

Contents

Guest editorial, Tor M Jansen 3

Overview, Arve Meisingset 4

1 CHILL – the international standard language for
telecommunications programming,
Kristen Rekdal 5

2 Human-machine interface design for large systems,
Arve Meisingset 11

3 Reference models,
Sigrid Steinholt Bygdås and Vigdis Houmb 21

4 Formal languages, Astrid Nyeng 29

5 Introduction to database systems,
Ole Jørgen Anfindsen 37

6 Software development methods and life cycle
models,
Sigrid Steinholt Bygdås and Magne Jørgensen 44

7 A data flow approach to interoperability,
Arve Meisingset 52

8 The draft CCITT formalism for specifying human-
machine interfaces, Arve Meisingset 60

9 The CCITT specification and description language –
SDL, Astrid Nyeng 67

10 SDL-92 as an object oriented notation,
Birger Møller-Pedersen 71

11 An introduction to TMN, Ståle Wolland 84

12 The structure of OSI management information,
Anne-Grethe Kåråsen 90

13 Network management systems in Norwegian
Telecom, Knut Johannessen 97

14 Centralised network management,
Einar Ludvigsen 100

15 The DATRAN and DIMAN tools,
Cato Nordlund 104

16 DIBAS – a management system for distributed
databases,
Eirik Arne Dahle and Helge Berg 110

17 Data design for access control administration,
Arve Meisingset 121

Telektronikk

Volume 89 No. 2/3 - 1993
ISSN 0085-7130

Editor:
Ola Espvik
Tel. + 47 63 80 98 83

Feature editor:
Arve Meisingset
Tel. + 47 63 80 91 15

Editorial assistant:
Gunhild Luke
Tel. + 47 63 80 91 52

Editorial office:
Telektronikk
Norwegian Telecom Research
P.O. Box 83
N-2007 Kjeller, Norway

Editorial board:
Ole P Håkonsen, Senior Executive Vice President
Karl Klingsheim, Vice President, Research
Bjørn Løken, Vice President, Market and Product Strategies

Graphic design:
Design Consult AS

Layout and illustrations:
Gunhild Luke, Britt Kjus, Åse Aardal
Norwegian Telecom Research

RESEARCH

1

This issue of Telektronikk is
concerned with software for
telecommunications applications.
Since the early sixties, it has been
clear to all involved in both the
computer industry and the telecom-
munications industry that computer
technology will inevitably become
the basis of telecommunications
equipment and services. What was
not foreseen was the enormous
challenge of making this happen.

There are three main areas where
computer technology is now
applied. The first is in the network
elements. The second area is
operation and maintenance of the
network and the services. Thirdly,
customer support and customer
service is an area of great competi-
tive concern.

In the very early days of telecom-
munications, the limited number of
subscribers and the limited number and simplicity of the ser-
vices, i.e. telephone and telegraph, made it possible for an
operator to handle most problems that emerged, such as network
management and special services to the customer. The size of
the operation was such that it could easily be handled manually.
Today, in a world with many and complex and evolving ser-
vices, hundreds of millions of customers, booming traffic, and
fiercely increasing competition in new and old markets, the
situation has changed dramatically. Computer technology,
especially software, at present seems to be the only way to cope
with the problems and challenges.

The network itself is a good example of the role of computers
and software. Previously, all functions relevant to communi-
cations resided inside the network elements, be it for maint-
enance or service provision. The network elements, i.e. switches
and transmission equipment, limited by their design, controlled
what could be offered to the customer. The cost and lifetime of
telecom systems were such that introduction of new services
and improvement of old services by necessity had to be slow.
The first “improvements” came with digital switching and
digital transmission in the sixties and seventies. When computer
programmers tried to design communications systems, and
telecom engineers tried to program computers, the results were
invariably bad. After these first experiences, one realised that
the problem area had to be approached much more systemati-
cally and proactively.

It is often said that in the future, there will be fewer telecom
equipment and systems suppliers world-wide than the scarce
dozen we have today, because of the cost and complexity of
developing new generations of systems. My view is different.
With increased standardisation, the hardware will be bought
from vendors who can manufacture most effectively, and thus

sell to the lowest prices. The
same will happen to basic
software, which will be modul-
arised with standard interfaces.
This will lead to the same
situation we have in the computer
industry today, with hundreds and
hundreds of competing and, rela-
tively speaking, small companies.
The challenge is to plan the
network and implement the ser-
vices in a cost effective way. We
will at the same time see more
international co-operation, and
also a more competitive and
closed attitude of the actors in the
business.

For Norwegian Telecom Re-
search, it is important to have
a long term perspective, a med-
ium term view, and also produce
results that are useful in the pre-
sent situation. This means that we
have to watch the whole area of

informatics, but concentrate our work in selected areas.

Presently, we give special attention to

- Strategies for the use of information technology

- Languages, methods, and tools, both for system design and
human interface design

- Database technology, especially aspects of real time per-
formance, reliability, ease of application design, distribution
and maintenance

- Standardisation of methods and languages for the use in
Telecommunication Management Network (TMN) and also
harmonisation with service creation and provisioning (IN)

- Implementation of computer based systems for optimal
network planning.

As a conclusion to this introduction, the importance of being
competent in informatics is becoming more and more obvious.
This issue addresses fields that are being worked on by
Norwegian Telecom Research now. However, we are aiming at
a moving target. Awareness of the main areas of importance is
essential, and future needs will be the guideline for the prioritis-
ing.

3

Guest editorial

B Y T O R M J A N S E N

681.3

This issue of Telektronikk will provide both basic and new
knowledge about information systems. We bring knowledge
which we believe is important, but we do not aspire to give a
complete or representative overview of all relevant topics.

The magazine is organised into two sections; an overview
section introducing central topics, and a technical section going
into more detail about various topics. The numbers used refer to
the article numbers in the contents list.

The overview section addresses the following issues:

- (1) In the first article, ‘the father of CHILL’, Kristen Rekdahl,
puts software development for telecommunication into
perspective. He surveys the status and history of the CHILL
programming language and gives a short introduction to the
language and its programming environment.

- (2) Software is only valuable in so far as it is valuable to its
users. The software and data are made available to the users
via the Human-Machine Interface (HMI). The author puts
forward some doubts about current metaphors for HMIs, he
presents a new framework for work on HMIs and outlines the
challenges involved.

- (3) Even if current software systems are becoming very large,
current development techniques are mainly addressing pro-
gramming on a small scale rather than programming of very
large systems. In fact, the area of architecture for information
systems is poorly developed. Therefore, we present this intro-
ductory article on reference models for software systems.

- (4) At the core of automatic information systems lies the
notion of formal languages. Formal languages are used to
instruct the computer what to do, they define the interfaces to
the users, other subsystems and the outside world. Formal
languages are also used to specify – maybe in a non-
executable way – the entire information system. The article
presents the development from early programming languages
to modern specification languages and provides some
examples of these.

- (5) Programming language theory has traditionally been
concerned with how to organise and state programs to be
efficiently executed in the computer. However, new
information systems and their development and maintenance
will become increasingly data centred. Therefore, we present
this introductory article to database theory. Also, current
development and some challenges are outlined.

- (6) How to carry out and control software development is
addressed by development methods and life-cycle models.
Different views on the software development process,
characteristics of conventional and non-conventional software
development and interests to be supported, are some of the
issues in this overview article on software development met-
hods and life-cycle models.

The technical section of this magazine goes into more technical
detail than the articles of the overview section. The technical
section is divided into three subsections:

- The first subsection presents work on formal languages going
on in the ITU – the International Telecommunication Union –
Study Group 10 (Languages and Methods). (7) The first
article provides a theoretical background for and extensions
to the HMI reference model. (8) The second article introduces
and explains the formalism of the Data Oriented HMI Speci-
fication Technique. (9) The third article introduces the Speci-
fication and Description Language, SDL. (10) The fourth
article presents its object oriented extension OSDL. We are
proud to observe that Norway has given key contributions to
many areas of SG10 work.

- The second subsection presents Telecommunications Network
Management (TMN). (11) The first article provides an
overview of the TMN functional architecture and introduces
its basic terminology. (12) The second article introduces the
notions of the OSI (Open Systems Interconnection) Manage-
ment information model. (13) The third article provides an
overview of most network support systems in Norwegian
Telecom. (14) The last article presents key database appli-
cations for central network management in Norwegian
Telecom. TMN recommendations are becoming increasingly
important and are expected to gradually change the outlook of
support systems used by the operators.

- The third subsection presents some tools for database appli-
cation development and usage in Norwegian Telecom. (15)
The first article presents the Datran and Diman tools for
application development and graphical presentations. (16)
The second article presents the Dibas tool for distributed
database management. (17) The third article presents a speci-
fication of (a database application for advanced) Access Con-
trol Administration; this exemplifies the usage of the HMI
formalism and provides some discussion of alternatives.

We hope that the information provided in this issue of Telek-
tronikk is found to be valuable to its readers, and encourage
readers to give feedback to the editor of the magazine.

4

Overview

B Y A R V E M E I S I N G S E T

1 Software is important

in telecom

With the increasing use of software in
telecommunication systems, programm-
ing has become an important enabling
technology for telecommunication ser-
vices. The proportion of software cost
over hardware cost in the development
and production of telecom systems has
been shifting rapidly. In 1970 the
software cost was practically 0 % of the
total, in 1980 it was around 50 %, while
presently it has risen to around 85 %.
More and more the services earning
money for the operating companies are
implemented in software.

This shift towards software in telecom
was realised by some pioneers already in
the late 1960’s when the CCITT made
initial investigations into the impact of
computerised telephone exchanges.
However, even when work on the CHILL
language started in 1975, nobody dared
to predict the present extent and
pervasiveness of software in telecom sys-
tems.

Most of the basic technical problems to
be faced in telecom programming were
already at that time fairly well under-
stood, and programming languages had
been developed or were being developed
to cope with these problems. One may
therefore ask why CCITT should engage
in making yet another programming
language, adding to the already abundant
flora of such languages. There were three
major reasons:

- to remedy weaknesses of existing
languages when applied to telecom
systems, because such systems have
special needs

- to consolidate, in one language, fea-
tures only found in a variety of other
languages

- to provide one standard language cov-
ering all producers and users of com-
puterised telecom systems.

The standardisation aspect was motivated
by the fact that the telecommunications
community was a very large one and dis-

tributed all over the world. Most produc-
ers and operators of such equipment
would somehow come into contact with
software. Thus, the benefits of stand-
ardisation also in the field of software
were likely to be substantial.

2 Telecom software

is special

Experience has clearly taught us that
there are many features of telecom
software which differentiate it from other
types of software. Typically telecom
software exhibits some or all of the
following characteristics:

- Real-time, concurrent behaviour, time
critical response

- Very large size, e.g. 100,000 –
10,000,000 lines of source code

- High complexity

- High performance requirements

- High quality requirements, e.g.
reliability, availability, fault tolerance

- Use of multiple, heterogeneous,
networked computers, e.g. host and
target computers

- Long lifetime, e.g. 3 – 20 years

- Continuous development during the
lifetime, spanning several technology
generations in both software and
hardware

- Large development teams, the same
personnel rarely stays with the system
for its lifetime

- No single person has full under-
standing of the whole system

- Geographic separation of development
activities

- Delivered in many copies in several
variants and generations

- Total lifetime cost much higher than
initial development cost

- Strong influence from international
standards, e.g. CCITT, ISO.

CHILL was designed to meet the chall-
enges of such software. In retrospect it

was clearly justified to develop a special
language for telecom programming.

3 CHILL is a viable

language

Since its inception in 1975, CHILL has
grown to become a major programming
language within telecom. There are now
at least 12,000 – 15,000 CHILL pro-
grammers in the world. More than 1,000
man-years have been invested in CHILL
compilers, support tools and training.
Many of the most successful telecom
switching systems on the world market
have been engineered in CHILL. See
Table 1.

Two other ways of illustrating the extent
of CHILL usage are shown in the graphs
below. Figure 1 shows that six of the top
ten world telecom equipment manu-
facturers are using CHILL for their major
switching products. The manufacturers
are shown according to turnover in 1989
for telecom products. The major CHILL
users are shown in black columns. Non-
CHILL users are shown in white
columns. Partial users are shown in
shaded columns.

Figure 2 shows which programming
languages are actually most used in the
telecom industry for public switching
systems. The volume measure is the per-
centage of the total number of installed
public digital local lines per year, for the
years 1985 to 1990. The figure for 1990
is an estimate. The graph shows that the
usage of CHILL has been steadily
increasing. 45 % of the digital local lines
installed in 1990 were supported by
software written in CHILL. This is up
from 0 % in 1980. CHILL is the only
programming language common to more
than one of the major public telecom
switching systems. The CHILL column
is the sum of the installed lines for
EWSD, E10, D70, and System 12.

The second most used telecom pro-
gramming language is Protel used by
Northern Telecom, while C, used by
AT&T, is in third place.

5

CHILL – the International Standard Language

for Telecommunications Programming

B Y K R I S T E N R E K D A L

Abstract

Computer controlled telecommunication systems have proven to
contain some of the largest and most complex pieces of software
ever constructed. To master this complexity requires the use of
powerful methods and tools. The CCITT High Level programm-
ing Language – CHILL – is an enabling technology that has

contributed to making such systems possible. This paper surveys
the status and history of CHILL and gives a short introduction
to the language. The Norwegian and Nordic activities sup-
porting the CCITT work are described. Finally the development
of the CHIPSY toolset for CHILL programming is summarised.

681.3.04

4 CHILL development

started in 1975

The groundwork for the development of
a high-level telecom programming
language started already in 1966. The
CCITT plenary assembly in 1968 in Mar
del Plata, Argentina, decided that such
development should be handled by the
CCITT. The necessity of standardising a
language of this type for switching
functions was recognised, as was the
need for a unified language for both
delivery and technical specifications.

In the study period between 1968 and
1972 the CCITT mainly concerned itself
with the definition of the material to
which the standards were to apply.
Recommendations for software specifi-
cations were looked for, as were unified
descriptions of software-controlled sys-
tems (or SPC – Stored Program Control –
systems, as they were called at the time)
so that the different telephone switching
systems could more easily be compared
with each other.

The new language to be developed was
required to be easy to read and learn
while at the same time being open-ended
and system-independent with regard to
technical innovations.

The outcome of the discussions was that
it was deemed necessary to standardise
not only one, but three types of language:

- a specification and description
language, later to become SDL, for
defining descriptions of features,
specifications and system designs

- a high-level programming language,
later to become CHILL, for actual cod-
ing, and also

- a man-machine command language,
later to become MML, for operation
and maintenance by the user of SPC
switching systems.

In the 1973-1976 Study Period, specific
work was started to create this family of
languages for SPC use, CHILL, SDL and
MML. SDL stands for the CCITT Speci-
fication and Description Language (2).
MML stands for the CCITT Man-
Machine Language (3).

As the responsibility of CCITT was con-
fined to public (telephone) switching sys-
tems at the time, it is important to note
that the scope of the CCITT standards,
including the languages, was confined to
that application domain.

6

System name System type Manufacturer Country

EWSD Public exchange Siemens Germany

PRXD Public exchange Philips Netherlands

System 12 Public exchange Alcatel Belgium/Germany

E10 Public exchange Alcatel France

D70 Public exchange NTT, NEC, Hitachi, Japan

Fujitsu, Oki

KBD70 Public exchange Oki Electric Japan

LINEA UT Public exchange Italtel Italy

RN64 Cross connect Telettra Italy

PABX PKI Germany

TDX-10 Public exchange Daewoo Telecom Korea

Tropico Public exchange Telebras Brazil

PXAJ-500/2000 Public exchange 10th Research Institute China

Levent Rural exchange Teletas Turkey

Nodal Switch PABX Alcatel Telecom Norway

HICOM PABX Siemens Germany

Saturn PABX Siemens USA

Amanda PABX Alcatel Austria

Sopho PABX Philips Netherlands

Focus PABX Fujitsu Japan

TTCF Teletex Ascom Hasler Switzerland

Table 1 Telecommunication switching systems programmed in CHILL

Alcatel AT&T Siemens Northern
Telecom

NEC Ericsson Motorola GPT Fujitsu Italtel

Turnover
Billion USD

0

2

4

6

8

10

12

14

16

CHILL users

Non-CHILL users

Figure 1 CHILL usage among major telecom manufacturers

The work of CCITT in 1973 started with
an investigation and evaluation of 27
existing languages. From this set a short-
list of six languages was made. They
were:

- DPL, made by NTT, Japan

- ESPL1, made by ITT (now Alcatel),
USA and Belgium

- Mary, made by SINTEF/RUNIT,
Norway

- PAPE, made by France Telecom/
CNET

- PLEX, made by Ericsson, Sweden

- RTL2, made by the University of
Essex, UK.

The conclusion of this study was, how-
ever, that none of the languages were
satisfactory for the intended application
area. In 1975 an ad hoc group of eight
people called “The Team of Specialists”
was formed to handle the development of
a new language. The team had
representatives from

- Philips, Netherlands

- NTT, Japan

- Nordic telecom administrations

- Siemens, Germany

- Ellemtel, Sweden

- ITT (now Alcatel), USA

- British Telecom

- Swiss PTT.

A preliminary proposal for a new langu-
age was ready in 1976. The language was
named CHILL – the CCITT High Level
Language.

In the following Study Period, starting in
1977, it was decided that there was a
need for an evaluation of this proposal by
practical experience in order to complete
the language. For this purpose the Team
of Specialists was replaced by “The
Implementors Forum”. Its task was to
encourage and gather experience from
trial implementations of CHILL. By the
end of 1979 a language proposal was
completed. The CCITT Plenary
Assembly approved the CHILL defini-
tion in November 1980 to become
CCITT Recommendation Z.200 (1).

CHILL inherited most of its traits form
other high-level programming languages,
drawing upon the best of the language
developments of the 1970’s and 1980’s.
CHILL became a truly state-of-the-art
language. Box one below shows the
essential groups of constructs in CHILL
while box two shows a program fragment
giving a flavour of the appearance of the
language.

From 1977 many companies and organ-
isations took up the challenge of
constructing CHILL compilers. Until
1987 more than 30 compilers had been
made for many different computers.
Several of the compilers were put to use
in industrial product development. Most
of the systems listed in Table 1 were pro-
grammed by means of compilers develo-
ped in-house.

Since 1980 the CCITT has continued to
support and maintain CHILL and
upgrade the language according to needs
from the industry and new technical
developments. The main extensions to
the language have been:

1981-84 Piecewise programming,
name qualification, input/
output

1985-88 Time values and timing
operations

1991-92 Data objects for real numbers

1993-96 Work on object orientation is
planned.

In 1989 CHILL was recognised as
ISO/IEC Standard 9496.

5 Norwegian Telecom was

actively involved

Norwegian Telecom had the foresight to
enter into the CCITT language work at
an early point in time. When the CCITT
had decided, in late 1974, that a new
language had to be developed,
Norwegian Telecom Research (NTR)
took an interest to participate actively.
NTR managed to enlist the telecom
administrations of Denmark, Finland,
Norway, and Sweden in a concerted
Nordic effort to sponsor an expert from
the SINTEF research institute to partici-
pate in the CHILL Team of Specialists.

This Nordic representative became the
vice chairman of the group from 1976 to
1980 and the chairman of CHILL
development from 1980 to 1984. Thus
the Nordic effort in this development was
highly visible.

In addition it was decided to establish a
Nordic support group covering the activi-
ties of all the three CCITT languages.
This group had representatives from the
four countries mentioned above plus Ice-
land. Later also British Telecom joined.
The group was very active and met
several times a year from 1975 to 1984.

6 CHIPSY

– the CHILL Integrated

Programming System

One specific outcome initiated by the
Nordic co-operation on CHILL has been
CHIPSY – the CHILL Integrated Pro-

7

CHILL C PLEX CORAL PROTEL other
0

5

10

15

20

25

30

35

40

45

1985

1986

1987

1988

1989

1990 est.

%

Figure 2 CHILL usage in terms of installed digital local lines per year

gramming System. CHIPSY is an open-
ended support environment for pro-
gramming in CHILL. CHIPSY is ori-
ented towards the development and
maintenance of real-time software,
especially in the area of telecommuni-
cations.

CHIPSY is a family of productivity tools
for telecom software development. The
toolset comprises compilation tools,
associated real-time operating systems
and source level test and debug tools. See
Figure 3.

The CHIPSY tools cover the design
(partly), programming, execution and
testing phases of the software develop-
ment cycle.

Where convenient and useful, CHIPSY
interfaces to products or components pro-
duced by other companies, e.g. the text
editor Emacs (7) or the SDL tool SDT
made by TeleLOGIC Malmö AB (6).
CHIPSY has been in regular use for the
development of major industrial telecom
software since 1980, comprising several
million lines of CHILL source code.
CHIPSY’s reliability has been proven by
the fact that there are now in operation
several hundred digital switching units
world wide programmed with CHIPSY.
Several units are operating in high load,
mission critical (e.g. military) appli-
cations.

6.1 Development of CHIPSY

since 1977

The CHIPSY development started in
early 1977 when the telecom admin-
istrations of Denmark, Finland, Norway
and Sweden decided to sponsor a CHILL
compiler implementation project at
SINTEF. Later also British Telecom
(now BT) joined in funding the project.

All the development work was carried
out by SINTEF until 1984. Then
CHIPSY was taken out of SINTEF to
establish a new company, later called
KVATRO A/S, for the purpose of comm-
ercial exploitation of the research results.

The major milestones in the history of
CHIPSY have been:

1974 The Mary language was shortlisted
by CCITT as one of six candidate
languages for a CCITT telecom
programming language. Mary is a
machine oriented high level pro-
gramming language developed by
SINTEF from 1971 to 1973.

8

line_allocator:

MODULE

SEIZE line_process, line, occupied, unoccupied,

search,connect, accepted;

GRANT line_allocator_process;

line_allocator_process:

PROCESS ();

NEWMODE states = SET(free, busy);

DCL next_state states := free, lno INT := 0;

line(lno) := START line_process(lno);

DO FOR EVER;

CASE next_state OF

(free): RECEIVE CASE SET sender;

(occupied):

next_state := busy;

(search):

SEND connect(sender) TO line(lno);

SEND accepted TO sender;

next_state := busy;

(else): -- Consume any other signal

ESAC;

(busy): RECEIVE CASE SET sender;

(unoccupied):

next_state := free;

(search):

SEND rejected TO sender;

(else): -- Consume any other signal

ESAC;

ESAC;

OD;

END

line_allocator_process;

END

line_allocator;

Box one – Sample CHILL program

Binder

Foreign

linker

C
R

S

Foreign

debugger

Pilo
t

C
H

I L
L

pr
o

gr
a

m

sdl2chillasn2chill

C
od

e

ge
ne

ra
tor

C
H

IL
L

a
n

a
ly

ze
r

Execution

platform

V
ir

tu

al H
ost Machine

Exporter

de
bu

gg
er

Tool user

interface

Figure 3 The CHIPSY concept

1975 SINTEF is sponsored by the
Nordic administrations to join the
CCITT Team of Specialists to
design the CHILL language.

