored procedures. The main advantages
of the two-tier architecture is its simpli-
city; it is quite straightforward to decide
which functions go where, and normally
all development tools can be purchased
from one vendor.

Two-tier architectures have a number of
serious shortcomings, leading to in-
creasing popularity for three-tier archi-
tectures. These architectures are defined
as follows. The first tier contains the
clients, typically providing a user inter-
face and local processing as appropriate.
Generally, the clients can be kept small.
The second tier (or ‘middle tier’) con-
tains the application logic, while the third
tier contains DBMSs and other back-end
systems. The clients should never access
the systems in the third tier directly. The
middle tier makes abstractions of the
resources in the third tier, and thereby
shields the clients from the plethora of
back-end systems. A replacement of a
back-end system such as a DBMS with
another one should not affect clients.

The advantages of three- over two-tier
architectures include

• thin clients (only presentation logic).
Thin clients are suitable for execution
within Web browsers, which are
rapidly becoming very popular as
general front-end tools

• less communication overhead, since
most of the data processing is done
within the middle tier, located on the
server

• DBMS independence, and ability to
utilize data from multiple sources

• better support for inter-application
communication and integration with
legacy systems (see below).

The main drawbacks of three-tier archi-
tectures compared to two-tier architec-
tures are the increased complexity and
the fact that very often no single vendor
provides the complete infrastructure.

CORBA applications are typically based
on the three-tier architecture, as illu-
strated in Figure 4. Typically, clients pro-

vide the user interface and interact with
middle tier objects over an ORB. The
middle tier infrastructure may also offer
the clients an interface based on Micro-
soft’s DCOM. In some cases this may be
an attractive alternative for clients run-
ning on Windows platforms. OMG has
developed a DCOM-CORBA interopera-
bility standard, and gateway products are
available from CORBA vendors.

The middle tier contains the objects,
often called ‘business objects’, that
implement the application logic. Busi-
ness objects within this tier may them-
selves have client-server relationships.
The term multi-tier architecture is some-
times used to emphasize this aspect of
the middle tier.

The business objects can also utilize
functionality provided by CORBA ser-
vices, such as transactions and security
services. They communicate among
themselves and with the object services
over an ORB. This means that the
business objects can be distributed over a
number of processing nodes. The parti-
tioning of objects onto processing nodes
depends on requirements on performance
and the number of simultaneous clients.
Additionally, object TP monitors can be
used to improve the performance and
fault-tolerance of the middle tier applica-
tions by providing mechanisms such as
load balancing and object replication (see
section 3.4).

The back-end tier contains databases and
legacy applications. The middle tier
objects communicate with the databases
and applications in the third tier using
whatever protocol or middleware avail-
able, CORBA compliant or not. CORBA
vendors already support a range of adap-
ters and mechanisms enabling CORBA
objects in the middle tier to communicate
with some of the most popular DBMSs
and other legacy systems, see sections
3.3, 3.4, and 3.5 for more details.

3.2 CORBA, Java, and the Web

Java is an object-oriented programming
language that has gained much attention
over the last couple of years. The main
reason for Java’s popularity is the lan-
guage’s inherent support for portability,
mobile code, Web integration, and a
relatively rich, standard class library.

As with all popular programming lan-
guages, OMG and the CORBA vendors

110 Telektronikk 1.1998

have undertaken a number of efforts to
provide support for the use of Java in
CORBA environments. The reason for
the strong interest in Java is that Java has
a number of properties that are comple-
mentary to the properties provided by
the CORBA architecture as such.

Firstly, Java provides the ability to write
portable clients and object implementa-
tions. Once a CORBA object has been
implemented with Java, it can be run
anywhere without the need for recom-
pilation.

Secondly, Java offers simplified code
distribution. Client applications do not
have to be installed on client computers,
but are downloaded from a central (Web)
server as needed. Note that in this case,
there are two ways to support CORBA
on the client (browser) side. The first
alternative is to include a Java ORB
within the browser. This approach is
supported by Netscape, who provides a
Java ORB with every instance of their

browser. The second alternative is to
download all the necessary ORB func-
tionality from the Web server along with
the applet (in this case often referred to
as an ORBlet). The latter alternative has
the disadvantage of increased download
time on startup, but the advantage that it
requires no pre-installed CORBA support
on the client side.

Thirdly, Java supports Web integration.
Client applications (Java applets) can be
discovered through Web surfing, down-
loaded into Web browsers and be inte-
grated within HTML pages.

Finally, Java is a simpler language to
write object implementations than C++,
the most common language used for
CORBA objects so far. On the downside,
the performance of Java is poorer than
the performance of C++, although the
arrival of JIT (Just-In-Time) compilers
for Java has recently improved Java per-
formance.

Through Java, CORBA is integrated with
Web technology. The Java-CORBA
combination is currently regarded by
many (e.g. by Netscape and Oracle) as
the most important element of an infra-
structure for the next generation WWW,
the so-called ‘Object Web’.

Note that in the Java case, the OMG is
for the first time working on an inverse
language mapping; a Java to IDL lan-
guage mapping. The motivation is to en-
able automatic generation of IDL from
Java interface definitions. This will in
effect hide IDL from developers working
with pure Java applications. Proprietary
products supporting automatic Java-to-
IDL are already available. These tools
provide programmers with an environ-
ment very similar to the one provided by
Java RMI (see section 5.2), yet at the
same time preserve the interoperability
properties of CORBA, e.g. allowing
access to the Java objects from clients
written in other languages, through the
automatically generated IDL interface.

111Telektronikk 1.1998

Application server

HTTP/IIOP
Internet

Legacy systems

HTML
pages

Middle tierClient-tier Back-end tier

Java
applets

Gateway

Database
adapters

Business
objects

Billing
service

Object
transaction

service
O

bj
ec

t
R

eq
ue

st
 B

ro
ke

r

Web server

Databases

HTTP

Firewall

Figure 4 Three-tier architecture based on CORBA and Internet technology. The first tier contains the client components that
provide a user interface and local processing as appropriate. Typically, the clients can be implemented as CORBA-enabled applets
running inside Web browsers. The middle tier contains HTML pages and Java applets that are stored on Web servers, and objects
that represent persistent data and implement business logic and are running on application servers. All the middle tier objects are
interconnected by an ORB. The objects can utilize functionality provided by general services, such as transaction services, billing
services, and security services. The back-end tier contains databases and legacy systems. They are integrated with the middle tier

business objects through database adapters and gateways, respectively

3.3 Integration with databases

Many CORBA applications will need
support for object persistence. An object
is said to be persistent if it is stored in
such a way that it remains available for
any application that needs it, even if the
server process that manages the object is
no longer active. Typically, persistent
objects are stored in databases. If good
support for object persistence is to be
found in a CORBA environment, certain
requirements must be met both by ORBs
and DBMSs (database management sys-
tems).

The most important requirement for
DBMSs is support for storing objects as
objects, i.e. without having to dis-
assemble the objects, e.g. into relational
tuples, in order to store them. It is of
course possible to make objects persis-
tent by means of a DBMS that does not
understand objects, but it will be cumber-
some and/or yield poor performance.
Products exist that map objects to rela-
tions, but storing object directly in data-
bases appears to be a better solution.
Two kinds of DBMSs are competing in
this market: object-relational
(ORDBMSs) and object-oriented
(OODBMSs). The first group consists of
relational database products with object
extensions added to them, more or less
according to the emerging SQL3 stan-
dard. The three products currently lead-
ing this trend are Oracle, DB2, and Infor-
mix, with Sybase and SQL Server as pos-
sible future contenders. The other group
consists of DBMSs that have been de-
signed for objects from the very begin-
ning. The pertinent standard for this
group is ODMG-93, from the Object
Data Management Group (www.odmg.
org). Some of the more well-known
products are GemStone Objectivity/DB,
ObjectStore, O2, Poet UniSQL and Ver-
sant.

The two most important requirements for
ORBs are support for loaders and user-
defined object names, also known as
markers or reference data. A loader is a
routine that is capable of loading a given
object from a file or database in the event
that a client tries to invoke a method on
an object that happens not to be in
memory. Without a loader, such a situa-
tion will result in an object fault, and the
client’s request cannot be processed.
Support for user-defined object names is
necessary because every time a loader
brings a given object in from the data-
base, it must be able to assign the same

name to it. This is a prerequisite, because
the object name is the key used by the
ORB to determine whether or not an
invoked object is in memory, and if not,
the object name is used by the loader to
find the requested object in the database.
If the object name were to keep changing
all the time, this way of doing things
simply would not work. Neither loaders
nor user-defined object names are re-
quired by CORBA, but we think that
sooner or later OMG will have to specify
a standard solution to these issues. The
overall architecture for a CORBA server
whose objects are stored in a database, is
shown in Figure 5.

The glue that is used to tie together an
ORB and a DBMS, is frequently referred
to as a database adapter. In addition to a
loader, a database adapter must have a
module that can take care of memory
management. This will typically involve
things like keeping track of which
objects are being referenced by clients,
and preventing the server’s memory from
being overloaded with database objects
(the number of objects in the database
could easily exceed the capacity of the
server) by choosing suitable victims
whenever necessary (e.g. based on a least
recently used algorithm) and throwing
them out. Should such a victim be in-
voked by a client holding a reference to
it, then the loader will automatically
bring the object in question back into the
server’s memory.

Two CORBA services are particularly
relevant in a database context, namely
the Persistent Object Service (POS) and
Object Query Service (OQS). POS pro-
vides generic interfaces that can be used
with a variety of data stores, thus making
it easy to port CORBA applications from
one data store to another. However, it is
now recognised that the first version of
POS has been a failure, and OMG is cur-
rently working on a major revision. OQS
enables clients to submit ad-hoc queries
to the CORBA server, using a query
language supported by the underlying
data store, typically Structured Query
Language (SQL) or Object Query Lan-
guage (OQL).

3.4 ORBs and Transactions

If a server is to provide advanced ser-
vices and/or support a large number of
concurrent clients, one soon discovers
that just having a CORBA-compliant
ORB is insufficient. Developers of such

systems will require more sophisticated
environments, with support for transac-
tions, concurrency control, naming, noti-
fication, security, system management,
load balancing, and more. As mentioned
elsewhere in this article, OMG has de-
fined a number of CORBA Services that
address these needs. However, there is
also a need to integrate such services in
a coherent way, and products that are
capable of such integration are often
referred to as TP monitors.

The most important benefit that TP
monitors has to offer CORBA environ-
ments, is probably that of making client-
server interactions transactional. In parti-
cular, this means that a client can make

112 Telektronikk 1.1998

CORBA SERVER

Database Adapter

DATABASE

Figure 5 A database can contain a large
number of persistently stored objects,
and it may not be feasible to have all of
those objects inside the server’s address
space at any one point in time. The solu-
tion is to have a database adapter that
can throw out objects whenever that is
necessary in order to make room for new
ones. If a thrown out object (shown as a
dotted circle in the figure) is re-invoked
by a client, the database adapter, by
means of its loader component, will bring
that object back in from the database.
This happens transparently to the client.
Thus, any object in the server’s address
space has a persistent version of itself in
the database, but the converse is not true

several invocations on the server, and
then decide whether to commit or abort
the work thus performed. In other words,
several operations can be grouped into a
single logical unit of work (LUW), and
either all effects of that LUW are applied
to the server, or they are all wiped out,
meaning the server will be left in a state
as if the LUW in question never executed
at all. This property is known as atomic-
ity. If more than one data store is in-
volved in a LUW, then one must in gene-
ral use a protocol known as two-phase
commit (2PC) to ensure atomicity. Any
decent TP monitor will support 2PC, and
therefore free CORBA programmers
from the non-trivial task of implementing
that protocol.

Two of the CORBA Services are of parti-
cular interest in this context, viz. the
Object Transaction Service (OTS) and
the Concurrency Control Service (CCS).
OTS and CCS correspond to the two
problem domains dealt with in transac-
tion management respectively; (1) re-
covery – making sure that work done by
transactions are either properly com-
mitted or rolled back, and (2) concur-
rency control – making sure that different
transactions do not unduly interfere with
each other. Both these aspects of transac-
tions must be dealt with in order to
ensure the classical ACID properties
(atomicity, consistency, isolation, dur-
ability). Products that implement OTS
and CCS are now available in the

marketplace. The current trend seems to
be to market OTS and CCS as key com-
ponents of TP monitors, rather than
selling them as separate products.

TP monitors have been successfully used
in mainframe environments for some
20 years (e.g. CICS), and are just now
beginning to emerge in the CORBA
marketplace. Several TP monitors or
OTS/CCS implementations for CORBA
environments were available, or about to
become available, by late 1997. Iona has
teamed up with Groupe Bull and Trans-
arc to offer OrbTP and OrbixOTS/Orbix-
OTM, respectively. IBM’s Component
Broker includes a TP monitor which, like
OrbixOTM, is based on Encina from
Transarc. And BEA Systems offers a
Tuxedo-based TP monitor called Object-
Ware.

3.5 Systems Integration

Due to its inherent ability to overcome
problems related to distribution as well
as language and platform heterogeneity,
CORBA is positioned to play a signifi-
cant role in the area of systems integra-
tion. In particular, many companies that
use mainframes will find it interesting
that by means of IDL their legacy sys-
tems can be accessed by clients running
on PCs or Unix workstations. For ex-
ample, an ORB running on a mainframe
can provide access to applications run-

ning in CICS or IMS regions. This can be
achieved in at least two different ways.
One alternative is to have a gateway ser-
ver that accepts an incoming CORBA
method and then either builds a CICS
Comarea which is passed to the CICS
program or builds an IMS message
which is submitted to the IMS input
queue. The other alternative is to re-write
existing applications so that they can act
as CORBA server implementation
objects. The latter provides more flexi-
bility but requires an ORB that supports
the native language of the legacy applica-
tion in question, typically Cobol. For
companies that have invested heavily in
mainframe applications, integration with
PCs and workstations could be a major
incentive to adopt CORBA technology.

As a more general observation, one could
say that OMG in its approach to systems
integration has chosen a level of abstrac-
tion that is a lot more reasonable than
some of the alternatives. Enabling inte-
gration by insisting that all systems be
run on the same operating system, and/or
use the same programming language, is
unrealistic in the first place. Moreover, it
would at best be a partial solution to the
integration problems. At least two
alternatives remain. One is to build a
gateway for each pair of systems that
need to interact, the other is to create a
framework to which any system that
obeys certain rules can be connected. The
advantages of the latter approach over
the former is illustrated in Figure 6.
CORBA is an example of a framework-
based approach to interoperability. It is
interesting to observe that object-orienta-
tion, which separates external (object)
interfaces from internal implementation
details, seems to be an ideal foundation
for interoperability frameworks. In the
foreseeable future therefore, we expect
any CORBA competitors to be other
object-oriented middleware architectures,
most notably DCOM from Microsoft.

4 CORBA for telecom
applications

CORBA is rapidly becoming one of the
technologies of choice for developing
distributed systems in all areas of infor-
mation technology including telecommu-
nications. The following sections will
discuss CORBA for telecom manage-
ment systems, CORBA for IN, and
CORBA support for multimedia appli-
cations.

113Telektronikk 1.1998

Custom Interface Solutions Framework-based Solutions
(Good Software Architecture Practices)

Order (N*N) Interfaces Order (N) Interfaces

Figure 6 This figure illustrates one advantage of a framework-based approach to
interoperability. If a gateway is to be built for each pair of systems that need to inter-
act, the number of gateways needed will be proportional to the square of the number of
systems. When using a framework like e.g. CORBA, one interface per system will suf-
fice. (Figure adopted from [5])

CORBA
manager

Gateway OSI
agent

IDL
GDMO
/CMIP

OSI
manager

Gateway CORBA
agent

IDL
GDMO
/CMIP

Figure 7 The gateway assumes the role of an OSI manager.
This allows a CORBA system to manage TMN-compliant net-
work elements and mediation devices, and is a likely way of
introducing CORBA into the TMN architecture. The installed
base of network elements remains as they are (provided that
the network elements support GDMO/CMIP communication)

Figure 8 The gateway assumes the role of an OSI agent.
This allows a TMN system to manage network elements with

IDL interfaces, which may be interesting in the future.
More important, the gateway’s ability to play the role of both
agent and manager means that CORBA management systems
can interoperate with TMN management systems – in TMN

terms referred to as peer communication between Operations
Systems

4.1 CORBA and Telecommu-
nications Management
Systems

Telecommunications Management Sys-
tems in this context comprise Telecom-
munications Management Network
(TMN) -compliant systems and SNMP-
based systems. TMN is an architecture
specified by ITU-T and ETSI, and
applied by Network Management Forum,
for management of telecom networks and
services. SNMP (Simple Network Man-
agement Protocol) from IETF is used for
management of data equipment, routers,
etc. Both TMN and SNMP have a man-
ager-agent communication architecture.
TMN has selected OSI ‘Guidelines for
the Definition of Managed Objects’
(GDMO) and ‘Abstract Syntax Notation
1’ (ASN.1) as the interface specification
language, and OSI Common Manage-
ment Information Protocol (CMIP) as the
application layer protocol.

The JIDM group of Network Manage-
ment Forum (NMF) in conjunction with
the Open Group has pioneered the map-
ping between GDMO, CORBA and
SNMP. They have a complete specifi-
cation for a static translation between

GDMO and IDL, and an interaction
translation specification is underway.

The OMG Telecom Domain Task Force
is looking at two aspects:

1. CORBA and TMN/SNMP coexistence
and interoperability (a similar objec-
tive as NMF)

2. CORBA architecture inspired by
TMN.

As regards interoperability, OMG issued
an RFP titled “Interoperability between
CORBA and Telecommunications Man-
agement Systems” in September 1997.
Adoption of the specification is expected
at the end of 1998. The scope of the RFP
is to address the integration of GDMO/
CMIP and SNMP management applica-
tions and protocols into a CORBA en-
vironment through an application proto-
col gateway. Only the GDMO/CMIP
integration is covered here, but a similar
approach is also requested for SNMP.

The integration will provide interopera-
bility between TMN systems and
CORBA systems, and preserve the
investment in GDMO/ASN.1 informa-
tion models. Proposals should address:

• Translation of GDMO to and from
IDL specifications. Algorithms for
static translation is requested, where
static means that a GDMO to IDL
compiler is used to generate static
stubs/skeletons.

• Interaction translation. CMIP protocol
data units are dynamically translated to
one or more requests or replies on IDL
interfaces.

Interaction translation is carried out by a
gateway. The positioning of the gateway
is depicted in Figure 7 and Figure 8. The
specification translation is not shown in
the figures, it takes place at compile time,
and the result is used to implement the
gateway.

As regards creating a CORBA architec-
ture inspired by TMN, the most relevant
specification is the Notification Service,
which extends the CORBA capabilities
of the CORBA event service to support
filtering. A Notification Service RFP was
issued in January 1997, and adoption of
the specification is expected by March
1998. Event consumers can express inte-
rest in events that are filtered by type and
content, and thus receive only a specific
subset of all the events supplied to the
notification service. The service provides
a decoupling of consumers and pro-
ducers, and shall satisfy the scalability
demands (high volumes) of event-driven
applications running within large net-
works including telecommunication
management applications. Functionality
requirements include dynamic addition
of user-defined event types by producers,
quality of service with respect to event
delivery (guaranteed, priorities, best
effort), federation of notification servers,
etc. Also, there should be a specification
of event types and contents applicable to
particular vertical domains such as tele-
com (ref. TMN “X.700 series”).

4.2 CORBA and ITU-T Intelli-
gent Networks (IN)

IN allows centralised processing of ser-
vice logic and service data separated
from the switching function in the
switches, as opposed to traditional ser-
vice implementations where a switch
handles both the service processing and
the switching. IN does not require that all
switches are equipped with all services,
and prevents heavy software upgrades in
the switches. IN only requires the
switches to support a service switching
point (SSP), which during call processing

114 Telektronikk 1.1998

is able to encounter an IN service trigger-
ing condition, and call a service control
point (SCP) in order to process service
logic and data. ITU and ETSI have speci-
fied both the architecture (called the IN
architecture) and specific services (called
IN services) following this approach.
This text covers IN capability set 1,
which is restricted to narrow-band tele-
phony services. IN objectives include
rapid service creation, tailored services,
new services which rely on centralised
data, well-managed services and cost-
effective services.

IN has been implemented in the networks
of telecom operators over the last years,
but has only partly met the objectives.
Existing IN implementations often suffer
from being proprietary solutions. SCPs
are usually closed environments which
are inflexible with respect to integration
with other systems. Service creation
environments are special purpose and not
based on state of the art software de-
velopment tools. Specialised manage-
ment systems are needed. Implementa-
tions are expensive.

The most realistic way of introducing
CORBA into IN is to apply CORBA to
the parts of IN which are separated from
the switches. ITU and ETSI have stan-
dardised the communication between the
SSP and the SCP, and the protocol is
called INAP (Intelligent Network Appli-
cation Protocol). INAP uses Transaction
Capability Application Protocol (TCAP),
which again uses the ISO Remote Opera-
tion Service Element (ROSE) protocol.
ROSE implements the Remote Operation
Service (ROS). INAP, TCAP and ROSE
communication is carried by the signal-
ling system No. 7 (SS7) network. A gate-
way between INAP/ROS and IDL opera-
tions would allow CORBA-based imple-
mentations of SCP and other ‘central-
ised’ IN entities including the Service
Data Point and Service Management Sys-
tem. The prerequisite is that the network
elements have to support standard INAP/
ROS, which is not always the case.

It is expected that OMG will approve an
RFP on interoperability between
CORBA and IN by December 1997. The
RFP will request an IN/CORBA gateway
for interaction translation between INAP/
ROSE messages and operations on IDL
interfaces. There is a debate about the
best protocol level for the gateway, i.e.
whether there should be a ROSE to
CORBA or INAP to CORBA gateway.
The ROSE gateway would be very gene-

ral (because ROSE is used by several
application layer protocols including
INAP and CMIP) and more complex,
and could suffer from performance short-
comings. The most likely approach will
be an INAP/CORBA gateway.

IN services have stringent requirements
to performance, scalability and avail-
ability. CORBA technology will have to
prove that these requirements can be ful-
filled.

4.3 Control and Management
of Audio/Video Streams

A specification for control and manage-
ment of audio/video streams (hereafter
called the AV streams specification) was
adopted by OMG in September 1997.
The AV streams specification introduces
a wide range of application uses, in-
cluding:

• Conferencing, entertainment, bio-
medical or security applications

• Distributed simulation or games

• High-bandwidth instrumentation in
process or real-time control applica-
tions

• Bulk transfer of data, e.g. medical
records, still images, software updates.