1977 Start of CHIPSY compiler
development project hosted on the
ND-100 16-bit minicomputer, ini-
tially targeted to the Ericsson
APZ210 switching processor, later
changed to Intel 8086.

1980 First industrial contract. CHIPSY
licenses were sold to Alcatel
Telecom Norway for use in
developing a digital military com-
munication system.

1982 CHIPSY was sold to Ascom
Hasler AG. Hasler signs a contract
with SINTEF to implement a
CHILL level debugger called
CHILLscope.

1983 Code generators implemented for
the bare Intel 80286 micropro-
cessor and the ND-100 computer
with the SINTRAN III operating
system. A new, portable CRS –
CHIPSY Real-time Operating Sys-
tem – written in CHILL for both
the 80286 and the ND-
100/SINTRAN III.

1984 CHIPSY sold to 10th Research
Institute of the Ministry of Posts
and Telecommunications of China.
A new company, later known as
KVATRO A/S, was founded in
order to commercialise CHIPSY.
KVATRO was given the rights to
market and further develop
CHIPSY by the Nordic telecom
administrations.

1985 Rehosting of CHIPSY cross com-
pilers to VAX/VMS was com-
pleted.

1978 CHIPSY native compiler and new
generation CRS ready for
VAX/VMS.

1990 Completion of rehosting and
retargeting to several UNIX plat-
forms. CHIPSY becomes the first
CHILL compiler available on a
386 PC platform. CHIPSY licenses
sold to Nippon Telegraph and
Telephone Software Laboratory.

1991 Extending CHIPSY to cover distri-
buted processing. CHIPSY
becomes the first CHILL compiler
available on a laptop computer.

9

Box two – CHILL Overview1992 Implementation of an ASN.1 to
CHILL translator completed.
Implementation of an SDL to
CHILL translator completed. First
implementation of the Pilot
debugger for testing and debugg-
ing in distributed real-time sys-
tems.

1993 Full implementation of the Pilot
debugger. CHIPSY is ported to
SPARC workstations.

6.2 CHIPSY is the outcome

of a co-operative effort

Until 1993 more than 100 million NOK
(15 million USD) have been invested in
the development and maintenance of
CHIPSY. The investments constitute co-
operative efforts with various partners.
The main contributors to this develop-
ment have been:

- Telecom administrations of Denmark,
Finland, Norway, Sweden and United
Kingdom acting in concert

- Telecom Norway

- Alcatel Telecom Norway

- Ascom Hasler

- SINTEF

- 10th Research Institute of MPT, China

- Norwegian Industrial Fund

- Nippon Telegraph and Telephone

- KVATRO A/S.

7 Conclusions

CHILL is unique because it is a stand-
ardised programming language catering
for the needs of the telecommunications
community. It has already gained a solid
acceptance within the industry world
wide, and has been used for the
construction of some of the world’s most
successful switching systems.

Because of the longevity of telecom sys-
tems and the persistence of programming
languages, CHILL will continue to have
a strong impact in the world of telecom-
munications well beyond the year 2000.

It is safe to say that CHILL has largely
achieved its original objective of becom-
ing a standard language for the pro-
gramming of public telecom switching
systems.

CHILL is a strongly typed, block structured language. A CHILL program essentially

consists of data objects, actions performed upon the data objects and description

of program structure.

Data modes

The categories of data modes (data types) provided in CHILL are discrete modes,

real modes, powerset modes, reference modes, composite modes, procedure

modes, instance modes, synchronisation modes, input-output modes and timing

modes. Some modes may have run-time defined parameters. In addition to the

CHILL standard modes, a user may define other modes.

Data objects

The data objects of CHILL are values and locations (variables). Locations may be

created by declaration or by built-in storage allocators. The properties of

locations and values are language defined to a detailed level and subject to

extensive consistency checking in a given context.

Sequential actions

Actions constitute the algorithmic part of a CHILL program. To control the sequ-

ential action flow, CHILL provides if action, case action, do action, exit action, goto

action, and cause action. Expressions are formed from operators and operands.

The assignment action stores a value into one or more locations. Procedure call,

result and return actions are provided.

Concurrent execution

CHILL allows for concurrent execution of program units (processes). Creation and

termination of processes are controlled by the start and stop actions. Multiple

processes may execute concurrently. Events, buffers and signals are provided for

synchronisation and communication. To control the concurrent action flow, CHILL

provides the start, stop, delay, continue, send, delay case and receive case

actions, and receive and start expressions.

Exception handling

During run-time the violation of a dynamic condition causes an exception. When

an exception occurs the control is transferred to an associated user-defined

handler.

Time supervision

Time supervision facilities of CHILL provide means to react to the elapsed time of

the external world.

Input and output

The input and output facilities of CHILL provide the means to communicate with a

variety of devices of the outside world.

Program structure

The program structuring statements are the begin-end block, module, procedure,

process and region. These statements provide the means for controlling lifetime of

locations and visibility of names. Modules are provided to restrict visibility in order

to protect names against unauthorised usage. Processes and regions provide the

means by which a structure of concurrent executions can be achieved. A com-

plete CHILL program is a list of modules or regions that is surrounded by a (imag-

inary outermost) process.

Piecewise programming

This facility allows large programs to be broken down into smaller, separate handl-

ing units.

10

CHILL has also spread beyond public
switching and has been used for a
number of other telecom products like
PABXs, non-voice equipment, etc.

CHILL has stood the test of time. Even
though CHILL is now almost 20 years
old, it has not been outdated. On the con-
trary it is flexible enough to fit into new
technological contexts. For example,
experience has shown that:

- CHILL is well suited as a target
language for translations from SDL (5)
and ASN.1 (8)

- CHILL concurrency concepts are well
suited for implementing distributed
systems (4).

CHILL has proven to be powerful
enough for implementing modern
telecom systems which are much larger
and more sophisticated than could have
been foreseen in the 1970’s, e.g. ISDN,
IN and mobile communication systems.

Finally, the CHILL work has provided a
foundation for commercial product
developments.

References

1 ITU. CCITT High Level Language
(CHILL). Geneva, 1980-92.
(Recommendation Z.200.)

2 ITU. Functional Specification and
Description Language (SDL).
Geneva, 1976-92. (Recommendation
Z.100.)

3 ITU. Man-Machine Language
(MML). Geneva, 1976-92. (Recomm-
endation Z.300.)

4 CHIPSY Reference Manual. Trond-
heim, KVATRO A/S, 1993.

5 Botnevik, H. Developing Telecom
Software with SDL and CHILL.
Telecommunications, 25(9), 126-132,
139, 1991.

6 SDT Reference Manual. Malmö,
TeleLOGIC Malmö, June 1992.

7 GNU Emacs Manual. Free Software
Foundation, 1986.

8 ITU. Specification of Abstract Syntax
Notation One (ASN.1). Geneva,
1988. (Recommendation X.208.)

Scope and objectives

The design of Human-Machine Inter-
faces, HMIs, has great consequences for
their users. The HMI, in the broad sense,
is what matters when designing
information systems. It has consequences
for efficiency, flexibility and accept-
ability. Therefore, the internal efficiency
and external sales of services of any
Telecommunication operator will be
dependent on the HMI provided.

As applications are becoming increas-
ingly data centred, this paper is focusing
on HMI design for large database appli-
cations. The term ‘Human-Machine
Interfaces’ has been introduced by the
Consultative Committee for International
Telegraph and Telephone, CCITT, Study
Group X Working Party X/1 (2),(3), to
replace the older term ‘Man-Machine
Communication’. Except from replacing
the term ‘Man’ by the more general term
‘Human’, the new word is also intended
to indicate an enlarged scope of HMIs, as
will be explained in a subsequent section.

The term ‘Interface’ indicates a nar-
rowing in of the scope to the interface
itself, without any concern about the
situation and tasks of the communicating
partners, as indicated by the term ‘Com-
munication’. This delimitation is not
intended. However, this paper and the
current work of CCITT are focusing on
the formal aspects of the ‘languages’
used on the interface itself.

Most work on HMIs have, so far, been
concerned with the design of ‘small sys-
tems’. The interface typically comprises
the handset of a telephone or some screen
pictures for a specific user group carry-

ing out a limited well defined task. How-
ever, users of computer systems are
nowadays not only carrying out routine
work through their HMI. Users are often
using several divergent applications
simultaneously, and one application can
comprise several hundred screen
pictures, many of which are often used,
others are hardly known. This usage of
large systems imposes new requirements
to and new objectives of HMI designs.

The focus is no longer on enabling the
carrying out of one specific task in the
most efficient and user friendly way. The
concern will be to carry out a total set of
divergent tasks in an efficient and user
friendly way. Hence, tailoring of HMIs
to a specific task can be counterpro-
ductive to the overall accessibility and
productivity goals.

To achieve the overall goals, we have to
enforce harmonisation of HMIs across
large application areas. The central
concern will not be on ‘style guidelines’,
but on linguistics – to ensure a common
‘terminology and grammar’ of all HMIs
across one or more application areas.
This co-ordination is much more funda-
mental than providing guidelines for
usage of ‘windows, icons and fonts’. The
new issue can be likened with choosing
and designing ‘French’ or ‘Norwegian’
terms and word order. In a large system
the user must be able to recognise and
interpret the information when he sees it.
It does not help to be ‘user friendly’ in
the narrow task-oriented sense, if the
users do not recognise how data are
structured and related to each other. In
large systems, the users want to be able
to easily recognise the ‘language’ used
when the same data are presented mani-
pulated on various screens.

In the quest for solutions to our very
appropriate needs, we will have to
address approaches and techniques which
are not yet ‘state of the art’ for HMI
design. We will have to address
questions on architecture of HMIs
towards information systems and formal
language aspects of the HMIs. Before
doing so, we will provide an overview of
what is HMI and what perspectives on
HMIs can be taken. What then, is HMI?

HMI comprises all communication
between human users and computer sys-
tems.

Some authors claim that the computer is
just an intermediate medium for com-
munication between humans. This
metaphor, to consider a database appli-
cation to be a multi-sender multi-receiver
electronic mail system between humans,
provides a powerful perspective on what
an automated information system is and
can be. In a real electronic mail system,
however, we distinguish and record the
individual senders and receivers. In a
database application usually the data only
are of interest, while the user groups are
only discriminated by the access control
system.

In some applications this perspective of
mediating communication between hum-
ans makes little sense. If data are auto-
matically collected and recorded in a
database, e.g. alarms from the telecom-
munications network, it is of little use to
claim that the equipment in the very beg-
inning was installed or designed by hum-
ans. Therefore, we will consider the com-
puter system to be a full-blown com-
municating partner in its own right.

11

Human-Machine Interface design for large systems

B Y A R V E M E I S I N G S E T

Abstract

To read a good book on painting will not make you become a
Michelangelo. Neither will the reading of this paper make you
become a good Human Machine Interface (HMI) designer. But,
if the reading makes you become a wiser HMI designer, then the
objective of writing this paper is met.

The paper identifies challenges imposed by design and use of
large systems and outlines solutions to these problems. An
enlarged scope and alternative perspectives on HMIs are pro-
posed. The scope of HMI is proposed to contain a large portion
of the system specifications, which have traditionally been
considered to be the restricted domain of the developer. The end
user needs this information for on-line help and as a menu and
tutorial to the system. Also, end user access to the specifications
puts strong requirements on how specifications are presented,

formulated, their structure, terminology used, and grammar.
This leads the HMI developer into issues on deep structure
language design and fundamental questions about the role of
languages and methods for their design. An encyclopaedia
metaphor is proposed for organising and managing data of
large organisations. This leads to thoughts about what compet-
ence is needed to develop and manage future information sys-
tems.

Norwegian Telecom Research has contributed significantly to
the new draft CCITT Recommendations on the Data Oriented
Human-Machine Interface Specification Technique (1). The
major experience for making these contributions arrives from
development of the DATRAN and DIMAN tools, which are also
presented in this magazine.

681.327.2

To consider the computer to be a com-
municating partner does not mean to
require that the computer system should
act like or mimic a human. We all share
both good and bad experiences from try-
ing to communicate with humans. The
experience is often that the more ‘intel-
ligence’ possessed by the partner, the
more screwed up the communication can
become. A simple example is a copying
machine. When you were using the old
machines, you pressed the key for A4
format and you got A4 copies. However,
modern machines observe the size of
whatever you put on the glass plate and
provides you with what it thinks you
‘need’. If you put on a large book, it pro-
vides you with A3 copies, even if you
only want A4 of one page. When using
‘intelligent’ user interfaces, your problem
easily becomes how to bypass the ‘intel-
ligence’. Therefore, we want ‘dumb’
interfaces, where the information system
serves you as a tool. This does not mean
that the interface should be poor and
impoverished. We want interfaces that
provide powerful features and appli-
cations that undertakes complex analysis
and enforcement of data. The point made
here about ‘intelligence’ is that we want
the user to be able to predict how the sys-
tem will react, that the system behaves
‘consistently’ and does not change
behaviour as time passes. Also, we do
not want the system to react very differ-
ently on the same or a similar command
in a different state. This issue, to enforce
consistency of behaviour over a large
application area is a separate research
subject within formal HMI (4).

The tool perspective on HMIs is import-
ant, because it provides an alternative

approach to information systems design.
Many existing methods, more precisely
the system theoretic school (5), consider
information systems to be complex
factories, made up of humans and
machines, for producing and maintaining
information. Also, most existing software
development tools are based on this
paradigm. Tasks are separated between
humans and computers according to
maximum fitness for the task. The slogan
for this can be ‘to tailor the system to the
tasks’. However, the end result can easily
become ‘to tailor the human to the task’.
This tradition goes back to Taylor’s Sci-
entific management (1911). In some
restricted applications this approach can
be appropriate. However, in the ‘large
systems’ context it comes too short – due
to the diverse needs of different tasks to
be supported simultaneously.

An alternative to the system theoretic
approach is to consider the information
system to be a tool for recording, organ-
ising, enforcing, deriving and presenting
information. The ‘production’ primarily
takes place inside the software system.
The end user supplies and uses data from
the system, and he can control the pro-
cessing and information handling, which
takes place inside the system. The end
user is not considered to be a part of the
system, but he is considered to control
and use the system as a tool.

Unfortunately, the current practising sys-
tem developer, or more specifically the
HMI designer, is often not aware of
which approach he is using, which
perspective he is imposing and thereby,
which work environment he is creating.
Therefore, more reflection on implicit
effects of alternative system development
methods is needed.

Terminals

Hardware design is a compromise be-
tween technology, price, functionality,
ergonomics, aesthetics, history,
knowledge, performance, security, and
other factors.

Hardware design is outside the scope of
interest and scope of freedom of most
readers of this paper. However, there is
one hardware factor which must be
addressed by every HMI designer: The
number one priority is availability of the
terminal equipment to the users you want
to reach.

In most cases you cannot require that the
users acquire a new terminal when intro-
ducing a new service. Most often you
have to accept existing terminals and
communication networks, or only require
modest extensions to these. On more rare
occasions you are responsible for
purchasing and evaluating terminals –
seldom for one service only, but more
often for general use of several services.

This consideration has too often been
neglected in expensive development pro-
jects. It is of little help to develop an
advanced electronic directory system
requiring powerful UNIX workstations,
when most potential directory users have
access only to a telephone handset. This
problem is illustrated by the French
Minitel service. The terminals are simple
and cheap, and hence, affordable and
widely spread.

The alternatives to Minitel have provided
good graphics, require special communi-
cation, are costly, and hence, unaf-
fordable and hardly in use. The situation
is illustrated by an intelligent guess about
the current population of terminal equip-
ment in Norway:

12

John

Mary Mary

System

Mary

Database

Figure 1 The computer system can be
considered being a multi-user medium
for human-to-human communication.
This is a powerful metaphor for system
design and supports a good tool
perspective on HMIs

Figure 2 The computer system can be
considered being a communicator in its
own right. This is the most general
metaphor, but can easily mislead the
HMI designer to mimic human communi-
cation

Figure 3 The tool perspective provides
the user with full control over the systems
he is using. In this perspective the user is
considered being outside the system and
is not a part of it

Telephones 3,000,000
Radios 4,000,000
TV sets 2,000,000
PCs 300,000
Workstations 10,000

These figures have to be correlated to
what communication facilities are
available, e.g. to PCs, use of supple-
mentary equipment, such as a modem,
tape recorder, video recorder, etc., and
how the equipment is available to the
actual user group you want to reach. No
doubt, the most widespread electronic
directory service is achieved if a practical
service can be offered on an ordinary
telephone or a simple extension of this
equipment. The competitors on other
equipment will just get a small fringe of
the total market.

However, there are pitfalls. Many
existing telephone services, e.g. Centrex
services, are hardly in use, due to a com-
plex, difficult to learn, hard to overview,
and tiring in use ‘human-machine inter-
face’. Therefore, an alternative strategy
can be to introduce a service for a small
and advanced user group. Also, the
choice of strategy can be dependent on
whether you want to provide a service or
sell equipment. Or maybe the service off-
ered is just a means for promoting other
services, for example to promote a new
basic communication service. Also, the
terminal and communication environ-
ment may be settled by another and more
important service in an unrelated area.

However, there are many challenges left
to be addressed by the future hardware
designers. The most obvious challenge is

the design of the PC. The laptop is more
ergonomic in transport, but not in use.
You definitely want a ‘glass plate’ ter-
minal with which you can lay down in a
sofa and read, like when reading a book.
And, you definitely do not want to have
to use a keyboard when just reading. The
pen based terminals make up a move in
the right direction, but they are not the
end. In the future, you are likely to see
‘walkman terminals’, ‘mobile phone ter-
minals’, ‘wall board terminals’, ‘magic
stick terminals’, etc. appearing under lab-
els like the ‘Telescreen’, the ‘Telestick’
and the ‘Telegnome’. With the coming
technology, there is no reason why you
should sit on an excavator to dig a ditch.
Rather you could sit in a nearby or
remote control room, controlling the grab
by joy sticks, observe the digging by
video cameras and remote sensing. Most
of the work could even be carried out
automatically, while you supervise the
process and are consulted when somet-
hing has to be decided. And, also the
excavator can be designed very differ-
ently, when it is no more designed for a
human driver. The excavator becomes
your ‘little busy gnome’. Tunnel
construction, mining and other appli-
cation environments where you prefer
not to have humans, are obvious areas for
the introduction of this kind of services.
Remote control of mini submarines is an
early, already existing, application of this
technology. In the telecommunication
area, the technicians are not typically
replaced by robots. Rather, control,
repair, and switching functions are built
into the telecommunication equipment.

The equipment is administrered and its
functions are activated as if managing a
database.

Style guidelines

Both industry and standardisation bodies
have done a lot on providing guidelines
for layout design on screens and key-
boards. The International Standardisation
Organisation, ISO, is currently issuing a
17 piece standard ISO 9241 (6) on HMI
design, of which 3 has reached the status
of a Draft International Standard, DIS.
The industry has provided products like
MS Windows (7) and Motif imple-
mentations (8).

Obviously there are many good advises
in these guidelines. However, suppose
you compare these guidelines with that
of designing the layout and editing of a
book. A Motif form looking like a front
panel of an electronic instrument, where
each field is put in a separate reading
window, may not be so good after all.
The push buttons look like that of a video
recorder – which you definitely are not
able to use. All the windows popping up
on the screen look like an unordered heap
of reminder notes in metallic frames. The
frames and push buttons are filling up
most of the screen. The ones you need
are often under those you have on the
top. Each window is so small that it can
hardly present information, and you have
to click a lot of buttons in order to get
what you want. In fact, it is more likely
that a book layout designer will be horri-
fied rather than satisfied by the current
use of style guidelines.

13

Parameter driven:
 E-SUBSCR SMITH,JON, 48.
Question-answer:
 What is minimum height of x? 3;
Menu:
 1 Order 2 Cancellation 3 Change
Limited nat. language:
 LIST ALL PERSONS WITH...
Form-filling:
 Person-name:____Height:___
Program. language like:
 LET R=X-Q*Y; IF R=0 THEN ..
Mathematics like:
 PERS=(SUBSCR∪EMPLOYE)
Function key based
Icon based
Graphics based
Animation based

Goals
 Homogenity
 Flexibility
 Power
 Simplicity
 Efficiency
 Control
 Integration
Contexts
 Existing softw.
 Existing hardw.
 Avail. resources
 Softw. evaluation
Human factors
 Ergonomics
 Perception
 Efficiency
 Capability
 Background

Skills
 Trained
 Untrained

Job requirements
 Customer driven
 Catastr. man.
 Safety first
 Security
 Overview
 Freedom

Capasity requirem.
 Transaction freq.
 Inform. bandwidth

Bandwith
 Size
 Resolution
 Colour
 Refresh freq.
 Respon. time

Graphics
 Topology
 Surfaces
 Structure
 Placement
 Colour

Inputs
 Keyboard
 Funct. keys
 Mouse
 Voice

Outputs
 Alphanum.
 Graphics
 Sound
 Paper
 Animation

Text
 Fonts
 Rotation
 Structure
 Placement
 Size

Onerall design
 HMI concepts
 HMI principles
 Manip. mech.
 Presentat. style
 Machine control
 Retraceability
Application cont.
 Terminology
 Grammar
 Operations
 Functions
 Authorisation
Guidance
 Online help
 Messages
 Error correction
 Documentation
Dial. tech. Fig. 4

HMI
design

process

Classis of HMIs Inputs Outputs

Figure 4 The choice of a dia-
logue technique is more funda-
mental than the choice of style
guidelines. Note that the tech-
niques can be combined

Figure 5 The HMI designer has to consider many factors and has many design choices.
Therefore, the novice designer often requests detailed design techniques. However, a good
development technique may not lead to a good design. The expert designer has knowledge
about priorities and is more concerned with the final result

Desktop
metaphore

Function
Keys

Icons with
size & page
& present
indication

Global
buttons

5 10 11

What about printing? If the form is put
into a Motif panel, it is likely that this is
not suited for printing on paper. You will
have to design another form for print out.
However, this violates one of your more
basic requirements – to recognise the
form and the data in different environ-
ments. The recognition of data is
achieved by having persistence of pre-
sentation forms between different media.
In order to get a clean work space for
information, which the screen is for, you
should move the tools – the push buttons
– out to the sides and arrange them in a
fixed order there – much like that of the
early drawing packages. Arrangements of
buttons around each window and in
separate push button windows may not

be the best. Also, the use of tiled
windows distorts the whole view. Maybe
the fixed arrangement of windows, like
in the early Xerox Star, was a better
choice? Use of shading, ‘perspective’,
and colours are often a total misuse of
effects.