The specification covers topologies of
streams, multiple flows, stream identifi-
cation, stream set-up, modification and
release, quality of service and relation-
ship to network protocols. A stream
represents continuous media transfer
between end-points. Stream topologies
covered are point-to-point and point-to
multipoint. Three types of transport are
supported by the framework, namely
connection-oriented (like TCP), data-
gram-oriented (like UDP) and unreliable
connection-oriented (like ATM AAL5).
In principle, the specification allows a
stream to be supported by any transport
protocol including IP or ATM, hence the
AV streams specification can be seen as
an abstract framework residing on top of
the transport. The AV streams specifica-
tion has been influenced by the Telecom-
munication Information Networking
Architecture Consortium (TINA-C)
architecture, and the functionality is
similar to the TINA Communication
Session Manager component.

5 Alternative Technologies

CORBA is not the only middleware that
support distributed objects. The two most
serious competitors are Microsoft’s
DCOM, and JavaSoft’s Java RMI.

115Telektronikk 1.1998

SS7 network

Gateway

SCP

SSP SSP

Intelligent
Peripheral

CORBA domain

SS7 domain

INAP/ROS

IDL

Figure 9 IN-CORBA gateway. The gateway allows development of centralised service
logic and data (residing in the SCP) based on CORBA technology

5.1 Microsoft DCOM

DCOM (Distributed Component Object
Model) is Microsoft’s distributed object
middleware and the most serious com-
petitor to CORBA. The first version of
DCOM was shipped as part of the Win-
dows NT 4.0 operating system in mid-
1996. DCOM is a distributed extension
of COM, which was introduced in 1993,
as part of OLE (Object Linking and
Embedding).

DCOM has many of the same features as
CORBA: An interface definition lan-
guage (similar to OMG IDL), support
for multiple implementation languages,
static operation invocations, and dynamic
invocations (similar to CORBA dynamic
invocation interface, DII). Moreover,
basic object services are available,
notably naming, transactions and secu-
rity. The object services are available
as separate products.

The biggest difference between CORBA
and DCOM lies in the object model.
CORBA uses a ‘classical’ object model,
similar to what is found in most object-
oriented programming languages.
DCOM objects on the other hand do not
support multiple inheritance on inter-
faces, but instead provide reuse through
more unusual mechanisms based on con-
tainment and aggregation. DCOM also
supports a component model, based on
so-called AxtiveX controls. An Active X
control is simply a DCOM object that
follows certain rules in its communica-
tion with other objects.

The heavy backing (i.e. Microsoft) and
the technical features of DCOM make it
a serious alternative to CORBA. The
most important drawbacks are its com-
plexity and the fact that it is only avail-
able on Windows platforms.

5.2 Java RMI

Java RMI (Remote Method Invocation)
is a standard component of the Java sys-
tem (JDK 1.1), available in every Java
installation. RMI enables (remote)
method invocations across Java Virtual
Machines. The RMI package can in
many ways be compared to an ORB as
described in section 2. It enables clients
to invoke methods on remote objects in a
way that is similar to invoking methods
on local objects.

Java RMI shares the basic principles with
CORBA and DCOM. Clients interact
with servers via interfaces. A local object
(RMI stub) acts as a local proxy for the
remote object. As in CORBA, the stubs
are automatically created from interface
specifications by a stub compiler. More-
over, clients locate and bind to server
objects via a naming service (called
‘repository’).

RMI interfaces are, however, not speci-
fied using an external language (like
CORBA IDL or DCOM IDL). Instead,
native Java notation is used as the inter-
face specification language.

Compared to CORBA and DCOM, RMI
adds several innovations, including the
ability to pass object values (state), not
only object references, as parameters of
remote invocations, dynamic down-
loading of object implementation code,
and distributed garbage collection (al-
though currently not bullet-proof).

On the negative side, RMI has some
serious disadvantages. Firstly, RMI sup-
ports only Java-to-Java communication.
It lacks a language neutral interopera-
bility protocol. Moreover, the perfor-
mance of RMI compared to Java ORBs
is very poor. Also, RMI lacks protocol
level support for security contexts and
transaction contexts, lacks persistent
object references, has a very primitive
naming service, no support for dynamic
invocations (analogous to CORBA DII),
and lacks a rich set of object services.

To conclude, Java RMI is easy to use for
Java developers. Due to the shortcomings
mentioned above, it is questionable, how-
ever, whether it is a suitable infrastruc-
ture for large, more complex systems.

6 CORBA products

This section presents an overview of
CORBA products offered and their status
by the end of 1997.

6.1 ORBs and Object Services

CORBA 2.0 compatible ORBs with IDL
compilers are the basic CORBA product,
and are available from several vendors.
The most popular CORBA products in
1996 according to an IDC market re-
search [6] are: Iona’s Orbix (30 %
market share), TCSI’s Object Services
Package ORB (21 %), BEA’s Object-
Broker (16 %) and Visigenic’s Visi-

broker (11 %). Other important ORBs
are: NEO and Java IDL from Sun Micro-
systems and IBM’s Component Broker.
The leading ORB implementations are
robust, because they have undergone
several product cycles. Important pro-
gramming language mappings and
most operating systems are supported.

By the end of 1997 important CORBA
services have been implemented, in-
cluding naming, event, concurrency,
transaction, trader and security. Naming
and event service implementations have
matured, while the transaction, trader and
security implementations are first version
implementations. Note though that trans-
action and security service implementa-
tions are mostly based on existing offer-
ings (from DCE environments, etc.),
hence they are fairly mature. Implemen-
tations of other services are in progress.

CORBA has emerged as a distributed
object infrastructure for the Internet.
During 1997 CORBA became Internet-
ready in the sense that Java applets can
interact with CORBA servers over the
Internet using IIOP including lightweight
Internet security support. Products include
IDL to Java compiler, ORB implementa-
tion in Java, and IIOP over the Secure
Socket Layer protocol, the latter providing
authentication and encryption. Note that
CORBA applications on the server side
can also be programmed in Java. Further
integration of CORBA and Java is evolv-
ing rapidly, see section 3.2.

The first versions of CORBA products
targeted for large-scale applications were
available by the end of 1997. This means
provision of a middle-tier (see section
3.1) application platform that integrates
the features of CORBA with scalable
transaction management and the ability
to access existing applications, databases
and non-CORBA middleware. The
objective is to provide a CORBA-based
platform for large systems and mission-
critical systems. System development
and system management tools are also
part of the offerings.

6.2 Integration with other
products

Integration of CORBA with database
management systems (DBMSs) in order
to bring persistence to CORBA objects is
supported, see section 3.3. Database
adapters support adaptation between
CORBA objects and database objects.

116 Telektronikk 1.1998

Adapters for ObjectStore, Versant and
DB2 are available, and more adapters
will soon follow. Database adapter
frameworks that can be used to create
new database adapters to DBMSs are
also available.

TP monitors already exist which support
scalable transaction management based
on other message formats and transac-
tions services than CORBA. The current
trend is to integrate popular and well-
proven TP monitors (Encina, Tuxedo,
etc.) with CORBA, and the first integra-
tions were available by the end of 1997.
See section 3.4 for more information
about transactions and TP monitors.

Interworking with non-CORBA middle-
ware is being developed. OMG com-
pliant Microsoft COM-CORBA gate-
ways are available which enable COM-
based applications to access CORBA
objects in a transparent way. Proprietary
gateways to IBM CICS and message
oriented middleware (MOM) are also
available.

The first environments for building,
deploying and managing CORBA appli-
cations were available by the end of
1997. Vendor specific graphical develop-
ment tools for CORBA are available.
Also, popular development tools such as
PowerBuilder, Rational Rose and IBM
Visual Age are integrated with CORBA.
System management tools are delivered
by CORBA vendors implementing the
CORBA system management facility
specification, and also supporting a
Simple Network Management Protocol
(SNMP) interface in order to manage
CORBA applications from popular
management systems such as HP
OpenView, Tivoli and Unicenter.

7 Future directions

OMG has planned a new version of the
CORBA specification. The new version,
which is called CORBA 3.0 and is due
first quarter of 1998, will include updates
and additions already made to the
CORBA 2.0 specification, and several
new and interesting enhancements that
are on their way.

One of the new features that are expected
to be included in CORBA 3.0 is the
CORBA Messaging Service, which will
provide the ORB with Message Oriented
Middleware (MOM) functions. MOM is
a key technology for a class of client/ser-

ver applications. It allows general-pur-
pose messages to be exchanged in a sys-
tem using message queues. When using
MOM, a client is allowed to make asyn-
chronous, non-blocking requests. This
means that the client does not have to be
multithreaded, and clients will conse-
quently be simpler and easier to main-
tain. MOM will allow clients and servers
to run at different times, support nomadic
clients and allow servers to determine
when to retrieve messages off their
queues. MOM will allow a looser
coupling between applications than
currently supported by ORBs which are
often preferred for inter-application
communication. On the downside, MOM
does not support distributed transactions,
because a transaction is broken into sepa-
rate units of work.

OMG is currently extending the CORBA
object model to allow objects with
multiple interfaces, and to allow objects
to be passed by value in operations.
Another important ongoing initiative is to
develop a component model for CORBA
based on the Java component model,
Java Beans. If the work is successful, it
will be possible to view CORBA objects
as Beans. This will in turn make it pos-
sible to manipulate general CORBA
objects in graphical development tools
(‘beanboxes’ in Java parlance), thereby
reducing the complexity of creating
CORBA applications.

Another enhancement that is expected to
be included in CORBA 3.0 is server-side
portable frameworks that will make
CORBA servers portable from one ORB
to another.

Within the CORBAfacilities component
of the Object Management Architecture,
much attention is given to mobile agents.
A mobile agent is a CORBA object that
can move its code and state across an
IIOP network.

Within the domain areas, OMG members
are currently specifying domain frame-
works for several domains, including
Electronic Commerce and Telecom.
There is also work going on to build a
generic business framework, called the
Business Object Facility (BOF). The idea
behind the BOF is to make it much easier
to develop CORBA applications.

Readers who are interested in a more
detailed account of the future develop-
ment of CORBA, are referred to [3], on
which the above outline is based.

8 References

1 Coulouris, G, Dollimore, J, Kind-
berg, T. Distributed Systems : Con-
cepts and Design. Wokingham,
Addison-Wesley, 1994. ISBN 0-201-
62433-8.

2 Baker, S. CORBA Distributed
Objects. Harlow, Addison-Wesley,
Longman, 1997. ISBN 0-201-92475-
7.

3 Orfali, R, Harkey, D, Edwards, J.
Instant CORBA. New York, Wiley,
1997. ISBN 0-471-18333-4.

4 ACTS project AC048 (ReTINA).
BVPN Service Demonstrator Specifi-
cation. S.L., 1997. (AC048/TLN/
WP5/DS/L/011 (D5.03).)

5 Mowbray, T J, Zahavi, R. The Essen-
tial CORBA : Systems Integration
Using Distributed Objects. New
York, Wiley, 1995. ISBN 0-471-
10611-9.

6 Garone, S. Middleware : 1997
Worldwide Markets and Trends.
International Data Corporation
(IDC), 1997. (IDC report.)

9 Bibliography

Baker, S, Cahill, V, Nixon, P. Bridging
Boundaries: CORBA in perspective.
IEEE Internet Computing, 1 (5), 1997.
http://computer.org/internet/.

ITU-T Recommendation M.3010. Prin-
ciples for a Telecommunications Man-
agement Network. Geneva, 1996.

ITU-T Recommendation Q.1201. Prin-
ciples of Intelligent Network Architec-
ture. Geneva, 1993.

OMG. Control and Management of
Audio/Video Streams. OMG RFP Sub-
mission. Revised submission. (OMG
Document: telecom/97-05-07.)

OMG. Notification Service Request For
Proposal, final version, 11.12.96. 1996.
(OMG Document: telecom/97-01-03.)

OMG. The Common Object Request Bro-
ker : Architecture and Specification,
revision 2.0. 1995.

117Telektronikk 1.1998

OMG. Topology Service Request For
Proposal, draft 2, 16.01.97. (OMG
Document: telecom/97-01-02.)

Schmidt, D. C. Distributed Object Com-
puting. IEEE Communications Magazine,
35 (2), 1997, 42-44.

Vinoski, S. Distributed Object Compu-
ting With CORBA. C++ Report, 5 (6),
1993, 32-38.

Vinoski, S. CORBA : Integrating Diverse
Applications within Distributed Hetero-
geneous Environments. IEEE Communi-
cations Magazine, 35 (2), 1997, 46-55.

ZhongHua, Y, Duddy, K. CORBA : A
platform for Distributed Object Compu-
ting. http://www.infosys.tuwien.ac.at/
Research/Corba/archive/intro/OSR.ps.gz.

118 Telektronikk 1.1998

Ole Jørgen Anfindsen is Research Scientist at
Telenor R&D and an associate professor in the
Software Engineering and Database Resarch
Group, University of Oslo. He has been involved
with database technology since 1982, and his
research interests include databases, transaction
models, object orientation, and CORBA. He is the
Technical Representative for Telenor to the
Object Database Management Group.

e-mail: ole.anfindsen@fou.telenor.no

Håkon Solbakken is Research Scientist at Tele-
nor R&D, Kjeller, where he has been employed
since 1986. He has been working with software
specification and development in the field of net-
work management and services. His interests
include software development methods and tools,
distributed object technology, and user interface
design and implementation.

e-mail: hakon.solbakken@fou.telenor.no

Eirik Dahle is Research Scientist at Telenor R&D,
Kjeller, where he has been working since 1988.
He has worked with software specification and
development in the field of network management
and services. His interests include middleware,
distributed object technology and database
management systems.

e-mail: eirik.dahle@fou.telenor.no

Tom Handegård is Research Scientist at Telenor
R&D, Kjeller, where he has been employed since
1990. He has been working with Intelligent Net-
works, B-ISDN signalling, and the TINA architec-
ture. Currently, his main interests are within
various aspects of distributed object-oriented
systems, including CORBA and Java technology.

e-mail: tom.handegard@fou.telenor.no

Kjell Sæten is Research Scientist at Telenor
R&D. After completing his masters thesis at Stan-
ford University he spent several years developing
software for seismic systems at Geco-Pracla. He
joined Telenor R&D in 1997. His current interests
are within distributed systems based on Java and
CORBA technology.

e-mail: kjell.saten@fou.telenor.no

This article discusses design of a
CORBA/IN Interworking function
(IWF). A static IN/CORBA IWF is
proposed, residing on the INAP/TCAP
layer, between Service Switch Func-
tion (SSF) and the Service Control
Function (SCF). It is argued that the
IWF should facilitate a smooth, real
time interaction between the SS7
domain and the CORBA domain. In
particular, the IWF should address
harmonisation of the asynchronous,
message oriented communication
paradigm of the SS7 domain and the
blocking, connection oriented para-
digm of the CORBA domain. The IWF
should also deal with the vital, low-
level, real time, concurrent, event-
based, queue-oriented aspects of the
interaction and provide the IN service
developer with high-level CORBA
interfaces. The CORBA Event Service
or the coming Message Service, en-
hanced with real-time and reliability
requirements necessary for IN, is
suggested for the interaction between
the CORBA domain and the IN/
CORBA IWF.

Introduction

Rapid introduction of new services and a
high degree of customisation are a neces-
sity in the new, competitive environment
where the telecom operators are con-
fronted with a fast changing environ-
ment, deregulation and liberalisation. As
the data and the telecom world converge,
there is an increasing orientation in the
telecom society towards an open soft-
ware creation- and standardised com-
puting-environment. There seems to be
an increasing belief that middleware
technology like CORBA can successfully
be applied as an infrastructure in value-
added telecom networks to meet the new
challenges. CORBA technology has al-
ready been used in a number of non-real
time application areas in the telecom
world. This article addresses issues re-
lated to introduction of CORBA techno-
logy in the real time Intelligent Network
domain. The design and implementation
of an IN/CORBA Interworking Function
(IWF) is outlined. An IN/CORBA IWF
can be seen as a first migratory step
towards TINA like networks and as an
interworking unit between TINA like
networks and traditional IN aware tele-
com networks. An IN/CORBA IWF can
also be seen as an opening of the telecom
vendor specific environment to achieve
rapid creation, customisation and deploy-

ment of new services. Contrary to the
telecom vendor controlled regime, an
IN/CORBA IWF will facilitate third
party delivery and competition of service
creation environments and service com-
ponents, both on software and hardware
level.

The plan for this article is first to provide
a short introduction of ITU standardisa-
tion of IN, followed by a discussion of
what parts of IN are best suited for early
introduction of CORBA. Design choices
and design of an IN/CORBA IWF are
outlined, and development, deployment
and execution of services are presented
in the context of an IN/CORBA IWF.
The project is a co-operation between
Telenor and the Irish company IONA
Technologies, which so far is the most
successful CORBA technology manu-
facturer. It is likely that other partners
will be added later. The short term goal is
to investigate the issues related to design
and implementation of an industrial
strength CORBA/IN IWF to produce an
answer to a future OMG Request For
Proposal on IN and CORBA interwork-
ing. The author is enjoying a stay with
IONA Technologies.

Overview of Intelligent
Networks

The basic idea behind the ITU standard-
isation of IN is to ease the introduction of
new services by centralising the service
logic in a few dedicated service nodes.
The aim is to enable services to be added
without costly upgrading of the switching
hardware and software infrastructure.
The service switching functions are sepa-
rated from the service control software.
The switch interrupts its processing at
certain pre-determined points to query a
remote server for service specific instruc-
tions. The switch can get several inter-
mediate instructions before the final one,
containing the routing address. Thus the
service logic is removed from the switch
and is relocated to a separate the service
server. The service logic program can be
viewed as a distributed application which
partly runs on the switches and partly
runs on the service server. Hence the
switch does not have to be pre-loaded
with service specific information.

Service independence is another key
notion in IN, which addresses reusability

119

CORBA and Intelligent Networks (IN)
H E L G E A R M A N D B E R G

Telektronikk 1.1998

Service Feature 1

Service Feature 2

Service Feature 1

Service Feature N

Service Plane

Service A Service B

BCP

Global Functional Plane

Global Service
Logic

Distributed Functional Plane

Distributed Service
Logic

Physical Plane

SIB1

SIB3

SIB3

SDF

SSF SRF

SMFSSF
SCF

Functional
Entities

SDP

SSP

SCP SSP

IP

Physical
Entities

Figure 1 Use of the IN Conceptual Model to depict CS-1

of components for building services. The
IN Conceptual Model, INCM, is a
modelling tool for describing the capa-
bilities and characteristics of the architec-
ture. ITU Standardisation of IN is seen as
a stepwise evolution in what is called a
Capability Set (CS). Typical CS-1 ser-
vices are: number translation services,
alternate billing services and screening
services. Typical CS-2 enhancements are
likely to be; end user interaction with ser-
vice control outside the context of a call,
mid-call interaction, mobility, IN inter-
working, IN management based on ITU-
TMN management standards.

INCM consists of four planes which
address different aspects of IN. The two
upper planes focus upon the creation and
perception services. The two lower
planes address the IN functional and
physical architectures. The end-user view
of a service is defined in the Service
Plane. Each service is compounded by
one or more service feature(s) which are
generic, reusable components. The IN
service developer perspective is found in
the Global Function Plane (GFP). The IN
service developer builds an end-user ser-
vice by combining Service Independent
Building-blocks (SIBs) in the IN Service
Creation Environment Function (c.f.
Figure 2). Distribution issues are com-
pletely abstracted away from the Global
Function Plane. The GFP views the tele-

com network as a virtual computer with
service programs having virtual access to
all computer programs and ignoring
others. The Distributed Function Plane
defines a distribution view of the IN in
terms of units of network functionality
called functional entities. The Service
Control function (SCF) hosts the service
logic programs. The Service Data Func-
tion (SDF) hosts service related data. The
Service Switching Function (SSF) en-
ables the triggering of services from
the switches. The Service Management
Function (SMF) supports the IN service
management. The Specialised Resource
Function (SRF) provides control and
access to resources used in service pro-
vision in the intelligent network. The
Intelligent Network Application Protocol
(INAP) defines the interface protocol for
IN control messages between the IN enti-
ties. The Physical Plane (PP) defines the
real deployment of an IN. There are
optional mappings from the Distributed
Function Plane to the Physical Plane, but
it is not possible to split one single func-
tional entity among different physical
entities.

An IN can be considered as a layer over
any transport network (cf. Figure 2). The
Call Control Agent Function (CCAF) is
the initial access point to a network from
the user terminal function. It passes call
set-up and service request messages to

the Call Control Function (CCF) for the
basic call processing. To perform the
basic call processing, the CCF maintains
a Basic Call State Model (BCSM) both
for calling and the called party for each
incoming call. The BCSM is a finite state
machine representing a set of different
states of a call, like headset lifted off,
number dialled, etc. The BSCM identi-
fies logical points in the basic call pro-
cessing at which IN service logic, located
in the Service Control Function (SCF), is
permitted to interact with the BCSM. The
SSF provides a set of functions required
for interaction between the CCF and the
SCF. The IN physical entities communi-
cate via the Intelligent Network Applica-
tion Protocol (INAP), which relies on the
Signalling System No. 7.

What functional entities to
CORBAise?

There seems to be consensus in the
IN/CORBA research society [2, 4, 5, 6,
7] that the SSF/CCF will be the last enti-
ties to be CORBAised (or being replaced
by TINA aware switches), because the
bulk of the organisational and technical
investment resides here. Entities com-
prising the IN layer and the Service
Creation and Management layer (cf.
Figure 2) are considered to be better can-
didates for early CORBAtion. Complete

120 Telektronikk 1.1998

SSF

CCF CCF

SSF

CCF

SCEF SMF

SDF SCF SRF

CCAF
BCSM BCSM BCSM

CCAF

7 8 9

4 5 6

1 2 3

*0 #

7 8 9

4 5 6

1 2 3

*0 #

"Service Creation and
Management Layer"

"IN Layer"

"Network Layer"

Service Excution
SSF Service Switching Function
SCF Service Control Function
SDF Service Data Function
SRF Service Resource Function

Call Handing
CCAF Call Control Agent Function
CCF Call Control Function
BCSM Basic Call State Model

Management and Service Deployment
SCEF Service Creation Environment Function
SMF Service Management Function

Call set up and invocation of IN
Management and deployment of services

Figure 2 The “Service Creation and Management layer”, the “IN layer” and the “Network layer” depicted in the IN CS-1
Distributed Function Plane. Services are created with the SCEF, deployed and managed with the SMF and executed in the

“IN layer” controlling the “Network layer”

or partwise CORBAtion of the IN-layer
necessitates an IN/CORBA IWF (cf.
Figure 3).

CORBA objects will replace the IN enti-
ties. IN control messages between the
SSF and the IN layer are converted by
the IWF to suitable CORBA object in-
vocation(s). In the opposite direction
CORBA replies, and method invocations
are converted to IN control messages
sent to the SSF/CCF. This article focuses
on CORBAtion of the IN-layer, but an
obvious step to make, given a CORBA-
ised IN layer, is also to CORBAise the
Service Creation Environment and
Management of services deployed in a
CORBA environment.

The IN/CORBA IWF;
design choices

In this subsection different design
choices of an IN/CORBA IWF are dis-
cussed.

• IWF protocol layer: In what protocol
layer should an IWF reside? See next
subsection.

• Static or dynamic approach: A static
approach means using the CORBA
Static Invocation Interface and static
client stubs for invocation of CORBA
objects. Such an approach implies that
operations supported by the gateway
must be known at compile time,
though some configuration flexibility
can be implemented. The dynamic
approach refers to use of the CORBA
Dynamic Skeleton Interface and the
Dynamic Invocation Interface instead
of pre-compiled client stubs. This
approach gives more flexibility con-
cerning what has to be known at com-
pile time. The object invocations and
protocol translation are constructed
run-time.

• Functionality located in the IWF:
Should the IWF just have pure proto-
col translation functionality or would it
be beneficial to locate more function-
ality in the IWF?

INAP protocol layers

There are alternatives regarding on what
protocol layer an IN/CORBA IWF
should reside (cf. Figure 4).

INAP (Intelligent Network Application
Protocol) uses the transaction capabilities
of TCAP (Transaction Capability Appli-

cation Protocol). TCAP is in turn based
on ROS (Remote Operation Services)
[10]. EURESCOM [2] proposes two
variants of a simple, static IWF residing
on the INAP layer. These approaches are
claimed to be easy to implement. How-
ever, later work by EURESCOM pro-
poses the more general and complex
ROS gateway [4]. The AT&T reply [5,7]
to the OMG Request For Information
“Intelligent Networking using CORBA”
[14] suggests a dynamic gateway at the
ROS layer due to the widespread use of
ROS in the telecom world. Also, a gate-
way in the SCCP layer has been pro-
posed, because the layer above the SSCP
is claimed to be vendor specific. This
approach is not investigated in our pro-
ject.

The discussion on the choice of protocol
layer and static or dynamic gateway will
be done in parallel because, in our opin-
ion there is a close relation
between the alternatives. For
a gateway on the ROS layer
a dynamic approach is an ob-
vious choice, because this
gateway will have applica-
tion areas beyond the IN
case. A static ROS gateway
has less “value” than a static
INAP/TCAP gateway,
because the INAP and TCAP
layer have to be rebuild. The
value of a dynamic approach
for an INAP/TCAP gateway
is less obvious, because there
are many predetermined
aspects due the close rela-
tionship between the SSF
and the SCF. Therefore, we

concentrate our discussion on either a
dynamic gateway on the ROS layer or a
static gateway / “Interworking Function”
on the INAP/TCAP layer. The use of the
term Interworking Function instead of
the term gateway will be motivated
below.

Protocol layer and static or
dynamic approach?

The Remote Operations Service Element
(ROSE) protocol is an implementation of
the Remote Operation Service (ROS)
[10]. The ROS model provides a number
of constructs to define the interaction
between distributed objects using the
information object class construct of the
Abstract Syntax Notation One (ASN.1).
The concepts of ROS and CORBA are
mostly complementary. ROS is a very
general communication paradigm based

121Telektronikk 1.1998

SORBA
SMF

7 8 9

4 5 6

1 2 3

*0 #

CORBA domain

CORBA based
SCP, SDP

ORB B

IWFORB A

IIOP

IP

STP STP S
C
P

SLP

DB

SSF/
CCF

SSF/
CCF

7 8 9

4 5 6

1 2 3

*0 #

7 8 9

4 5 6

1 2 3

*0 #

Subscriber
Subscriber

Subscriber

SS7 domain

The IN/CORBA
gateway

Figure 3 The IN/CORBA IWF and CORBAtion of the IN-layer

Figure 4 INAP protocol stack

INAP

ROS

TCAP (/ROS) Users

Transaction
Sublayer

TCAP

SCCP

MTP 3/2/1

INAP layer

ROS layer

SCCP layer(SS7)
Transport

on a simple request/reply model. Unlike
a traditional client-server model, which
defines the operation which the client
may invoke on the server, the ROS
model simultaneously defines both the
client and the server aspects of a ROS
object. In CORBA IDL the focus is on
the server aspects of an object. [7] pro-
vides a “specification translation” be-
tween ROS and CORBA. To ease this
translation, use of the TINA ODL based
constructs ‘required and supported inter-
faces’ is suggested. The TINA ODL con-
structs ‘required interface’ correspond to
the CORBA IDL interface for an object.
The TINA ODL construct ‘required
interface’ means an interface that an
object is dependent on as a client. This
construct is unavailable in CORBA at the
moment. The INAP operations defined in
Capability Set 1 [12] utilise the expres-
sive power of ROS to a limited extent.
A survey of the CS-1 specified INAP
operations revealed that only one of 55
operations uses the “required interface”
of ROS. This indicates an “overhead” of
implementing the generic ROS gateway
for the IN case. Due to the above reasons
it will be experimented with a static
INAP/TCAP Interworking Function.

A thick or thin IWF?

What functionality should reside in the
IWF is a major design choice. In order to

get a better basis for this design choice,
the interaction between the SSF and SCF,
as defined in [11,12], is examined.

When a call/attempt is initiated by an end
user and processed at an exchange, an
instance of a BCSM is created (cf. Figure
5). As the BCSM proceeds, it encounters
the detection points (DPs). If a DP is
armed as a trigger DP (TDP), an instance
of an SSF-Finite State Machine (SSF-
FSM) is created. The SSF-FSM interacts
with the SCF in the course of providing
IN service features to users. It provides
the SCF with an observable view of
SSF/CCF call/connection processing
activities, and provides the SCF with
access to SSF/CCF capabilities and
resources. It also detects IN call/connec-
tion processing events that should be
reported to active IN Service Logic Pro-
gram Instances (SLPIs), and manages
SSF resources required to support IN ser-
vice logic instances.

An example of an event that changes the
state in the SSF-FSM is the firing of an
armed TDP of type Request. This will
change the state of the SSF-FSM from
“Idle” to “Waiting for Instructions” and
e.g. the INAP operation InitialDP will be
sent to the SCF. The SSF-FSM in its
present situation is awaiting further
instructions from the SCF. At this stage
a control relationship is established be-

tween the SSF and the SCF. A timer is
started in the SSF in order to avoid
excessive call suspension time for this
specific call. The SSME maintains the
dialogues with the SCF on behalf of all
instances of the SSF-FSM. The Func-
tional Entity Manager (FEAM) provides
the low level interfaces for establishing
and maintaining the interfaces to the
SCF, and passing and queuing messages
to the SSME and the SCME. When the
InitialDP INAP operation is received by
the SCF, an instance of an SCF Call State
Model (SCF-FSM) is created, and the
relevant SLP is invoked. Multiple re-
quests (INAP operations) may be exe-
cuted concurrently and asynchronously
by the SCF. This motivates the need for a
single entity that performs the tasks of
creation, invocation and maintenance of
the SCF-FSM objects. This entity is
called the SCF Management Entity
(SCME). In addition to the above tasks,
the SCME maintains the dialogues with
the SSF on behalf of all instances of the
SCF-FSMs through the FEAM.

We summarise the characteristics for the
interaction between SSF and SCF: event
based, non-blocking, concurrent and
queue-oriented exchanges of INAP ope-
rations, and an infrastructure consisting
of managers and Finite State Machines
that prevent the SLP dealing with such
issues.

122 Telektronikk 1.1998

CCF Connection Control Function
BCSM Basic Call State Model
TDP Trigger Detection Point
SSF Service Switching Function
SCF Service Control Function
SSF-FSM Service Switch Function - Finite State Machine

SCF-FSM Service Control Function - Finite State Machine
FEAM Functional Entity Access Manager
SSME SSF Management Entity
SCMF SCF Management Entity
SLPI Service Logic Program Instance

SSF

States PICs)

CCF

TDP

Analyze_Info

TDP
Trigger table

Trigger 1 0

Trigger 2 X

Trigger 3 0

Call
Processing
Suspended

Call
Processing
Resumed

Active
trigger

1

8

BCSM

SSME

Waiting for
Instructions

Waiting - User
Interaction

Monitoring

Idle

SSF - FSM

SCF

SCME

Preparing SSF
Instructions

Routing to
resource

User Interaction

Idle

SSF - FSM

Exception
to SSF

SLPI

Service
Execution
Environment

FEAM FEAM
INAP

Figure 5 Relationship between the CCF/SSF and the SCF

Significant traits of CORBA object in-
vocations are synchronous or deferred
synchronous, blocking and connection-
oriented. The paradigm differences
between the CORBA and the SS7/IN
should preferably be harmonised by the
IN/CORBA IFW. Useful tools for
achieving this seems to be CORBA
Services, like the Event Service or the
coming Messaging Service. These ser-
vices facilitate asynchronous, message
based CORBA object interactions in a
de-coupled manner, like the interacting
entities in the SS7 domain. Implementa-
tions of the above mentioned CORBA
Services with the required reliability and
real-time characteristics for the IN case
can serve as a means for harmonisation
between the domains.

The Event Service is intended as an
optional extension to an ORB to allow
clients to communicate with application
objects using events. Suppliers generate
events, and consumers receive them. The
Event Service defines a de-coupled com-
munication style. It defines an indirect
communication style using event chan-
nels, where both push and pull event
delivery are supported [15]. The coming
Messaging Service is likely to support
asynchronous invocation, contain quality
of service features such as lifetime of a
request, reliability, server side queue
management, load balancing and routing.
EURESCOM promotes in [4] an exten-
sion of the Event Service to address real

time and the fault tolerant requirements
of IN. Use of such an Event Service is
claimed to facilitate a flexible, exten-
sible, “component plug-in” oriented
architecture for building services.

As has been motivated above, a thin IWF
which only covers syntactic protocol
translation between the SS7 domain and
the CORBA domain may push too much
responsibility on the CORBA server
objects in order to deal with queue man-
agement, concurrency, real time, and the
event based interaction with the SSF.
Therefore, a thicker IWF is investigated
in the project, and the term Interworking
Function is preferred to gateway, because
in our approach we want to put more
than protocol translation functionality to
the IWF.

The IN/CORBA IWF

As explained in the previous sections the
design of a thick Interworking Function
on the TCAP/INAP layer is proposed. In
the following text the term End User Ser-
vice (EUS) refers to an End User Service
implemented in the CORBA domain.
The EUS corresponds to the SLPI in the
IN domain.

The following components to the SCF’s
FEAM and SCME are necessary in the
CORBA/IN IWF:

• IWF-Functional Entity Access Man-
ager (IWF-FEAM)

- Provide access to other non-CORBA
Functional Entities (SRF, SCF,
SDF)

- Translate incoming/outgoing INAP
operations to/from CORBA types
using the IDL-ASN.1 engine

- Provide queue-management of in-
coming and out-going INAP opera-
tions

• IWF-Management Entity (IWF-ME)

- Create, maintain and delete the
IWF-FSM for each call that needs
processing of the IN-layer

- Maintain the dialogues with the SSF
on behalf of all SCF-FSMs trough
the IWF-FEAM

• The IWF-Finite State Machine

- Interact both with the SS7 domain
through the IWF-ME and the
CORBA domain through an Event
Service

- Resolve the CORBA reference to
the EUS using the Naming Service

- Start an EUS instance asynchro-
nously with an Event Service

- Keep the necessary CORBA refe-
rences

- Provide a set of IDL operations
which correspond to INAP opera-

123Telektronikk 1.1998

Charge

IWF-FEAM IWF-Functional Entity Manager
IWF ME IWF Management Entity
IWF-FSM IWF Finite State Machine
EUS End User Application
ORB Object Request Broker

IWF-
FEAM

CORBA/IN IWF

ASN.1 -
IDL

engine
IWF-
ME

IWF-
FSM

SSF
INAP

ORB

Event
Service

Naming
Service

User
Interaction

Reusable CORBA
objects

Service Specific
CORBA objects

EUS

Figure 6 The IN/CORBA Interworking Architecture

tions of interest to the EUS to
invoke (see example in the text
below)

- “Listen to” invocation from the EUS
and the SSF and take necessary ac-
tions

- Maintain timers to supervise the
EUS and the interaction with the
SSF.

The translated INAP operation will be
directed to the correct instance of the
IWF-FSM by the IWF-ME based on the
CALL-ID if there exists an IWF-FSM for
this call. Otherwise, a new IWF-FSM
instance is created. The IWF-FSM will
resolve CORBA object references based
on the parameters of the translated INAP
operation using the Naming Service. The
IWF-FSM will contain the fine-granular
timer semantics that are characteristic for
SSF/SCF interactions. The EUS will be
invoked asynchronously by an Event
based Service, initiated from the IWF-
FSM. The IWF-FSM will be able to
listen to asynchronous events or requests
from the EUS and the SSF and take ac-
tions based on them. The IWF-FSM will
contain IDL interfaces which represent
the INAP operations which are of interest
to an EUS to invoke. A typical example
is the INAP operation PromptAndcollect-
UserInformation, which is used to collect
more information from an end user, such
as a pin code. If this operation is invoked
on the IDL interface of the IWF-FSM,
then the state is changed to “User Inter-
action” and the operation is sent to the
SRF (cf. Figure 2). The EUS does not
need to stop its executions as this hap-
pens. A response from the SRF will be
reported back to the EUS and through the
IWF-FSM asynchronously. Error situa-
tion in the EUS will be reported back to
the relevant IWF-FSM through the Event

based Service, as well. Errors and time
outs in the SSF are received by the rele-
vant IWF and necessary actions, like cle-
aring the resources in the CORBA
domain, will be performed.

Detailed requirements to the IN/CORBA
IWF can be found in [2, 4] and else-
where. Some additional design require-
ments are summarised below:

• The IWF should be independent of the
implementation of EUS. There should
be no need for recompiling the IWF
when new services are introduced.

• An open, precise interface is required
between the IWF and the CORBA
domain in order to facilitate third party
delivery and competition of Service
Creation Tools. Re-implementation of
CORBA objects with SIB like func-
tionality can be considered as sug-
gested in Figure 6. Another possibility
is to implement TINA inspired objects
interacting with IN. This has been ex-
amined in [6].

• The IWF should be modular with
regard to different INAP protocol
stacks. The modification on the IWF in
case of adjusting the IWF to different
vendor protocol INAP stacks should be
minimal, and if possible, such adjust-
ments should be configurable without
recompiling.

References

1 Magedanz, T, Popescu-Zeletin, R.
Intelligent Networks : Basic Techno-
logy, Standards and Evolution.
London, Thomson Computer Press,
1996. ISBN 1-85032-293-7.

2 EURESCOM. CORBA as an En-
abling Factor for Migration from IN

124 Telektronikk 1.1998

Helge Armand Berg has been working as Re-
search Scientist at Telenor R&D since 1991 in
the areas of TMN, TINA, CORBA and distributed
database systems. Since June 1997 he has been
working on IN and CORBA in a co-ordinated pro-
ject between Telenor and IONA Technologies,
Dublin. He has a particular professional interest in
the CORBA technology.

e-mail:
hberg@iona.com

to TINA. (A EURESCOM-P508 Per-
spective (Final), Annex 5.)

3 ALCATEL. Intelligent Networking
using CORBA. 1997. (ALCATEL’s
Response to the OMG Request for
Information. April 1997, Reference
ULT/C/97/0121.)

4 EURESCOM. Introduction of Distri-
buted Computing Middleware in
Intelligent Networks. (A EURES-
COM-P508 perspective, OMG Doc.
Number orbos/97-09-11.)

5 AT&T. Design of a ROS : CORBA
Gateway for Inter-operable Intelli-
gent Networking Applications. 1997.
(AT&T Response to the OMG
Request for Information, April 1997,
OMG – telecom/97-04-01.)

6 Herzog, U, Magedanz, T. From IN
toward TINA : Potential Migration
Steps. In: International conference
on intelligence in services and net-
works : technology for cooperative
competition, IS&N, Cernobbio. Ber-
lin, Springer, 1997.

7 Mazumdar, S, Mitra, N. ROS-to-
CORBA Mappings: First Step to-
wards Intelligent Networking using
CORBA. In: International confe-
rence on intelligence in services and
networks : technology for coopera-
tive competition, IS&N, Cernobbio.
Berlin, Springer, 1997.

10 ITU-T. Information technology –
Remote Operations: Concepts ,
model and notation. ITU-T Rec.
X.880, 1994. ISO/IEC 13712-1:1995.

11 ITU-T. Distributed functional plane
for intelligent network CS-1. Geneva,
ITU, 1995. (ITU-T Rec. Q.1214.)

12 ITU-T. Interface Recommendation
for intelligent network CS-1. Geneva,
ITU, 1995. (ITU-T Rec. Q.1218.)

13 ETSI. Core INAP. 1997. (ETSI
Document ETS 300 374.)

14 OMG. RFI on Issues concerning
Intelligent Networking with CORBA.
(Nilo Mitra, AT&T, OMG - tele-
com/96-12-02.)

15 OMG. CORBAservices : Overview.
(Formal/97-02-06: CORBA services
specification.)

Introduction

The architecture presented here has been
developed as part of the Jada project at
Telenor R&D. The original objective of
the project was to evaluate the use of
Java/Internet technology for Telecommu-
nication Management Network (TMN).
The Jada architecture and tools for
making this kind of application have
uncovered additional results from the
project.

This presentation of Jada has its focus on
architecture. For details on the project
and on the prototype GDMO/Java tools
developed as part of the project, please
consult [2].

The following dimensions of architecture
will be covered:

• Distributed Object Architecture
• Application Architecture
• Architecture of Development Tools.

Jada Architecture
Overview

A Jada application is organised as a set
of interacting server and client systems.
Each server system is organised as a
naming tree of Java objects, while clients
are Java applets. This is shown in Figure
1. Client-server and server-server inter-
action is provided by means of Java
Remote Method Invocation (RMI), so
server objects are characterised by
remote interfaces. Systems are either
associated with and used by a client user
application in terms of an applet, or are
used by each other; in both cases by
means of Java remote method invocation
between objects. Systems may either be
independent systems or just components
of a larger system.

The ideas behind the architecture are:

• Operator/user applications can be
made readily available through wide-
spread browser technology (Java
Applets).

• The Java technology, including distri-
bution by means of RMI, can be used
for real application development, and
not just for making fancy applets as
part of web-pages.

These elements of the architecture are
not unique for Jada – but is shared by
most Java applications involving RMI
and applets.

However, Jada applies the object model
of GDMO [5] and maps this into Java
object models. The GDMO approach
means that each object is characterised
by a set of packages, each having attri-
butes and actions. Attributes are speci-
fied to have values according to ASN.1
types, and may be specified as GET or
GET-REPLACE operations. Actions are
specified with parameters and results in
terms of ASN.1 types. Clients and
objects in other servers may set and get
attributes and request objects to perform
actions. In addition, objects may emit
notifications.

Objects are named within a system by
means of name bindings. A system has as
its root an object of class system. Each
object named by another superior object
has an attribute that is used for naming.

The Jada development environment con-
tains, in addition to a pure Java develop-
ment environment, a set of GDMO de-
velopment tools that help in producing
Java representations of GDMO specified
object models.

As shown in Figure 2, the Java imple-
mentation is generated from GDMO spe-

125

Jada: Java, Architecture, Development and Application
A R N E S O L E V Å G H A T L E N , Ø Y S T E I N M Y H R E ,
B I R G E R M Ø L L E R - P E D E R S E N A N D S T I G J A R L E N E S S

Telektronikk 1.1998

Applet

Java-enabled
Browser

system system

system

RMI

RMI RMI

Server (s)

RMI

HTTP

system

system

GDMO
spec.s

GDMO
application

spec.s

Telenor Profile spec.
- supported models
- Java code

Java
GDMO Compiler

Predefined Java
- Java Runtime system
- Object panels

Documentation
- html

Generic
Browser

Java Client
Impl.

Java Server
Impl.

Java virtual machine

Standards

Telenor Specific

Figure 2 Architecture of Jada Development Tools

Figure 1 A Jada application consisting of a set of server systems and a client applet

cifications. These include GDMO speci-
fications of standard object models in the
domain; in addition comes the more
application specific specifications. Usu-
ally, GDMO specifications are very
generic, with optional packages covering
a wide variety of cases. Profile specifica-
tions provide the subset that is used. In
addition, the profile specifications may
include Java code to complement the
skeleton Java code generated from the
GDMO specifications. The GDMO com-
piler will among other things generate
the method name and parameters for an
action specified in GDMO, while the
complementary Java code in the profile
specification will provide the implemen-
tation of this action. The generated Java
code is running on top of a Jada Runtime
System that in turn is run by the Java
virtual machine. In order to present and
enter values in attributes of objects, a
Panel is defined for each class. In addi-
tion, a generic Browser provides means
for navigating in the naming trees of the
systems.

Distributed Object
Architecture

The basic execution architecture of Jada
is an architecture of distributed Java RMI
objects. For this presentation it is not
important which underlying protocol that
is used. It could be: HTTP, a special RMI
protocol, a protocol for a combined
CORBA/RMI approach, or another
protocol. For a discussion of per-
formance and security, the choice of
protocol may however be important.

The distributed object architecture comes
about by mapping the GDMO object
model shown in Figure 3 into a corre-
sponding API on top of Java/RMI:

• GDMO Object classes are mapped to
Java interfaces and implementation
classes.

• GDMO attributes are mapped to set-
and get methods of the Java interfaces
and implemented by variables and
implemented set- and get methods in
the implementation classes.

• GDMO actions are mapped to methods
of the interfaces and implemented in
the implementation classes.

• GDMO notifications are mapped to a
special method that treats the notifi-
cation and possibly generates event
reports by means of remote method
invocations on destination objects.

• GDMO packages are mapped to inter-
face types with methods representing
the contents of the packages.

• GDMO behaviour specifications are
mapped to documentation only (in
HTML).

• GDMO name bindings are mapped to
create methods in the naming classes
and for each class to a general Con-
tainer interface specifying the con-
tainment relationship for objects of
the class.

• ASN.1 types are mapped to data type
classes in Java, and these are then used
to specify variables in the implemen-
tation classes and parameters to
methods.

One may argue that Managed Object
Classes should become Java classes, but
in fact, Managed Object Classes really
just define how the manager views the
information in the MIB, and this is
exactly the purpose of interfaces in Java.

As is indicated in Figure 5, a Managed
Object Class ‘C’ is mapped to an inter-
face ‘C’ that extends interfaces corre-
sponding to both superclasses and
packages, and the corresponding imple-
mentation class ‘CImpl’ extends Man-
agedObjectImpl and implements the
interface ‘C’.

The fact that the managed objects may
be named in the containment tree is re-
flected by the fact that ManagedObject-
Impl extends RemoteContainerImpl. This
is not shown in Figure 5.

126 Telektronikk 1.1998

Attributes

Actions

Attributes

Actions

....

....

Package 1

Package 2

....

superclasses

<attribute-name> ATTRIBUTE
WITH ATTRIBUTE SYNTAX <ASN.1 type>;
...