There are several shortcomings of the
current desktop metaphors. For example,
you may want to see the relative sizes of
the documents and files when you see
their icons. You may want to open the
icons on any page or place without
always having to see the first page; you
may want to use slide bars on the icons
and not only inside the windows. You
may want to open several pages simul-

taneously inside the same document. You
may want to have a common overall indi-
cation of which pages you have opened.
In short, you want to have the same con-
trol as when holding and paging through
a book. You want to copy some pages to
print when others are opened. And, you
want all desktop tools to be available on
the desktop simultaneously, and not to
pop up as dialogue boxes in certain
states. Also, you want a clear distinction
between a book (an icon for its contents),
alternative presentation forms (of the
same contents) and finally windows to
present the contents in a form. Therefore,
iconification of windows is what you
least need.

We have all seen the bad results of pro-
ducing papers by the current desktop
publishing products. The individual aut-
hor lacks the competence of the profess-
ional layout designer, but is provided

14

Satelite
communication

The Telestick

Flat screen

Head set

The Telegnoom heading
for the shopping bag

Remote control
of the Telegnoom Talking head

 Tele-
screen

 Data-
base

Figure 6 The number one priority of hardware design
is the availability of the terminals to the users. Too
many projects have failed because the design has
been made for workstations not available to the users.
Much work remains to make terminals as ergonomic
as a book; this concerns physiognomy, perception,
controllability, etc. Also, new kinds of terminals are
likely to appear for existing and new applications

Figure 8 The current desktop metaphor can be impro-
ved to provide better control to the user. Here sub-
icons represent different presentation forms of a
document. Several pages are shown from the same
document. A global slidebar indicates open pages

Figure 7 The Xerox Star workstation has been the
model for all desktop metaphors. The Star had a fixed
set of function keys which applied to all kinds of
objects. This way it provided a homogeneity not equ-
alled by other products

with all the freedom he is not able to use
appropriately. The provisioning of
freedom requires the practising of
responsibility. Therefore, the good
designer is often puritanical.

Our database applications are often very
expensive ‘publications’. We spend large
sums to develop them and large amounts
to support and use them. For example a
database containing information about
resources and connections in the
telecommunication network costs more
to develop, maintain and use than most
existing paper publications. Also, the
database is used by hundreds and
thousands of users daily. We usually put
much more emphasis on using qualified
personnel when designing a paper publi-
cation than when designing a database
application. Database applications are
most often designed by programmers
having no layout competence. We need
personnel to design large and complex
applications which can appear system-
atic, comprehensible and typograhically
pleasant to the end user. Therefore, we
should spend just as much money on
using qualified personnel on HMI layout
design to database applications as we
spend on paper publications of com-
parable costs.

This definitely implies that the system
development departments have to be
upgraded with the appropriate typo-
graphic competence. Current technology
is no longer a limitation to the use of this
competence. A graphic terminal is
becoming the standard equipment of
most office workers. Currently we auto-
matically produce some simple graphs of
the telecommunication network. How-
ever, the challenge is to illustrate this
very complex network in such a way that
this provides overview and insight.
Investment in competent personnel to

design systematic and illustrative graphs
of the entire network for the different
user groups can be paid back manifolds.

The challenge does not stop with turning
database applications into high quality
publications of text and graphics. New
technology will provide a multi media
environment. The future database appli-
cation designer will have to become a
multi art artist. He will create an artificial
‘cyber space’ of his database, for
example for ‘travelling through’ the
telecommunication network database.
And, he will integrate artificial speech,
recorded sound and video. These features
have their own strengths and possi-
bilities, weaknesses and pitfalls. The use
and integration of all this will require
somewhat more than programming com-
petence.

Contents

To design the layout of the data without
bothering about the contents is like mak-
ing a typographic design of a book wit-
hout knowing what it is about and how it
is structured. And, does it consist of
tables, charts, free text or other? How can
these be arranged to best present the
information?

Contents design of a screen picture com-
prises: What information should be
included in the picture? What statements
are used to express this information?
Which arrangement of the statements is
chosen? Also, the contents design com-
prises: What pictures should exist? How
are pictures grouped together to provide
overview? What links, if any, should
exist between pictures or groups of
pictures? We see that contents design
corresponds to organising a book into
sections and writing the contents of each
section. This topic is covered by the

‘contents structure’ of the Open Docu-
ment Architecture ISO/CCITT (10),
while style guidelines correspond to the
‘layout structure’ of ODA.

When designing the contents structure of
a picture, the HMI designer also has to
decide what operations (commands or
directives) are permissible on the
selected data items in this context.

Several design methods exist for contents
design. The system theoretic school has
been dominating. In this school the
designer analyses the tasks undertaken by
the user. The tasks are identified in data
flow graphs. Some tasks are automatised,
others are kept manual. The HMI is
identified on the boundary between
manual and automated tasks. One screen
picture is designed to include the data
flowing one way between the two tasks.
The operations are limited to those
needed for this data exchange and the
transition to the needed picture for the
next exchange of data. This way, the
HMI is tailored to the tasks and routines
of an organisation.

The system theoretic approach can be
appropriate for undertaking well defined
or routine tasks. However, the approach
is not flexible for alternative ways of
undertaking the same tasks or different
tasks. Also, the approach does not
address the harmonisation of the dialogue
across many tasks for a large application
domain. For this a modeless dialogue is
wanted. This means that all screen
pictures should be permissible and easily
accessible in every conceivable sequ-
ence. Also, the user should be allowed to

15

Write user
name&p.w.

Start
terminal

Choose
function

Chech user
name&p.w.

Create log-
on screen

Start
function

Create
syst. menu

User Screen SystemInterface engineering

User and task analysis
Human versus machine

Dialogue design
Screen design

Coding
Useability lab

Contextual observation
Human performance

Development phase

Requirements analysis
Requirements allocation

Preliminary design
Detailed design
Implementation

Implementation testing
System testing
Optimatisation

Software engineering

Application design
Hardware versus software
Architectural design
Logical design
Coding
Unit and integration test
System testing
Machine performance

Figure 9 Curtis and Hefley (9) present this as ‘A potential high-level mapping scheme
for integrating phases of the interface- and software-engineering processes.’

As development tools become more high level, we should design systems as seen from
the outside only. This implies a move towards the leftmost column

Figure 10 In the function oriented appro-
ach, tasks are decomposed and finally
grouped to become manual or automatic
processes. Screens and reports constitute
the HMI between these processes

Cursor qualities

Easy to find

Easy to track

Do not interfere

Do not distract

Be unique

Be stable

Presentation

Label information clearly

Keep display simple

Moderate highlighting

Moderate the use of colours

Keep layout consistent

Presentation of data

Use upper and lower case letters

Minimise use of codes

Maximum 5 characters in a group

Use standardised formats

Place related items together

Place figures in columns

Adjust integers to the right

Adjust figures around the decimal point

Adjust text to the left

Make only input fields accessible

Distinguish

Input fields

System response

Status information

User guidance

Menus

Response time

Psychologically acceptable

Uniform

User guidance

Keep guidance up-to-date

Ensure consistent presentation

Avoid abbreviations

Use action oriented sentences

Make help messages clear

Make help contextual

Do not guess what the user wants

Provide help for help

Use identical commands to that of the application

Errors

Where are they

What error

How to recover

Make error messages clear and polite

Report all errors together, prioritise presentation

Keep error information until corrected

Dialogue

Use direct information entry for experienced users

Use menus for causal users

Menus and forms

Keep the menu hierarchy low

Provide direct addressing of menus

Keep the presentation consistent
Figure 11 Extracted guidelines from
extended MML for visual display ter-
minals (3)

perform all permissible interrogations of
data in all pictures in any sequence. This
means that each picture should allow the
end user to perform all operations he is
authorised to do in all pictures containing
the appropriate data. This implies that the
pictures are no more restricted to certain
tasks and operations needed in these
tasks. Each picture can contain data and
provide operations which apply for many
tasks. To some extent, data will still have
to be grouped into pictures appropriate
for certain tasks or groups of tasks. How-
ever, there is no more any strict
correspondence between tasks and the
contents of screen pictures. We will call
this alternative approach a Data oriented
approach to HMI design, while the pre-
viously described approach we will call
Function oriented.

The data oriented approach implies a
need for a new technique to design pro-
grams, such that all conceivable and
permissible operations are provided

simultaneously. Also, the approach
implies a need to provide the user with
powerful means to select and project data
in run time for divergent needs, which
the application programmer may not be
aware of. This means that forms can no
more be fixed panels, but must be
dynamically changeable to user needs.
The details of the ‘HMI design’ are
moved from the programmer to the end
user himself. For this use, the end user
has to be provided with a general, power-

16

General principles

The meta-language

Basic syntax

Introduction

Basic format layout

The character set

Input command language

Output language

Dialogue procedures

Use of SDL

Extended MML

Capabilities

Interaction

Dialogue procedures

Windows

Specification

Methodology

Tools and methods

Glossary

Procedure description

Backus Naur Form

Be consistent

Provide feedback

Minimise error attributes

Provide error recovery

Accommodate multiple skill levels

Minimise memorisation

Figure 12 Man-Machine Language.
Summarised contents of the older CCITT
Blue book (3) on MML

Introduction

Scope, Approach and Reference

Model

Scope

Approach

Reference Model

Guidelines for HMI developers

Introduction

Method

Data design

Summary of Requirements

Relationship to TMN

Formalism and Documentation

Introduction

Formalism

Documentation

Guidelines for HMI developers

Examples

Handling of Time

Explanation and Usage

Extensions

End User’s Access to Specifi-

cations

Access Control Administration

Figure 13 The data oriented Human-
Machine Interface specification tech-
nique. Summarised contents of new draft
CCITT Recommendation (1) on HMI

Figure 14 Important design
considerations (11)

ful and simple to use editor of the form
and contents of all his screen pictures.

Preferably, this editor should allow
alternative presentations of the same
data, e.g. both alphanumeric and graphic
presentations. However, this is not easily
achieved in practice. For example, in
addition to the pure contents, a graph of a
telecommunication network will require
the provisioning of appropriate icons for
the classes of data, e.g. for stations and
circuit groups. Also, information is
needed about where to place the icons,
scaling, rotation, etc. And, if editing is
allowed, information must be provided
about the topology of data, e.g. how
circuit groups are linked to stations.
Also, these items have to be linked by
appropriate routines. All this information
may not be explicitly available in an alp-
hanumeric screen picture, which the end
user intuitively believes contains the
same information. Therefore, meaningful
graphs may not be easily derived from
pictures not prepared for graphic pre-
sentations. Rather, the user needs a
seamless integration of graphic and alp-
hanumeric dialogues, in a way which
appears to be integrated to the end user.

In the Function oriented approach the
end user is considered to sit in the stream
of information flow, entering information
from his environment or retrieving
information to the environment. In the
Data oriented approach the information
flow can be considered to take place
inside the computer system, not to or
from it through the terminal. The end
user supervises and controls this flow. He
can retrieve data – from the flow –, insert
new data and redirect the flow. This way,

17

‘register handling’, ‘information flow’,
as well as ‘process control’ can be under-
taken by the Data oriented approach to
HMI design.

Applications

To have a good contents structure of a
publication is a must to get easy access to
information. However, if the information
is not expressed in a consistent and und-
erstandable language, then the end user
will be lost. A typical problem in many
current application designs is that head-
ings and icons are inconsistently and
uncoordinatedly used in different
pictures. Therefore, in large systems the
designer needs methods and tools to
ensure the harmonisation of a common
terminology and grammar across large
application areas. By the term grammar
we mean the sequence in which data are
presented. The issue here is that if data
are presented in arbitrary order, for
example by interchangeable columns in a
table, the user can misinterpret the
relationships between items in the differ-
ent columns. To achieve unambiguous
interpretation of data, the end user
grammar has to be defined by the
relationships between the data.

To achieve the wanted harmonisation,
the terminology and grammar have to be
expressed only once for each application.
This central definition is called the
Application schema of the system. The
Application schema will also contain all
constraints on and derivations from the
data.

The Application schema is not only the
focus of the developer. Once defined, the

definition of the common terms of a sys-
tem is what the expert users need in
order to understand what the system is
about. In addition, they need this
information to validate and approve the
design prior to implementation. The
ordinary users need access to these speci-
fications for on-line help, as a tutorial
and a menu to the system. Therefore, the
Application schema is considered to be
inside the scope of interest of the end
user’s HMI. Also, the end user has to
know which presentations are available
and which operations are permissible in
these presentations. Therefore, the speci-
fication of external contents and layout
of each picture is inside the scope of the
end user’s HMI. This way, a large
portion of the specification data are
included in the scope of the HMI. The
impact of this, is that these specifications
have to be presented in a way which is
accessible to the end user, using the end
user’s own terminology and grammar.
Hence, the developer is not free to
specify the system in a way found con-
venient only for the programmer and the
computer, but he has to observe end user
needs both concerning what is specified
and how this is specified.

There are many approaches to appli-
cation design. Many schools take
contents schemata as their starting point
and merge these into one Application
schema. So-called ‘normalisation’
belongs to this group of schools. There
are several problems with this approach:
it presupposes that (1) contents schemata
can be defined prior to having a unified
Application schema, (2) all data are
appropriately used in all contents

Layout
schemata

Contents
schemata

Application
schemata

Internal
schemata

External schemata

Manager perspective

End
user
HMI

A
C
L

H
M

I
popula-

tion
System processor Data

base

A

C

L

P

Figure 16 When designing data in the appli-
cation schema (A), the HMI designer has to
foresee permissible external contents (C), layo-
uts (L) and instantiations (P)

Figure 15 If we take a black box approach to system design, we realise that
the end user needs access to much the same information as the system
developer.

The application schema (A) prescribes the terminology and grammar of the
application. The external schemata prescribes contents (C) and layout(L)

18

schemata, and (3) all data are conveni-
ently and consistently defined in all
contents schemata.

Experience with large systems design
shows that these assumptions are
regularly violated. In fact, to define a
consistent and efficient terminology and
grammar for an application area should
be the focus of all HMI design, while
most current design techniques take curr-
ent data designs for granted. However,
no measures seem to have such a pro-
found effect on overall efficiency and
usability as data design. Therefore,
CCITT Recommendation Z.352 contains
a separate Appendix on data design for
HMIs (1), (2).

Many current application design techni-
ques are naivistically conceptualistic.
This means that they disregard the form
in which data are presented to the end
user. However, for the end user to
recognise and understand his data, the
forms of the data have to appear persist-
ent throughout the system. Experience
shows that ‘conceptualistic’ designs,
where the external forms are not taken
into account from the very start, have to
be redesigned when the external aspects
are taken into consideration. Therefore,
HMI design is intrinsically concerned
with the definition of the form of data
across large application areas (2).

The design of a harmonised and efficient
terminology for a large application area
is a complex task, requiring a lot of
experience. The designer has to foresee

all conceivable presentations, i.e.
contents and layouts, of his data designs
and also foresee all conceivable instanti-
ations of these presentation forms. There-
fore, data design requires good skills to
generalise and systematise. The end users
are often not capable to foresee all conse-
quences of the data design. Therefore,
prototyping of the HMI is needed to val-
idate the design. This prototyping must
be realistic, i.e. allow the end users to use
and report judgements about the design.

The end user has several subtle require-
ments on the form of his data that have
profound implications (1).
Firstly, labels should be allowed to be
reused in different contexts having differ-
ent value sets and different meanings.
For example, the label Group could mean
an organisation unit in an administration,
or a circuit group within the transmission
network, or other. A label which is
reused for different purposes in different
contexts is called a local label to the label
of the context item. Secondly, identical
labels can be reused within the same
context to mean different entities. For
example, identical icons can be used to
represent different exchanges in an
electronic map, and the end user may
never see unique labels for each station.
Therefore, the treatment of significant
duplicates is needed. Lastly, specifi-
cations have to be homomorphic to, i.e.
have the same form as, the instantiated
data. The last requirement allows the end
user to recognise data classes for given
data instances and vice versa. Without

obeying this requirement, the end user
will easily get lost when traversing
between specifications in the schemata
and corresponding instances in the pop-
ulations.

The consequence of the above require-
ments is that the specification language
needed for end user access to data, using
the end user’s own terminology, will be a
context-sensitive language (12, 13, 14),
having much in common with the
context-sensitivity of natural languages.
The required language will have features
which are distinctively different from
widespread existing specification
languages.

Data are often considered to describe
some Universe of Discourse. Maybe sur-
prising to the reader, most designers have
great difficulties in identifying the right
UoD. Most designers take an existing or
hypothetical information system, e.g. of a
Telecom operator, as their starting point
and extract and organise the data from
this. However, the information system
usually administrates information about
some other system, e.g. the telecommuni-
cation network. A designer should study
this network when designing an
information system to manage it.

However, the designer should be warned
that data often do not describe physical
entities in the naivistic sense. More often
data are invented to provide overview of
other data, which provide overview of

Real Universe of discours Old or hypothetical
information system

Operator Real users
of data

UoD

No Ju.b Cab. Pair

Data design 1

Circ. Ju.b Cab. Pair

Data design 2

Phone no. Junction box Cable
PairsCircuit

Ph.n

Figure 17 Designers regularly confuse universes of discourse. Specification
techniques often prescribe analysis of the information system rather than the UoD
administered by this system. This way, they prescribe the copying and
conservation of previous designs, rather than contributing to creating alternative
designs.

Also, user groups can be confused. Often the operators at the terminals are just
communicators of data, while the real users of the data are outside the
information system being analysed. Creative data design should focus on the
needs and usages of the real users

Figure 18 Depiction of alternative data
designs to what was believed to be about the
same UoD. The first design stems from ‘norm-
alising’ existing data. The second design takes
a fresh look at the structure of the real UoD.
Alternative data designs have great consequ-
ences for their users

several smaller systems, which can be
wanted both for overview and con-
trollability. ‘Megastructures’ may not be
the ideal architecture.

Layering of systems can be another
means to provide overview and con-
trollability. The already introduced appli-
cation, contents and layout structures are
examples of this. If functionality is sorted
into layers, the data flow between the
layers also becomes more comprehen-
sible. The flow between the layers is
concerned with undertaking one step in
the communication of data between two
peer media, while the internal flow inside
a layer is related to constraint enforce-
ment and derivations. This data flow
architecture can be a very powerful
alternative to the control structures of
ordinary programs.

Current thinking about information sys-
tems has been focusing on the details of
the HMI or the details of programming
statements. Architecture of information
systems in large has not evolved to
become a separate discipline. Such a
discipline, however, is highly needed.

system to be a huge machine consisting
of processes which exchange data by
data flow. As systems grow, this metap-
hor has become too complex to cope
with. Therefore alternative metaphors are
sought after. The encyclopaedia metap-
hor can be a convenient alternative. The
totality of information systems can be
considered being a library. The
information systems for one organisation
is an encyclopaedia. Each system is a
book, each function is a section, etc. A
directory can provide an overview of the
totality. This metaphor can constitute the
needed overview and control to the user.
The metaphor does neither exclude refer-
ences to be maintained across several
books, nor that information is exchanged
between books. However, normally
information is selected from several
books to one user, while exchange
between books is minimised.

Some schools of data design put up a
‘corporate database’ as the ideal goal,
where the users see no distinction be-
tween books or systems. However, this
can become like having a large house
rather than several small ones. The goal
may contradict the users’ wish of having

still other data, etc. Also, designers have
been inclined to believe that the terminal
operator is the user of the data. This
belief may not be true. Quite often the
operators are just communicators of data
to the real users, who can be customers,
planners, managers, etc. Therefore,
identification of UoDs and users are
important, not trivial tasks.

Architecture

We realise that the complexity of large
systems implies a need for alternative
approaches to HMI design. While current
form-filling dialogues have been appro-
priate for presenting and manipulating
small groups of individual data items,
they are not appropriate to provide
overview of large systems. The user
wants to know what features are
available, what data types can be
interrogated, how large are the pop-
ulations, where is this item in this pop-
ulation, etc.? The challenges for future
HMI designers are to provide easy to use
and easy to recognise features for this.

Current metaphors for system design
have been considering the information

19

Data view

Process
view

Life cycle
view

Encyclopedia

Presentations

Mary

Figure 19 The current machine metaphor
of information systems comprises a data
view, a processing view and a life cycle
view. This metaphor seems not to provide
the needed overview and control to users
and managers. The metaphor introduces
too much consistency to be controlled by
the developer and too little system-
atisation. Rather than developing separ-
ate specifications, which have to be
checked for consistency, a centralised
specification (i.e. the application
schema) should be developed, from
which all other specifications (i.e. the
external and internal schemata) can be
derived

Figure 20 The encyclopaedia metaphor
can provide simple overview and control
to the user. Each book corresponds to a
system. This metaphor can provide
manageability to the manager. However,
the metaphor is not complete, as it disre-
gards communication between systems.
But the details provided seem right for
discussions with user departments about
ownership of and responsibility for
which system

Figure 21 An advanced approach to pro-
viding overview. Directory information is
depicted by the stellar map metaphor in
the top window. Object class icons make
up the system stars. The user can zoom in
the wanted ones. The corona depicts
external screen pictures. The communi-
cation links between systems are indi-
cated by dotted lines. The space platform
in perspective indicates the work station.
Its icons indicate the extracted data types.
Data instances are depicted in the bottom
window. Colours indicate selected icons.
The heights of the rectangles indicate
sizes of the files. The icon instances are
placed in their appropriate places
according to an alphabetical sort

Education

From the discussion in this paper, it
should be evident that current teaching
on HMI design and information systems
design in general, have distinct
shortcomings: 1) HMI designers have
been focusing too much on the surface
layer style guidelines of HMI design and
have missed most aspects of the deep
language structure data design. 2) The
architectural aspects of information sys-
tems in large need to be addressed. 3)
Development methods for HMIs have to
be reconsidered in light of large systems
design. 4) The scope of HMIs has to be
broadened, and this will require an
integration of end user and developer
perspectives. This will have significant
impact on formal languages for the speci-
fication of information systems.

Pelle Ehn (15) quotes from Simon a pro-
posal of a curriculum to redirect the
focus of information systems develop-
ment:

- Social systems and design methods

- Theory of designing computer arte-
facts

- Process-oriented software engineering
and prototyping

- History of design methodology

- Architectural and industrial design as
paradigm examples

- Philosophy of design

- Practical design.

Teaching about HMIs can be undertaken
in the perspectives of end users, develop-
ers or scientists. This article has focused
on the perspective of the developer.
However, the reader should be warned
that the three perspectives can be entirely
different. An HMI can be easy to use,
while it can be very difficult to design,
e.g. the data designer has to foresee all
implications for all conceivable pre-
sentations and instantiations of his
designs. The tasks of the scientist can be
entirely different from those of the
developer. The scientist should be able to
categorise the approach used, e.g.
according to which philosophy of sci-
ence. He may identify the organisation
theory supported, the design principles
used, the underlying philosophy of art,
etc. Occasionally he may also engage in
developing tools and methods for HMI
design and HMI usage.