REGISTERED AS {Attribute 1};

<action-name> ACTION
...
MODE CONFIRMED;
WITH INFORMATION SYNTAX <ASN.1 type>;
WITH REPLY SYNTAX <ASN.1 type>;

REGISTERED AS {ACTION 1};

Figure 3 GDMO class objects with packages, superclasses, attributes and actions

RMI

Remote Method Invocation (RMI) enables objects in
one Java Virtual Machine (VM) to seamlessly invoke
methods on objects in a remote VM. To invoke a
method on a remote object the Java program needs a
reference to the object. A remote reference is obtained
either as an argument or return value, or by means of
the simple name service provided by RMI. To lookup a
remote object the name of the object and the location
(hostname) must be known.

The architecture of RMI consists of three layers, as
shown in Figure 4:

• Stub/Skeleton Layer: Client-side stubs and server-side
skeletons

• Remote Reference Layer: Reference/invocation be-
haviour

• Transport Layer: Connection set up and management,
and remote object tracking.

Client Server

Stubs Skeletons

Remote Reference Layer

Transport

Figure 4 The layers of RMI

A remote object implements one or more remote inter-
faces, which are pure Java interfaces that declare the
methods of the remote object. A method invocation on a
remote object has the same syntax as a method invoca-
tion on a local object.

Application Architecture

The architecture of objects within server-
and client systems is normally not con-
sidered a part of a distributed object
model, but is left to whatever possible
architectures being supported by the
actual implementation language. This is
not the case with Jada. In addition to the
basic structuring of systems by means of
name bindings mentioned above, Jada
applies the following classification of
objects (or in some cases just aspects of
objects) into the following categories
(shown in Figure 6):

• Model specific objects/aspects of
objects, which come from an object
model of the domain

• Application specific objects/aspects of
objects, which have to do with the
application specific functionality of a
given application and not of the
domain

• Interface specific objects/aspects of
objects, that define either interfaces to
other systems or user interfaces.

The classification into model, application
and interface does not have to classify
whole objects, but also aspects of
objects, i.e. one object may have both
model and application specific aspects.
In order for the classification to work for
aspects, it is required that the specifica-
tion of the different aspects of the same
object class can be isolated and identi-
fied. Depending on the situation, we will

talk about application objects or applica-
tion specific aspects. Details of this
classification can be found in [1].

There are three motivations for the
model-application-interface classifica-
tion:

127Telektronikk 1.1998

Attributes

Actions

Attributes

Actions

....

....

Package 1

Package 2

....

superclasses

<attribute-name> ATTRIBUTE
WITH ATTRIBUTE SYNTAX <ASN.1 type>;
...

REGISTERED AS {Attribute 1};

MOC C

interface
Package 2

interface C

Java interface
implementing the
interface for the
corresponding
managed object
class

set<attribute-name>(<ASN.1
type>datatype){...}
<ASN.1 type>datatype get <attribute-name>{...}

extendsinterface
Package 1

extends (<ASN.1 type>datatype)
<action-name>(<ASN.1 type>datatype)
(
action behavior in Java
)

extends

class CImpl

Java class
implementing the
interface for the
corresponding
managed object
class

<action-name> ACTION
...
MODE CONFIRMED;
WITH INFORMATION SYNTAX <ASN.1 type>;
WITH REPLY SYNTAX <ASN.1 type>;

REGISTERED AS {ACTION 1};

implements ManagedObjectImplextends

interfaces

Figure 5 GDMO to Java mapping

interface
specific
objects/
aspects

application
specific
objects/
aspects

model
specific
objects/
aspects

Figure 6 Object classification categories

• It helps in classifying requirements:
An application will have requirements
on

- which application domain to cover

- which functionality to provide

- which users and other systems to
interface to.

• It helps in stabilising a given design:
The objects coming from a domain
model is more stable than the objects
providing the functional requirements,
as these may change with changing
requirements.

• It supports reuse: The reason for iden-
tifying the model objects is that the
corresponding classes have a large
potential for (re)use within other appli-
cations in the same domain.

An object-oriented analysis of a domain
will result in a domain object model.
When an application in the domain is
implemented in terms of objects, it is
obvious to start with objects that come
directly from this analysis.

The domain of Jada (network and service
management) has several domain object
models covering network elements and
networks. These domain object models
are standardised and specified in GDMO.
The model specific objects of Jada appli-
cations are produced by mapping these
GDMO specified object models to cor-
responding Java object models.

Most object-oriented analysis methods
recommend domain object modelling. In
contrast to most of these, where domain
object models consist of classes of
‘passive data objects’, the typical domain
object models for Jada include managed
objects that have actions.

Application specific objects are objects
that are particular for the given applica-
tion. While requirements on the applica-
tion that have to do with the domain may
be associated with the model specific
objects, functional requirements may
lead to application specific objects/
aspects.

Giving the model specific objects (and
classes) of an application,

• requirements that naturally can be
associated with the model specific
objects lead to the introduction of
application specific aspects of the
given model specific objects, e.g. by
defining subclasses with additional
methods that represent application
specific functionality

• requirements that cannot naturally be
associated with the model specific
objects lead to the introduction of
separate application specific objects.

As the Jada development tool makes it
possible to associate Java code with
GDMO specified classes, it is possible to
specify these application specific objects
in GDMO and let them be contained as

subordinate to the root sys-
tem object, see Figure 7.
They may either be made
visible through naming
attributes or just be ‘black
objects’ that are there to
provide the application
specific functionality.

As mentioned above, most
distributed architectures do not

provide any structure for parts of systems
running on servers, and the classification
into model, application and interface
objects/aspects is introduced for this pur-
pose. The following compares this classi-
fication with two- and three-tier architec-
tures.

Traditionally, client-server applications
were mostly based on two-tier architec-
tures; either with all the application logic
on the desktop, the server running only
the database, or with a slightly thinner
client and some application logic on the
server. The main advantage of the two-
tier architecture is its simplicity; it is
quite straightforward to decide which
functions go where.

In three-tier architectures the first tier
contains the clients. The clients typically
provide a user interface and some local
processing. The second tier contains the
application logic (often called ‘business
objects’), while the third tier contains the
database(s). The clients never access the
third tier directly. The middle tier makes
abstractions of the resources in the third
tier.

Business objects within the second tier
may themselves have client-server rela-
tionships (multi-tier architecture).

The back-end tier contains databases and
legacy applications. The middle tier
objects communicate with the databases
and external applications in the third tier.

The three-tier architecture has some
resemblance to the model/application/
interface classification. Business objects
may be introduced to capture application
specific aspects. While the three-tier
architecture is introduced for ‘physical’
reasons (load distribution, independence
of data representation, etc.), the model/
application/interface classification is
introduced in order to structure a large
number of objects independent of
whether they are part of clients, servers
or databases. When a three-tier architec-
ture is applied to an application that also

128 Telektronikk 1.1998

Applet

Java-enabled
Browser

system system

system

RMI

RMI RMI
RMI

HTTP

system

system

Application specific objects
"black objects"

Figure 7 Application specific objects

classifies by means of model/applica-
tion/interface, there may be interface spe-
cific objects in the middle tier and appli-
cation specific objects in the first tier.
The third tier will probably mostly have
model specific objects (the data base
objects of a domain object model), but
the middle tier may also have model
objects. As an example, a GDMO-speci-
fied Management Information Base
(MIB) may be represented both as data-
base objects in the third layer and as
‘agent’ objects together with the other
application specific objects in the middle
layer.

Architecture of Jada
Development Tools

The special thing about the Jada develop-
ment architecture is that it is centred
around GDMO specifications and that
as many as possible of the applications
are generated from these. Parts of the
Java implementation is generated from
GDMO specifications:

• standard object models in the domain,
and

• application specific specifications.

In Figure 8 the development architecture
is illustrated with the GDMO specifica-
tions that have been used in the example
system.

Profiles

Usually, GDMO specifications are gene-
ric, with optional packages covering a
wide variety of cases. The profile specifi-
cations provide the subset that is used for
the specific cases. The profile also speci-
fies the system root which is normally
not specified in existing standard object
models. Profiles are specified in a nota-
tion similar to GDMO. No effort has
been put into making this notation a
complete language in the sense that
behaviour of objects can be specified.
See Figure 9.

Code

GDMO specified models include specifi-
cation of behaviour in terms of informal
text only. For the purpose of generating
server systems according to a GDMO
model, a simple mechanism for asso-
ciating code with the GDMO specifica-
tions has been developed. In order not to
change the GDMO specifications, the

code is provided in separate specifica-
tions. The profile specifications are the
basis for the implementation, and it
associates code to each class, set/replace
method and action of the profile, see
Figure 10.

Jada Runtime System

The Jada Runtime System consists of a
number of Java interfaces and classes
that implement basic properties of man-
aged objects in accordance with the
GDMO standard X.722 [5].

• Attribute types in terms of ASN.1 are
supported by a set of Java classes
implementing the ASN.1 types. In
addition, there are Panel object classes
defining user interface components for
all these types. Each panel shows the
contents of the corresponding value
object, and provides both an editable
and a view-only version.

• Name bindings are supported by Java
interface types and implementation
classes that provide navigation in MIBs.

• The capability of sending event reports
is supported by an EventReporter
interface and of receiving event reports
by the EventReportDestination inter-
face are supported.

The JADA prototype environment con-
tains a generic browser for inspecting
MIBs. It is generic in the sense that it is

independent of the information model
being inspected. The browser is made by
use of the Java Reflection API. With this
API it is possible to get information
about any object, such as information

129Telektronikk 1.1998

GDMO
spec.s

GDMO
application

spec.s

Telenor Profile spec.
- supported models
- Java code

Java
GDMO Compiler

Predefined Java
- Java Runtime system
- Object panels

Documentation
- html

Generic
Browser

Java Client
Impl.

Java Server
Impl.

Standards

X.721, M.3100,
ETSI, GOM

Telenor Specific

DSC, KOF
SERMAN

Java virtual machine

Figure 8 Jada Development applied to example systems

logProfileBehaviour BEHAVIOUR DEFINED AS
" This interface defines the Telenor
" concrete MIB interface to the X721.Log
" managed object class. ";

Log PROFILE
INCLUDES X721.log;

SUPPORTS CONDITIONAL PACKAGES
//FROM: X721.log:

X721.finiteLogSizePackage,
X721.logAlarmPackage,
X721.availabilityStatusPackage,
X721.duration,
X721.dailyScheduling,
X721.weeklyScheduling,
X721.externalScheduler,

//FROM: X721.top:
X721.packagesPackage;

//X721.allomorphicPackage;
//NOT SUPPORTED

SUPPORTS NAME BINDINGS
X721.log-system;

BEHAVIOUR logProfileBehaviour;
REGISTERED AS {telenorProfileID 999};

Figure 9 Example Profile Specification

Figure 10 Example Code Specification

Figure 11 Jada Example System

about methods, constructors, fields, etc.
Due to the mapping of GDMO to Java,
the Browser needs a little help. For
instance, it needs help to identify which
methods that are operations on attributes
and which are in fact actions defined in
GDMO. In order to solve this problem,
all objects can be asked for their GDMO-
attributes, actions and name bindings.

The Browser will then use reflection to
get the parameters right.

The use of the Reflection API together
with the DataPanels enables the Browser
to display all objects, regardless of type.
In addition to viewing an object, it is also
possible to change its attributes by in-
voking the appropriate set-methods.

Application of the Jada
Architecture

In order to illustrate the architecture
issues of Jada, a prototype Jada applica-
tion is presented. The domain of this
prototype application includes both
GDMO specified network models and
application models. Among the applica-
tion objects are the customer class and
order class. In addition, the example
application implements an interface to
the invoice system of Telenor (KOF).

The distributed object
architecture

The example Jada application consists of
three server systems (Sermas, KOF and
DSC). The distributed object architecture
of the example application is shown in
Figure 11.

• Sermas is a Telenor-specific system
supporting user configuration of SDH-
lines and status reporting about a cus-
tomer’s subscribed lines. Sermas relies
on the DCS system to provide connec-
tions to Sermas. Sermas handles infor-
mation about Customers and Customer
Subscriptions, a Customer’s Access
Points (CAPs), as well as information
about SDH leased-line services. For
details, see the Sermas specification in
[3]. The GDMO specification for
Sermas is generated from the corre-
sponding OMT specification from the
Sermas Requirements Specification.

• DCS is the network management sys-
tem providing the SDH leased-lines to
Sermas. The SDH network equipment
and connections are registered, moni-
tored and maintained in the DCS. The
system is based on a GDMO specifica-
tion, which in turn builds on ITU-T
M.3100 and ETSI GOM.

• The KOF application is based on a
small subset of KOF specified in
GDMO for the purpose of the demon-
stration. To populate and interrogate
the different MIBs, a generic browser
is used. The Browser navigates
through the data by using the naming
hierarchy defined in the MIBs. The
only client application with a user
interface (and even that is kept at a
minimum) is the Sermas operator
application, while the other applica-
tions are interfaced by means of the
browser.

• The user application supports an ope-
rator in accessing (reading and up-

130 Telektronikk 1.1998

//$CODE=$PRF:Telenor.KOF.Kof#DECLARATION
// CODER:Attached DECLARATION Code

/**
* This variable carries the reference to the KOFagent in Sermas.
**/

Telenor.KOF.KofAgent kofAgent;

//$CODE=$PRF:Telenor.KOF.Kof#ACT:KOF.invoicing
// CODER:Attached ACTION Code
{ KOF.createInvoiceParam cIP = new KOF.createInvoiceParam();

// assign to cIPs attributes from argument
BillingImpl aBillingImpl= (BillingImpl)billing;
cIP.setAccountId(

(aBillingImpl.createOrFindAccount(
argument.getCustomerId())).getAccountId());

cIP.setPeriod(argument.getPeriod());
messageProcessing.createInvoice(cIP);

}

user
appl.

Java-enabled
Browser

Sermas system

system

RMI

RMI

Jada example system

RMI

HTTP

KOF

DSC

dating) the Sermas server. The user
application is an Applet, running in an
ordinary, Java-enabled Web browser.

The application architecture

The object classes of the object models
of X.721, M.3100, ETSI GOM and the
actual application of these in the DSC
object model form the model specific
part of the Jada example system, espe-
cially the DSC part. The Sermas part
builds partly on this, but introduces other
kinds of model object classes, as the
customer object class, which typically
may be used in other systems where
customers are handled. Examples of

model specific object classes in KOF
are Customer and Address.

The objects of the user interface applet
are obvious examples of interface
objects. Other examples are objects that
interface Sermas with DSC and KOF.

KOF has typical model specific objects
like orders and invoices (common to
many Order-Invoicing systems), as well
as application specific objects. Sermas
has, among others, customer and cus-
tomer access points as model objects,
and subscriptions as application objects.
Figure 12 shows an overview of Sermas’
object model.

Conclusion

Jada, a prototype environment for de-
veloping management systems in Java
based upon GDMO specifications, has
been presented. Jada extends the basic
distributed architecture of RMI objects
by the architecture defined by the
GDMO object model.

The basis in terms of GDMO gives Jada
a benefit in domains where GDMO is
already used. The example application of
Jada contains a GDMO specified net-
work model and this was readily trans-
lated to Java.

131Telektronikk 1.1998

Figure 12 A simple version of Sermas, specified in OMT

serviceProvider customer networkProvider

billingLog

detailed
BillingRecord

customerPremises customerOperator
Sermas
operator

customer
AccessPoint

subscriptionaccessPoint
Binding

usage
HistoryLog

circuit

X.746:
scheduler
subclases

sdhLLservice

SLA

1+

1+

1+

1+

A B A contained in B

class exactly one

class zero or more

class zero or one

class one or more1+

class numerically specified1-2, 4

X.721. system (Sermas)

For design of applications that do not
have a domain object model GDMO
specification, Jada has been used

• for generating a Java design from an
OMT model by specifying the OMT
model in GDMO and then translating
it to Java, and

• for generating a Java design from an
existing database application, making

the design directly in GDMO and then
translating it to Java.

The benefit of using GDMO for the
object model is that the documentation
being produced by the Jada tool will be
the same for standardised GDMO models
as for the design models.

References

1 Mathiesen, L et al. Objektorienteret
Analyse. Forlaget Marko, 1993.

2 Møller-Pedersen, B et al. Jada :
Java-, Architecture, Development,
and Application. Kjeller, Telenor
R&D, 1998. (Note FoU N 01/98.)

3 Breivik, T et al. Input to the Sermas
Requirements Specification. Kjeller,
Telenor R&D, 1996. (Note FoU
N 16/96.)

4 ITU-T. Information Technology :
Open Systems Interconnection :
Structure of Management Informa-
tion : Definition of Management
Information. Geneva, ITU, 1992.
(ITU-T Recommendation X.721.)

5 ITU-T. Information Technology :
Open Systems Interconnection :
Structure of Management Informa-
tion : Guidelines for the Definition of
Management Objects. Geneva, ITU,
1992. (ITU-T Recommendation
X.722.)

132 Telektronikk 1.1998

Arne Solevåg Hatlen is Research Scientist at
Telenor R&D, where he has been involved in
systems planning and systems planning metho-
dology work in the area of Telecommunications
Management Network (TMN). His main interests
are object-orientation in design and implementa-
tion and he is currently working in a Telenor R&D
project dealing with the object web and middle-
ware technologies for the Internet.

e-mail: arne.hatlen@fou.telenor.no

Øystein Myhre is Research Scientist at Telenor
R&D, where he is engaged in the evolution of the
Internet. He has been involved in developing TMN
systems at Telenor and at Siemens Telecom Nor-
way. His experience with object-orientation goes
back to the development of early implementations
of the object-oriented language Simula at the Nor-
wegian Computing Center and at the Norwegian
Defence Research Establishment.

e-mail: oystein.myhre@fou.telenor.no

Birger Møller-Pedersen is Senior Research
Scientist at NorARC, Applied Research Center,
Ericsson Norway, Software Engineering.

e-mail: etobmp@eto.ericsson.se

Stig Jarle Ness is Research Scientist at Telenor
R&D, where he has been employed since 1996.
His interests are middleware, distributed com-
puting and object-oriented systems.

e-mail: stig.ness@fou.telenor.no

Special

133Telektronikk 1.1998

134 Telektronikk 1.1998

1 Introduction

The PC-based planning tool FABONETT has earlier been estab-
lished as an aid for planning the deployment of service access
points in PDH-based access networks (see [1]). What is de-
scribed here is a related tool to be used for the same problem in
SDH-based access networks. This new tool, which has been
called FABONETT/SDH, has been created through a joint
effort by Telenor Research and Development, Det Norske
Veritas and regional network planners in Telenor Nett. FABO-
NETT/SDH has been developed for use by network planners
responsible for planning Telenor’s access networks.

FABONETT/SDH is an integer programming model which
attempts to find the lowest cost SDH-based access network
structure which meets all capacity and connectivity require-
ments. The integer program is solved using a combination of a
branch and cut algorithm with dynamic variable and constraint
generation, and heuristics.

The planner can choose which categories of variables which
will be treated as integer variables in the branch and cut phase
of the algorithm, and which variables will be determined by
using heuristics. The user interface allows the planner to make
modifications to the solution found, and check feasibility and
cost.

FABONETT/SDH has a graphical and table based user inter-
face, and most of the development work has been directed to the
implementation of this interface. In this paper, however, only
the mathematical model and algorithms used in FABONETT/
SDH are described.

2 The service access point structure
design problem

Here a short description will be given of the service access point
structure design problem to be solved.

We are given a local switch (LS) and a set of main distribution
points (MD-s) together with a set of what we call special sub-
scribers (SS-s). The MD-s and the SS-s can be connected
directly to LS or via service access points (SAP-s) where multi-
plexing is done. FABONETT/SDH operates with copper cables,
fibre cables and, by stretching the analogy, radio cables. An SS
must be connected to LS or to a SAP by either fibre or radio
cables. An MD must be connected to LS or to a SAP by copper
cables. A sequence of cables which connects an MD or an SS to
a SAP or to LS, or which connects a SAP to another SAP or to
LS, is called a connection. The SAP-s may belong to SDH rings
which must go through LS. In an SDH ring there are connec-
tions between pairs of contiguous SAP-s in the ring, and con-
nections between LS and SAP-s adjacent to LS in the ring.

Each cable is placed in a sequence of contiguous trace sections.
A trace section is characterized by its cost, length, type and one
or more section codes. The trace section type determines inter
alia which cable types can be placed in the trace section. Typi-
cal trace section types are conduits and ducts (existing or new),
trenches of different categories, air cable sections and radio
sections.

A section code is simply a positive integer. Two trace sections
share a common section code if events causing damage to the
two trace sections are assumed to be positively correlated.
A connection inherits the section codes from the trace sections
used by the cables forming the connection. Two connections
belonging to the same SDH ring may not share a section code.

FABONETT/SDH operates with PDH SAP-s and SDH SAP-s.
All SDH SAP-s are assumed to contain add/drop multiplexers
(ADM-s). If an MD is directly connected to a SAP, the SAP
must contain RSS/RSU. An SDH SAP can be a Transmission
Point (TP). A TP does not contain RSS/RSU. Consequently,
SS-s and other SAP-s, but no MD-s, can be directly connected
to a TP.

FABONETT/SDH will not propose new PDH SAP-s. It may,
however, propose that PDH SAP-s, which in the existing net-
work are directly connected to LS, should be connected to an
SDH SAP instead.

All SDH rings pass through LS and are either STM1 or STM4
SNCP rings.

The SDH SAP-s are ordered hierarchically: SDH SAP-s which
can only be connected directly to LS or placed in SDH rings
through LS are called S1 SAP-s. SDH SAP-s which can only be
connected directly to LS or S1 SAP-s are called S2 SAP-s. SDH
SAP-s which can only be connected directly to LS, S1 SAP-s or
S2 SAP-s are called S3 SAP-s. S1 SAP-s may belong to STM1
or STM4 SDH rings or not belong to rings at all. S1 SAP-s
which belong to rings are called ring SAP-s. By extension of
language LS is also denoted as an S0 SAP. If an S2 (S3) SAP S
is connected to an S1 (S2) SAP S’, we say that S is subordinate
to S’.

PDH SAP-s may be directly connected to LS or to SDH SAP-s.
There are two categories of PDH SAP-s, namely those which
require only a single connection, and those which require
double connection (i.e. two connections with no section code in
common) back to LS. The PDH SAP-s will normally be con-
nected to LS in a way specified by the user. If this is not done, a
PDH SAP which requires double connection to LS will be
allowed to be singly connected to a ring SAP.

An MD may be directly connected through copper cables either
to LS or to a SAP which is not a TP. A PDH SAP can only have
connected to it MDs which either are connected to it in the
existing network or which the planner explicitly connects to it.
There may be subscribers connected to an MD who require the
MD to be connected directly either to LS, to a ring SAP or to a
PDH SAP with double connection to LS.

A circuit connecting an SS to LS belongs to one of two types,
namely regular circuits and singular circuits. The singular cir-
cuits must be directly connected to LS through fibre. The regu-
lar circuits can be connected directly to LS or to a SAP through
fibre or radio. Some SS-s may require that their regular circuits
are connected directly either to LS, to a ring SAP or to a PDH
SAP with double connection to LS. A PDH SAP can only have
connected to it SS-s which are connected to it in the existing
network or which the planner explicitly connects to it. By con-
vention we say that an SS is connected to a SAP (or LS) if the
SS’s regular circuits are connected to the SAP (or LS).

135

Mathematical Model and Algorithms for
FABONETT/SDH
R A L P H L O R E N T Z E N

Telektronikk 1.1998

Based on the location of LS, locations of MD-s, SS-s, existing
cables, existing and candidate trace sections, existing and candi-
date SAP-s, FABONETT/SDH tries to find the lowest cost net-
work design. The design problem is formulated as an integer
program which is solved by a combination of linear program-
ming with dynamic row and column generation, branch and
bound, and heuristics.

Figure 1 gives a schematic view of the network structure. Figure
2 shows an input network structure with candidate SAP-s and
trace sections. Figure 3 shows the same structure together with
the chosen SAP-s and connections.

FABONETT/SDH does not invent possible locations for candi-
date SAP-s and candidate trace sections. All candidate SAP-s
and trace sections must be provided by the user.

Since FABONETT/SDH does not necessarily solve the design
problem to a theoretical optimum, the planner must inspect the
solution and sometimes make model reruns with slightly altered
input. The planner may for example question FABONETT/

SDH’s selection of a particular SAP candidate and wish to make
a rerun with this SAP excluded. FABONETT/SDH’s input for-
mat makes this possible without erasing the SAP candidate from
the input. Or the planner may question the correctness of con-
necting a particular SS directly to LS. A rerun may then be
made where the planner specifies which SAP-s the SS should be
allowed to connect to.

The planner has a problem of a dynamic nature. In establishing
the best network structure the development of the demand struc-
ture over time must be taken into consideration. FABONETT/
SDH is a static ‘one shot’ model. Some simple features for
‘dynamic use’ are, however, built into FABONETT/SDH. The
planner can give selected SAP and trace section candidates the
label ‘preferred’ and give them a bonus. Then two FABONETT/
SDH runs are made. First a ‘future run’ is made where the cir-
cuit demands represent some future point in time. Then the
main run is made where some or all the candidate SAP-s and
trace sections chosen in the future run are labelled ‘preferred’
and given a suitable bonus.

136 Telektronikk 1.1998

PSAP SAP3 SAP2 SAP1 LS SAP1 SAP2 SAP3 PSAP

SAPR

SAPR

MD SSSSMD

Figure 1 Schematic view of network structure

PSAP

LS

SAP2

SAPR

SS

MD

SAPR

SAPR

MD

MD

MD

Figure 2 Input with candidate network elements

3 FABONETT/SDH input in broad terms

The complete input in the form that the planner has to present it,
both tabular and graphical on background maps, is described on
FABONETT/SDH’s help pages. In order to give an impression
of what input data are needed, an overview of main input items
is given below. Not all of these data items are used in the
integer programming model, and it will not be apparent how the
individual data elements relate to the model. In the next section
a detailed description will be given of the input which is directly
related to the formulation of the integer program.

• Local switch:
- location
- cost per line directly from MD-s

• Candidate service access points:
- location
- status (‘existing’, ‘free’, ‘required’, ‘excluded’, ‘preferred’)
- type (single/double connection PDH SAP, SDH SAP, ring

SAP, TP, order in hierarchy)
- capacity (maximum number of lines)
- bonus (if status is ‘preferred’)

• Main distribution points:
- location
- SAP type requirement
- number of subscribers of various types
- number of 2 Mb/s circuits coming from subscribers
- maximal distance to connecting SAP

• Special subscribers:
- location
- circuit requirements (nMb/s for regular circuits and fibre

pairs for singular circuits)
- which candidate SAP-s the SS can be connected to

• Nodes (end points of trace sections which are not locations of
LS, candidate SAP-s, MD-s or SS-s):
- location
- cable splicing (‘possible’, ‘not possible’)
- signal regeneration (‘existing’, ‘possible’, ‘not possible’)

• Trace sections:
- location
- length
- type
- status (‘existing’, ‘free’, ‘compulsory’, ‘excluded’, ‘pre-

ferred’)
- bonus (if status is ‘preferred’)
- section codes

• Existing cables:
- type
- number of available pairs
- which trace sections the cable is placed in

• Service access point types:

- single/double connection PDH SAP, STM1/STM4 SDH
SAP, ring SAP, TP

- capacity (maximum number of lines from MD-s)

- life cycle cost for all components (RSS/RSU, connections,
cabinet, power etc.)

• Subscriber types:
- traffic in erlangs

• Cable types:
- medium (copper, fibre, radio)
- number of pairs
- cost per metre
- economic life time
- trace section types the cable type may be placed in

• Trace section types
- cost per metre

4 The integer programming model

4.1 General

Here we describe the core of FABONETT/SDH, namely the
integer programming model. First we introduce some more
notation. Then we describe the input which is used to formulate

137Telektronikk 1.1998

PSAP

LS

SAP2

SAPR

SS

MD

SAPR

SAPR

MD

MD

MD

Figure 3 Resulting design

the constraints. Finally, the variables and constraints are
described, and the form of the cost function is outlined.

We set up an undirected network which we call the link network
with two types of links, namely trace section links and cable
links. The cable links represent pieces of existing cables be-
tween contiguous nodes on the cable where cable splicing may
take place. The trace section links represent trace sections
(existing or not) where new cables may be placed. A trace
section link inherits the section codes from the trace section it
represents. A path in the link network is a sequence of con-
tiguous links. All trace section links without section codes
(usually ducts) are duplicated, and the original and the duplicate
link receive different section codes. The duplicate links are
given cost 0, but ‘pushes’ on its original as indicated in the con-
straints (21) in section 4.4 below.

As indicated earlier we operate with copper cables, fibre cables
and, by analogy, ‘radio cables’. A radio cable contains one pair
only. Its capacity will typically be 155 Mb/s or 622 Mb/s. The
regular demands of SS-s can be routed on radio cable pairs with
lower capacities, e.g. 34 Mb/s or 8 Mb/s.

4.2 Notation

In order to describe the integer programming model we intro-
duce some notation.

G geographical node containing candidate SAP-s

S service access point

U special subscriber

M main distribution point

R SDH ring

l cable or trace section link

r(U) no. of fibre/radio pairs carrying regular circuits to
SS U (normally 0 or 1)

s(U) no. of fibre/radio pairs carrying singular circuits to
SS U

P(M) required no. of copper pairs connected to MD M

TO1(M) no. of 2 Mb/s from MD M which do not require
protection in ring

TO2(M) no. of 2 Mb/s from MD M which do require protec-
tion in ring

TO1(U) for SS U’s regular demand, no. of 2 Mb/s which do
not require protection in ring

TO2(U) for SS U’s regular demand, no. of 2 Mb/s which do
require protection in ring

TO1(S) no. of 2 Mb/s from PDH SAP S which do not
require protection in ring

TO2(S) no. of 2 Mb/s from PDH SAP S which do require
protection in ring

TOCAP(R) capacity for 2 Mb/s in ring R (126 for STM-1-rings
and 504 for STM-4-rings)

LIN(M) no. of lines from MD M

LINCAP(S) maximum no. of lines to SAP S

Γ(S) a minimal set of MD-s which can be connected to
SAP S and which together exceed the line capacity
of SAP S

fl no. of available fibre/radio pairs in cable link l

kl no. of available copper pairs in cable link l

pfl an upper bound on the number of SAP-s and SS-s
which need fibre/radio pairs in trace link l

pkl an upper bound on the sum of fractions of MD-s
copper pair requirements which can pass through
link l

TRAF1(M) traffic (in erlangs) on lines from MD M which do
not require protection in ring

TRAF2(M) traffic (in erlangs) on lines from MD M which
require protection in ring

E0 and E the constant and rate of increase of the linearized
erlang function expressing, for a given blocking
probability, the number of channels needed as a
function of traffic

4.3 Variables

When we below state the condition for a variable to be equal to
1 it is assumed that the variable is 0 otherwise.

xS = 1 if SAP S is established

xMS fraction of traffic and circuits from MD M which
goes to SAP S (S may be LS)

xUS = 1 if the regular circuits from SS U go to SAP S (S
may be LS)

xSS’ = 1 if SAP S is subordinate to SAP S’ (S’ may be LS)

xR = 1 if STM ring R is established

xi = 1 if a radio mast is established in node i

xl = 1 if trace link l is established

xld = 1 if the duplicate trace link to trace link l is established

x2SS’ no. of 2 Mb/s in an STM1 connection between the
SDH SAP-s S and S’ where S is subordinate to S’

138 Telektronikk 1.1998

x2SR no. of 2 Mb/s (stand-by circuits included) to ring
SAP S routed in ring R

xMGv no. of copper pairs from MD M to LS/SAP node G
via path v

xUGv no. of fibre/radio pairs from SS U to LS/SAP node
G via path v carrying regular circuits (0 or 1)

xUv no. of fibre pairs from SS U to LS via path v carry-
ing singular circuits

xSGv no. of fibre/radio pairs from SAP S to LS/SAP node
G via path v (0 or 1)

yMG number of lacking paths from MD M to node G

yUG number of lacking paths for regular circuits from
SS U to node G

yM = 1 if there is no connection from MD M

ys
U number of singular circuits to SS U which lack con-

nection

yr
U = 1 if the regular circuits to SS U lack connection

yG = 1 if no SAP is established in node G

yfl extent of fibre/radio capacity violation in trace link l

ykl extent of copper capacity violation in trace link l

The y variables are introduced in order to avoid infeasibilities
when solving the integer program. They are given large co-
efficients in the objective function.

4.4 Constraints

(1)

(2)

(3)

(4)

(5)

(6) xS – xMS ≥ 0

(7) xS – xUS ≥ 0

(8)

(generated only if left hand side can be < 0)

− LIN(M)xMS
M
∑ + LINCAP(S)xS ≥ 0

xUS
S
∑ + yU

r =1

xMS
S
∑ + yM =1

xUv
v
∑ + yU

s ≥ s(U)

xUGv
v
∑ − r(U) xUS

S ∈ G
∑ + yUG ≥ 0

xMGv
v
∑ − P(M) xMS

M ∈ G
∑ + yMG ≥ 0

(8’)

for all minimal Γ(S) (8’) is an alternative to (8)

(9) 63xSS’ – x2SS’ ≥ 0 (not generated if S is a PDH SAP)

(10) xS’ – xSS’ ≥ 0

(11)

(12)

(13)

(14)

(15)

(S being a non-ring SAP)

(16)

(S being a ring SAP)

(17)

where the sums are over paths and rings which pass
through cable link l.

(18)

where the sums are over those paths and rings which pass
through trace link l.

(19)

where the sum is over those paths which pass through
cable link l.

(20)

where the sum is over those paths which pass through
trace link l.

−
xMGv

P(M)MGv
∑ + pkl xl + pkl ykl ≥ 0

− xMGv
MGv
∑ ≥ −kl

− xSGv∑ −
xUGv

r(U)
∑ −

xUv

s(U)
∑ − xR∑ + p fl xl + p fl yl ≥ 0

− xSGv∑ − xUGv∑ − xUv∑ − xR∑ ≥ − f l

−
E0 xS

30
+

E ⋅TRAF1(M)

30
+ TO1(M)

 xMS

M
∑

−2
E0 xS

30
+

E ⋅TRAF2(M)

30
+ TO2(M)

 xMS

M
∑

= 0

x2SR
R∋ S
∑ − x2S’S

S’∉ PDH
∑ − TO1(S’) + 2TO2(S’)[]

S’∈ PDH
∑ xS’S

− TO1(U) + 2TO2(U)[]
U
∑ xUS

−
E0 xS

30
+

E ⋅TRAF1(M)

30
+ TO1(M)

 xMS

M
∑

= 0

x2SS’
S’
∑ − x2S’S

S’∉ PDH
∑ − TO1(S’)xS’S

S’∈ PDH
∑ − TO1(U)xUS

U
∑

xS − xR
R∋ S
∑ = 0

TOCAP(R)xR − x2SR
S
∑ ≥ 0

xSGv
v
∑ − xSS’

S’∈ G
∑ ≥ 0

xS − xSS’
S’
∑ = 0

Γ S() −1()xS − xMS
M ∈Γ (S)

∑ ≥ 0

139Telektronikk 1.1998

(21) xl – xld ≥ 0

(22) xi – xl ≥ 0 if node i is one of the end points of link l.

(23)

(1) expresses that all copper pairs from MD M to node G must
follow a path from M to G.

(2) expresses that a fibre pair carrying regular circuits from SS
U to node G must follow a path from U to G.

(3) expresses that fibre pairs carrying singular circuits from SS
U to LS must follow paths from U to LS.

(4) expresses that MD M must be connected to a SAP (or to LS).

(5) expresses that an SS U having regular circuits must be con-
nected to a SAP (or to LS).

(6) expresses that if MD M is connected to SAP S, then S must
be established.

(7) expresses that if SS U is connected to SAP S, then S must be
established.

(8) or (8’) express that the number of subscriber lines connected
to SAP S must not exceed the capacity of S.

(9) expresses that the number of 2 Mb/s between SAP S and
SAP S’ cannot exceed 63.

(10) expresses that if SAP S is established and is subordinate to
SAP S’, then S’ must be established.

(11) expresses that if SAP-2 or SAP-3 candidate S is estab-
lished, then it must be subordinate to some SAP S’.

(12) expresses that if SAP S is established and is subordinate to
some SAP in geographical node G, then there must be a path
from S to G.

(13) expresses that the number of 2 Mb/s in ring R must not
exceed ring capacity.

(14) expresses that ring SAP S is established if and only if it
belongs to an established ring.

(15) and (16) express flow conservation of 2 Mb/s circuits
passing through SAP S.

(17) and (18) express that there must be sufficient number of
fibre pairs in link l to support all fibre requirements in it.

(19) and (20) express that there must be sufficient number of
copper pairs in link l to support all copper requirements in it.

(21) expresses that new cables can be placed in a duplicate link
only if new cables are placed in the corresponding original link.

(22) expresses that if radio links are established, then corre-
sponding radio masts must be established.

xT
S ∈ G
∑ + yG =1

(23) expresses that at most one SAP can be established in a geo-
graphical node.

Constraints of type (13) and many variables will be generated
dynamically during the solution of the problem. In addition,
trace cut constraints, to be described later, will be generated
dynamically.

4.5 The cost function

The cost function to be minimized has the following form:

(24)

Here the c-s represent cost coefficients derived from cost data
given in FABONETT/SDH’s input tables, and C is a large posi-
tive constant. This cost function is detailed elsewhere. We only
mention here that the coefficients cfl and ckl are chosen a little
larger than the cost per pair for new fibre pairs and copper pairs.

5 Solution Method

5.1 General

The solution method is a combination of:

• linear programming with dynamic path generation
• branch and cut
• cost adjustment heuristics (optional)
• variable fixing heuristics.

In the branch and cut phase the variables xS, xMS, xUS and,
optionally, xl are required to be integer. For large problems the
branch and cut phase may take too long if the xl variables are
required to be integer. Therefore the planner has the option of
not requiring these variables to be integer in this phase. Their
values will then, together with other variables not required to be
integer in the branch and cut phase, be determined by heuristics.

5.2 Solving the linear programming relaxation
with dynamic path and ring generation

We repeatedly solve linear programming relaxations of the
problem. The number of path and ring variables xMGv , xUGv ,
xUv , xSGv , xR and x2SR is so large that it is unrealistic to include
them all in the model from the outset. The relevant path and
ring variables are therefore generated dynamically during the
solution process using classical column generation techniques.

The following notation is used for the shadow prices associated
with the constraints which involve path and ring variables:

Constraint no. Shadow price

(1) πMG

(2) πUG

(3) πU

cMGv∑ xMGv + cUGv∑ xUGv + cUv∑ xUv + cSGv∑ xSGv + cR∑ xR

+ cS∑ xS + cSS’∑ xSS’ + ci∑ xi + cl∑ xl + cMS∑ xMS + cUS∑ xUS

+ c fl∑ y fl + ckl∑ ykl + C yM + yMG + yU
r + yU

s()∑ .

140 Telektronikk 1.1998

(12) πSG

(13) πR

(14) πS

(16) πS
bal

(17) πfl
ca

(18) πfl
tr

(19) πkl
ca

(20) πkl
tr

Here πR is not known for rings which are not generated.

We assume that we have a feasible basis for our system. The
reduced costs for the path and ring variables relative to this
basis can be expressed as follows:

Variable Reduced cost

5.3 Reduced costs for ring variables which are
not generated

In order to establish reduced costs relative to our basis for ring
variable x2SR which are not generated we need the values of the
shadow prices πR associated with the corresponding constraints
(13) which are not generated. We shall show how we establish
πR. We pretend that (13) is included in the system and that xR is
in our basis with value 0. Since xR is basic we have that

(31)

so that

(32)
πR = cR + π fl

ca

l ∈ R
∑ + π fl

tr

l ∈ R
∑ + πS

S ∈ R
∑

/ TOCAP(R).

cR − TOCAP(R)πR + π fl
ca

l ∈ R
∑ + π fl

tr

l ∈ R
∑ + πS

S ∈ R
∑ = 0

πR − πS
bal

(30) x2SR

cR − TOCAP(R)πR + π fl
ca

l ∈ R
∑ + π fl

tr

l ∈ R
∑ + πS

S ∈ R
∑

(29) xR

cSGv − πSG + π fl
ca

l ∈ v
∑ + π fl

tr

l ∈ v
∑

(28) xSGv

cUv − πU + π fl
ca

l ∈ v
∑ + π fl

tr

l ∈ v
∑ / s(U)

(27) xUv

cUGv − πUG + π fl
ca

l ∈ v
∑ + π fl

tr

l ∈ v
∑ / r(U)

(26) xUGv

cMGv − πMG + πkl
ca

l ∈ v
∑ + πkl

tr

l ∈ v
∑ / P(M)

(25) xMGv

5.4 Finding not already generated path variables
with minimum reduced cost

From our cost model (which is not described here) we know
that the costs for the path variables xMGv , xUGv , xUv and xSGv
can be decomposed in a series of link terms. Therefore the prob-
lem of finding a variable for each path variable type which has
minimum reduced cost becomes a shortest path problem in the
link network where the length of a link is the sum of the rele-
vant π term (i.e. one of the terms πkl

ca , πfl
ca , πkl

tr / P(M), πfl
tr ,

πfl
tr / r(U), πfl

tr / s(U)) and the link term in the cost decomposition.

For each variable type we shall include in the linear program a
variable with minimum reduced cost if this reduced cost is
negative.

5.5 Finding not already generated ring variables
with minimum reduced cost

When we generate a new ring R we shall always at the same
time generate the ring variables xR and x2SR belonging to the
ring together with the corresponding constraint (13).

In section 5.4 we have seen that the variables xR can be assumed
to be basic for new rings so that these variables need not be
priced out. When we shall establish ring variables of the type
x2SR associated with a SAP S in a geographic node G with mini-
mum reduced cost, we see that we need to find a ring through S
and LS which minimizes

(33)

From the cost model we know that the cost coefficient cR can be
decomposed in a term not associated with links and a series of
link terms. The link independent term represents costs in LS.
We add one half of this cost term to the link term for all links
into LS. Therefore the problem of finding a variable of type x2SR
with minimum reduced cost is reduced to a shortest ring prob-
lem where the length of a link is the sum of the πassociated
with the link (i.e. either πfl

ca or πfl
tr) and the link term from the

adjusted decomposition described above, and where the ‘length’
of SAP candidate S is given by πS. We see that it is not remune-
rative to include in the ring a SAP candidate with non-negative
πS even if the ring happens to go through the corresponding
geographical node.

Ideally, we should for each SAP candidate and each ring vari-
able type introduce into the linear program a variable with mini-
mum reduced cost if this reduced cost is negative, i.e. if the ring
length is less than TOCAP(R)πS

bal. Normally, we shall do
exactly that, but first we will check whether with simpler means
we can establish new x2SR variables associated with modifica-
tions of existing rings which price out negatively. We proceed
as follows:

We go through the (unmodified) rings we have generated al-
ready one by one, and for each of these rings we check whether
there are ring SAP candidates which

• do not belong to the ring

• are situated in geographical nodes which the ring passes
through

cR + π fl
ca

l ∈ R
∑ + π fl

tr

l ∈ R
∑ + πS

S ∈ R
∑ .

141Telektronikk 1.1998

• do not have a link in each of the two paths to LS in the ring
with common section code.

For each ring where this is the case we sort such SAP candi-
dates by descending value of – πS + TOCAP(R)πS

bal and classify
them as untreated. Then we modify the ring by including the
first untreated SAP candidate S and also including other ring
SAP candidates located in geographical nodes which the ring
passes through and which have negative πS. Furthermore, we
remove from the ring SAP candidates with positive πS. We
denote the modified ring by R’. If the ring length of R’ is less
than TOCAP(R)πS

bal , x2SR’ prices out negatively. If that is the
case we include R’ with all its associated variables in the linear
program.

SAP candidate S, together with the other SAP candidates which
were included in R’, are classified as treated, and we proceed to
the next untreated SAP candidate.

If we by carrying out the above manage to identify some x2SR
variables which price out negatively, we introduce them, to-
gether with the corresponding ring variables into the linear
program and reoptimize.

It is only when we do not manage to introduce modified rings in
this way that we try to establish shortest rings through the ring
SAP candidates. In that case we start again by sorting the ring
SAP candidates according to descending value of
– πS + TOCAP(R)πS

bal and classify them as untreated. Then we
start with the first untreated ring SAP candidate and try to find a
shortest ring containing it. The SAP candidate is then classified
as treated. If the corresponding x2SR variable prices out nega-
tively, the ring is introduced into the LP together with asso-
ciated variables, and all SAP candidates belonging to the ring
are classified as treated.

In the next section we shall describe an algorithm for estab-
lishing a shortest ring. This algorithm requires that all link
lengths are non-negative. We have therefore a methodological
problem because one or more πS-s may be negative. The equal-
ity sign in (14) may in principle be replaced by ≥ which would
imply πS ≥ 0. We have, however, used equality in order to
tighten the LP relaxation.

The link network, which was originally defined to be an un-
directed network, is converted to a directed network by dupli-
cating the links and giving the two duplicates opposite direction
with the same length. If the ‘length’ πS of ring SAP candidate S
is negative, we can make use of this by reducing the length on
S’s ingoing and outgoing links. This procedure can be general-
ized. We start with a ring SAP candidate S0 with most negative
πS and let it form a node set N. We then try to successively
extend N.

Assume there is a maximal node set N with the following two
properties:

• All nodes in N can be connected through paths of length 0

• There are SAP-s in N with negative πS.

We let Nc denote the complement of N. Let the shortest links
between N and Nc have length mN > 0, and set

We put µN = min (mN, –πN/2), subtract µN from the lengths of
all links between N and Nc and distribute 2µN to the SAP-s with
negative πS in such a way that all these SAP-s still have πS ≤ 0.
Then we extend N by including into N all nodes which now can
be reached from nodes in N through paths of length 0. Then we
see again if there are node sets with the two properties men-
tioned above and, if so, repeat the procedure.