References

1 CCITT. Draft Recommendations
Z.35x and Appendices to draft
Recommendations, 1992. (COM X-R
12-E.)

2 CCITT. Recommendations Z.35x and
Appendices to Recommendations,
1992. (COM X-R 24-E.)

3 CCITT. Man-Machine Language
(MML). (Blue book. Recomm-
endations Z.301-Z.341.)

4 Harrison, M, Thimbelby, H. Formal
methods in Human-Computer
Interaction. Cambridge, Mass., Cam-
bridge University Press, 1990.

5 Bansler, J. System development in
Scandinavia: Three theoretical
schools. Scandinavian Journal of
Information Systems, 1, 3-20, 1989.

6 ISO. Visual display terminals (VDTs)
used for office tasks – Ergonomic
requirements. Part 3: Visual require-
ments. 1989. (Draft International
Standard ISO/DIS 9241-3.)

7 Brukerhåndbok Microsoft Windows.
Versjon 3.1. Microsoft corporation,
1991.

8 Open Software Foundation.
OSF/Motif Style Guide. Rev. 1.2.
Englewood Cliffs, N.J., Prentice
Hall, 1991.

9 Curtis, B, Hefley, B. Defining a place
for interface engineering. IEEE
Software, 9(2), 84-86, 1992.

10 ISO. Information processing – Text
and office system – Office Document
Architecture (ODA) and interchange
format, 1989. (ISO 8613).

11 Foley, J D et al. Computer Graphics:
Principles and Practice. IBM Sys-
tems Programming Series, second
edition. Reading, Mass., Addison-
Wesley, 1990.

12 Meisingset, A. Perspectives on the
CCITT Data Oriented Human-
Machine Interface Specification
Technique. SDL Forum, Glasgow,
1991. Kjeller, Norwegian Telecom
Research, 1991. (TF lecture F10/91.)

13 Meisingset, A. The CCITT Data Ori-
ented Human-Machine Interface
Specification Technique. SETSS
Conference, Florence, 1992. Kjeller,
Norwegian Telecom Research, 1992.
(TF lecture F24/92.)

14 Meisingset, A. Specification
languages and environments. Kjeller,
University Studies at Kjeller,
Norway, 1991 (Version 3.0).

15 Ehn, P. The art and science of
designing computer artefacts. Scandi-
navian Journal of Information Sys-
tems, 1, 21-42, 1989.

20

Introduction

The notion reference models is often
encountered in standards and other
literature on information systems. In this
paper we want to focus on what a refer-
ence model actually is, where and why it
is needed and illustrate these ‘what’,
‘where’ and ‘why’ of reference models
through some examples of existing refer-
ence models.

The term reference model is defined in
the literature (1) as a conceptual fra-
mework for a subject area, i.e. “a
conceptual framework whose purpose is
to divide standardisation work into
manageable pieces, and to show, at a
general level, how these pieces are
related to one another. It provides a com-
mon basis for the co-ordination of stand-
ards development, while allowing
existing standards to be placed into
perspective within the overall reference
model.”

For all practical purposes, however, a
reference model can be thought of as an
idealised architectural model of a system
(2). We thus consider the term reference
model in the area of information systems
to be synonymous to the terms
architecture, reference architecture and
framework of information systems.
These terms are all used throughout the
literature. Unfortunately, there is no com-
mon understanding of either of these
terms.

Reference models are nevertheless a
means to decompose and structure the
whole or aspects of information systems.
As size, complexity and costs of
information systems are increasing, refer-
ence models are needed to handle the
complexity of large information systems.

The field of information systems is quite
young compared to house building,
which has existed for thousands of years.
Lots of experience has been accumulated
throughout these years, and it would only
be natural if the field of information sys-

tems could gain from studying the pro-
cess of building houses, towns, or even
aeroplanes. Zachman (3) has observed
the processes of building houses and
aeroplanes and found that a generalisa-
tion of these processes would be appro-
priate for the process of building
information systems as well.

Existing reference models

The currently best known reference
model within the field of information
systems is perhaps the reference model
for open systems interconnection, the
OSI reference model, standardised by
ISO. There are, however, several other
important areas of information systems
for which reference models have been, or
currently are being, developed.

According to Zachman (3) interpretation
of the term architecture depends on the
viewer. This is the case for reference
models as well, i.e. interpretation of the
term reference model depends on the
viewer. Different users have different
viewpoints, or different perspectives, on
a reference model. These different
perspectives may be incorporated into a
single reference model or may result in
quite different reference models, each
serving one particular perspective. A
typical example of different perspectives
that might be incorporated into a single
reference model or in several reference
models is development, use and manage-
ment of an information system.

In the area of data management, i.e.
definition and manipulation of an enter-
prise’s information, several reference
models are already being standardised.
Examples are the ANSI/
SPARC three-schema architecture, the
ANSI and ISO IRDS (Information
Resource Dictionary System), and a
reference model for data management
being standardised by ISO. The three-
schema architecture will be presented
later in this paper.

The OSI reference model has already
been mentioned as a standardised refer-
ence model for communication. This
reference model defines means for com-
munication between two or more separ-
ate systems. Two aspects of communi-
cation that especially influence the co-
operation between systems and system
parts are distribution and inter-
operability. A distributed system is a sys-
tem that supports distributed processing
or distribution of data. Distributed pro-
cessing may be done according to ODP
(Open Distributed Processing) or the cli-
ent-server model, and data may be distri-
buted according to an extended three-
schema architecture. Interoperability
means that systems or system compon-
ents co-operate to perform a common
task. Interoperation is essential e.g. for
database applications requesting
information from each other.

In addition to the general reference
models already mentioned, there exist
several reference models for specific
application areas. Three application ori-
ented reference models currently being
developed in the area of telecommuni-
cations are reference models for Intellig-
ent Networks (IN) (4), Telecommuni-
cations Management Network (TMN)
(5), and Human Machine Interface
(HMI) (6). They are all developed by
CCITT.

Zachman’s framework for

information systems

architecture (ISA)

As we have already mentioned, Zachman
has observed house building to see if the
experiences made there can be applied to
the process of building information sys-
tems (3). The observations he made
resulted in a framework for information
systems architecture called the ISA fra-
mework.

21

Reference models

B Y S I G R I D S T E I N H O L T B Y G D Å S A N D V I G D I S H O U M B

Abstract

This paper explains what a reference model is and gives some
examples of reference models. The examples are the ISA frame-
work, different database architectures like the 3-schema
architecture, the ISO OSI reference model and the client-server
architecture. Telecommunications operators, like other large
organisations with administrative and technical information
systems, need reference models. This is mainly due to the
increasing complexity of software systems and the need to pro-
vide interoperability between software systems. Another aspect

is the necessity of organising the data of the organisation in an
effective way.

Some of the important challenges in the area of reference
models are to unify related reference models, integrate
reference models across fields, make the standards precise and
make the information technology community aware of the bene-
fits of widespread use of standardised reference models. It is a
hope that in the long run unified, integrated and standardised
reference models will simplify education and systems develop-
ment.

681.3.01

The ISA framework is based on the
following ideas:

- There is a set of architectural repre-
sentations of the information system
representing the different perspectives
of the different participants.

- The same product can be described, for
different purposes, in different ways,
resulting in different types of
descriptions.

The framework assumes that there exist
five architectural representations, one for
each “player in the game”, i.e. the
planner, the owner, the designer, the
builder, and the subcontractor. Each of
these representations represents a differ-
ent perspective.

Different types of descriptions are ori-
ented to different aspects of an object

22

Programming
Language I

Programming
Language II

external
schema 1

external
schema 2

conceptual
schema

Database
Management

System

external-conceptual
mapping

external-conceptual
mapping

internal
schema

conceptual-internal
mapping

User

storage mapping

Database
Administrator

Figure 1 Three-schema architecture (9)

The three-schema architecture consists
of three levels:
- the exernal level
- the conceptual level, being the central

level of the architecture defining the
universe of discourse

- the internal level

List of things
important to
the business

Entity/relation-
ship diagram

Data model

Data design

Data definition
description

Data

List of processes
the business
performs

Process flow
diagram

Data flow
diagram

Structure chart

Program

Function

List of loc-
ations in which
the business
operates

Logistics
network

Distributed
system
architecture

System
architecture

Network
architecture

Network

List of organi-
sations/agents
importent to
the business

Organisation
chart

Human
interface
architecture

Human/
technology
interface

Security
architecture

Organisation

List of events
significant to
the business

Master
schedule

Processing
structure

Control
structure

Timing
definition

Schedule

List of business
goals/strategy

Business plan

Knowledge
architecture

Knowledge
design

Knowledge
definition

Strategy

Scope

Enterprise
model

System
model

Technology
model

Components

Functioning
system

Data

(what)

Function

(how)

Network

(where)

People

(who)

Time

(when)

Motivation

(why)

Table 1 The ISA framework
The cells are filled with examples of the kind of representation that can be used by the combination of perspective and type of
description

being described. The aspects are data
(what), function (how), network (where),
people (who), time (when) and moti-
vation (why).

The ISA framework combines the five
perspectives with the different types of
descriptions into a matrix consisting of
30 cells (7). The framework, shown in
Table 1, is thus a two-dimensional matrix
where

- the columns state what aspect of an
information system is described

- the rows state what perspective is
taken

- the cells are filled with examples of the
kind of representation which can be
used by that particular combination of
perspective and type of description.

According to the ISA framework each
cell of the matrix is different from the
others, being one particular abstraction of
reality. There are, however, dependencies
between cells; between cells in the same
row and between adjacent cells in the
same column. The cells are considered as
information systems architectures where
the notion of architecture is viewed upon
as relative, depending on perspective and
type of description.

Zachman’s matrix provides a valuable
overview of techniques used for systems
development and the relationships
between such techniques. We believe,
however, that a separate technique is not
needed for each cell in the matrix.

Database architectures

Traditional database management sys-
tems (DBMSs) envision a two-level
organisation of data: the data as seen by
the system and the data as seen by the
user, i.e. an end user or a programmer.
The definition of data at the first level is
often termed (internal) schema and
prescribes the organisation of the entire
database. The definition of data at the
second level is often termed subschema
or view and specifies the subset and pre-
sentation form of the data to the user.

ANSI/SPARC introduced the three-
schema architecture for database
management systems. This stand-
ardisation effort started in 1972. The first
framework was published in 1978 (8)
and a second report based on this fra-

mework was published in 1986 (9). A
report from ISO closely related to the
ANSI/SPARC framework is the
conceptual schema report (10).

ANSI/SPARC focused its work on inter-
faces, personal roles, processing
functions and information flows within
the DBMS. In this framework the
requirements that must be satisfied by the
interfaces, are specified, not how com-
ponents are to work.

In the three-schema architecture the two
levels of organisation of data correspond-
ing to the traditional (internal) schema,
and subschema or view, are termed

internal and external, respectively. In
addition, a third level is introduced, the
conceptual level. The conceptual level
represents the enterprise’s description of
the information of interest. This
description is recorded in what is called
the conceptual schema.

The conceptual schema is the core of the
three-schema architecture. This schema
describes all relevant general static and
dynamic aspects, i.e. all rules and
constraints, of the universe of discourse.
It describes only conceptual relevant
aspects. These can among other things be

23

Enterprise
Administrator

conceptual
schema

processor

Application
Administrator

1

33
Database

Administrator

13 2 4

internal
schema

processor
META
DATA

external
schema

processor

514

storage-
internal

transformer

conceptual-
external

transformer

31

34

internal-
conceptual
transformer

36 38

21 30

User

12

DATA

D
e

fi
n

it
io

n
U

se

Figure 2 The original ANSI/SPARC three-schema architecture (9)

This figure is a part of the original three-schema architecture from ANSI/SPARC (9), illustrating the
relations between the different roles, processors, interfaces, schemata, and data. The external,
conceptual, and internal schemata are part of the META DATA. The enterprise administrator, database
administrator, and application administrator manage META DATA through schema processors over
specific interfaces. The user accesses DATA

categorised as entities, properties, and
relationships.

Several external schemata, representing
different user views, will often exist for
one single conceptual schema. Both the
internal and the external schemata must
be consistent with and mappable to the
conceptual schema. The three-schema
architecture is shown in Figure 1. The
original three-schema architecture from
ANSI/SPARC is shown in Figure 2,
while the ISO three-schema architecture
is illustrated in Figure 3.

Introducing the conceptual schema gives
some major benefits to database manage-
ment:

- the concepts are documented only
once, in the central conceptual schema

- data independence, i.e. both external
views of the data and physical storage
of data can be changed without
necessarily having to change the
conceptual schema.

A schema is itself a collection of data
(also called meta data) which can be
recorded in a database. Figure 4 shows
how the three-schema architecture can be
used during both system development
and use of database applications. A gen-
eralisation of the use of meta data can be
found in the newer framework from
ANSI/SPARC (9).

The OSI refer-

ence model

ISO’s reference model for
open systems inter-
connection is called the
OSI reference model (11).
This reference model pro-
vides a framework for
standardising communi-
cation between computer
systems. It provides com-
puter users with several
communications-based
services. Computers from
different vendors, con-
forming to OSI, should be
able to communicate with
each other.

OSI is a reference model
according to the definition
given earlier in this paper,
i.e. a conceptual fra-
mework for understanding
communication between
computers. The problem
of computer communi-
cation is partitioned into
manageable pieces called
layers. Each layer has
been subject to stand-
ardisation activities, but
these standards are not,
strictly speaking, part of
the reference model (12).

The OSI reference model
consists of seven layers.
All the tasks or functions
involved in communi-
cation are distributed be-
tween these layers. For
communication to take

place, functions of several layers have to
be combined. Each layer therefore pro-
vides services (through functions) to the
next higher layer. A service definition
specifies the services of a layer and the
rules governing access to these services.
The service definitions constitute the
interfaces between adjacent layers of the
OSI reference model.

In (13) two communicating computer
systems are called end systems. An
implementation of services of a layer on
an end system is called a layer entity.
The functionality of a layer is achieved
by the exchange of messages between
co-operating layer entities in co-operat-
ing end systems. The functions of a layer
and associated messages are defined in a
layer protocol specification. The actions
to be taken by a layer entity when receiv-

24

information
processor

conceptual
sub-

schema(ta)

conceptual
schema

information
base

external
processor

external
schema(ta)

external
database

internal
processor

physical
database

internal
schema

CONCEPTUAL LEVEL

EXTERNAL LEVEL INTERNAL LEVEL

message
(meaning)

message
(form)

Dotted lines indicate vir tual elements

Figure 3 The ISO three-schema architecture (10)

This figure illustrates that each level consists of schema(ta), processor(s), and population(s). A schema prescribes
permissible data instances and all rules and constraints concerning these instances. A population contains data instances
which satisfy the structure and constraints specified in the corresponding schema. A processor is responsible for
enforcing the schema on the population. The populations are here called the information base, the external database and
the physical database for the conceptual, external and internal populations, respectively. Only the physical database is a
real database.

The conceptual schema comprises all application dependent logic, in opposition to the ANSI/SPARC three-schema
architecture where the application logic can be specified outside the external level. The ISO three-schema architecture
does not state what is outside the external level

ing a certain message are defined here,
too. A layer protocol constitutes the
interface between layer entities of the
same layer.

Figure 5 illustrates communication
according to OSI.

The client-server

architecture

The client-server architecture allows
several clients to use a common server,
see Figure 6.

A client is an active module which has a
high degree of autonomy. Nevertheless,
it needs to communicate and share
resources like information, complex ser-
vices or expensive hardware. A client
often interfaces a human user. A typical
example of a client is a workstation
attached to a local area network using
software located on a central computer
called server.

The server is a module providing ser-
vices to one or more clients. The services
can be management services as for
directory and authentication servers, con-
trol of shared resources as for database
servers or file servers or user oriented
services like electronic mail (14). A
server can provide more than one type of
service.

The client-server relationship may be
viewed as a “master-slave” relationship.
The client has the role of the master,
requesting services from the obeying
slave. Clients may, however, be servers
for other clients, and servers may be cli-
ents of other servers.

The interface between a client and a
server is defined by a communication
protocol.

General features of

reference models

The examples show that reference
models are useful when dealing with
complex problems in the area of
information systems. The ISA framework
shows that architectures (or reference
models) may represent different
perspectives of an information system
according to the perspectives of the dif-
ferent actors in the system development
process.

Reference models help splitting complex
problems into smaller parts that are

easier to understand and handle. These
smaller parts can be layers or compon-
ents. The parts together make up the total
system. The interoperation between parts
takes place over interfaces. It is favour-
able to standardise such interfaces (pre-
ferably internationally), because custom-
ers will gain flexibility owing to an
increasing amount of plug-compatible
system components.

Standards often include conformance
criteria. These criteria usually indicate
the minimum set of services or functions
that must be provided at particular inter-
faces by an implementation of the refer-
ence model, in order for the imple-
mentation to conform to the standard. In
addition a reference model might include
performance criteria. The internal imple-
mentation of each part of a system is

considered a black box, providing the
outward behaviour of the system is as
required by the reference model.

Why do telecommunica-

tions operators need

reference models?

Telecommunications operators are usu-
ally big organisations, having large
administrative and technical information
systems. Within both areas the operators
will need reference models.

The telecommunications market is now
getting more and more exposed to com-
petition. In this market it is important
that the operators are not bound to
vendor specific systems. The operators
will need the possibility to replace com-

25

DDEMP CMP IMP

 external
 meta
schema

 conceptual
 meta
schema

 internal
 meta
schema

EP CP IP

 external

schema

 conceptual

schema

 internal

schema

DB

system
developer

end user

IP

EMP

CMP

IMP

= Internal processor

= External meta processor

= Conceptual meta processor

= Internal meta processor

DB

DD

EP

CP

= Database

= Data dictionary

= External processor

= Conceptual processor

Figure 4 Three-schema architecture used both during development and use of database
applications

This figure shows how use and development of database applications can be supported by
the three-schema architecture.

The conceptual meta schema specifies all permissible data that can be found in the data
dictionary (DD). Internal and external meta schema define the storage form and the pre-
sentation form of these data respectively. The system developer works towards the external
form of the dictionary data when he specifies schemata for the database application.

Schemata for the final database application are thus stored as ordinary data in the data
dictionary. These data may act as schemata for the database application directly or after
being compiled into a form appropriate for execution

26

Figure 5 Process communication according to the OSI reference model

The brackets ({ and }) in the figure illustrate that the functionality of a layer is achieved by co-operating
layer entities in the same layer. A layer entity is an implementation of a layer’s service on an end system
(13).

Human users have access to the application layer only. When an end user requests an application layer
service, the application layer entity has to co-operate with a corresponding application layer entity in
another end system (a peer entity) to carry out the service requested. To initiate this co-operation it trans-
mits a message to this peer entity. To send the message, the application entity uses services provided by
its next lower layer, the presentation layer. The local presentation layer entity adds some control
information (CI) for use by its peer entity, and uses the services provided by the next lower layer, to send
the expanded message. This process continues until the message reaches the physical layer. This is the
only layer of the OSI reference model interfacing a real physical medium. Here the message is trans-
mitted to the actual end system. When the message arrives at the remote system, each layer entity in turn
peels off the control information from its peer entity to read and act on it. The rest of the message is deliv-
ered to the next higher layer

ponents from one vendor with compon-
ents of another vendor if this vendor has
a better component. This is only possible
if the different components comply to a
common framework, i.e. a reference
model.

A reference model can thus be a means
for users to build an information system
from plug-compatible components
possibly purchased from several vendors.
The reference model will aid in compar-
ing and selecting information systems
and system components, and in revi-

ewing, changing and introducing com-
ponents into the organisation. Other
important benefits gained from using
reference models are increased inter-
operation and data interchange between
systems and system components.

Human productivity and training costs
will be improved due to reduced training
requirements and potentially reduced
costs of products. The training costs may
be reduced because applications made
according to the same reference model
will have a number of common features,
thereby reducing what has to be learned
for each new application.

Generally, telecommunications operators
will need, and to some degree are already
using, reference models for most of the
areas mentioned in this paper. Telecom-
munications operators have particular
needs in finding good reference models
for intelligent networks, and operations
and maintenance of telecommunications
networks and services.

Another important task for telecommuni-
cations operators to consider, is how to
organise the total amount of data within
the organisation. Possible ways of organ-
ising the data is according to function
(e.g. operations and maintenance), sub-
ject (e.g. personnel), chronology (e.g.
planning vs. operations systems) or
organisation (e.g. divisions), or perhaps a
combination of some of these. The issue
of organising corporate data is discussed
in (15).

Activities on reference

models within Norwegian

Telecom Research

Norwegian Telecom Research (NTR) has
been, and still is, participating in several
standardisation organisations in the area
of reference models for information sys-
tems. In addition, NTR is doing research
on reference models and is making pro-
ducts based on existing reference models.

Within the database management sys-
tems area the institute has participated in
ISO preparing the conceptual schema
report (10). Recently NTR prepared a
reference model for interoperability for
ETIS (16). NTR is also participating in
CCITT developing specification techni-
ques. This includes a reference model for
human machine interfaces (6).

NTR early developed a tool based on the
three-schema architecture. This tool is
called DATRAN and is described in (17).

Application

layer entity

Presentation

layer entity

Session

layer entity

Transport

layer entity

Network

layer entity

Link

layer entity

Physical

layer entity

Application

layer

Presentation

layer

Session

layer

Transport

layer

Network

layer

Link

layer

Physical

layer

Process

CI Data

CI Data

CI Data

CI Data

CI Data

CI Data

Bits

Application

layer entity

Presentation

layer entity

Session

layer entity

Transport

layer entity

Network

layer entity

Link

layer entity

Physical

layer entity

ProcessData

End system 1 End system 2

real physical medium

real data flow:

imaginary data flow (layer entity communication according to a protocol specification):

A research project within NTR is prepar-
ing a reference model for database appli-
cations. This reference model will
include three perspectives of database
applications: use, development and inter-
operability. The reference model is based
on the three-schema architecture.

NTR early made contributions to the
development of reference models for
TMN (Telecommunications Management
Network). NTR proposed an interface
between the TMN system and the
network components as early as in 1983
in NT-DV. This proposal has been
incorporated in various contributions
from NT-DV via CEPT/
ETSI to CCITT. Now this interface is
known as Q3.

In connection with the work on TMN
done at NTR, a prototype distributed
database management system with a
four-schema architecture has been
developed. This DBMS is called TelSQL
(18). A current project is developing
another distributed database management
system, called Dibas (19), with a more
modest approach to distribution than
TelSQL.

Challenges and

perspectives

Reference models for information sys-
tems comprise several challenges for
research and standardisation organ-
isations. Reference models exist in
several fields, and some fields have many
reference models. Some of the reference
models belonging to the same field are
overlapping, but still different. An
example is the IRDS and the 3-schema
architecture in the field of data manage-
ment. Unifying such reference models is
a big challenge.