The links in N which in this way have got their lengths reduced
to 0 constitute a tree structure. We replace all nodes in N, except
the node containing S0, by two nodes, namely an in-node and an
out-node. All links belonging to the tree structure which go in
the direction of S0 are changed to go between in-nodes whilst all
links belonging to the tree structure which do not go in the
direction of S0 are changed to go between out-nodes. All re-
maining links going to the original nodes are changed to enter
the corresponding in-nodes whilst remaining links emanating
from the original nodes are changed to emanate from the corre-
sponding out-node. In this way we increase the probability that
shortest rings will pick up ring SAP candidates with negative
πS.

As mentioned above, SAP candidates with non-negative πS will
not be considered for inclusion in new rings. They will not
cause any link length adjustment, and the nodes they are located
in will in this context be considered as nodes without a SAP
candidate.

5.6 Shortest ring algorithm

We shall here describe an algorithm for establishing a shortest
ring passing through LS and a geographical node G.

There exists an algorithm which for several nodes G simultane-
ously establishes rings where each ring is a shortest ring passing
through LS and one of the G-s. This algorithm requires, how-
ever, extensive administration and overhead. Since we operate
with a relatively small number of geographical nodes containing
SAP candidates, we believe it to be more efficient to apply, for
each G, a simpler algorithm which establishes a shortest ring
through LS and G. We shall now describe this algorithm which
is nothing but a specialization of Busacker and Gowen’s clas-
sical algorithm for finding minimal cost flows in directed net-
works.

We shall initially assume that all links have different section
codes. Afterwards we shall describe how we proceed without
this assumption. The algorithm is based on an implementation
of Dijkstra’s shortest path algorithm which accepts parallel links
between pairs of nodes.

1. We replace all undirected links by one link in each direction,
both with length equal to the length of the undirected link.

2. We apply Dijkstra’s algorithm for finding a shortest path
from LS to G. Let this path have length L. During this process
we partition the nodes into two categories K and Kc where K
consists of the nodes to which we have found a shortest path,
and Kc consists of the remaining nodes. For j in K we let Lj be
the shortest path from LS to j.

πN = πS
S ∈ N ;πS <0{ }

∑ .

142 Telektronikk 1.1998

The zM variables are given a small negative cost –ε.

The following inequalities are included in the LP from the out-
set:

(34)

with shadow price KM
ε.

For each M with zM < 1 we do the following:

For the link network we assign capacity cl to link l where cl is
set to:

Links with xl = 0 are removed from the link network.

In addition we introduce links with capacity P(M) between
LS/SAP candidates for M and a supernode. Then we find maxi-
mum flow between M and the supernode, with a min cut (C,C’)
where M∈ C, and check whether

(35)

If not, and if in addition there exists at least one link l in (C,C’)
with xl > 0, we add the constraint (35) to the LP and optimize
with path and ring generation.

Here we of course generate paths from the M-s for which we
have added constraints (35). Such paths which only use free
links get a bonus equal to the shadow price κM

0 which (34)
would have got if zM had cost 0. We shall now determine κM

0:

Assume first that zM is basic both if zM has cost –ε and if zM has
cost 0. Then:

(36) –P(M)κM
0 + remaining terms = 0

(37) –P(M)κM
ε + remaining terms = –ε.

The terms denoted as remaining terms are non-negative. We
assume that the basis is the same whether zM has a positive cost
or not. Then remaining terms are the same in (26) and (27). This
gives:

(38) κM
0 = κM

ε – ε / P(M).

Assume now that zM is non-basic (this can happen only if zM
has cost 0). Then κM

0 = 0 since (24) is satisfied with strict in-
equality. (26) then implies that remaining terms = 0, in other
words that the other constraints in which zM occurs are not bind-
ing. Then they will not be binding with a small negative cost on
zM either, so that remaining terms = 0 also in (27). With cost
–ε on zM, zM will always be basic so that (27) is satisfied, and
we have that:

(39) κM
ε = ε / P(M).

This means that (38) is still valid.

zM + xl
l ∈ C,C’()

∑ − xMS
S ∈ C’
∑ ≥ 0.

cl =

xl if l is not a free link

min P(M), the slack in 19(){ } if l is a free link containing a copper cable

0 otherwise

xMGv
G ,v in free links only

∑ − P(M)zM ≥ 0

143Telektronikk 1.1998

3. We give node j in K the node number Lj and the nodes in Kc

the node number L. Then we modify the link length for all
links l by adding i’s node number and subtracting j’s node
number. The modified link lengths will thus satisfy the
following two conditions:

• they are non-negative,

• they are 0 along the shortest path.

4. We delete the links which constitute the shortest path to G
which we have found and assign length 0 to the correspond-
ing links heading in the opposite direction.

5. We then apply Dijkstra’s algorithm to find a shortest path
from LS to G in the modified network.

6. We combine the two shortest paths we have found to make a
ring by dropping all links common to the two paths.

Of course, there may not exist any ring passing through LS and
G. Then we set the ring length to ∞.

Now we return to the situation where several links can share a
common section code. We have three options for the solution of
this problem based on one exact and two heuristic methods.

The exact method consists of using a depth-first tree search
where we successively eliminate links which violate the section
code requirements. We form a directed tree structure of shortest
ring problems where the root node is the shortest ring problem
without section codes. The tree in which we perform the depth-
first search is such that the successors to a problem node are
nodes representing problems where we exclude exactly one link
for which the section code requirement is violated. (We remark
that it is permitted to pass through links sharing the same sec-
tion code between two consecutive SAP candidates in the ring.)
During the tree search we continually update an upper and
lower bound on the shortest ring length so that we can find a
shortest feasible ring without necessarily traversing the whole
tree.

The first heuristic consists simply of removing in step 4 all links
from the network which have common section code with links
on the shortest path we found from LS to G, and which are not
heading in the opposite direction of links on this shortest path.
For the rest the method is identical to the exact method.

The second heuristic is the same as the first except that we
always accept the first ring we get. This heuristic will give a
feasible ring if all links which share a common section code are
parallel.

6 Trace cut constraint generation

6.1 Trace cut generation for paths to main distri-
bution points

We focus on a node in the branch and bound tree where we
want to add trace cuts.

We denote links l which have no xl as free links and define

zM =
1 if all paths to M from LS /SAP consist of free links only

0 otherwise

If we have generated (35) for an MD M and κM
0 > 0, and the

shortest path does not consist of free links only, we must gene-
rate another shortest path which uses free links only and give
the resulting path (if it exists) a bonus κM

0.

6.2 Trace cut generation for rings

Again we focus on a node in the branch and bound tree where
we want to add trace cuts.

We define:

F(S): the set of rings through S which use free links only for
at least one of the paths from S to LS

FF: the set of rings which use free links only

We observe that wS ≥ zS . The wS and zS variables are given a
small negative cost –ε.

The following inequalities are included in the LP from the out-
set:

(40)

(41)

For every ring SAP S with zS < 1 we do the following:

We consider the link network and give capacity cl to link l
where cl is given the value xl if l is not a free link, and the value
1 otherwise.

Then we find the maximum flow between S and LS, with
min cut (C,C’), and check if

(42)

is satisfied. If (42) is not satisfied, we add (42) to the LP and
optimize with column generation.

Finding κS
F0 and κS

FF0 from κS
Fε and κS

FFε is analogous to
finding κM

0 from κM
ε. We get:

(43) κS
F0 = κS

Fε – ε

(44) κS
FF0 = κS

FFε – ε.

After we have generated a shortest ring through S again we can
have three situations:

wS + zS + xl
l ∈ (C,C’)

∑ − 2xT ≥ 0

xR
R∋ S,R∈ FF

∑ − zS ≥ 0 with shadow price κ S
FFε

.

xR
R∋ S,R∈ F(S)

∑ − wS ≥ 0 with shadow price κ S
Fε

.

z
S

=
1 if ring SAP S is established,

and the ring through S belongs to FF
0 otherwise

w
S

=
1 if ring SAP S is established,

and the ring through S belongs to F(S)
0 otherwise

1. The shortest ring belongs to FF. Then the ring is given a
bonus κS

FF0 + κS
F0.

2. The shortest ring belongs to F(S)\FF. Then the ring is given a
bonus κS

F0. If in addition κS
FF0 > 0, we must also find a com-

peting ring in FF which is given a bonus κS
FF0 + κS

G0.

3. The shortest ring does not belong to F(S). If κS
F0 > 0, we

must find a competing shortest ring in F(S) which is given a
bonus κS

F0. If in addition this ring belongs to FF, it is given
an additional bonus κS

FF0. If κS
FF > 0 and the ring does not

belong to FF, we must find a competing shortest ring in FF
which is given a bonus κS

FF0 + κS
F0.

One problem is how we find a shortest ring in F(S). We have
not found any exact method for this, so we use a heuristic. In
brief, the heuristic amounts to the following:

1. We establish a shortest path v from LS to S in the subgraph
consisting of free links only.

2. Then we establish a shortest path from LS to S where we are
not allowed to use links with section code common with any
of the links in v.

We have not yet implemented trace cut generation for rings. To
what extent this will be done is yet to be decided.

7 Integer programming heuristics

7.1 Introduction

The integer programming heuristic is roughly the same which
was applied in [1]. Initially, we optionally use a branch and cut
algorithm with dynamic column generation at each node in the
branch and cut tree where the user decides which amongst the
variable types xS, xMS, xUS, xSS’ and xl should be required to be
integer. During the branch and cut phase the variables yfl and ykl
are given a temporary upper bound equal to zero.

The variables of the types xS, xMS, xUS, xSS’ and xl which are not
required to be integer in the branch and cut phase are, together
with the path and ring variables, fixed sequentially. For variable
fixing the variables xS are given first priority, and amongst these
variables the ones that are higher in the SAP hierarchy are given
higher priority. Variables of type xSS’ are given second priority,
variables of types xMS and xUS are given third priority, and vari-
ables of type xl are given fourth priority.

The path and ring variables are generated dynamically, so they
are always fixed sequentially with fifth priority.

For large problems it may demand too much resources to
require the xl variables to be integer in the branch and cut pro-
cess. On the other hand, using the variable fixing heuristic for
the xl variables may imply a significant underestimation of trace
link costs. We therefore apply trace capacity adjustment.

7.2 Trace capacity adjustment

We assume that we have arrived at a stage where all variables of
the types xS, xMS, xUS, and xSS’ are integer. We remove the tem-
porary upper bounds on the variables yfl and ykl, run the LP, and
check for every trace link l the value of xl. If xl = 0, ykl = 0 and
yfl = 0, we set upper bounds 0 on the variables xl, ykl and yfl and

144 Telektronikk 1.1998

classify trace link l as excluded. If 0 < xl < threshold or yfl > 0
or ykl > 0 (where threshold is a parameter between 0 and 1), we
adjust pfl to pfl xl + pfl yfl if (18) is satisfied with equality, and
pkl to pkl xl + pkl ykl if (20) is satisfied with equality. Then we
run the LP again.

When a variable xl is given a lower bound 1, we set pkl = pfl = ∞.
Furthermore, when all xl have become integer, all xl which have
become 1 are given lower bound 1 (accompanied by a corre-
sponding upward adjustment of p-s), and all xl which have
become 0 are given upper bound 0. Then a new optimization is
carried out.

Capacity adjustment is currently executed only once. It may,
however, be repeated several times. It is also possible to execute
capacity adjustment before all variables of the types xS, xMS,
xUS, and xSS’ have become integer, but this has not been imple-
mented.

8 Acknowledgement

The author wishes to thank Øyvin Eriksen who has contributed
many ideas during the development of the algorithms and who
has programmed the algorithms for PC.

9 Reference

1 Lorentzen, R. Mathematical model and algorithms used in
the access network planning tool FABONETT. Telektro-
nikk, 91 (4), 135–139, 1995.

145Telektronikk 1.1998

Ralph Lorentzen is Research Scientist at
Telenor R&D, working with Communications
Network Planning. His interests concentrate
on applications of mathematical pro-
gramming.

e-mail:
ralph.lorentzen@kjeller.fou.telenor.no

146 Telektronikk 1.1998

Status

147Telektronikk 1.1998

International Research and
Standardization Activities
in Telecommunications

Editor: Per Hjalmar Lehne

148 Telektronikk 1.1998

As a follow-up from the previous issue of Telektronikk
(3/4.1997) where four ACTS (Advanced Communications
Technologies and Services) projects were presented (CRABS,
OPEN, MoMuSys and SINUS), this issue of the Status section
contains articles on the ACTS program and on Telenor’s partici-
pation in general. Because the ACTS programme probably is
the most important scene for setting the future telecom agenda,
we feel it is important to focus on both the work, the results and
how it is organised.

In the first article, Dr. Rolf B. Haugen, manager of Telenor’s
external relations, presents the ACTS programme, how it is
organised, and makes short descriptions of the projects where
Telenor participates. The ACTS programme is now in its third
and last phase. After the third call for proposal has been
finalized some 200 projects have been launched.

The ACTS programme does not only fund specific technologi-
cal projects aimed at system design and so on. The so-called
horizontal actions are important to disseminate results and to
connect the different projects together. The InfoWin project is
described by Mr. Thorbjørn Thorbjørnsen. This project is meant
to be the ACTS Information Window, allowing information
flow from the projects to the outside world as well as giving the
outside world an opportunity to look into what is happening in
ACTS. InfoWin publishes on the web, as well as news clips,
bulletins and thematic issues. It is also responsible for the ACTS
Yearbook.

A lot of standards work and work relating to the use of
standards is going on outside the large and well known organi-
sations (e.g., ETSI1, ITU2 and ISO3). In the final and third
article of this issue, Mr. Tor M. Jansen presents FERT, which
stands for “Forum for European R&D in Telecommunications”.
The goal of FERT is basically to provide strategic guidance in
the European telecommunications development. The role of
these types of organisations and projects is significant in the co-
operative process in R&D and standardisation.

149

Introduction
P E R H J A L M A R L E H N E

Telektronikk 1.1998

1 European Telecommunications Standards Institute
2 International Telecommunications Union, a UN-body
3 International Standardisation Organisation

Interactive Digital Multimedia Services

CRABS Cellular Radio Access for Broadband Services

MAESTRO Maintenance System based on Telepresence for Remote
Operators

CUSTOM TV

VIS-à-VIS Fitness for Purpose of Videotelephony in Face-to-Face
situations

Mobility and Personal Communication Networks

MoMuSys Mobile Multimedia Systems

SAMBA System for Advanced Mobile Broadband Applications

SINUS Satellite Integration into Networks for UMTS

STORMS Software Tools for the Optimization of Resources in Mobile
Systems

High-Speed Networking

ASICCOM ATM Switch for Integrated Communication Computation and
Monitoring

CA$HMAN Charging and Accounting Schemes in Multi Service ATM
Networks

EXPERT Platform for Engineering Research and Trials

JAMES Provision of European Networking Facilities (PEN)

NICE National Hosts Interconnection Experiment

REFORM Resource Failure and Restoration Management in ATM-
based IBCN

SMASH Storage for Multimedia Applications Systems in the Home

TRUMPET TMN's Regulations and Multiple Providers Environment

Photonic Technologies

BLISS Broadband Lightwave Sources and Systems

MEPHISTO Management of Photonic Systems and Networks

OPEN Optical Pan-European Network

ACTUAL Application and Control of Widely Tuneable Lasers

Quality, Security and Safety of Communication Systems and Services

RETINA An Industrial-Quality TINA-Compliant Realtime DPE

Horizontal Actions

INFOWIN Multimedia Information for National Hosts

OPTIMUM Optimized Network Architectures for Multimedia Services

TERA Techno-Economic Results from ACTS

INFOBRIDGE The Bridge from ACTS to the outside world

Table 1 ACTS projects with Norwegian participation

Per Hjalmar Lehne is Research Scientist at
Telenor Research & Development, Kjeller.
He is working in the field of personal com-
munications, with a special interest in
antennas and radio wave propagation for
land mobile communications.

e-mail:
per.lehne@fou.telenor.no

150 Telektronikk 1.1998

1 Introduction

ACTS is an abbreviation for ‘Advanced Communications Tech-
nology and Services’ and is part of the 4th framework pro-
gramme in EU. The total budget is about 670 MECU which
corresponds to 5 % of the total framework budget. It is a direct
successor to the previous RACE-programme, known to many
for its pioneering work within ATM. ACTS is divided into three
(time) phases, each starting with a ‘call for interest’. At present
(end 1997) we have just entered the last phase, which means
that there is about two more years to go. During the first two
phases about 150 projects have been launched, with the third
call this number will increase to about 200.

ACTS was established on 27 July 1994 by a European Council
decision, the objectives being “… To develop advanced commu-
nications systems and services for economic development and
social cohesion in Europe, taking account of the rapid evolution
in technologies, the changing regulatory situation and opportu-
nities for development of advanced trans-European networks
and services ...”

There has been a clear shift in technology focus from the early
RACE-programmes (RACE I and RACE II) to ACTS. The
objective of RACE was to bring forward necessary technology
for broadband communications (ATM), whereas ACTS is ori-
ented towards end-users of advanced communications. Much of
ACTS research is thus linked to trials and pilots of the thus
developed technologies. In this context photonics is an exemp-
tion; it is commonly recognized that more fundamental research
is still needed within this area in order to obtain cost-effective
components. Hence, ACTS supports several research projects
devoted to optical components and systems.

Formal decisions to be taken in ACTS are discussed in ACTS
Management Committee (AMC). In AMC all EU/EEA
countries are represented by two delegates, appointed by their
respective governments. In the Norwegian case, one delegate
comes from the Research Council (NFR) and the other from
Telenor, a rather typical combination. AMC is an advisory
group for the Council, but to my experience, its professional
(i.e. project-related) advice has always been followed.

One of the most important tasks of AMC is to approve new
projects. The projects are, of course, evaluated on the grounds
of their technical merits, which certainly give strong guidance
for the final approval. More than 90 % of the projects are
approved on this basis. Occasionally there are nevertheless
‘political’ arguments for choosing one project to another. Any
thus unresolved dispute in AMC will finally go to formal
voting. This is usually not in the interest of Norway (and EFTA
countries) since we have no voting rights. Of the above men-
tioned three phases of ACTS, only the first one applied formal
voting for final approval of the projects; in the succeeding
phases agreements were reached based on consensus.

Although research and technological development is the main
focus of ACTS, the Council has opened for certain support
measures and concerted activities. These are generally known as
‘horizontal actions’. Horizontal activities might be of various
types like encourage practical experimentation, help dissemi-
nate results, promote synergies, inform external interest group,
assess socio- and techno-economic factors, etc. Some projects
are directly placed under the ‘horizontal action’ label like Info-

win and Optimum, while other activities are placed in research
project pertaining to other domains. One example here is the
project Nice that belongs to ‘high speed networks’. I will come
back to these projects later.

National Host (NH) is another concept closely associated with
ACTS. The very idea behind NH stems from the notion that
ACTS focuses on demonstrators and piloting. Hence, the Com-
mission sent an invitation to all the EU/EEA members to pro-
vide infrastructure and projects facilities, called National Host,
for the ACTS projects to come. The rationale was that by offer-
ing such an infrastructure, the respective countries would
qualify to run corresponding ACTS projects, sort of a ‘tender
situation’ for ACTS projects. In practice, this ‘tender idea’ was
not really launched, but one (or more) NH was nevertheless
created in every participating country.

NHs are today established in more than 20 countries and
support practical experimentation of advanced communications
at national and European level. They are interconnected with
commercial services like ISDN and Internet in addition to ex-
perimental services like ATM (through the James network). On
top of this, the NHs have agreed to operate a defined set of link
services, both standardized as well as leading-edge services far
from maturity. These link services support all communications
needs, from e-mail to multimedia mail, video conferencing to
co-operative work, high-speed file transfer, multi-site con-
ferences and meetings, etc.

The National Hosts are jointly organized in National Hosts
Forum which meets regularly, plans major conferences and
demonstrations, discusses common problems and makes in-
formal agreements.

2 Call for interest

A ‘call for interest’ starts with an invitation to submit proposals
for projects within a predefined set of tasks. The tasks are
grouped into a number of areas, called domains. In ACTS we
are talking about six domains to be further dwelt upon below.
When proposals have been submitted, they are evaluated by a
group of independent experts. The experts are grouped into
‘panels’; each panel with responsibility of evaluating proposals
within one particular domain.

The chairman of each panel presents the result of the evaluation
to AMC. This is usually done through two consecutive AMC-
meetings. The first one is devoted to panel presentations with
possibility of (short) questions for clarifications, whereas the
next one opens for more in-depth ‘cross examination’ of the
panels. After these ‘professional’ discussions of the projects,
AMC normally needs one or two further meetings until the
whole package is approved.

The above mentioned procedure is a rather general one in EU. It
might seem long and bureaucratic, but at least in case of ACTS,
the secretariat in Brussels runs it very smoothly. As an example
from last call: Final date for proposals was 28 September, at
which time 195 proposals had arrived. Evaluation started imme-
diately and for the next AMC-meeting, 23 Octobre, we found on
our table several printed documents containing project descrip-
tions, evaluation reports (2 volumes) and executive summary
(including statistics). Not bad for a three weeks period! The

The EU Research Programme ACTS
A General Description with Focus on Telenor Participation
R O L F B . H A U G E N

151Telektronikk 1.1998

final approval was done by AMC on 25 November; hence the
elapse of time from reception of proposals to approval of the
new projects was two months.

3 Concertation

ACTS is an integrated research programme. The overall result it
achieves will be greater than the sum of the individual projects’
results. Hence, quite an effort has been made to obtain synergies
from projects belonging to different domains, leading to con-
cepts like chains and concertation. A chain is a ‘horizontal’
grouping of projects that contain elements of similarities, no
matter which domain they belong to. In certain cases the pro-
jects may also contribute to the work of another, and some pro-
jects choose to support several different chains. This leads to a
need for internal concertation within the programme. In this
context concertation may be defined as: ‘the bringing together
of people and their organizations/projects, to profit from each
others’ knowledge and experience, to coordinate or encourage
the convergence of ongoing work on the most important issues,
and so to build a broadly based consensus on the way to realize
advanced communications in Europe’.

Concertation within ACTS centres on three main groupings:

• Plenary Meetings of all project managers, typically 3 or 4
times per year

• Technology oriented R&D domains, meeting in parallel after
a plenary and focusing on the main technical areas of the pro-
gramme

• Objective Driven Chains, each supporting a defined objective
and contributing to a specific result (for example guidelines).

Through a Concertation Steering Committee, an ongoing effort
is made to keep the work of individual chains and domains
aligned both inside and outside of the Programme. Sometimes
this may lead to changes in timing and priority for individual
actions within the projects themselves.

3.1 Chains

For organizational convenience, individual chains are grouped
into five main groups:

• BA: Broadband Access Networks: Economics and Evolution

• NI: Network Level Inter-operability and Management

• SI: Global Service Integration

• GA: Generic Access to Applications (User perspective)

• XB: External: Broadening of Awareness (Programme Level).