Another challenge is to integrate refer-
ence models across fields. Reference
models for distributed database systems,
for instance, will incorporate elements
from reference models for communi-
cations and data management. Technical
information systems in the areas of Intel-
ligent Networks and Telecommuni-
cations Management Network have their
own reference models. Integration of
reference models from these areas with
reference models for administrative data-
base applications and that of commercial
CASE tools is another example. Making
use of, or taking into account, existing
reference models when developing new
ones, is another aspect of reference
model integration. In an ongoing

EURESCOM project, the ODP reference
model is examined in order to find out if
and how it can be useful for the develop-
ment of the TMN reference model.

A challenge for standardisation organ-
isations is to make their reference models
precise. Due to different views and
objectives of the participants of stand-
ardisation committees, standards tend to
be rather general. A general reference
model may lead to different interpre-
tations and thereby incompatibility of
components of different vendors, even if
the components confirm to the same
standard.

Unified, integrated and standardised
reference models will simplify education
and systems development in the long run.
When a reference model for the system
to be developed is chosen, everyone
involved immediately gets a lot of
information and has a common under-
standing of the systems architecture, or at
least parts of it. Standardised reference
models will lead to standardised ways of
developing systems as well, and will
thereby simplify education and training
of system developers.

To make reference models the valuable
tool they can be, another challenge has to
be dealt with. This is the challenge of
making the information technology com-
munities aware of all the benefits of
standardised reference models, and to
make them use such reference models in
a greater extent than today.

Abbreviations

ANSI/SPARC
American National Standards Institute
/ Standards Planning and Require-
ments Committee

CCITT
The International Telegraph and
Telephone Consultative Committee

CEPT/ETSI
The European Conference of Postal
and Telecommunications Admini-
strations / European Telecommuni-
cations Standardisation Institute

ETIS
European Telecommunications
Informatics Services

EURESCOM
European institute for research and
strategic studies in telecommunications
Gmbh.

ISO
International Standardisation Organ-
isation

NT-DV
Nordtel O&M, i.e. the Nordic tele con-
ference – operations and maintenance

27

Figure 6 The client-server architecture

A logical model of the client-server architecture (left) and a possible physical implementation of this
architecture in an office environment (right). The example shows workstations as clients supported by a
server. The clients communicate with the server over a local area network (LAN)

Client 1

Client 2

Client 3

Client 4

Server

Workstation 1 Workstation 2

Workstation 3 Workstation 4

LAN

Server

References

1 Fong, E N, Jefferson, D K. Reference
models for standardization. Com-
puter standards & interfaces, 5, 93-
98, 1986.

2 Ozsu, M, Valduriez, P. Principles of
distributed database systems.
Englewood Cliffs, Prentice-Hall,
1991. ISBN 0-13-715681-2.

3 Zachman, J A. A framework for
information systems architecture.
IBM systems journal, 26, 276-292,
1987.

4 Skolt, E. Standardisation activities in
the intelligent network area. Telek-
tronikk, 88 (2), 43-51, 1992.

5 Wolland, S. An introduction to TMN.
Telektronikk, 89 (2/3), 84-89, 1993
(this issue).

6 Meisingset, A. The draft CCITT
formalism for specifying human-
machine interfaces. Telektronikk, 89
(2/3), 60-66, 1993 (this issue).

7 Sowa, J F, Zachman, J A. Extending
and formalizing the framework for
information systems architecture.
IBM systems journal, 31, 590-616,
1992.

8 Tsichritzis, D, Klug, A (eds). The
ANSI/X3/SPARC DBMS fra-
mework. Information systems, 3,
173-191, 1978.

9 Burns, T et al. Reference model for
DBMS standardization. SIGMOD
RECORD, 15 (1), 19-58, 1986.

10 Griethuysen, J J van (ed). Concepts
and terminology for the conceptual
schema and the information base.
ISO/TC97, 1982. (ISO/TC97/SC5 -
N 695.)

11 ISO. Information processing systems
– open systems interconnection –
basic reference model. Geneva 1984.
(ISO 7498.)

12 Tanenbaum, A S. Computer
networks. 2nd ed. Englewood Cliffs,
N.J., Prentice-Hall, 1989. ISBN 0-
13-166836-6.

13 Henshall, J, Shaw, S. OSI Explained,
end-to-end computer communication
standards. New York, Wiley, 1988.
ISBN 13-643404-5.

14 Svobodova L. Client/server model of
distributed processing. In: GI/NTG-
Fachtagung ‘Distributed database
systems’. Heidelberg, Springer Ver-
lag, 1985 (Informatik Fachberichte,
95) 485-498.

15 Inmon, W H. Data architecture: the
information paradigm. 2nd ed.
Wellesley, QED Information Sci-
ences, 1992. ISBN 0-89435-358-6.

16 Meisingset, A. A data flow approach
to interoperability. Telektronikk, 89
(2/3), 52-59, 1993 (this issue).

17 Nordlund, C. The DATRAN and
DIMAN tools. Telektronikk, 89 (2/3),
104-109, 1993 (this issue).

18 Risnes, O et al. TelSQL. A DBMS
platform for TMN applications.
Kjeller, Norwegian Telecom Re-
search, 1991. (Internal project note.)

19 Dahle, E, Berg, H. Dibas – a
management system for distributed
databases. Telektronikk, 89 (2/3),
110-120, 1993 (this issue).

28

1 What is a formal

language?

The term language is often encountered
in the field of software engineering. How
the term is defined depends on the
context in which it is used. In IEEE’s
Standard Glossary of Software Engineer-
ing Terminology (1) a language is
defined as “A systematic means of com-
municating ideas by the use of con-
ventional signs, sounds, gestures, or
marks and rules for the formation of
admissible expression.” This definition
does not state whether the communi-
cation takes place between human
beings, between human beings and com-
puters, or between computer programs.
In the same glossary the term computer
language is defined as “a language
designed to enable humans to communi-
cate with computers”. The first definition
is closer to what is often called natural
languages, i.e. languages like Norwegian
and English, while the second definition
is closer to the notion of a programming
language or a man-machine language.
This sharp distinction between natural
languages and computer languages has,
however, been blurred. It is now possible
to communicate with a computer in a
fairly “natural” way, either through
natural written languages or even by
means of speech. To call a language
formal, however, we require that the
language has a defined syntax and
semantics. By syntax we mean the
grammatic rules, which determine
whether a sentence is a permissible sent-
ence in the language. Semantics deter-
mine how one interprets these well-
formed sentences, i. e. the semantics
define how an (abstract) machine will
execute and represent the sentences
written in the language.

In this paper we will concentrate on
formal languages used to develop,
maintain and operate a computer based
information system.

The reader should note that this is only
an introduction to formal languages. The
theme is a very broad one, and the
literature on the topic is overwhelming.

2 History and

fundamentals

All computer languages are based on
more or less explicitly stated models of
the computer. These models influence
the language constructs offered to
instruct the machine. Figure 1 shows how
the machine can be viewed as a black
box where input data and a program are
given to the machine and the machine
produces output data. In this chapter we
will mention some of the important
machine models, which influence the
design of programming languages.

An initial attempt at modelling a com-
puter begins with the observation that at
any time the machine is in a certain state
and only changes this state as it processes
input (2). This is the so-called finite state
machine. Based on the current state and
input, the machine produces a new state
and possibly an output. The specification
language SDL (3) assumes this machine
model.

The basic von-Neuman machine is the
model for the overwhelming majority of
computers in use (4). This computer
model comprises a processor which
executes instructions and a memory
which holds instructions and data. One
instruction is executed at a time, in sequ-
ence. The von-Neuman model has influ-
enced most of the current programming
languages, like Pascal and C.

Languages based on logic offer the user a
quite different machine model. The
machine (the inference engine) can sys-
tematically search for a solution of a set
of logical equations. The programmer
does not have to state how a solution
shall be found. He only states the

requirements to the solutions. PROLOG
is a language which assumes this
machine model (5).

Today people program their computers
differently from how they used to several
years ago. This development is of course
influenced by the development of
machine models and the ability to abs-
tract away from how the computer
works. The Figures 2a-2f illustrate steps
in the development. In the mid-1950’s
the computers had to be instructed by
means of assembler code, i.e. a kind of
programming language which
corresponds closely to the instruction set
of a given computer, but allows symbolic
naming of operations and addresses, see
Figure 2a.

The so-called high level programming
languages (3 GL) emerged in the early
1960’s. These languages require little
knowledge of the computer on which a
program will run and can be translated
into several different assembler or
machine languages. Fortran and Pascal
are examples of high level languages.
See Figure 2b.

Functional programming emerged in the
late 1960’s. The idea was to free the pro-
grammer even further from the worry of
the steps a computer has to perform. The
essence of functional programming is to
combine functions in expressions to pro-

29

Formal languages

B Y A S T R I D N Y E N G

Abstract

This paper gives an introduction to formal languages used to
develop, maintain and operate computer based information
systems. Historically, computer languages have developed from
low level machine dependent languages to high level specifi-
cation languages, where the system developer is freed from the
worry of how things are executed by the computer. More emp-
hasis is put on how to make programming feasible for non pro-
grammers, for instance by the introduction of visual languages.
As systems grow in complexity, languages become central tools

to manage this complexity, to provide overview and reduce the
amount of programming needed. All languages are based on
certain ideas that will influence what the developed system will
be like. Research is needed to establish more knowledge about
how different kinds of languages influence the finally developed
system. Also, there is a need for a framework to be used when
comparing and evaluating languages. This framework should
give a rationale for selection of evaluation criteria as well.

681.3.04

Program

Machine
Input Output

Figure 1 Abstract machine
The computer is a black box which pro-
vides output from given input and
instructions (program)

30

READ R1, [BP].DATE1 % read from stack

READ R2, [BP].DATE2

SUB R1, R2 % compare the dates

CMP R1, 10

JG FOUND % DATE1 - DATE2 > 10?

% if greater, jump to FOUND

.....

FOUND:

Figure 2a Mid 1950s, assembler code; talking to a computer
about registers and jump addresses

(defstruct (PATIENT)

(NAME nil) (NO nil)

(DATE-DISCHARGED nil)

(DATE-ADMITTED nil))

(setq DATABASE (list (make-patient ...)

(make-patient...)...))

(defun select-patient (database)

(cond ((null database); empty

nil); result if empty

((> ; match

(-

(patient-date-discharged (car database))

(patient-date-admitted (car database)))

10)

(cons ; result if match

(patient-no (car database))

(select-patient (cdr database)))

)

(t ; otherwise

; result if no match

(select-patient (cdr database))))

Figure 2c Late 1960s functional programming, using LISP;
programs are written by constructing complex functions from
more elementary ones

%% The database is defined to be a set of facts,

%% PATIENT (NAME, PATIENTNO,

DATE-ADMITTED, DATE-DISCHARGED)

person (johnson, 1001, 930115, 930126).

person (smith, 1002, 930116, 930128). %% and so on ...

all(X) :- output(X), fail.

list X,Y :- Y, all(X). % for all solutions of Y, output X.

:-list PATIENTNO, person(NAME, PATIENTNO, DATE1,

DATE2),

DATE2 - DATE1 > 10.

Figure 2d Late 1960s, logic programming; rules and queries
are stated as a set of facts (logical equations)

CREATE TABLE PATIENT

(NAME CHAR(30),

PATIENT-NO INTEGER, ...)

SELECT PATIENT-NO

FROM PATIENT

WHERE (DATA-DISCHARGED

- DATE-ADMITTED > 10)

Figure 2e 1970s, Fourth Generation Language (4 GL); SQL is
used to query the database in a nonprocedural way

database: RECORD

nrentries: 0 ... max

patients.ARRAY [1...max] OF

RECORD

name: nametype;

patientno: notype;

dateadmitted: data;

datedischarged;

END;

END;

WITH database DO

REPEAT

WITH patients[index] do

IFdatedischarged - dataadmitted > 10 THEN

WRITELN (patientno);

index := index + 1;

UNTIL index > nrentries;

Figure 2b Early 1960s, high level programming language (PASCAL)
allowing data structures and operations to be expressed in a more
machine independent way

Figure 2 Steps in the history of computer languages

NEWTYPE Patient

STRUCT

Name: CharString;

No: Integer;

DateDischarged: Integer;

DateAdmitted: Integer;

ENDNEWTYPE;

NEWTYPE PatientDatabase;

ARRAY (Patient, Integer);

ADDING

OPERATORS

moreThanTenDays:PatientDatabase->Boolean;

AXIOMS

FOR ALL p IN PatientDatabase

moreThanTenDays(p) ==

p!DateDischarged - p!DateAdmitted > 10;

ENDNEWTYPE;

Figure 2f 1980s, Formal Description Techniques; SDL Abstract Data
Types expressing database operations as operators on abstract types

vide more powerful functions. See Figure
2c.

In the 1970’s the idea of abstracting from
the underlying, low level machine
architecture was further developed in
logic languages. The idea was to allow
the programmer to use languages from
mathematical logic to state the problem
and then ask for a solution. See Figure
2d.

In the late 1970’s the so-called Fourth
generation languages (4 GL) emerged. A
fourth generation language is primarily
designed to improve the productivity and
to make programming feasible for non-
programmers. Features typically include
a database management system, query
languages (see Figure 2e), report gener-
ators, and screen definition facilities.
Actually, it is the user interface to these
tools that are called fourth generation
languages. This means that all tools that
support the developer in one or another
way in the development and hiding the
programming languages (3 GLs) from
the developer, can be said to have a
fourth generation language.

All languages introduced so far are
traditionally used in the implementation
phase of the development of a system.
Specification languages, which emerged
in the 1970’s, are most often used in the
analysis and design phase of the system
development. They are used to produce
requirements and design specifications
without going into detail on how things
will be implemented.

In the late 1970’s and especially in the
1980’s a new term appeared; the Formal
Description Techniques (FDTs). An FDT
is a special kind of specification
language. The idea behind these
languages was to enable specifications of
systems which were unambiguous, clear
and concise. These specifications can
form a basis for transformations into
lower level languages and imple-
mentation. Examples of languages
counted to belong to FDTs are SDL (3),
LOTOS (6), and Z (7).

3 Classification

of languages

The historical perspective presented
above is one possible way of classifying
languages, that is, by time of appearance
(generations). (8) suggests alternative
criteria for classifying programming
languages according to:

- the degree to which they are
dependent on the underlying
hardware configuration (low
level vs. high level)

- the degree to which programs
written in that language are
process-oriented (procedural
vs. declarative)

- the data types that are assumed
or that the language handles
most easily (lists, functions,
strings, etc.)

- the problem area which it is
designed for (special purpose
vs. general purpose)

- the degree to which the
language is extensible

- the degree (and kind) of
interaction of the program with
its environment

- the programming paradigm
most naturally supported (style
of problem solving; imperative,
functional, object oriented,
etc.).

It is important to note that the
above classification scheme only
covers programming languages.
(9) suggests a different cate-
gorisation of languages which
covers a broader scope:

- machine languages (assembler)

- system programming languages
(3 GLs)

- languages for analysis and
simulation

- languages for communication between
end users and computers

- professional languages of end users (4
GLs).

(9) says that “if an analysis and
simulation language is formalised to the
extent that upon translation to a systems
programming language ambiguity and
errors are unlikely, we say that it is a
specification language”. It is important to
note that such languages can make the
choice of programming language less
important as far as systems development
is concerned. The specification language
can be the only language seen by the
developer. This should be taken into
account when discussing what categories
of languages it is important to focus on in
the future.

4 Object oriented

languages

The last years many existing languages
have been enhanced with object oriented
features. Although object orientation is
regarded as a rather new area, the first
object oriented language Simula (10) was
developed at the University of Oslo as
early as 1967. The basic idea behind
object oriented languages is that pro-
grams/specifications are organised into
classes of objects which can be arranged
in a hierarchy, the most general ones on
the top, the more specific ones on the
leaves. The specialised classes of objects
inherit properties from the more general
classes of objects. An object has an inter-
face which specifies what services this
object can offer other objects; the

31

Account

Savings Checking

Class Hierarchy for accounts

class name Account
superclass Object
instance variable names accountNumber accountOwner
 balance rate
instance methods
deposit: amount

withdraw:amount

check: amount

balance:=balance+amount

self withdraw: amount

class name Savings
superclass Account
instance variable names <none>
check: amount

error: "You can't write checks against this account"

.........

Figure 3 Object oriented programming (SMALLTALK)
Special kinds of accounts are specified as subclasses of the general
class Account. The class Savings inherits all the instance variables
and methods (often called services) from its superclass Account. The
method ‘check’ is redefined to cover what is special for a Saving
account

internal aspects of an object are hidden or
encapsulated from the other objects. See
Figure 3. In the beginning, object orient-
ation was only applied in programming
languages. Today we see that specifi-
cation languages (see below) are
enhanced with object oriented features.

5 Specification languages

The focus in language research has
shifted from programming languages to
what is often called specification
languages. There is no exact border
between these two categories of
languages. However, it is often said that
a specification language is used to define
a system at a higher abstraction level. A
programming language is executable by a
machine, while this is not always the
case for specification languages. A speci-
fication language is primarily used in the
analysis or design phase of the system’s
life cycle.

Specification languages can be divided
into two groups, informal specification
languages and formal specification
languages. The informal ones have a long
history in the field of software engineer-
ing. They are mainly graphical techni-
ques with a precise syntax such that they
can be handled by a tool, but most often
have loosely defined semantics, i.e. it is
not clear how a program should work
based on these specifications. Two dia-
gram types are often used; entity-
relationship diagrams and data flow dia-
grams.

Entity relationship diagram (ER-dia-
gram) is a popular graphic notation for
showing data entities, their attributes, and
the relations which connect them. They
are suitable for showing certain kinds of
constraints, but usually they cannot show
all constraints, and they ignore the
operations performed by and on the enti-
ties. ER-diagrams cannot be used to
represent actual instances of data in the
database (11). The diagram in Figure 4
expresses that persons belong to organ-
isations, one cannot express that a speci-
fic person is an employee at a specific
organisation.

Data flow diagrams show the processes,
data stores, and data flows into and out of
the processes and the system, see Figure
5.

6 Formal specification

languages

Formal specification languages are speci-
fication languages whose vocabulary,
syntax, and semantics are formally
defined (12). The vocabulary gives the
finite set of symbols that can be used to
specify sentences according to the rules
of combining the symbols (syntax rules).

Possible advantages of using a formal
language for specifying the design of a
system are (12):

- it may be possible to prove that a pro-
gram conforms to its specification

- it may be possible to animate the
behaviour of a formal system specifi-
cation to provide a prototype system

32

Country

Locality

Organization

Person Unit Roleresidential
Person

Figure 4 Graphical specifications of data definitions (ER-diagram)
The example specifies the data model for a small directory. The graph depicts classes
of entities (boxes) and relations (arrows) between them. The notation is a variant of
the original ER notation

telephone
user

D1 subscriber

1.2

procedure
listof
subscribers

1.1

find actual
subscribers

D2 subscriberlist

1.3

copyOnFloppy

physical flow
dataflow
data store

process

external entity

floppy

title

Symbols:

Figure 5 Data flow diagram
An example of a data flow diagram for a directory system. The graph shows how data
flows between processes, data stores and external entities. The dashed line is the sys-
tem border

- formal software specifications are
mathematical entities and can be
studied and analysed using
mathematical methods

- the specification may be used as a
guide to identify test cases.

Formal specifications should be regarded
as complementary to more informal
specification techniques. End users will
probably have problems when reading
formal specifications and need other
means of getting an idea of whether the
specified system will meet their needs or
not. Formal specifications are more
important for other user groups, for
instance those who are going to imple-
ment the system. They need to know
exactly what are the requirements to the
system in order to ensure that they imple-
ment the right system.

It is convenient to decompose a language
definition into several parts (13):

- the definition of the syntax rules

- the definition of the static semantic
rules (so-called well-formedness
conditions) such as which names are
allowed at a given place, which kind of
values are allowed to be assigned to
variables, etc.

- the definition of the semantics of the
constructs in the language when they
are interpreted (the dynamic semantics,
defining the abstract behaviour of the
computer).

In the definition of a formal specification
language all parts are specified in another
language, a meta language (in contrast to
informal languages where the semantic is
only stated in natural language). A meta
language is a language suited for
defining other languages. An example of
such a language is the BNF (The Backus
Naur Form). Figure 6 illustrates how
BNF is used to specify a part of the
textual grammar of SDL.

As far as definition of semantics is
concerned, there are different approach-
es. It is far beyond the scope of this paper
to treat this subject in any detail. How-
ever, we will briefly mention three
approaches (14):

- operational semantics, where the
meaning of language constructs are
specified by the computation it induces
when it is executed on a machine

- denotational semantics, where the
meanings are modelled by
mathematical objects that represent the
effect of executing the constructs

- axiomatic semantics, where specific
properties of the effect of executing
the constructs are expressed as ass-
ertions.

The formal definition of the static and
dynamic semantics of the CCITT specifi-
cation language SDL is written in Meta-
IV (15) and defines a denotational
semantics.

There are several categories of formal
specification languages. Here we will
only introduce two kinds; Algebraic
Specification and Model based Specifi-
cation.

Algebraic specification is a technique
whereby an object is specified in terms of
the relationships between operations that
act on that object (12). The relationships
between operations that act on the types
are stated by equations. The equations
are used to indicate which terms denote
the same value. A term is an application
of an operator on an argument. In the
example in Figure 7 it is stated that the
application of not true produces the same
value as false. Without these equations,
all terms would be regarded as different
values of the type.

An algebraic specification consists norm-
ally of four parts, see Figure 7:

- the sort of the entity being specified
(Bool in Figure 7)

- an informal description of the sort and
its operations

- a signature part, where the names of
the operations on that object and the
sort of the parameters are provided
(operators in Figure 7)

- an axiom part, where the relationships
between the operations are defined
(axioms in Figure 7).

An algebraic specification is regarded
hard to read for non mathematicians, and
even harder to write. The main problem
is to know when you have given enough
axioms to be sure that all operations are
properly defined.

The CCITT language SDL has adopted
the algebraic approach for its data types.
However, for reasons indicated above,
this part of the language is not much
used.

Model based specification is another
approach chosen in some languages.
Model based specification is a technique
that relies on formulating a model of the
system, using well understood
mathematical entities such as sets and
functions. Operations are specified by
defining how they affect the overall sys-
tem model (12).

One of the best known model-based
techniques is Z (7), which is based on set
theory.

33

<textual block reference> ::=

block <block name> referenced
<end>

<end> ::= ;

Figure 6 Example use of BNF
The BNF meta language allows strings to
be replaced by strings in a hierarchy.
The finally produced strings are called
terminals, the rest are non terminals.
Non terminals are represented as strings
surrounded by ‘<’ and ‘>’, e.g. <end>.
A production rule for a non terminal
symbol consists of the non terminal sym-
bol on the left hand side of the symbol
‘::=’, and one or more non terminals/ter-
minals on the right hand side. Above,
block and referenced are terminal sym-
bols

Newtype Bool;

literals true, false;

operators

not: Bool -> Bool;

axioms

not (true) == false;

not (false) == true;

Endnewtype;

Figure 7 An SDL ADT
Abstract data types define the result of
operations on data objects without
constraining how this result is obtained.

Bool is a new sort with true and false as
values. The operator part gives the signa-
ture of the not operator. In the axioms
part the relations between not and the
literals true and false (which are
operators without arguments) are defined

7 Visual languages

While formal specifications are regarded
to be suitable for highly trained people,
the idea behind visual languages is to
make formal languages feasible for non
programmers. (16) gives a good tutorial
on visual programming. Here we will
only briefly introduce the basic notions.

A visual language can be defined as “any
system that allows the user to specify a
program in a two- (or more) dimensional
fashion” (16).

In (16) four possible positive properties
of visual languages are listed, which may
explain why these languages are more
attractive to non programmers than
traditional programming:

- pictures can convey more information
in a more concise unit of expression

- pictures can help understanding and
remembering

- pictures can make programming more
interesting

- when properly designed, pictures can
be understood by people regardless of
what language they speak.

(16) introduces three broad categories of
visual programming languages, dia-
grammatic programming languages,
iconic programming languages, and form
oriented programming languages.

Diagrammatic programming languages
are based on the idea of making charts
executable. They are most often a supple-
ment to a textual representation. The
specification language SDL can be
characterised as a diagrammatic
language. SDL used at a low level of abs-
traction is executable. It is possible to use
the graphical syntax as a kind of a flow
chart for the code. SDL also has a textual
syntax. However, the graphical form is
the main reason why the language has
attracted large user groups.

Iconic languages use icons to represent
objects and actions. Icons are specifically
designed to be essential language ele-
ments playing a central role. The Xerox
Star system (17) is an example of an
iconic system where icons and pointing
devices are used as a means to communi-
cate with the computer. User interfaces
using icons are now commonplace in
many systems.

34

Iconic programming languages go a step
further than diagrammatic languages in
making programming visual. Programs
are written by selecting icons denoting
the various operations needed and
placing them in the program area of the
screen. These icons are then connected
by paths to denote the flow of control.
Iconic programming appears to be more
exciting for novice programmers than
text based programming. It is, however,
doubtful whether it will increase pro-
ductivity in long terms.

Form oriented visual programming
languages are more to be compared with
graphical user interfaces where the user
“program” the computer by filling in
forms. They are designed for people who
have no desire to learn how to program.
Database query is one application area
where the form oriented approach is
used. QBE (Query By Example) is a
form language supporting relational data-
bases (18). Spreadsheet is another
example.

8 Standardisation

of languages

Much work is being done on stand-
ardisation of languages and their environ-
ments. Standardised languages may
attract more users and make it worth-
while for vendors to develop tools sup-
porting the languages. There are, how-
ever many examples of languages which
have not been successful despite the fact
that they have been issued as an
international standard. Here, we will give
an overview of the language work in
CCITT (International Telegraph and
Telephone Consultative Committee).
CCITT is recommending languages in
the area of telecommunications.

CCITT Study Group X has been assigned
the responsibility for methods and
languages. This group should support the
other groups with needed expertise on a
few recommended languages. CHILL
(CCITT High Level Language) is
recommended as a high level programm-
ing language, SDL as a specification
language (FDT). SDL is used to specify
recommendations in certain application
areas, e.g. ISDN. Even if SDL provides a
high level of formality, in practice most
recommendations use it at a rather low
level of formality, as a means of com-
munication between humans. SDL has
over the last four years been enhanced

with object oriented features. Also, SG X
has developed a draft recommendation
on a Data Oriented Human-Machine
Interface Specification Technique.

During the last study period, several
languages or notations were developed
outside Study Group X. Many groups felt
it was needed to develop techniques
specially suited for their applications. In
the work on Message Handling Systems
(X.400, electronic mail) the developers
felt a need for a more precise and
unambiguous way of defining the data to
be exchanged. As a consequence of this
need, they came up with ASN.1, Abstract
Syntax Notation (19). ISO (International
Standardisations Organisation) and
CCITT jointly defined the OSI Manage-
ment Formalism (20), to be used in the
field of network management, TMN
(Telecommunications Management
Network). This formalism is based on
using templates for defining managed
objects and using ASN.1 to define the
attributes. This formalism is more or less
directly adopted by those working on
electronic directories (X.500) with some
adjustments for their specific needs.
However, the directory technique has
been further developed such that it has
become a language on its own.

There is no sign that the work on langu-
ages in the standardisation bodies will
unify to one common language for all
needs. The new application areas such as
ODP (Open Distributed Processing)(21)
and IN (Intelligent Network) (22) have
their specific requirements on languages,
although much work is done to
investigate whether existing languages
meet these requirements. In both areas
the developers are asking for object ori-
ented techniques.

9 Why is work on

languages needed?

The research activities on languages have
not come to an end. The concern is how
to develop and use new languages on
new application areas. The complexity of
applications is rapidly growing and so
are the costs of development and maint-
enance. Languages are central tools to
manage the complexity; the system
developers need powerful languages that
can help them to express different
aspects of the system in a straightforward
way. Also, the chosen language(s) will
influence what the developed system will

35

Figure 8 The architecture of the SDL translator
The translator consists of an input part that reads SDL specification providing SDL/PR form and transforms this to an internal form
(a wide spectrum language, WSL, not tied to a specific language). The transformation part supports the application of trans-
formation rules to this internal form. An output part dresses the target program in the proper external syntax (C)

be like. All languages are based on cer-
tain ideas, which reflect the language
designers’ point of view on systems and
systems development. The usage of a
process-oriented language (a language
focusing on functions/processes to be
performed in the system) and a data-ori-
ented language (focusing on the data to
be handled by the system) will most
often lead to different systems, even
when the requirements from the users are
the same. The resulting system will
probably be differently structured, have
different user interfaces, and different
properties as far as maintenance is
concerned. The importance of this
observation is that system developers
need to be conscious about the choice of
language, and also research is needed to
establish more knowledge about how dif-
ferent kinds of languages influence the
resulting system.

The work on languages is tightly
connected to the work on reference
models. A reference model is a means of
splitting up the system into manageable
parts where different people can look at
the system from different points of view

(interfaces). The different interfaces can
require different features to be expressed
and will put specific requirements on the
languages used to define the interfaces.

10 Research activities at

Norwegian Telecom

Research

Norwegian Telecom Research (NTR) has
much experience in using, evaluating and
developing techniques for design of data
oriented information systems and their
human-machine interfaces (HMIs). This
work has resulted in the development of
the HMI specification technique (23).
This technique allows the specification of
the data encountered on the screens,
using the end-user’s own terminology.

NTR has for many years participated in
the standardisation of SDL. During the
period from 1988 to 1992 a prototype of
a translator from SDL to C has been
developed. The objectives of the project
were both to experiment with new
technology, especially transformational
programming, and also to develop a use-

ful tool for SDL users. When the project
started, there was a rather big group
specifying ISDN-services in SDL and
implementing them using C. The imple-
mentation of the specifications was based
on a runtime support system which
implemented the basic SDL constructs of
finite states machines. SDL was applied
in a low level of abstraction, such that
translation to C was rather straight-
forward and possible to automate. It was
felt that a code generator could free the
developers from much uncreative work.
A tool called REFINE (24), was used to
develop a prototype code generator.
Unlike most code generators, which are
more or less like an ordinary compiler,
the SDLTranslator offered the possibility
to generate different code where different
aspects where taken into account. Optim-
isation on execution speed can lead to a
different implementation than if storage
is the main concern. REFINE offers a
very flexible environment. For instance
an SDL grammar and a C grammar could
be developed in short time and be used to
parse and print SDL specifications and C
code, respectively. The parsed SDL

interactive

transformer

transformation
rules

user

parser
initial
trans-
former

target
inter-
face

SDL/PR SDL/PR
parse tree

WSL
abstract
syntax

tree

target
language
parse tree

target
language

files

un-
parser

36

specification was given an internal repre-
sentation in REFINE’s knowledge base
and step by step transformed to a C
representation. For small specifications
the ideas were promising, for large scale
projects, however, the performance
turned out to be unsatisfactory. Figure 8
shows the architecture of the SDLTrans-
lator.

The 1992-version of SDL has
incorporated object oriented extensions
to the language. A small project has been
working on applying these new features
in the specification of Intelligent
Network Services. The results showed
that types and subtyping made it possible
to compose services out of reusable com-
ponents. The reusable components as
defined in the IN-recommendations were,
however, not very well designed. The
work also illustrated the importance of
formal specification of a recomm-
endation. A lot of unclear points where
found during the specification work.

In 1992 a project called Systemutvikling
2000 (Systems Development 2000) was
initiated by the Information Technology
Department. The project was asked to
come up with the needed knowledge for
making decisions on strategies for what
kind of languages, tools, and reference
models should be used for systems
development in the future (year 2000).
So far, the work has focused on how to
put requirements on languages. It is felt
that existing lists of such requirements
(found in for instance recommendations)
are more or less unmotivated. There is a
lack of rationale behind the selection of
evaluation criteria. A central objective
for the work is therefore to develop a fra-
mework for comparing languages.

References

1 IEEE. Standard Glossary of Software
Engineering Terminology. New
York, IEEE, 1990.

2 Raymond-Smith, V J. Automata
Theory. In: Software Engineer’s
Reference Book (ed: J McDermid).
Butterworth-Heinemann, 1991, 9/3 –
9/15. ISBN 0-750-61040-9.

3 CCITT. CCITT Specification and
Description Language, March 1988.
(Blue Book, Fascicle X.1-5,
Recommendation Z.100.)

4 Ghezzi, C. Modern non-conventional
programming language concepts. In:
Software Engineer’s Reference Book
(ed: J McDermid). Butterworth-
Heinemann, 1991, 44/3 – 44/16.
ISBN 0-750-61040-9.

5 Clocksin, W F, Mellish, C S. Pro-
gramming in Prolog. Second Edition.
Berlin, Springer Verlag, 1984. ISBN
0-387-15011-0.

6 ISO. LOTOS – A formal description
technique based on the temporal ord-
ering of observational behaviour,
1988. (ISO 8807.)

7 Spivey, J M. The Z notation: A refer-
ence manual. Englewood Cliffs, N.J.,
Prentice Hall, 1987. (International
Series in Computer Science.)

8 Weiser Friedman, L. Comparative
Programming Languages: general-
izing the programming function.
Prentice-Hall, 1991. ISBN 0-13-
155714-9.

9 Schubert, W, Jungklaussen, H.
Characteristics of programming
languages and trends in development.
Programming and computer
software, 16, 196-201, 1990.

10 Kirkerud, B. Object-oriented pro-
gramming with SIMULA. Reading,
Mass., Addison-Wesley, 1989. ISBN
0-201-17574-6.

11 Sowa, J F, Zachman, J A. Extending
and formalising the framework for
information systems architecture.
IBM Systems Journal, 31(3), 1992.

12 Sommerville, I. Software engineer-
ing, third edition. Reading, Mass.,
Addison-Wesley, 1990. ISBN 0-201-
17568-1.

13 CCITT. CCITT Specification and
Description Language, SDL formal
definition. Introduction. March 1988.
(Blue Book, Fascicle X.1-5,
Recommendation Z.100 – Annex
F.1.)

14 Nielson, H R, Nielson, F. Semantics
with applications, a formal intro-
duction. New York, Wiley, 1992.
ISBN 0-471-92980-8.

15 Bjørner, D, Jones, C B. Formal
specification and software develop-
ment. Englewood Cliffs, N.J.,
Prentice-Hall, 1992.

16 Shu, N C. Visual Programming:
Perspectives and approaches, IBM
Systems Journal, 28(4), 1989.

17 Smith, D C et al. The Star user inter-
face: An overview. Proceedings of
the National Computer Conference,
515-528, 1982.

18 Zloof, M M. Query-by-example,
AFIPS Conference Proceedings,
National Computer Conference, 431-
438, 1975.

19 CCITT. Information technology –
Open Systems Interconnection – Abs-
tract Syntax Notation One (ASN.1),
March 1988. (Blue Book, Fascicle
VIII.4, Recommendation X.208.)

20 ISO. Final Text of DIS 10165-4,
Information Technology – Open Sys-
tems Interconnection – Structure of
Management Information – Part 4:
Guidelines for the Definition of
Managed Objects, 1991. (ISO/IEC
JTC 1/SC 21/ N 63009.)

21 ISO. Working Draft – Basic Refer-
ence Model of Open Distributed Pro-
cessing – Part 1: Overview and
Guide to Use, 1992. (ISO/IEC JTC
1/SC 21/N 7053.)

22 ETSI. Intelligent network: fra-
mework. Draft Technical Report NA-
6001, Version 2, 14 September 1990.

23 Meisingset, A. The draft CCITT
formalism for specifying Human-
Machine Interfaces, Telektronikk,
89(2/3), 60-66, 1993 (this issue).

24 REFINETM User’s Guide. Palo Alto,
CA., Reasoning Systems Inc., 1990.

1 Introduction

Database technology is currently becom-
ing increasingly important in a large
number of areas where computers are
used. The goal of this article is to intro-
duce the reader to databases and database
management systems; what they are, how
they can be used, and why they are
important to telecommunication
operators.

2 What is a database?

The meaning of this term varies with the
context. Any collection of data, such as
e.g. a file – electronic or otherwise – or a
set of files, could possibly be called a
database, see Figure 1. In the context of
computers, however, the term has a fairly
specific meaning. The following is a
possible definition: A database is a
persistent collection of data managed by
a database management system (DBMS).
Loosely speaking, a DBMS is an agent
whose job it is to manage a database; i.e.
handle all database access and make sure
the database is never corrupted, see
Figure 2. The following section gives a
formal definition of what a DBMS is.
Unfortunately, no single definition has
been accepted as the definition of
DBMS. The one used below seems to be
more precise than any other, though.

3 What is a database

management system?

Think of a database transaction, or just
transaction, as a collection of read and/or
write operations against one or more
databases. The so-called ACID properties
(9) are a set of rules which transactions
must obey, and it is the responsibility of
the DBMS to enforce those rules – or
else it is not a DBMS. One could also say
that ACID specifies a certain behaviour
for transactions. In outline, a DBMS
must guarantee that:

- Any not yet completed transaction can
be undone

- No transaction is able to violate any
integrity constraints defined for the
database

- Concurrent transactions cannot inter-
fere with each other

- The effects of a completed transaction
will indeed be reflected by the data-
base, even if a hardware, software, or
other failure should occur “immedi-
ately” after completion.

A more accurate description of the ACID
properties follows:

- The “A” in ACID stands for atomicity.
This provides users with the ability to
change their minds at some point dur-
ing transaction execution, and
effectively tell the DBMS to “forget”
the current transaction, in which case
the database will be left as if the
transaction never executed at all. A
transaction must be atomic in the sense
that the DBMS must either accept
everything a transaction does, or the
DBMS must reject everything; leaving
the database unchanged. In other
words; a transaction must be an all or
nothing proposition. A classic example
is a transaction to transfer money from
one bank account to another: It
involves, among other things, (1)
reducing the balance of one account
and (2) increasing the balance of the
other by the same amount. If only one
of the two operations takes place, the
customer and/or the bank will be
unhappy; the DBMS must ensure that
both or no operations take effect.

- The “C” in ACID stands for consist-
ency. A DBMS must facilitate
(declarative) definition of integrity
constraints, and guarantee that they are
not violated. That is, a transaction
must not be allowed to bring a data-
base into an inconsistent state – i.e. a
state where some integrity constraint is
violated. This means that any
transaction that attempts to do somet-
hing illegal, must be prevented from
doing so. For example, a department
must never be shown as being
managed by a non-existent employee.

- The “I” in ACID stands for isolation.
Any two transactions that execute
concurrently under the control of a
DBMS, must be isolated from each
other such that the net result is as if
they had been executed one after the
other. This is also known as serial-
isability, and is closely related to
concurrency control mechanisms; the
means by which
serialisability/isolation is achieved. If
transactions were not isolated from
each other, results would be
unpredictable; e.g. work performed by
one user could accidentally be nullified
by another concurrent user.

- The “D” in ACID stands for durability.
When a transaction completes success-

fully, the DBMS must ensure that all
its changes to the database are durable
– even in case of power failures and
similar events. In other words, a
DBMS must make sure that data
committed to it, is available until
explicitly removed (deleted).

37

Introduction to database systems

B Y O L E J Ø R G E N A N F I N D S E N

681.3.07

Application A File 1

File 2

File 3

File 4

Application B

Application C

Application D

Application E

"Database"

Figure 1 Without a database management system
(DBMS) applications access files directly. This typi-
cally leads to duplication of data and/or
concurrency problems and/or inconsistent data.
Applications are not protected from changes in file
structures, i.e. little or no physical data independ-
ence is provided. The “database” is just an
arbitrary collection of files with no centralised con-
trol

Application A

DBMS

Application B

Application C

Application D

Application E

Data
base

Figure 2 The database is managed by a DBMS. No
application is allowed to access the database except
through the DBMS. This facilitates data sharing
among applications, provides a certain degree of
physical data independence, and guarantees ACID
properties for all database transactions (this
concept is explained in the text). Different appli-
cations may have different views of the database,
see figure 3

Definition: a DBMS is an information
storage and retrieval system which pro-
vides ACID properties for all database
transactions.

This can be summed up – less formally –
as follows. A database that is controlled
by, and therefore accessed through, a
DBMS, is a database that will behave
properly. Even though the above
explanation of the ACID properties
might be hard to understand for people
who are not familiar with database sys-
tems, they define behaviour that is intui-
tively and obviously desirable.

Any decent DBMS product will have
additional features, such as e.g. aut-
horisation control, buffer pool manage-
ment, parameter tuning, and trace facili-
ties, as well as utilities for back-up,
recovery, load, unload, reorganisation,
and more.

DBMSs also provide physical data inde-
pendence and makes data sharing among
applications feasible; two extremely
significant properties. An important term
in this context is schema, see Figure 3.
Although most people seem to agree that
the three-schema architecture is a good

idea, few if any commercial DBMS pro-
ducts fully support it; they typically do
not clearly separate the internal and
conceptual schemas, which has given rise
to the ironic term two-and-a-half-schema
architecture. For the remainder of this
article, schema should be taken to mean
conceptual schema.

4 Current usage of

database systems

In this section we mention some of the
most common uses of database systems.
The term “database system” is often used
to denote a DBMS; a DBMS and its data-
base; a DBMS, its database, and the
applications that manipulate the data-
base; or even a collection of database
systems working together. Thus, the
reader should be aware that the exact
meaning of the term may vary depending
on the context.

Database systems were first developed in
the 1960’s. They were then mostly used
for business applications with large
amounts of structured data, typically in
the banking, insurance, and airline indus-
tries. Today, virtually all large
corporations use database systems to
keep track of customers, suppliers,
reservations, orders, deliveries, invoices,
employees, etc.

As database systems became more
versatile, powerful, and user friendly,
their use proliferated into a growing
number of areas. For example manage-
ment information systems (MIS), decis-
ion support systems (DSS), ad hoc query
systems, inventory control systems, point
of sale systems (POS), and more.

Norwegian Telecom is a large user of
database systems. We have been actively
involved with database technology for
more than twenty years, our first major
database system (Telsis) went into pro-
duction in 1975, and we currently have
database systems that cover most of the
areas mentioned in the previous para-
graphs. Also, information about our
telecommunications networks is stored in
database systems. And our modern
public switches use database systems to
process calls, define customer services,
store billing information, produce input
data to the invoice system, etc. As can be
seen from the following section, database
technology will become even more
important in the future.

5 Emerging areas for

database systems

In principle, any system that needs to
store and retrieve data could benefit from
using a DBMS. This is beneficial
because the ACID properties (described
above) are always an advantage. It is
beneficial because a DBMS has a well
defined interface – thus making appli-
cations more portable. And it is bene-
ficial because a DBMS, a modern one at
least, will allow users to combine data in
almost any conceivable way, thus enabl-
ing discovery of previously unknown
correlations (roaming about in a database
looking for “new” information, is frequ-
ently called database mining). There are
also other advantages of using a DBMS.
However, the functionality and/or the
performance characteristics offered by
current DBMSs, are inadequate for a
number of application areas.

Research and industry are currently
working hard to provide database sys-
tems that will meet the needs of the
following application areas: Computer
aided design (CAD), computer aided
manufacturing (CAM), computer aided
engineering (CAE), computer aided
software engineering (CASE), computer
integrated manufacturing (CIM), geo-
graphical information systems (GIS),
multimedia systems, process control sys-
tems, text search systems, word pro-
cessors, office support systems, program
development environments, and more. In
particular, these application areas need
support for:

- User defined types, e.g. Employee,
Vehicle, or any other data type de-
scribing entities within an application
domain

- Complex objects, i.e. objects that are
nested inside other objects, to an
arbitrary depth

- Versioning, i.e. the ability to let
several versions of given objects exist
simultaneously, and co-ordinate their
use

- Long transactions, i.e. transactions that
may last for days, weeks, or months,
rather than seconds or minutes.

Other challenges come from new appli-
cation areas that will depend on database
technology. Of particular interest to
telecommunication operators, are intel-

38

External
schema

External
schema

External
schema

Conceptual
schema

Internal
schema

Figure 3 The three-schema architecture. The conceptual
schema may be thought of as the database schema,
because it is a logical description of the entire database.
The internal schema may be thought of as a description
of how the conceptual schema is to be realised or imple-
mented, because it defines the physical properties of the
database. The external schemas are views through
which different applications or users may access the
database. An external view could be identical to the
conceptual schema, it could be a proper subset of the
conceptual schema, it could provide aggregation of
data, it could join data instances and present them as a
single instance, etc

ligent networks (IN) and telecommuni-
cations management networks (TMN).
Database systems that are to be integra-
ted with public networks, must have
scalable capacity, low response times,
and high availability – way beyond that
of today’s commercially available sys-
tems. The HypRa project, primarily
sponsored by Norwegian Telecom Rese-
arch and carried out at the Norwegian
Institute of Technology (NTH) and
SINTEF/
DELAB, has produced interesting results
in these areas. Further, it is conceivable
that new telecommunications services
will evolve that rely on database systems.
These could be run by the public network
operator (PNO) or by some third party.
They could contain information that
users would want to access, or they could
contain information that would enable
the service in question.

Yet another research field is that of dis-
tributed database systems, i.e. where two
or more DBMSs co-operate to form a
single database system. The DBMSs in
question may run on separate computers,
possible geographically remote. See the
article on Dibas elsewhere in this issue.