BA addresses issues arising from different topologies of access
networks, their potential for evolution, economics, integration
issues, etc.

NI deals with major issues of interworking and integration,
including signalling and interoperability, roaming and location
functions to provide mobility in both fixed and cellular net-
works. The work aims to ensure end-to-end quality of service
across multiple network operators and service providers in a
competitive environment.

SI seeks to decouple the characteristics of services from those of
the underlying networks, for example that service can be pro-
vided irrespective of access network architectures. The work
will also serve to ensure continuity of services as the underlying
network technologies evolve.

GA works in a similar way on the application level, to ensure
that generic applications can be supported across different
industry sectors and organizations, irrespective of the different
platforms and terminal equipment.

XB chains are formed to address specific needs for broadening
awareness at Programme level, whenever there is no clear initia-
tive taken by any single project or chain. That is, this group of
chains represents overall Programme interests.

3.2 Guidelines

Concerted efforts of Programme projects may take on many
forms, as for example realization of common demonstrators.
More frequently, the concerted actions will result in guidelines.
Guidelines are concise documents targeted towards outside
users. They provide the basis for consultation and systematic
collaboration with related research and policy initiatives within
EU, the member states and third countries, international
industry groupings, standardization bodies, etc. The guidelines
present various form for strategic and/or specific technical
recommendations of the ACTS programme.

Guidelines will typically point to techno-economic feasibility of
alternative technological solution under specific circumstances,
and so contribute to a reduction of options for product and ser-
vice deployment.

3.3 Horizontal projects

As mentioned earlier, there are in ACTS several projects de-
voted to ‘horizontal actions’. Most of these will be found in the
domain named ‘Horizontal actions’ but some are also placed
within one of the other domains. We will in this section con-
sider three projects that all have played an important role in dis-
seminating results both inside and outside the programme:

• James (Joint ATM Experiment on European Services)
• Nice (National Host Interconnection Experiments)
• Infowin (Multimedia Information for National Hosts).

Only the last one, Infowin, belongs to the Horizontal Actions
domain.

3.3.1 James

James belongs to the Networking domain and has an objective
to test and evaluate new ATM-based broadband experimental
services and applications throughout Europe. As a research pro-
ject James aims to demonstrate the utility and added-value of
advanced ATM networks and contains tasks like:

• ATM VP Bearer Service
• IP over ATM
• ATM Switched VC Service
• LAN Interconnection Service
• SMDS over ATM Service
• Network Management.

152 Telektronikk 1.1998

However, in addition to the above mentioned areas, which are
research areas in their own merits, James has (had) the im-
portant function of providing ATM infrastructure to several
other ACTS projects. In particular, the various National Hosts
are tied together by the James network, as depicted in Figure 1.
In this sense James has been a very important horizontal project
within the ACTS programme. Members of the James project are
the major tele-operators in Europe that, in fact, have subsidized
the usage of the network.

The James projects will unfortunately be closed by end of
March 1998, after which time broadband field trials in ACTS
have to be based on commercial solutions.

3.3.2 Nice

The objective of Nice is to assist the National Hosts to provide
common, international broadband applications on an ATM
infrastructure. It belongs to the Networking Domain. The
project concentrates on teleconferences and distributed meetings
associated with ACTS and other EU R&D activities. The Natio-
nal Hosts are the prime vehicle for delivering these experimen-
tal services.

Nice is thus integrating systems so as to enable groups of NHs
to provide common, international broadband teleconferencing
and fast asynchronous services based on ATM. In 1996 the
participation in Nice was extended to Central and Eastern
Europe (CEE) and the Newly Independent States of former
Soviet Union (NIS).

Examples of activities are:

• Advanced Broadband summer school 1996: 22 sites with
more than 1000 people

• Distributed meeting for G7’s GIBN project

• Linking Russian and Western partners in workshops.

3.3.3 Infowin

The objective of the Infowin project is to provide the ACTS
Information Window. This window allows information to flow
from ACTS projects to the outside world, and also helps the
outside world to be visible to the ACTS projects.

Infowin provides support for the internal communications of
ACTS, within the project as well as between projects and the
Commission. The project is structured around information and
marketing, editorial and dissemination, on-line as well as
through other means. Updated information is always to be found
on the Web-site: www.infowin.org/.

Type of information from Infowin is:

• Newsclips: Info published and distributed via WWW and
e-mail twice a month. Information about ACTS projects and
new technology developments.

• Bulletins, appearing four times a year. Cover special research
topics of ACTS or other topics of current interest, important
events, articles, and publications.

• Thematic Issues published quarterly cover special research
topics of ACTS or other topics of current interest. A Thema-
tic Issue can be a regular publication or it may be a workshop.

Oslo

Helsinki/Finnet
Helsinki/Telecom
Finland

Copenhagen

Vienna

Milan

Madrid

Lisbon

Dublin

London
Amsterdam

Köln

Zürich

Paris

Brüssel

Athens

Reykjavik

Helsingborg

Luxembourg

Tel Aviv, Israel

Figure 1 Points of presence of James

Distributed trials
and events

National host
country A

National host
country B

ATM satellite
linksNew common

services from
the NHs

Figure 2 Nice assists the NHs in their service experiment

153Telektronikk 1.1998

4 Domains

The total project budget of ACTS is about 630 MECU, which
corresponds to NOK 5 billion. Every project is assigned to one
single domain as their ‘home base’. As already mentioned, there
are five technology-oriented domains and a sixth housing those
horizontal projects which do not belong to one of the techno-
logy oriented ones. The domains are:

• Interactive Digital Multimedia Services (162 MECU)

• Photonic Technologies (104 MECU)

• High Speed Networking (75 MECU)

• Mobility and Personal Communications
Networks (115 MECU)

• Service Engineering, Security and Comm.
Management (TMN) (143 MECU)

• Horizontal Domain (31 MECU)

The figures in brackets represent the initial distribution of the
funding amongst the various domains. The final numbers, as of
today, show a small shift in the favour of Multimedia Services
and High Speed Networking.

The number of Telenor participating projects, to be discussed
below, might seem a bit ambitious. But since there is a mix of
projects from all three phases of ACTS, some projects (from
phase 1) are about to terminate, whereas the projects from the
third call are on the point of starting up.

5 Projects with Telenor participation

5.1 Domain 1: Interactive Digital Multimedia
Services

The tremendous interest in real-time interactive multimedia
services indicates a large potential market for these services.
Hence, this domain has attracted a large amount of project pro-
posals, many with a very high professional quality. The result
has been an approval of projects that exceeds the initial budget
by about 20 MECU.

The domain has been subdivided into the following three sub-
domains:

SD1: Multimedia Content manipulation and management

SD2: Interactive Distribution and Transmission

SD3: Server based Multi Media Services.

Telenor participates in four projects within sub-domain SD1:

• Momusys: Mobile Multimedia Systems

• Custom TV

• Maestro: Maintenance System based on Telepresence for
Remote Operators

• Vis à Vis: Fitness for Purpose of Videotelephony in Face-to-
Face Situations.

Momusys started already in the first phase of ACTS and is
henceforth in its third year of running. An extension (Momusys-
Ext) was approved at the third call. The objective of the project

is to develop and validate possible technologies for audio-visual
functionalities for mobile systems. The work has been heavily
based on the standardization work in ISO MPEG-4 as well as
ITU and ETSI; in fact, Momusys is a provider of software pro-
grams to the MPEG work. The project has also developed an
‘MPEG-4 terminal’ that is used in the field trial. The project is
progressing well with many promising results.

Custom TV has the main objective to develop, demonstrate and
validate technology for user-friendly screen customization and
interactive program selection in a multimedia broadcast en-
vironment. The project will demonstrate the evolutionary path
from MPEG-2 to MPEG-4 and MPEG-7. Custom TV is a phase
3 project, starting end 97 / beginning 98.

Maestro aims at developing the use of telepresence for main-
tenance, installation and repair of mechanical equipment. It is
particularly dedicated to the training of complex maintenance/
installation scenarios for remote users. The resulting technology
should enable users to be trained by connecting to a ‘Virtual
Showroom’ where they can learn maintenance procedures
through computer-augmented video-based telepresence. The
project is progressing well and the demonstrator is about to be
started.

Vis à Vis is a third call project, starting at the beginning of 1998.
The project aims at examining videotelephony for communica-
tion in companion with face-to-face communications.

Telenor is attending only one project in sub-domain SD2:

• Crabs: Cellular Radio Access for Broadband Services.

Crabs is a project of 1017 man months divided among 9 part-
ners and 3 associated partners and with Telenor as a prime con-
tractor.

The main objective of Crabs is to develop and demonstrate a
cellular radio system to provide broadband interactive multi-
media services, e.g. digital television. The system operates in
the 40 GHz frequency band, and field trials will take place in
five European countries: Czech Republic, Greece, Italy, UK and
Norway.

Figure 3 The cellular broadband network of Crabs

154 Telektronikk 1.1998

5.2 Domain 2: Photonics technologies

The ultimate goal for a European Broadband Infrastructure is a
network based upon optical fibre technology, i.e. a transparent
optical network. The focus of interest in ACTS is to optimize
the use of photonics by analyzing network as a whole, rather
than just using optics for individual point-to-point links. Pend-
ing breakthrough is within switching/routing functionality,
optimal balance between optics and electronics, multiple wave-
lengths as a means for routing and multiplexing, network man-
agement, etc.

Telenor is participating in four projects in the photonics domain,
addressing several of the above mentioned issues:

• Open: Optical Pan-European Network

• Bliss: Broadband Lightwave Sources and Systems

• Mephisto: Management of Photonic Systems and Networks

• Actual: Application and Control of Widely Tunable Lasers

The last project, Actual, is a new project starting in 1998.

Open aims at studying the feasibility of an Optical Pan-Euro-
pean overlay Network by interconnecting major European cities
by high-capacity optical fibre links. The nodes will use multi-
wavelength 4x4 cross-connects with wavelength routing stages.

The potential capacity of each fibre link will be upgradable to at
least 40 Gbit/s, each channel supporting STM-16 SDH or higher
data-rate transport service. The proposed approach relies on
extensive use of WDM for both transmission and routing pur-
poses.

There are two field trials, one between Norway and Denmark,
and one between Paris and Brussels. The Nordic field trial uses
links between Arendal and Thisted/ Hjøring in Denmark with
four-wave mixing and very long repeater spacing.

Mephisto considers network management (TMN) to an ad-
vanced all-optical core network. It exploits wavelength division
multiplexing (WDM) for transmission and routing. The project
develops a generic information model for operation and man-
agement of optical networks and their components.

Bliss has as its main objective to bring key advanced com-
ponents for optical networks to full maturity. Demonstrations
of practical applications are carried out within the project as
well as in other ACTS projects. The project will demonstrate a
4 x 2.5 Gbit/s WDM long haul transmission system including a
cross-connect where the influence of specific device properties
are studied. A main focus is also on the implementation of
optical receiver chips in Access Networks, where a PON and
an ATM ring field trial is performed. The latter is based on the
Aline concept of Siemens/Telenor.

Actual is starting up in 1998 (from the third call). It will develop
a methodology for control and management of widely tunable
lasers for WDM networks. The lasers should be capable of
handling 128 channels with a 0.4 nm channel spacing. NTT in
Japan is participating in the project. Their focus is on the control
part of the laser.