6 Kinds of DBMS

Traditional DBMSs are usually given one
of the following three labels: hierarchic,
network, or relational. These are not the
only ones, but they are by far the best
known. Two new kinds of DBMS that
are beginning to have an impact on the
marketplace, have the label object ori-
ented and/or extended relational.

6.1 Hierarchic

A hierarchic – or hierarchical – DBMS
(HDBMS) stores data in hierarchic

structures (also known as trees), with
root nodes and dependent nodes. A root
node may have zero or more children,
while a dependent node has exactly one
parent. The trees may be arbitrarily deep,
i.e. children may have children, and so
forth. Also, trees need not be balanced,
i.e. siblings can be root nodes in unequ-
ally sized subtrees. The archetype of an
HDBMS is clearly the IBM product IMS,
also known as IMS/DB, and sometimes
even referred to as DL/1. The latter
stands for Data Language 1, which is the
language used to access IMS/DB. The
product has been around since 1968, and
used to be the top mainframe DBMS
both in terms of number of installations
and also in terms of the number and size
of applications that depend on it. It is
probably fair to say that most major
corporations in the world –
those who where major
during the 1970’s at least –
use IMS/DB.

For illustration purposes, a
classic database example of
courses, prerequisites, off-
erings, and teachers will
now be used. A possible
hierarchic schema for such
a database is shown in
Figure 4. The root node in
this tree structure is Course,
while Prerequisite and Off-
ering are sibling dependent
nodes. Figure 5 contains an
occurrence diagram.

An obvious weakness with
the chosen structure is that
teacher name appears as a
field inside the Offering
segments. This has disad-
vantages, in particular:

- Storing redundant data. Assuming that
a teacher may be involved in more
than one course offering in a given
semester, and that offerings from
several semesters are stored in the
database at any time, the same teacher
names will occur multiple times. If the
database is to contain not only the
names of teachers, but also their
employee numbers, addresses, phone
numbers, birth dates, etc., then such a
schema soon becomes unacceptable.

To solve this problem one needs to create
a separate hierarchy with Teacher as the
root node. The schema would then be as
shown in Figure 6. Carefully note that
the relationship between Teacher and
Offering is different from that of Course

39

NameNo

Required No SemesterOffering Location TeacherPrerequisite

Course

Figure 4 The course-prerequisite-offering-teacher structure represented by a single
hierarchy. The two arrows indicate pointers from Course segments to Prerequisite and
Offering segments. This means that it is possible to navigate from a given Course to all
its dependent Prerequisites and Offerings. However, this does not preclude the pre-
sence of other pointers, e.g. a pointer from every Offering to its parent Course

CalculusB2

AlgebraB1

PhysicsA1
OsloS93

A93

Sue

JoeKjeller

B2

B1

OsloA93

S93

Sue

PeterOslo

S93 JoeKjeller

Figure 5 Occurrence diagram for the schema of figure 4

NameNo

Required No SemesterOffering LocationPrerequisite

Course

NameNoTeacher

Tree 1

Tree 2

Figure 6 An alternative to the schema of figure 4, with Teacher and
Course as root nodes in two separate hierarchies and with Offering as a
dependant of Course

with Offering. One could say that the
network structure needed in this case has
been achieved by combining two tree
structures. It would also have been
possible to define Offering as a
dependant of Teacher, as shown in
Figure 7. The two schemas will have dif-
ferent performance characteristics.

6.2 Network

The data structures supported by network
DBMSs (NDBMSs), also known as
CODASYL-systems (see next para-
graph), are an extension of those sup-
ported by HDBMSs; a dependent node in
an NDBMS data structure may have
more than one parent, i.e. it may be part
of more than one parent-child relations-
hip type. A well known example of an
NDBMS is IDMS from Computer
Associates.

The Database Task Group (DBTG) of the
Programming Language Committee (also
known as the Cobol committee) of the
Conference on Data Systems Languages
(CODASYL) produced a report in 1971
describing how the language interface of
an NDBMS should be. Hence, DBMSs
that implement these proposals, more or
less, are often called CODASYL-sys-
tems.

A network schema for the example data-
base could be as shown in Figure 8. The
Offering segment now has two parent
segments, Course and Teacher, and the
two parent-child relationships are
equivalent. We now have a directed
graph instead of one or two tree
structures. The occurrence diagram is
shown in Figure 9.

Navigation between two or more tree
structures in an HDBMS is limited to a
predefined number of iterations, while no
such limitation applies to an NDBMS.

Another feature that distinguishes
NDBMSs from HDBMSs is the ability to
define a schema such that segments of
type C, say, should be dependent either
on a segment of type A or a segment of
type B, but not both. For example, a
Child could be a dependant of a Mother
or a Father. This is claimed to be a useful
feature by NDBMS proponents.

6.3 Relational

Relational DBMSs (RDBMSs) are radi-
cally different from the two foregoing
kinds of DBMS. Rather than performing
explicit navigation through tree or
network structures, an application must
submit search criteria to an RDBMS
which will then return all data items that
satisfy those criteria. This is known as
query access. It is common to say that
one specifies what one wants, not how to

get it. The latter is figured out by an
RDBMS component called the optimiser.
Another important difference is that H-
and NDBMSs limit access to a single
node at a time, while RDBMSs are set-
oriented.

The following is an informal definition
of relational DBMS: the only data
structure supported at the user level by an
RDBMS, is tables, also known as
relations – hence relational.

Most people find tables easy to under-
stand; they have a fixed number of
columns and zero or more rows. This
simplicity is both a strength and a
weakness of the relational model of data;
it provides ease of use, but also imposes
certain drawbacks, such as e.g. having to
represent complex data structures by a
large number of tables – resulting in per-
formance degradation.

The relational model was published by
E.F. Codd – then of IBM – in 1970, for
which he later received the Turing

40

NameNo

SemesterOffering Location

Course NameNo

Teacher

Tree 1

Tree 2

Required NoPrerequisite

Figure 7 An alternative to the schema of figure 6,
still with Teacher and Course as root nodes in two
separate hierarchies but with Offering as a
dependant of Teacher instead of Course

NameNo

SemesterOffering Location

Course NameNo Teacher

Required NoPrerequisite

Figure 8 A network schema for the course-prerequisite-offering-teacher
database. As with the hierarchic schema, arrows point from parent to child
nodes but Offering is now a child of both Course and Teacher

CalculusB2

AlgebraB1

PhysicsA1

OsloS93

A93 Kjeller

B2

B1

S93 Kjeller

S93 Oslo

A93 Oslo

Joe15

22 Sue

24 Peter

Figure 9 Occurrence diagram for the schema of figure 8. This figure also serves to
illustrate the term link (also known as co-set), which is central for NDBMSs. A link
definition involves a parent (or owner) node and a child (or member) node type. This
schema has three link types; one with Teachers as parent and two with Courses as
parent. As indicated by the arrows, Joe is the parent and A93-Kjeller and S93-Kjeller
are the children in one such link type occurrence. Note that links are circular
structures

between segments in HDBMSs and
NDBMSs are typically represented by
physical pointers, i.e. explicit references
to the physical addresses where the seg-
ments in question reside, no such
construct is allowed to be exposed at the
programming interface of an RDBMS.

All references between two rows,
whether they belong to the same table or
not, must be associative, i.e. based on
column values only. The relational
mechanism for inter-row references is
called foreign key. There are four foreign
keys in the schema of Figure 10, each
represented by an arrow. For example,
the Offering.TeacherNo is a foreign key
whose values point to Teacher.No, the
primary key of the Teacher table. This
means that every value of
Offering.TeacherNo must be present in
Teacher.No, or else it would be possible
for an offering to reference a non-

existent teacher, in which case the
database would be inconsistent. As
pointed out in the above discussion
of ACID properties, it is the responsi-
bility of the DBMS to ensure consist-
ency.

But what if one needs to register an
offering for the next semester, say, and it
is not yet known who will teach; how can
this be handled? Well, the relational
model allows the use of nil marks – also
known as null values – indicating e.g.
“value not known”. Unless prohibited for
Offering.TeacherNo, we can use a nil

Award. The DBMS marketplace is curr-
ently dominated by relational products,
of which some of the more well known
are Oracle, Sybase, Ingres, Informix,
RDB, and DB2.

A relational schema for the example
database, could be as shown in Figure 10.
The relational model requires that all
tables have a primary key, i.e. one or
more columns that contain enough
information to uniquely identify an indiv-
idual row. Primary keys are indicated in
Figure 10 by bold lines over the column
names in question. While relationships

mark in that column to avoid referential
constraint enforcement from the DBMS
when necessary. The use of nil marks is
somewhat controversial among database
researchers, see e.g. (4).

The de facto standard language for
relational data access is SQL. Sub- and
supersets of this language are also being
used by non-RDBMS products or proto-
types. Its vast importance is summed up
in the famous words “For better or
worse, SQL is intergalactic dataspeak”
(13). This is of course an exaggeration,
but at least the language is worth having
a brief look at in this article. This will be
done by means of some examples, using
the database of Figure 11, which is the
relational schema of Figure 10 populated
with now familiar values.

Example 1: SQL expression that will find
all courses:

SELECT *
FROM Course

Result:

No Name

B1 Algebra
B2 Calculus
A1 Physics

Example 2: SQL expression that will find
all offerings taught by teacher number
15:

SELECT CourseNo,
Semester,
Location

FROM Offering
WHERE TeacherNo = 15

Result:

CourseNo Semester
Location

--

A1 S93 Kjeller
B1 A93 Kjeller

Example 3: SQL expression that will find
names of courses taught at Kjeller:

SELECT A.Name
FROM Course A, Offering

B
WHERE A.No=B.CourseNo
AND

B.Location='Kjeller'

Result:

Name

Physics
Algebra

41

NameNo

Course No SemesterOffering Location Teacher No

Prerequisite

Course NameNoTeacher

Course No Required No

Figure 10 A relational schema for the course-prerequisite-offering-teacher database.
See discussion in text

Offering

Prerequisite

Course

Teacher

No

B1

B2

A1

Name

Algebra

Calculus

Physics

Required No

B1

B2

Course No

A1

A1

Name

Sue

Joe

Peter

No

22

15

24

Course No

A1

A1

A1

B1

B1

Semester

S93

S93

A93

S93

A93

Location

Kjeller

Oslo

Oslo

Oslo

Kjeller

Teacher No

15

24

22

22

15

Figure 11 Occurrence diagram for the schema of figure 10

Explanation: the latter SQL expression is
known as a join query; it joins
information from tables Course and Off-
ering. Conceptually, the DBMS will scan
through the Offering table, and for every
row whose Location is Kjeller it will use
its CourseNo value to access the Course
table and find the Name of the course
whose No value is equal to the current
CourseNo value.

6.4 Object oriented

Object oriented DBMSs (OODBMS or
just ODBMS) have only been commerci-
ally available since the late 1980’s, and
are therefore quite immature compared to
the other kinds of DBMS. ODBMSs have
their roots in the object oriented pro-
gramming paradigm, a certain way of
organising computer programs, first sup-
ported by the programming language
Simula – invented in Norway during the
1960’s – and later by Smalltalk,
Objective-C, C++, Eiffel, and many
more. Distinctive features of object ori-
ented programming languages (OOPLs)
include support for classes, objects,
inheritance, messages, methods, and
encapsulation; which may informally be
outlined as follows:

- A class is a description of the prop-
erties of objects of that class. For
example, class Beagle could describe
the properties of all beagles.

- An object is an instance (or
occurrence) of a class. Snoopy and
Fido could e.g. be instances of class
Beagle.

- If class Beagle is defined as a subclass
of Dog, Beagle will inherit all the
properties of Dog. This is very natural,
since every beagle is a dog.

- All objects understand certain
messages. The set of messages that
objects of a given class understand, is
called its protocol or interface. Upon
receipt of a protocol message, a
corresponding method will be
executed by the receiver. Thus, a
message is a special kind of procedure
call, and a method is a procedure that
is local to an object.

- An object must be accessed through its
protocol and will – in general – hide its
internal structure from its surround-
ings. This data hiding is known as
encapsulation. If e.g. the message
“age” is in the protocol of a given class
and that class encapsulates its data,
users cannot know whether age values

42

are explicitly stored inside objects or
calculated during execution – e.g. as
the difference between current date
and birth date.

It is common to say that objects are data
that exhibit a certain behaviour, and the
reader has probably guessed by now that
object oriented programming is focused
on defining the behaviour and imple-
mentation of classes of objects, as well as
manipulating objects during program
execution. But what is an ODBMS?
Unfortunately, there is no universal
consensus on that question. Very inform-
ally, one could say that an ODBMS is a
DBMS which is able to store and mani-
pulate arbitrarily complex objects, or an
agent that provides persistence for
objects.

In other words, and OODBMS is a
DBMS that “understands objects”. The
Object-Oriented Database System Mani-
festo (1) “attempts to define an object-
oriented database system (and) describes
the main features and characteristics that
a system must have to qualify as an
object-oriented system”. This manifesto
separates the characteristics into three
groups.

Quote:

- Mandatory, the ones the system must
satisfy in order to be termed an object-
oriented database system. These are
complex objects, object identity,
encapsulation, types or classes,
inheritance, overriding combined with
late binding, extendibility, com-
putational completeness, persistence,
secondary storage management,
concurrency, recovery, and an ad hoc
query facility.

- Optional, the ones that can be added to
make the system better, but which are
not mandatory. These are multiple
inheritance, type checking and inferen-
cing, distribution, design transactions,
and versions.

- Open, the points where the designer
can make a number of choices. These
are the programming paradigm, the
representation system, the type system,
and uniformity.

Unquote.

6.5 Extended relational

Several extensions to the relational
model of data has been proposed since it
was published in 1970. This article will

only briefly mention object oriented
extensions, which are currently receiving
considerable attention from the ISO and
ANSI committees responsible for the
emerging SQL3-standard. Recall that
SQL is the de facto standard language for
relational data access. Several RDBMS
vendors claim that future releases of their
products will have “complex object sup-
port”, which obviously must include the
ability to store arbitrarily complex
objects “as they are”, and facilities for
traversal of object structures.
Presumably, an extended RDBMS pro-
duct may also involve e.g. inheritance for
table definitions, support for one or more
persistent languages, message passing to
and among stored objects, and other
things. The important point is that this
approach attempts to provide facilities
requested by object oriented applications,
while retaining the relational model of
data.

The authors of The Third-generation
Data Base System Manifesto (13) “pre-
sent the three basic tenets that should
guide the development of third gener-
ation systems (and) indicate 13 proposi-
tions which discuss more detailed
requirements for such systems”. This
paper classifies network and hierarchic
DBMSs as first generation, classifies
relational DBMSs as second generation,
and uses third generation to denote future
DBMSs.

Quote:

- Tenet 1: Besides traditional data
management services, third generation
DBMSs will provide support for richer
object structures and rules.

- Tenet 2: Third generation DBMSs
must subsume second generation
DBMSs.

- Tenet 3: Third generation DBMSs
must be open to other subsystems.

Unquote.

Based on these tenets, thirteen proposi-
tions are indicated (carefully note that the
first part of any proposition number
below indicates the tenet to which it
belongs).

Quote:

- 1.1: A third generation DBMS must
have a rich type system.

- 1.2: Inheritance is a good idea.

- 1.3: Functions, including database pro-
cedures and methods, and encap-
sulation are a good idea.

- 1.4: Unique Identifiers (UIDs) for
records should be assigned by the
DBMS only if a user-defined primary
key is not available.

- 1.5: Rules (triggers, constraints) will
become a major feature in future sys-
tems. They should not be associated
with a specific function or collection.

- 2.1: All programmatic access to a data-
base should be through a non-proce-
dural, high-level access language.

- 2.2: There should be at least two ways
to specify collections, one using
enumeration of members and one
using the query language to specify
membership.

- 2.3: Updatable views are essential.

- 2.4: Performance indicators have
almost nothing to do with data models
and must not appear in them.

- 3.1: Third generation DBMSs must be
accessible from multiple high-level
languages.

- 3.2: Persistent X for a variety of Xs is
a good idea. They will all be supported
on top of a single DBMS by compiler
extensions and a (more or less) com-
plex run time system.

- 3.3: For better or worse, SQL is inter-
galactic dataspeak.

- 3.4: Queries and their resulting an-
swers should be the lowest level of
communication between a client and a
server.

Unquote.

6.6 Persistent languages

A concept closely related to that of
ODBMS and ERDBMS, is persistent
languages. In programs written in
traditional OOPLs, objects – like
ordinary program variables – cease to
exist once program execution terminates.
If objects are to be used by several (invo-
cations of) programs, they must be
explicitly stored in and retrieved from a
database or a file system. If, on the other
hand, the language is persistent, all
objects created during execution may
more or less automatically be stored in
the database. Thus, the program’s
address space and the database are
conceived by the programmer as a single,
contiguous object space. This is a very

powerful concept and a major vehicle for
overcoming the so-called impedance mis-
match between the two data spaces,
which has to do with the different data
models they support. There seems to be a
broad consensus in the database com-
munity that persistent languages are use-
ful; see e.g. proposition 3.2 in the pre-
vious section.

7 Conclusions

Database systems are important today,
and are likely to become even more so in
the future, as an increasing number of
application areas require data sharing,
ACID properties, and other good things
offered by DBMSs. The research and
development efforts in the DBMS area
are considerable and growing (12). Data-
base systems will be a vital part of future
telecommunication systems. One way or
the other, next generation DBMS pro-
ducts will support complex objects (1,
13).

8 Further reading

For readers interested in a deeper under-
standing of topics introduced in this
article, the following reading is sugge-
sted:

- General database theory and related
topics: introductory (4); advanced (7)
and (9)

- Relational database theory: (2), (4) and
(7)

- Object oriented programming: (11)

- Object data management: introductory:
(3); advanced (1), (6), (8), (13), and
(14)

- The new SQL standards: (5), (8), and
(10)

- Current and future importance of data-
base systems: (12).

9 References

1 Atkinson, M et al. The object-ori-
ented database system manifesto.
Deductive and object-oriented data-
bases, Amsterdam, Elsevier Science
Publishers, 1990.

2 Atzeni, P, De Antonellis, V. Rela-
tional database theory. Redwood
City, Calif., Benjamin/Cummings,
1993.

3 Cattell, R G G. Object data manage-
ment. Reading, Mass., Addison-Wes-
ley, 1991.

4 Date, C J. An introduction to data-
base systems, volume 1. Fifth edition.
Reading, Mass., Addison-Wesley,
1990.

5 Date, C J, Darwen, H. A guide to the
SQL standard. Reading, Mass., Addi-
son-Wesley, 1993.

6 Dittrich, K R, Dayal, U, Buchmann,
A P (eds). On object-oriented data-
base systems. Berlin, Springer-Ver-
lag, 1991.

7 Elmasri, R, Navathe, S B. Funda-
mentals of database systems.
Redwood City, Calif., Benjamin/
Cummings, 1989.

8 Gallagher, L. Object SQL: Language
extensions for object data manage-
ment. In: Proceedings of the first
international conference on
information and knowledge manage-
ment, Baltimore, M.D., November
1992.

9 Gray, J, Reuter, A. Transaction pro-
cessing: concepts and techniques.
San Mateo, Calif., Morgan Kauf-
mann, 1993.

10 Melton, J, Simon, A R. Understand-
ing the new SQL: a complete guide.
San Mateo, Calif., Morgan Kauf-
mann, 1993.

11 Meyer, B. Object-oriented software
construction. London, Prentice Hall,
1988.

12 Silberschatz et al. Database systems:
achievements and opportunities.
Communications of the ACM, 34(10),
1991.

13 Stonebraker M et al (the committee
for advanced DBMS function).
Third-generation database system
manifesto. ACM SIGMOD Record,
19, (3), 1990.

14 Zdonic, S B, Maier, D (eds). Read-
ings in object-oriented database sys-
tems. San Mateo, Calif., Morgan
Kaufmann, 1990.

43

44

Software development methods and life cycle models

B Y S I G R I D S T E I N H O L T B Y G D Å S A N D M A G N E J Ø R G E N S E N

1 Introduction

“No methodology – no hope”, from Mak-
ing CASE work (1)

The earliest view of software develop-
ment was the programming view. This
view had the implicit model of software
development being a transcription from a
mental representation of a problem to an
executable program. The development
approach of this view was: code & run
(and, of course, debug and run again).
The programmers were artists and pro-
gramming was artistic work.

Later on, when the programming view
had failed in large software development

projects, software development was
viewed as a sequential process from pro-
blem understanding to executable code,
i.e. analogous to the rather sequential
process of building a house. The sequ-
ence of the steps was prescribed and the
result of each step was validated and
verified. This view has resulted in for
instance the waterfall model and top-
down design. Most of the models and
methods belonging to this view are in
widely use today.

After some years, the sequential and top-
down views of the software development
were seriously questioned. The new
view, software development as an
exploratory activity emerged. Object ori-
ented methods, evolutionary models and
prototyping are results of this view. This
view considers software development to
be rather opportunistic and emphasises
reuse and evolution. Software develop-
ment based on exploration is typically
less controllable than sequential develop-
ment. Methods and life cycle models
based on this view are currently not very
wide-spread.

Independent of development view,
software projects often overspend and
deliver software too late with too low
quality. Also, the impact of the alterna-
tive development views are not well und-
erstood. Thus, the change of develop-
ment view throughout the history has
probably not been based on knowledge
of change in productivity and quality. It
is more probable that the change has
been driven by the lack of success of the
previous views.

2 Definitions

The term method is often confused with
methodology, model, technique, and
technology. The definitions in Figure 1,
taken from Collins dictionary (2), give
some clues in what the differences are.

This paper uses the underlined defini-
tions in Figure 1. The relationship be-
tween methods and life cycle models is

assumed to lay mainly in the scope and
the focus on needs. Life cycle models
cover the whole life cycle and have focus
on project control, while methods some-
times only cover parts of the life cycle
and focus other needs than project con-
trol.

Abstract

Different software development methods and life cycle models
are based on different views on software development. This
paper discusses some of these views and describes several
software development methods and life cycle models in context
of these views. The methods and models described are
Structured Systems Analysis and Design Method (SSADM), the
ESA Waterfall model, Coad and Yourdon’s Object Oriented

Analysis (OOA), verification oriented software development and
two evolutionary life cycle models. In addition software
development by Syntax Description, Operational Software
development and the spiral model are briefly described. More
research on the effects of using different software development
methods and life cycle models is needed. The advantages and
disadvantages of two different research strategies are therefore
briefly discussed.

681.3.06

Methodology: 1. the system of met-

hods and principles used in a

particular discipline. 2. the branch of

philosophy concerned with the sci-

ence of method or procedure.

Method: 1. a way of proceeding or

doing something, esp. a systematic

or regular one. 2. orderliness of

thought, action, etc. 3. (often pl.) the

techniques or arrangement of work

for a particular field or subject ...