Circuit layer

DXC

Digital path sub-layer

Optical path sub-layer

Optical transmission medium layer

Switch

DXC

Switch

OXC OXC

B
ea

re
r

ne
tw

or
k

S
co

pe
 o

r
th

e
O

P
E

N
 p

ro
je

ct

Tr
an

sp
or

t l
ay

er
s

Figure 4 Open Network Concept

Siemens 1

Tx

Rx

STM 1
test

Siemens 2

Tx

Rx

STM 1
test

Rx

Tx

Rx

Aline

Rx

~~~

~~~

Tx

Rx

Tx

Rx

Rx~~~

~~~
Aline

Tx

Rx

Kjeller - Oslo (Siemens): 43.28 km

50/50

Siemens 4

Siemens 3

90 %

10 %10/9050/50

50/50

Figure 5  Bliss trial in Norway



155Telektronikk 1.1998

5.3  Domain 3: High Speed Networking

The Race programmes focused a lot on broadband networking
principles like ATM. At this stage ACTS wants to ensure that
high-speed networks will interwork at all levels and will satisfy
the user needs and demands. Projects in this domain will thus
contribute to broadband systems made of different technologies
and provide a platform for advanced multimedia services. The
trials and experiments will allow a verification of the techno-
logies, the user acceptance of the technologies, the Quality of
Service concepts and the compliance with standards and regula-
tions.

Telenor participates in the following 8 projects within this
domain:

• Asiccom: ATM switch for Integrated Communications,
Computation and Monitoring

• Ca$hman: Charging and Accounting Schemes in Multi-Ser-
vice Networks

• Expert: Platform for Engineering Research and Trials

• James: Joint ATM Experiment on European Services

• Nice: National Host Interconnection Experiments

• Reform: Resource Failure and Restoration Management in
ATM based IBCN

• Diana: Demonstration of IP and ATM Networking Applica-
tions

• ITUnet: International Trials with Users and Networks from
European Testbeds.

In this listing the first four projects belong to phase 1 of ACTS
and will be terminated in the first half of 1998, Reform is a
phase 2 project (i.e. terminating in 1999) and Diana and ITUnet
are phase 3 projects, starting in 1998.

James and Nice have been described in section 4 and will not be
further dwelt on here.

Asiccom realizes an ATM Gigabit switch on a single-chip, de-
veloping the architecture for an effective support of a broad
range of services, and implementing a Gigabit ATM testbed.

Ca$hman studies the charging and accounting schemes for
ATM networks. The project develops appropriate pricing

Figure 6  Charging ATM traffic with different tariff parameters



156 Telektronikk 1.1998

models and their efficient implementation in hardware and soft-
ware. Extensive use is made of National Host facilities for vali-
dation and for acquiring important user feedback.

Reform has an objective to specify, design and develop a system
with the necessary functions for ensuring network performance
and availability within acceptable levels. It particularly con-
siders mechanisms for fault detection, self healing mechanisms,
intelligent routing mechanisms, load balancing algorithms, to
mention but a few.

Expert has as its main objective to enhance the ATM testbeds in
Basel and Leichelsham. These two testbeds were established in
the RACE-II programme. New features are APON access and
an integrated service CPN switch. The platform is used to de-
termine critical factors in ATM network performance and
control of end-to-end QoS. The Expert platform now contains
14 ATM switches, and a variety of interworking units like
ATM/ISDN and ATM/ Frame Relay interworking units as
shown in Figure 7.

Diana is a starting project that specifies and provides a generic
network infrastructure involving ATM and next generation IP.

ITUNet is based upon ideas coming from Telenor. It aims at
experimenting with several broadband services to residential
users using e.g. xDSL. It also offers an innovative network solu-
tion based on inverse multiplexing of ATM over VDSL, using
twisted pair access networks.

5.4  Domain 4: Mobility and Personal Communi-
cations Networks

The projects within this domain cover three sub-areas:

• Mobile services
• Mobile/wireless network platforms
• Enabling technologies.

Telenor only participates in the second sub-area, the network
platforms.

There are two different types of platforms considered in ACTS,
the UMTS (Universal Mobile Telecommunications System) and
the WLAN/MBS platform. Here WLAN stands for Wireless
Local Area Network and MBS Mobile Broadband System.

ATM PON

ATM
backbone ring

2.5 Gbit/s

Basel

TMN station

Router

ONU
TB
TB

ONU
TB
TB

ATM
(JAMES)

Leidschendam

2 Mbps
mapper

FR
IWU

N-ISDN
IWU

MEGACOM

Frame
Relay

N-ISDN

N-ISDN
gateway

Figure 7  The Expert platform



157Telektronikk 1.1998

The main characteristic of UMTS is a hierarchical cell structure
designed for support of a wide range of multimedia broadband
services within the various cell layers. Use is here made of
advanced transmission and protocol technologies.

The driving force for introducing WLAN in an office environ-
ment is the proliferation of portable and laptop computers and
the potential savings in avoiding wiring or re-wiring of build-
ings. Hence, next generation mobile systems must incorporate
an integrated WLAN capability.

Telenor participates in the following three projects:

• Sinus (Satellite Integration into Networks for UMTS
services)

• Samba (System for Advanced Mobile Broadband Appli-
cations)

• Sumo (Satellite UMTS Multimedia Service Trials Over
Integrated Testbeds).

Needless to say, Sinus and Sumo belong to the UMTS platform
and Samba to the WLAN/MBS platform.

Sinus’ main objective is to validate the UMTS segment for
different satellite interfaces and interworking with terrestrial
components. The project also assesses the economical and
technical feasibility of providing services through the UMTS
satellite component. Sinus will define and demonstrate an end-
to-end communication network. The trials will implement inter-
segment hand-over (satellite–terrestrial), mobile management
call routing, and resource management.

Sumo is a ‘third call project’ starting in March 1998 with a
planned duration of 22 months. It is heavily based on Sinus and
aims at identifying and demonstrating service support and net-
work control for the satellite segment of UMTS. A testbed will
be developed, with features like multimedia terminals, satellite
access terminals, satellite channel emulator, satellite inter-
ference simulator and a live satellite channel. The Sumo trials
address Interoperability between terrestrial UMTS networks
and various satellite systems (LEO; MEO; GEO), capacity on
demand and validating the GRAN concept (i.e. independence of
the physical access scheme (CDMA, FDMA, TDMA).

Samba develops an MBS trial platform consisting of two base
stations and two mobile stations operating in the 40 GHz fre-
quency band. The millimetre-wave transceiver as well as the
antenna are developed within the project. Each mobile station
offers a transparent ATM bearer service up to 34 Mbit/s.

5.5  Domain 5: Service Engineering, Security and
Comm. Management (TMN)

This domain focuses on

• how the inherent intelligence in the network may
be employed to provide flexibility and open com-
petition in the provision of services

• means for managing and administrating end-to end communi-
cation systems which span many independent network opera-
tors and service providers.

The emphasis is on applying the best techniques for system
specifications and corresponding software development with the
aim of creating open platforms.

Telenor participates in one project in the service engineering
sub-area:

• Retina: An Industrial-Quality TINA Compliant Real-Time
DPE.

Retina develops and demonstrates a TINA compliant Distri-
buted Processing Environment (DPE) based on CORBA. It will
demonstrate a BVPN service V1 application to be run in a wide-
area distributed environment. Experiments are based on local
ATM networks at each demo site, which are connected to their
respective National Hosts in Norway and Italy.

5.6  Domain 6: Horizontal Actions

As mentioned before, there are in ACTS several projects that
are of common interest to the Programme as a whole. Three
such projects were discussed in section 4 – James, Nice and
Infowin. Only the latter, however, is part of the domain ‘Hori-
zontal Actions’ that we are now going to discuss.

The projects in this domain are grouped in the following sub-
areas:

Figure 8  The Optimum platform

Demand for the Telecommunications
Services

Services Architectures

DB

Revenues Investments

OA&M
Costs

Geometric
model

Cashflows,
profit & loss accounts

First installed
cost

Life cycle
cost

NPV IRR

Economic
inputs

Year 0 Year 1 Year n Year m

Payback
period



158 Telektronikk 1.1998

• Techno-Economic and Social Aspects
• Concerted Actions and Consensus Development on Guidelines
• Telework and Electronic Commerce for SMEs
• Dissemination, Exploitation and Broadening Participation.

Telenor is at present participating in the following four projects:

• Optimum: Optimized Network Architectures for Multimedia
Services

• Infowin: Multimedia Information Windows for National
Hosts

• Tera: Techno Economic Results from ACTS

• Infobridge: The Bridge from ACTS to the Outside World.

Here the last two projects come from the third call, starting at the
beginning of 1998, and to some extent one can say that Optimum
evolves into Tera and Infowin into Infobridge. Referring to the
sub-division above, Optimum/Tera belong to the Techno-Econo-
mic as well as the Dissemination sub-domains. Infowin/Info-
bridge certainly belong to the Dissemination sub-domain.

Optimum’s objective is to establish guidelines for the intro-
duction of advanced communications network and multimedia
services in a competitive environment. That is to say, Optimum
considers the telecommunications access network, compares the
cost (including forecast) of different technologies, like optics,
copper, radio, and give guidelines for further evolution of the
network. The architecture for a specific set of services is being
defined and combined with traffic, demand and tariffs. Risk
evaluation for various scenarios is also included in the project.

Telenor is the prime contractor of the project.

Tera is the continuation of Optimum, which will terminate in
1998. Its objective is to support consolidation of deployment
guidelines and their dissemination. Tera will also perform techno-
economic evaluation of outputs from various ACTS projects

Infobridge is a continuation of Infowin and intends to dissemi-
nate and promote results from the ACTS programme. This will
be achieved by developing an Infospace, publication of regular
news-service, publishing CD-ROM, etc.

6  Concluding remarks

Telenor has participated in altogether 24 ACTS projects during
a 5 – 6 years period (plus the project Emphasis, from which we
chose to withdraw after one year’s participation). In the
Appendix is a listing of all the 24 projects with their Telenor

contact person. The experience gained through this collabora-
tion has had an important bearing on the professional work and
competence of Telenor Research and Development; the results
and knowledge thus obtained have been acquired in an
extremely cost-effective way. Projects in the NOK 50 –
100 mill. range are not easily financed on a national level.

It is also interesting to follow the ease with which our re-
searchers are now taking part in the international research
community. We are, together with our Nordic colleagues,
highly appreciated as partners in the various EU projects and
are from time to time getting more offers than we can accept.
It is also clearly seen that the project consortia we enter into
have been increasingly solid; in the first phase of call for papers
in ACTS we had a ‘hit rate’ (i.e. approved projects) of about
60 – 70 %, in the last call it was very close to 100 %! Hence, the
experience gained through the ACTS participation has not only
been on the professional level; equally important has been the
‘education’ of our researcher to be part of, and feel at home in,
the international research community. This is also reflected in
our role in the projects; in the first phase it was rather unthink-
able to go for a project leadership, in the second phase Telenor
was ‘prime’ (i.e. project leader) in two projects (Optimum and
Crabs), and in phase three we were prime in two additional
projects (Tera and Itunet).

The yearly project evaluations, performed by a panel of experts
on behalf of the EU Commission, show good results for most of
the ACTS projects in which we participate. From the last evalu-
ation, in January 1998, the Open project got top score on all
evaluation points with MoMuSys and Expert very close behind.

7  Appendix
Overview of Telenor participation in ACTS projects with contact person:

ACTS Domain ACTS Project Telenor Contact

Interactive Digital Momusys Robert Danielsen
Multimedia Custom TV Robert Danielsen
Services Maestro Ola Ødegård

Vis à Vis Bjørn Hestnes
Crabs Agne Norbotten

Photonic Open Torodd Olsen
Technologies Bliss Evi Zouganeli

Mephisto Terje Henriksen
Actual Evi Zouganeli

High Speed Asiccom Geir Millstein
Networking Ca$hman Ragnar Andreassen

Expert Harald Pettersen
James Svein Tore Johnsen
Nice Kaare Inge Sletta
Reform Svein Tore Johnsen
Diana Egil Aarstad
ITUNet Einar Edvardsen

Mobility & Personal Sinus Jørn Kårstad
Communications Sumo Jørn Kårstad

Samba Stein Svaet

Communications Retina Eirik Dahle
Management

Horizontal Actions Optimum Borgar Olsen
Tera Borgar Olsen
Infowin Thorbjørn Thorbjørnsen
Infobridge Thorbjørn Thorbjørnsen

Rolf B. Haugen is Chief of Research and Head of
External Relations at Telenor R&D. His work in-
cludes co-ordination of Telenor activities in the EU
research programme, EURESCOM and national
projects with the Norwegian Research Council, as
well as co-ordination of standardization activities in
Telenor. He is a member of the General Assembly
in ETSI and EURESCOM. In the BT-alliance he is
responsible for co-ordinating technology collabora-
tions.
e-mail: rolf.haugen@fou.telenor.no



ACTS (Advanced Communication Technologies and
Services), established under the Fourth Framework Pro-
gramme (1994 – 1998), represents the European Union’s
major effort to support research and development in the
field of Telecommunications. The work within the pro-
gramme is carried out in the context of trials to encourage a
dialogue between developers and users. The ACTS pro-
gramme is a truly co-operative challenge that brings to-
gether many companies and organisations from all sectors
of the European telecommunications industry in more than
150 projects. The success of ACTS can only be achieved
through the effective exchange of information, not only
within the programme, but also across the boundaries of the
programme. In this context InfoWin, the ACTS Information
Window, was established with the purpose of adding value
to the information flow between ACTS projects and between
the ACTS programme and the outside world.

1  Introduction to InfoWin

The InfoWin project provides the ACTS Information Window
(http://www.infowin.org). This window allows information to
flow from ACTS projects to the outside world and also allows
the outside world to see what is happening in ACTS. The Infor-
mation Window ensures that ACTS participants keep an up-to-
date view of the development of the telecom market and its
needs, whilst simultaneously ensuring the visibility of ACTS
and maximising its impact. InfoWin also provides services for
the internal communication of the ACTS programme.

InfoWin exists to maximise the synergies of the ACTS pro-
gramme, and the economies of scope, scale and integration
which can be achieved by working together on advanced com-
munications. The increased rate of development of advanced
communications services and implementations brought about by
these synergies will make an important contribution to the de-
velopment of the European economy. By maximising the
impact of the work of ACTS, InfoWin supports the develop-
ment of the information society in Europe and on a global scale.
InfoWin also supports the dissemination of advanced communi-
cations concepts and services into all the regions of Europe,
ensuring that the benefits can be felt throughout the community,
such as in the introduction of teleworking in peripheral regions
and the development of high-speed infrastructure in the core
regions.

The project consortium includes National Hosts, telecommuni-
cation companies, academic institutions, computing and re-
search centres and specialists on marketing and information
dissemination.

2  How InfoWin works

InfoWin focuses on information content, and follows a scien-
tific approach for providing the information presented at the
information window. The project is structured around the key
steps in the information publication process: information
gathering and writing relevant material, editing the information
in an appropriate way for different target audiences and the
publication and marketing of the information to those audi-
ences. The electronic information system activities included
in the project are those necessary to support the information
dissemination.

InfoWin aims its products at different target groups. These
range from the inner circle of the ACTS community over the
general R&D, business and political communities, to the general
public at large. The work is based on an in-depth understanding
of the different communities that have an interest in the ACTS
programme and projects. Major contributors to this work are
National Hosts and educational institutions.

The regular products of InfoWin are: Newsclips, Bulletins,
Thematic Issues and the ACTS yearbooks (all described in
Chapter 3). The effort that goes into the production and dis-
semination of these publications is structured as:

• Information gathering and reporting (based on origin)

• Editorial work (based on subject)

• Dissemination – marketing and promotion (based on target
audience).

The next sections will deal with these points in greater detail,
starting off with a description of the editorial work of InfoWin.

2.1  Editorial work

The purpose of editorial work is to add value and structure to
the raw information. Value is added by analysing and consoli-
dating the information so as to present the information in forms
that are easily accessible and in line with the needs of the in-
tended target groups.

Much effort goes into tailoring the publications for the different
target groups such as:

• The ACTS community. This community is well aware of the
programme, has good knowledge of the main content of the
programme and requires technical and detailed information
regarding ACTS and research activities elsewhere. 

• The R&D community in general, such as research institutions
and universities. This community is aware of the existence of
the European research programmes in various levels of detail.
A group that requires detailed, technical information.

• The business community: industry, financial services, ad-
ministrations and users. They have to keep up-to-date with
new developments in the advanced communications area.

• The political community: administrations and technical bodies
in charge of implementing policies. The quest for information
is crucial in their forecasting and regulatory roles.

• The public at large. Proper information can improve the
general understanding of upcoming new technologies and
services.

The information enhancement pyramid shown in Figure 1 app-
lies to the publications of InfoWin, and it depicts the amount of
editorial work that is put into the different publications. The
material closer to the top of the pyramid represents the publica-
tions that require the highest editorial effort. The bottom of the
pyramid represents material basically dealing with raw informa-
tion of the form of project deliverables and reports. On the left
we find the different kinds of publications represented by the
pyramid.

159

InfoWin 
– The Multimedia Information Window for ACTS
T H O R B J Ø R N  T H O R B J Ø R N S E N  A N D  C L A U S  D E S C A M P S

Telektronikk 1.1998



2.2  The regional representatives 
– a key mechanism to InfoWin

To support the vast information gathering and dissemination
activities, InfoWin established the regional representative
mechanism.

InfoWin aims at bringing services close to the people who need
it. To support the vast information gathering and dissemination
activities, InfoWin established the regional representative
mechanism. Western Europe has been divided into nine regions,
each covered by one or more regional representatives respon-
sible for promoting the activities of ACTS and for gathering
information on relevant results and activities.

2.2.1  Information gathering by regional
representatives

The objectives of the information gathering activity is to:

• collect information and handle requests for information
collection

• gather information that directly relates to the ACTS pro-
gramme and make this information available for further
processing

• working as technology journalists, cover conferences and
meetings related to ACTS projects and the programme as a
whole

• report on ACTS projects, their progress and results.

InfoWin aims to improve the flow of information between
ACTS projects, and between ACTS projects and the outside
world. The first task of regional representatives is to gather the
information within the boundaries set by the editorial board of
InfoWin. The regional representatives have therefore to keep
abreast with the developments in advanced telecommunication
technologies and to understand which relevant research is going
on within their region and in ACTS projects.

2.2.2  Dissemination and marketing activities by
regional representatives

The main goal of dissemination and marketing is to deliver the
right information to the right audience. Through their close con-
tact with the local market, the regional representatives provide a
good mechanism to achieve effective dissemination. They also
receive valuable feedback or requests for specific information
through their contact network.

The target groups of InfoWin have very different requirements.
Through the regional representatives, InfoWin carries out large-
scale surveys to identify their needs. The surveys are usually
carried out at concertation meetings. Concertation can be de-
fined as the bringing together of people and their projects, to
profit from each other’s knowledge and experience, to co-ordi-
nate or encourage the convergence of on-going work on the
most important issues. The aim is to build a broadly-based
consensus on the ways to realise advanced communications in
Europe. Concertation takes place both within ACTS and ex-
ternally with related initiatives and interest groups representing
the broader communications public.

In ACTS, the concertation mechanisms are organised around
Domains and Chains. Domains provide internal forums for
projects working on similar technical areas to share ideas and
experiences. Chains are objective driven and more outward
facing than the Domains, and comprise projects working to-
gether on technology development and technology trials.

2.2.3  The Regional Representative Community

In order to make the best use of the experience and knowledge
that exist in the Regional Representatives network, a free-flow-
ing information exchange and personal rapport with fellow
regional representatives is essential. This open infrastructure of
contact points allows for rapid exchange of information, and
makes for a global overview of the ACTS programme.

160 Telektronikk 1.1998

Special
Presentations

Marketing and
Promotion Material

Thematic Issues
Bulletins

Newsfeed Production
(Newsclips similar to Reuters or AP)

Index Information created by Information Providers
Index Information created by automatic means

Full documents deliverables, ACTS Documents,
other comm. Documents etc.

Multimedia CDs

Printed or electronic
brochures

Printed or electronic
documents

Web Documents

Web services

Formatted
Documents

Amount of
Editorial Work

Amount of Information

Figure 1  Information enhancement pyramid

• UK and Ireland

• Nordic countries (Denmark, Finland,
Iceland, Norway and Sweden)

• Germany and Austria

• Greece

• Italy

• Portugal and Spain

• Switzerland

• Benelux.

• France

InfoWin’s Regional Representatives are a group of regional
experts that provide an important interface between the ACTS
community and the outside world. These ‘local correspondents’
perform a dual role in gathering and producing information, and
marketing ACTS/InfoWin and disseminating information.

Through personal visits, attendance of workshops, conferences
and other events, regional representatives establish and maintain
contacts within the ACTS R&D and business communities.



Within each region, the regional representatives operate as
teams. Each Region has a main contact person who co-ordinates
and monitors the work in her/his region. The co-ordinator
assigns work to members of the team and is the main contact
point within the region for enquiries from both inside and out-
side ACTS.

3  Products

Most of the InfoWin products are available through the ACTS
Information Window. InfoWin also produces booklets, manuals
and CD-ROMs, which are targeted at different audiences and at
manifold events.

3.1  Information Window

The Information Window is a repository of all general informa-
tion and public domain results of the ACTS Programme. It re-
sides on the WWW and makes full use of a decentralised archi-
tecture to allow the Commission, each project, Domain and
Chain groups to manage their own contributions. InfoWin en-
sures the overall coherence of the information window, and
maintains a single, well-structured point of entry. The informa-
tion window is a basic resource that supports ACTS concerta-
tion, both internally and externally to the programme. It simul-
taneously supports the development of working documents in
closed discussion forums, and broadens awareness of ACTS
results through regular newsletters and dissemination initiatives
on specific issues.

161Telektronikk 1.1998

Figure 2  Homepage of the InfoWin Infospace



List of participants in the InfoWin consortium

Country Organisation Website

D RUS, University of Stuttgart http://www.rus.uni-stuttgart.de/

UK Analysys Ltd. http://www.analysys.com

F Expertel http://www.expertel.fr

I CSELT SPA http://www.cselt.stet.it

D Deutsche Telekom Berkom GmbH http://b5www.deteberkom.de/

D Fraunhofer Institute for Computer http://www.igd.fhg.de
Graphics

F INRIA http://www.inria.fr

A Techno-Z FH F&E http://www.newmedia.at/
main.html

GR Intracom Hellenic Tele-
communications Ele

GR NCSR Demokritos

IS PTT Iceland http://www.simi.is

CH Swisscom http://www.swisscom.com

B Synergetics IT consultants NV http://www.synergetics.be

E Telefonica Investigation http://www.tid.es
y Desarollo

N Telenor FoU http://www.fou.telenor.no

UK Sheffield Hallam University http://www.shu.ac.uk

DK UNI-C, Danish Computing Centre http://www.uni-c.dk
for Research and Education

- Multimedia Success Stories: A series of case studies of
multimedia applications that are commercially available.
This thematic issue provides an insight into the general
factors that contribute to the success of a multimedia pro-
ject. Whatever your interest in multimedia might be, this
product is meant not only to inspire you, but also to show
you how a vision can be turned into commercial reality.

- Advanced Business Communications in Europe: The
implementation of new technologies is about to radically
alter the way companies communicate, both internally and
with the outside world, with customers, subcontractors and
suppliers. This thematic issue comprises case studies of
European Small and Medium sized Enterprises (SMEs) that
make extensive use of advanced business communication
technologies and from whom other SMEs can learn rele-
vant lessons.

- Multimedia Broadcast: Provides an overview of European
R&D in the field of interactive multimedia broadcast ser-
vices and applications.

- Mobile Communications On-line: This publication exploits
the pervasiveness of the WWW and the Internet to increase
the awareness of European R&D and standardisation acti-
vities in the expanding field of Mobile Communications.
Apart from evolution issues, where experts survey the main
research topics, this product provides state-of-the-art infor-
mation concerning European mobile operators and ser-
vices.

- ATM in Europe: Gives an overview of the European R&D
in the ATM (Asynchronous Transfer Mode) area. It focuses
on the activities, trials, and results of the ACTS Programme,
the TEN-IBC Preparatory Action, and other EC-funded
programmes.

- Information Brokerage: Gives an overview of European
R&D in the area of Information Brokerage in the context of
Electronic Commerce, focusing on the activities, trials and
results of the ACTS Programme.

• Communication Handbook (in co-operation with the ACTS
project NICE)

The Communication Handbook is a user guide with precise
and pragmatic recommendations for the use of formats and
rendering tools. The services provided by InfoWin and NICE
are described together with the best way to access them.
These services are not restricted to ACTS participants and
everyone is encouraged to try out and test them.

• Bulletin

The InfoWin Bulletin is published quarterly, and is arranged
to coincide with the ACTS Concertation meetings in Brus-
sels. It is the in-house journal of the ACTS community and is
available in various formats: WWW, paper, CD-ROM and
floppy disk. It covers special research topics of ACTS and
other topics of current interest, important events, articles, and
publications

• ACTS yearbook – the ACTSxx Products 

Each year InfoWin assists in the production of the ACTS
yearbook (published in CD-ROM and printed versions). The
scope of this publication is not just to present the yearly
progress of the ACTS programme, but also to give an over-
view of the whole programme, including a description of the

162 Telektronikk 1.1998

3.2  On-line Information

• InfoWin Infospace (www.infowin.org mirrored at
www.de.infowin.org)

The Infospace is the main entrance to information about
ACTS-projects, Chains, Domains, ACTS in general, National
Hosts, etc. It contains information about the latest news and
reviews regarding public domain results and working papers.
A screen-dump of the homepage of the ACTS Infospace is
shown in Figure 2.

• ACTS Newsclips

The ACTS Newsclips activity produces a bi-weekly column
with spot news, covering developments in Advanced Commu-
nications Technologies and Services. Newsclips are published
on-line within the Infospace and also via e-mail.

• Thematic Issues

InfoWin Thematic Issues provide in-depth coverage of special
research topics within ACTS and other topics of current inte-
rest within the area of trans-European telecommunication net-
works and the information society. Topics are often user-ori-
ented or service-oriented. They are published in various for-
mats (paper, CD-ROM, on-line). To date, the following The-
matic Issues have been published:



political and social background. The publication is intended
for all interested parties of ACTS, including ACTS pro-
gramme participants, researchers, politicians and the public at
large which is involved in ACTS through user trials. ACTS
97 is the annual technical report of the EU’s research and
technological development programme on Advanced Com-
munications Technologies and Services. The report is publis-
hed in seven volumes:

- Brochure: a brief introduction to the ACTS Programme

- Compendium of Practical Experimentation and Trials: an
overview of the experimentation undertaken by ACTS pro-
jects. The technical platforms are specified and details on
where and when the trials are taking place are given.

- Overview: This is an executive summary of ACTS imple-
mentation, and the broader context for its results

- Programme Guide: Programme level results, and ongoing
concertation activities within the Domains, Chains and
Chain groups

- Project Summaries: a summary of each ACTS project

- fACTS Booklet: a handy, pocket-sized booklet containing
essential reference information for programme participants 

- ACTS 97 CD-ROM: the complete ACTS 97 publications in
multimedia form with additional information on a number
of related subjects.

4  Achievements

The InfoWin projects and services are in great demand, witness
the high number of monthly hits – on average 200,000 – on the
InfoWin servers. There are over a thousand subscribers to the
InfoWin Newsclips, which further demonstrates the value of the
service.

InfoWin has received two awards for its work.

4.1  European Telework Award

European Telework Week, initiated by the European Commis-
sion in 1995, is an annual event that supports industries, admini-
strations and other interested parties in the teleworking arena.

Telework Awards are given to organisations that, in the opinion
of the evaluators, have made outstanding contributions to tele-
work development in Europe. The Telework Awards are sup-
ported by the partners in the European Telework Week initiative
which include the European Commission, the European Tele-
work Development (ETD) project and industry representatives.

There were over sixty nominations for the European Telework
Awards ‘97. InfoWin received the Telework Award in the cate-
gory ‘media coverage’ for its overall coverage of the ‘European
Telework Week’.

4.2  NBNSOFT

NBNSOFT, an e-journal that awards for content and stories,
awarded the InfoWin Newsclips – The best “what’s newest on
the Net”. The award was received in July 1996 in the category
of the ‘newest technology and educational resources’. The

accompanying statement was: “ACTS News-Clips, an informa-
tive bi-weekly newsfeed about developments in Advanced
Communications Technologies and Services (ACTS), cover
stories ranging from satellite links in Greece and Norway to the
future of PC-TV”.

163Telektronikk 1.1998

Claus Descamps is Research Scientist in
the Unit of Satellite & Radio Systems at
Telenor R&D, Kjeller.

e-mail:
claus.descamps@fou.telenor.no

Thorbjørn Thorbjørnsen is Senior Adviser
in the Unit of Satellite & Radio Systems at
Telenor R&D, Kjeller.

e-mail:
thorbjorn.thorbjornsen@fou.telenor.no



164 Telektronikk 1.1998

Introduction

In telecommunications,
the service providers, the

network operators
and the telecom-
munications
industry domi-

nate the com-
mercial and
technological
scene in Europe.
The European

Commission is
helping to estab-
lish research and

development pro-
grammes in many areas,
where the activities are

partly funded by the European
Union (EU). Many of these projects involve, or are directly
related to telecommunications. In many areas, the different
actors in the telecommunications sector have common interests.
Therefore, there is a need for making these interests influence
the contents and direction of the R&D programmes.

This has resulted in the creation of several co-operative fora.
The telecom operators co-operate in ETNO, European Telecom-
munications Network Operators. The industry has an organisa-
tion called ETIC, European Telecommunications Industrial
Consortium.

FERT is an organisation with membership open to different
sectors like manufacturers, network operators, service providers
and users. It is the only organisation in Europe where consensus
on strategic guidance to the development of telecommunications
in Europe is being achieved between the different actors group-
ings.

The results and contributions are based on the wide range of
knowledge and experience of the members, and FERT provides
important input to the EU Commission and other bodies.

The actors use the forum as a platform for promoting and
influencing directly and indirectly the content and direction of
the ongoing and future European Union collaborative R&D
programmes and contributing to the other European bodies.

Activities

The main activities of FERT is to establish

• Ways and means by which collaborative R&D in telecommu-
nications will benefit the evolution of Europe’s information
society

• “Common visions” of the evolution of telecommunications
based on customer requirements and advances in technology.

FERT members have initiated strategic projects in the area of
telecommunications (CONCORD 2, CONVAIR) for the on-
going 4th Framework Programme of EU. The common main
goal of the two projects is to help pave the way for the Informa-
tion Society of the future.

CONCORDIA (CONCORD 2) – within the Telematics Appli-
cation Programme, has the main task of identifying users’ re-
quirements necessary from future communication services and
networks indicated by the emerging applications.

The main objectives of CONCORDIA include:

• Recording of harmonised results in Infrastructure Evolution
Recommendations (IER)

• Recommendations

• Promotion of the exploitation and use of results

• Collection of feed-back on the results and of the selected
solutions

• Providing advice and recommendations based also on the
results achieved by the CONVAIR project in ACTS

• Supporting Sector Actors to orient their strategies and to
optimise their support to the Telematics Applications.

CONVAIR – within the ACTS (Advanced Communications
Technologies & Services) programme, has the main task of
developing “Harmonised visions” of EU communications
perspectives and to identify the key areas that are critical for the
realisation of the future Communication and Information
Society. In particular, CONVAIR aims at preparing outputs
which may be used as planning guidelines for players in ICT
(Information and Communication Technology), developing
common statements on strategic European telecommunications
evolution. Topics and priorities for future collaborative R&D
Programmes will also be identified. The project’s initial results
are already emerging. In particular, the approach and a frame-
work for the whole study have been defined in detail, a sound
basis for discussion on visions has been set up and the critical
areas and key issues have been listed during the first few
months of activity.

The members of FERT are engaged in many projects within the
EU R&D programmes ACTS, TELEMATICS and ESPRIT,
which are within the 4th Framework Programme.

At present, a main activity of FERT is to establish “Common
Visions” for the 5th Framework Programme.

Structure of FERT

Plenary Assembly

The Plenary Assembly is open to all members of FERT, and
here the members may exchange information and ideas about
telecommunications development and trends.

Generation and elaboration of guidelines, perspectives and
proposals for the Management Board are also important tasks.

FERT Management Board (FMB)

This is the executive body of FERT. It is responsible for the
establishment of Working Groups and projects, and also actions
towards the EU Commission and the public. Presently, it con-
sists of ten members from the industry and the network opera-
tors. The chairmanship is rotated every six months between the

FERT
– Forum for European R&D in Telecommunications
T O R  M .  J A N S E N

FERT



165Telektronikk 1.1998

Member Groupings represented. In the second half of 1998, Mr.
Cordaro of Telecom Italia is Chairman.

Member Grouping

The members of FERT organise themselves into Member
Groups consisting of the actors in the different Sectors of Tele-
communications. The Sector of Telecommunications Manu-
facturers is already organised in ETIC. The members in the
Sector of Telecommunications Operators come mainly from the
ETNO organisation. The Member Groups decide about their
representatives within the FERT Management Board.

Membership of FERT is open to:
• European Telecommunication Manufacturers
• European Network Operators
• European Telecommunication Service Providers
• European Users Associations.

FERT as an open forum is prepared to accept membership of all
European actors in telecommunications.

Present Members of FERT Management
Board

The Board at present consists of representatives from the
following organisations:

Manufacturers (ETIC): Network Operators:

GPT (D.J. Cleobury) France Telecom (D. Thebault)
Alcatel (P. Goossens) Telecom Italia (G. Cordaro)
Italtel (G. Fabri) Deutsche Telekom (F. Wichards)
Siemens (K.U. Stein) BT (J. Grierson)
Nokia (K. Baughan) Telenor (T. Jansen)

FERT Secretariat

The Deputy Director, Mr P. Polese, heads the Secretariat and
the address of the FERT Secretariat is:

Rue Montoyer 39, bte 6/7, B - 1000 Bruxelles
Tel.: + 32 2 549 08 40
Fax: + 32 2 549 08 52/53
E-mail: fert-info@lists.etic.be
Web site: http://www.cselt.it/webhost/fert/

For more information, either contact the Secretariat or visit the
web site.

FERT plenary assembly

FERT
management

board

Working
groups

FERT
secretariat

Member
groupings

Structure of FERT

Tor M. Jansen is Director of Research at
Telenor R&D, Kjeller, with the External
Relations (ER) group, and also with the
Mobile Communications group. He is
responsible for co-ordinating the work in
ETNO R&D WG, EURESCOM and FERT.

e-mail:
tor.jansen@fou.telenor.no