Model: 1. a. a representation, usually

on a smaller scale, of a device,

structure, etc. ... 2. a. a standard to

be imitated ... 9. a simplified repre-

sentation or description of a system

or complex entity.

Technique: 1. a practical method,

skill, or art applied to a particular

task.

Technology: 1. the application of

practical or mechanical sciences to

industry or commerce. 2. the met-

hods, theory, and practices gov-

erning such application. 3. the total

knowledge and skills available to any

human society for industry, art, sci-

ence, etc.

Figure 1 Definitions from (2)

Understanding
the needs

(requirements)

Requirement
specification

Design

Implementation

Key: The horizontal arrows illus-
trates inputs and outputs to the
system, the vertical arrows show
the sequential progression from
phase to phase.

Figure 2 Conventional development

45

3 Conventional methods

and life cycle models

Figure 2 gives an overall picture of con-
ventional software development from the
software developer’s point of view. The
figure illustrates some typical
characteristics of conventional software
development:

- The process of understanding is a
rather undisciplined and “fuzzy” pro-
cess (illustrated by the “bubbles” in the
figure.) The output is not documented,
but consist in increased understanding
of the needs.

- Development of the requirements
specification use “black box” methods,
i.e. for use of methods describing the
external behaviour (“what” in opposi-
tion to “how”) of the system
(illustrated by not drawing the arrows
inside the Requirement specification
box).

- Development of the design specifi-
cation makes use of “white box” met-
hods, i.e. for methods describing the
internal behaviour of the system
(illustrated by drawing the arrows
inside the Design box).

- The implementation methods focus on
structuredness and modularity.

- Life cycle models are rather sequential
(like the water fall model), document
driven and phase-oriented.

- Maintenance considerations in the
early phases are lacking.

- The methods used are top-down and
use a hierarchical decomposition.

It is not likely that real software develop-
ment ever can or should be totally sequ-
ential and purely top-down. However,
methods and life cycle models based on
these assumptions have been rather
successful. A reason for this may be that
the activities of the methods and life
cycle models are not really carried out as
prescribed, they just act as guidelines
together with common sense. This view
is defended in the famous paper “A
Rational Design Process: How and Why
to Fake it” (3). Another reason for the
success may be that the method enables a
rather high control of the software
development process.

Table 1 gives an overview of the phases
and notations of some conventional met-
hods. The rest of this chapter gives a
description of the software development

method SSADM and a variant of the
“Waterfall model”, suggested by ESA
(European Space Agency).

3.1 SSADM

SSADM is widely used, especially in the
UK. It is the UK government’s standard
method for developing information
technology systems. A modified version
of the method is used by Norwegian
Telecom.

In this article we give a coarse overview
of the original method based on the
descriptions in (4) and (5).

The method covers the systems analysis
and systems design phases of the
software life cycle. In addition, it
includes feasibility studies as a first
phase. It is an iterative method, i.e. it is
allowed to redo phases or tasks in a
phase, and to correct deliveries of a
phase. Some activities can be performed
in parallel.

The method contains the following
stages:

- Problem definition

- Project identification

- Analysis of systems operation and
current problems

Methods Life cycle phases Notations

SA/SD Analysis Data flow diagrams and structured English

Design

Implementation

SADT Analysis Data and activity diagrams

Design

ISAC Feasibility study Activity graphs, information precedence

Analysis graphs, component relation graphs,

Design design graphs and equipment graphs

JSD Design Control flow, process structure and data

Implementation flow diagrams

Sysdoc Design Entity relationship diagrams and a process

Implementation structure language

SSADM Feasibility study Data flow diagrams, logical data

Analysis structures, entity life histories, logical

Design dialogue outlines, relational data analysis,

and composite logical data design,

among others

Table 1 Some conventional methods

1) Examine each entry on the problem/requirement list. If the solution is to be

provided by the selected business system option ensure that any necessary

changes are made to the logical data structures and entity descriptions.

2) Complete the entity descriptions and ensure that they include volumes, key

attributes and other known attributes.

3) Update the datastore/entity cross reference.

4) Update the data dictionary.

Figure 3 This figure illustrates the size of the tasks in SSADM. It shows the four tasks
of SSADM step 240, Create required data structure, which is step four of stage 2;
Specification of requirements. Stage 2 belongs to phase 2; Systems analysis

46

- Specification of requirements

- Selection of technical options

- Data design

- Process design

- Physical design.

The first two stages belong to the feasi-
bility study, the next three to the systems
analysis phase and the last three to the
systems design phase.

Each stage is divided into steps and each
step is divided into tasks. It is claimed in
(4) that this results in higher productivity
because the software developers always
handle tasks of the “right” size. An
example of a step is “create required data
structure”. This step involves the four
tasks shown in Figure 3.

SSADM is characterised as data and
function oriented. This is due to the three
main notations used during the feasibility
study and systems analysis. These
notations are data flow diagrams
(function oriented), logical data
structures (data oriented) and entity life
history diagrams. Figure 4 gives an
example of a logical data structure, a
high-level data flow diagram and a dia-
gram of one of the entity’s life histories.

A high-level data flow diagram and a
logical data structure are developed in
parallel, or in arbitrary order. For every
entity in the data structure an entity life
history diagram is developed. Such dia-
grams are used to explore the processing
requirements of each entity and to
identify state change transactions, errors
and special cases. Examination of entity
life history diagrams may result in
changes of both the data flow diagrams
and the data structure.

The notations mentioned above are not
the only ones used when developing sys-
tems according to SSADM. Other
notations are used when
- defining user options

- designing dialogues

- performing relational data analysis
(normalising)

- designing a composite logical data
model

- making process outlines

- making first cut data design

- making first cut program design

- defining physical design control.

Logical Data Structure:

Person Participant Project

Hours

Person

option mark, e.g. a participant has to be a member or a leader of a
project team

Person
registration

11

D1 person reg.

person info.

Project
registration

2

D2 project reg.

project info.

Participant
registration

3

proj.nb.ss.nb.

D3 participant reg.

Hour
registration

4

part.info.

part.id.

D4 hour reg.
hours, part.id, proj. nb

proj.nb.

Person

process external
entity

data store data flow system
border

Data Flow Diagram:

Enity Life History:

Registration

Participant

End of
participation

Selected
as member

Participating

Selected
as leader

Keys:

Keys:

Figure 4 Examples of the three main notations in SSADM

47

There exists a micro version of the met-
hod for the development of smaller sys-
tems. A special maintenance version also
exists.

3.2 ESA Waterfall model

The best known life cycle model is
undoubtedly the “Waterfall model”. It
was originally described in (6), but has
since been modified. A variant of the
“Waterfall model” is described in the
ESA (European Space Agency) software
engineering standard, (7). This standard
describes the phases and activities which
must occur in any software project at
ESA, and suggests how the standard can
be interpreted in a “Waterfall model”. It
is not a pure waterfall model, since
iterations within a phase are allowed.

Figure 5 pictures the ESA variant of the
Waterfall model and the verification
approach suggested. The figure illustrates
the sequence and the phases of system
development. The verification arrows are
directed on the activity from which the
results are to be verified. The phases are
described below:

Problem Definition:
- determination of operational environ-

ment

- identification of user requirements

Software Requirement:
- construction of logical model

- identification of software requirements

Architectural design:
- construction of physical model

- definition of major components

Detailed design:
- module design

- coding

- unit tests

- integration tests

- system tests

Transfer:
- installation

- provisional acceptance tests

Operations and Maintenance:
- final acceptance tests

- operations

- maintenance of code and docu-
mentation.

The unit, integration and system tests are
executed in the detailed design phase and
the acceptance tests in the transfer and
operation phase. The standard requires
that the acceptance tests are developed in
the problem definition phase, the system
tests in the software requirement phase,
the integration tests in the architectural
design phase and the unit tests in the
detailed design phase.

The software development activities
standardised by ESA focus on reviews.
Reviewing is a phase-independent me-
thod of discovering errors, incomplet-
eness, inconsistencies, etc., in specifi-
cations, programs and other documents.
The method of reviewing documents was
introduced by Fagan (8) and is based on
human reading of documents. It is
believed that different errors, incomplet-
eness, inconsistencies, etc., can be found
more easily using this method than by
testing. Testing and reviews do, thus, not
exclude each other.

4 Non-conventional

methods and life cycle

models

It is not easy for “new” methods and life
cycle models to become commonly
accepted. The reasons for this may be the
conservativeness of software managers
and the large costs of teaching employees
a new method or a new life cycle model.
In addition, the usefulness of many non-
conventional methods and life cycle
models has not been sufficiently valid-
ated. In the following, we will give a
description of some non-conventional
software development methods and life
cycle models; an object oriented method,
a verification oriented method and an
evolutionary life cycle model. Finally we
will briefly characterise a selection of
other non-conventional system develop-
ment methods and life cycle models.

Problem
Definition

(User req.)

Software
Requirement

Architectural
Design

Detailed
Design

Transfer
(Establish that

the req. are met)

Operations and
Maintenance

Unit
Tests

Integration
Tests

System
Tests

Acceptance
Tests

Activity

Verification activity

Transitions

Verification

Figure 5 ESA Waterfall model and verification approach

48

4.1 Object Oriented Analysis

(OOA)

“The objects are just there for the pick-
ing” (9)

Object oriented programming was intro-
duced in the late 1960’s by Simula. Most
of the principles used by current OOA
methods were known already then. While
the focus of object oriented programming
is on specifying the solution of a pro-
blem, the focus of OOA methods is on
understanding and specifying the pro-
blem.

The following method, the Coad-
Yourdon Object Oriented Analysis (10),
is probably one of the best known OOA-
methods. The method aims at develop-
ment of an object oriented description.
The method does only cover the analysis
phase of software development and has
the following five steps:

1 Identify Classes and Objects

2 Identify Structures

3 Identify Subjects

4 Define Attributes

5 Define Services.

The steps are carried out in parallel, i.e.
based on the view of software develop-
ment being an exploratory activity. The
method has not a well defined
description of the steps and sequences to
be performed. Instead, it offers
guidelines, i.e. common sense rules of
“where to look”, “what to look for”, and
“what to consider and challenge”. The
problem domain is explored through
identification of classes and objects,
structures (relations between classes or
objects), subjects (i.e. partitioning of the
object model), attributes and services
(i.e. activities of the classes). The
notations used together with the method
are simple and the semantics of the
constructs are rather informal.

The resulting problem specification, the
object oriented description, is presented
in five transparent layers, see Figure 6.

4.2 Verification oriented

software development

The view taken in verification oriented
software development is that programs
can be treated as mathematical objects.
This way, mathematical proofs can be
applied to verify that the programs are

“correct”. Program verification can be
used to prove that a program is correct
relative to specification of the state
before and after program execution.
However, if the specification is incorrect
or incomplete, the proof may be of little
value.

Mathematical proofs on already develo-
ped programs can be hard to develop. An
easier approach seems to be to develop
the program and the proof hand-in-hand.
The method described below illustrates
what a verification oriented development
of a loop subprogram can look like. The
method below is taken from (11), alt-
hough not explicitly formulated there.

The method:

1 Develop a general description of the
task the program is to perform.

2 Develop a specification – consisting of
pre-conditions (V) and post-conditions
(P), formulated as logical algebraic
expressions. Pre-conditions and post-
conditions are conditions, e.g. x > 6,
describing the state before and after
the execution of the program.

3 Decide on the basic structures of the
program; in this case a loop structure

4 Develop the loop invariant (I), i.e.
conditions that will not be affected
through the execution of the program.
Through the development of the
invariant, the initialisation part of the
program is determined.

5 Develop the loop condition, based on
the difference between the post-
condition and the loop invariant.

6 Using the loop invariant as a check
list, design the body of the loop.

7 Prove that the program is partially cor-
rect, i.e. correct if it terminates.

8 Prove that the program terminates.

A more general method is described in
(12).

The proof of partial correctness, step 7,
will reflect closely the design steps, using
the same pre- and post-conditions and
invariant. It is not in general possible to
prove that a program will terminate, i.e.
step 8, although in most cases it is rela-
tively simple, according to (11).

In Figure 7 the first four steps of the met-
hod are illustrated in the development of

a while loop subprogram. The example is
extracted from an example in (11). The
explanation is mainly ours.

4.3 Evolutionary life cycle

models

The evolutionary life cycle models are
based on the experience that often it is
impossible to get a full survey of the user

Subject
layer

Class &
Object
layer

Structure
layer

Attribute
layer

Service
layer

OOA
description

Figure 6 The five layers and an OOA
description as seen through the transpar-
ent layers

49

Linear search – verification oriented development

Step 1: Informal description of the task

The variable n, the array a(1), a(2), ... , a(n) and the variable x are given. The program to be designed is to determine whether the value of x is

present in the array A and if so, where it first occurs. The value of the result variable k should indicate which element of A was found to be equal

to x. If x is not equal to any element in A, k should be assigned the value n + 1.

Step 2: Specification

The task description leads to the following preconditions (V) and postconditions (P):

V: n ∈ Z ∧ 0 ≤ n

P: (k ∈ Z ∧ 1 ≤ k ≤ n+1)

∧ (∀ i < k | A(i) ≠ x) [all elements before the k-th ≠ x, i = {1,2, ...}]

∧ ((k ≤ n ∧ A(k) = x) ∨ (k = n+1))

(The values and indexes of the array A, should not be modified.)

Step 3: Decision on basic structure

The task requires that a repeated test is carried out on whether x is equal to an element in A. For this purpose a while loop is used. The while

loop has the general form:

initialisation; while B do S endwhile

where B is the loop condition and S the loop body (statements). The loop condition should have no side effects.

Step 4: Deciding on invariant (I) and initialisation

The invariant is developed through generalisation (weakening) of the postconditions. Choosing the initialisation k := 1, the two first par-

anthesised and-terms in the postconditions (see step 2) will always be true, i.e. true before entering the loop for the first time and true after

terminating the loop. The two first parantesised and-terms in the postconditions are thus chosen as the invariant I.

I: (k ∈ Z ∧ 1 ≤ k ≤ n+1)

∧ (∀ i < k | A(i) ≠ x)

Figure 7 Some of the steps in a verification oriented development method

requirements before the system is pre-
sented to the users. This may be due to
the nature of the system or be due to the
fact that the users’ opinions and require-
ments change as more knowledge is
acquired. In order to build the right pro-
duct, it becomes necessary to get
responses from the users early in and
throughout the software development
process.

The evolutionary model can be described
as follows:

- Deliver something to the users

- Receive and record user responses

- Adjust design and objectives based on
the responses.

Evolutionary prototyping and incre-
mental development are two examples of
evolutionary models.

Prototyping is often used in conventional
software development, during feasibility
studies or requirement analysis. This

kind of prototyping is often called rapid
prototyping. In evolutionary prototyping,
however, the prototyping technique is the
basis of the total system development
process (13). By applying this approach
to development, it should be possible to
incorporate all types of changes that are
requested both during development and
during system operation. This way
maintenance becomes an integrated part
of the software life cycle, i.e. there is no
significant difference between software
development and maintenance. Figure 8
shows what the software life cycle can
look like if evolutionary prototyping is
used.

The goal of incremental development is
to manage risk by developing small parts
of the system at a time. A system skele-
ton covering the basic functions of the
system is developed first. Additional
functionality is then implemented in
several partly overlapping sub-projects.
During the system development process,
users will have an executable system

most of the time, and be able to give
early feedback to the developers.

In literature it is often argued that evo-
lutionary methods can give flexible
solutions, incorporate maintenance in the
software life cycle and simplify software
reuse. In spite of these claims, there is a
strong disagreement about the claims e.g.
in (14) and (15), that these methods
reduce software development costs.

4.4 Other non-conventional

methods and life cycle

models

Software development by syntax
description is described in (16) and aims
at the development of syntax-directed
programs. Syntax directed software is
software where the syntax of the input
plays a central role, e.g. text formatters
and command interpreters. The main
characteristics of this method is the
development of a formal grammar of the

50

Figure 8 A possible evolutionary prototyping life cycle model

possible inputs to a system. When a
grammar for the input language is
developed, a translation from input to
output (translation syntax) is developed.
Developing software using the UNIX
tool YACC (Yet Another Compiler Com-
piler) can be considered a software
development by syntax description.

As far as we know, there is no docu-
mentation of the benefits of separating
focus on “what to do” from “how to do
it” into two different phases. The life
cycle model described in (17),
Operational software development, bre-
aks away from this commonly accepted
separation. In the analysis phase of
operational software development a com-
plete and executable (by a suitable inter-
preter) operational representation of the
system is developed. The operational
representation mixes “what to do” and
the “how to do” of the system specifi-
cation.

Adding more design and implementation
information, the specification is then
transformed into executable code.

This life cycle model is based on two
“modern principles”: executable specifi-
cations and transformation of specifi-
cations.

The spiral model (18), accommodates
several other life cycle models. The
“instantiation” of the spiral model in a
particular model depends on the risk
involved in the development. Each cycle
in the spiral consists of four steps:

1 Determine objectives, alternative
solutions (e.g. buy vs. develop pro-
duct) and constraints

2 Evaluate alternatives, identify risk
areas

3 Analyse the risk and develop system
(or a prototype of the system)

4 Review the software and decide
whether a new cycle is needed.

If a new cycle is needed, plan for the
next cycle and go to step 1.

If the user and software requirements are
understood reasonably well, one cycle
will be sufficient, i.e. the spiral model
equals the waterfall model. In projects
with less understood requirements
several cycles are necessary, i.e. the
spiral model is similar to an evolutionary
model.

The main characteristics of the spiral
model is the focus on risk analysis and
the cyclic approach. Instead of deciding
on a life cycle model already when the
development projects starts, repeating
risk analysis is used to decide which type
of model is needed, the number of cycles
needed and whether for instance proto-
typing is needed.

5 Challenges

Software development starts with more
or less complete and articulated needs
and sometimes ends with a specification,
doing something useful – not necessarily
meeting the original needs. During the
development process needs from many
different groups and of many kinds
occur, like for instance:

- end users need user friendly systems
with sufficient functionality

- software maintainers need main-
tainable software

- software operators need reliable
software

- software managers need security of
data used by the software, correctness
of software, control of the develop-
ment process, co-ordination of pro-
grammers and managers, low costs and
high productivity

- software designers need a complete
requirement description

- software implementors need a com-
plete, precise and readable design and
efficient tools.

Facing this diversity of needs, some
stated exact and complete, some vague,
some that may be changed soon, some
not articulated but implicitly assumed,
and most not measurable, the software
development participants need support
from methods and life cycle models.

Selecting the appropriate methods and
life cycle models should be an important
issue. More research on the effects of

Analyse and determine (partial) requirements

Needs

Produce a version of the system

Evaluate system version
(try on user)

Test system version

Adequate?
Change

requirements?

Update requirements

Correct errors

Tune system and deliver

Operate system

no

no

yes

Analyse and determine requirements errors,
modification

needs

yes

new
needs

control flow data flowKey:

51

using different software development
methods and life cycle models is there-
fore needed.

There are two main strategies for study-
ing the effects of development methods
and life cycle models: experiments and
observation.

Experimental results are often, due to the
cost and impracticality of realistic
environments, not very applicable to real
software development. Typically,
software systems developed in experi-
ments are small, students are used as
developers and the developers are novice
users of the methods and life cycle
models. (19) gives some evidence that
use of methods leads to more efficient
programming than “ad hoc” approaches.
However, it is not possible to apply the
results of (19) on large software project
with professional and experienced
developers unless it is assumed that the
benefits of using methods on these pro-
jects are at least as high as on small scale
projects using students with little experi-
ence.

Observational studies of implications of
methods and life cycle models are often
hard to apply on real software develop-
ment, as well. This is mainly due to the
lack of control of external variables. (20)
gives an example illustrating this. This
study found that the size of the floor
space in the office of a developer was
more correlated with the development
productivity than use of a particular
CASE tool. Important to note is that
observational studies normally focus on
correlations, not so much on cause-effect
relationships. (21) gives an example of
an observational study where use of
structured methods correlate with
increased productivity. Application of
this result on real software development
makes it necessary to assume that the
structured methods did not only correlate
with productivity, but was the cause of
the increased productivity.

There are no evidence that a generally
“best” method or a generally “best” life
cycle model exists, independently of
development environment. This suggests
that methods and life cycle models
should be evaluated relative to at least
the developers, end users and type of sys-
tem to be developed. However, this way
the results may not be sufficiently gen-
eral to be of any use.

The view of software development as
exploration may imply that the develop-
ment methods and life cycle models

should be rather pragmatic, support
reusability and incremental change. It is
probable that object oriented methods
and evolutionary life cycle models sup-
port exploration better than conventional
methods and life cycle models. However,
the need of a controllable software
development process seems to be in
opposition to the view of software
development as exploration. Can we
hope for a next generation of methods
and life cycle models supporting both
control and exploration?

References

1 Parkinson, J. Making CASE work.
Proc. from CAiSE 1990, Stockholm.
Springer Verlag, 21-41, 1990. ISBN
3-540-52625-0.

2 Collins dictionary, Oxford, 1981.
ISBN 0-00-433078-1.

3 Parnas, D L, Clements, P C. A
rational design process: How and
why to fake it. IEEE Trans. on
Software Engineering, 12, 251-257,
1986.

4 Downs, E, Clare, P, Coe, I.
Structured Systems Analysis and
Design Method – application and
context. Englewood Cliffs, N.J.,
Prentice Hall, 1988. ISBN 0-13-
854324-0.

5 Avison, D E, Fitzgerald, G.
Information systems Development –
Methodologies, Techniques and
Tools. Blackwell Scientific Publi-
cations Ltd., 1988. ISBN 0-632-
01645-0.

6 Royce, W W. Managing the
Development of Large Software Sys-
tems: Concepts and Techniques.
Wescon Proc., 1970.

7 ESA. ESA software engineering
standard. February 1991. (ESA PSS-
05-0 Issue 2.)

8 Fagan, M E. Design and code
inspection to reduce errors in pro-
gram development, IBM Systems
Journal, 3(15), 182-211, 1976.

9 Meyer, B. Object-Oriented Software
Construction. Englewood Cliffs,
N.J., Prentice Hall, 1988.

10 Coad, P, Yourdon, E. Object-ori-
ented analysis. Englewood Cliffs,
N.J., Prentice-Hall, 1991. ISBN 0-
13-629981-4.

11 Baber, R L. Error-free software,
New York, Wiley, 1991. ISBN 0471-
93016-4.

12 Baber, R L. The spine of software:
designing provable correct software
– theory and practice. Chichester,
Wiley, 1987.

13 Ince, D. Prototyping. In: Software
Engineer’s Reference Book. J A
McDermid (ed). Butterworth, 3-12,
1991. ISBN 0-7506-1040-9.

14 Gilb, T. Principles of software eng-
ineering management. Reading,
Mass., Addison-Wesley, 1988. ISBN
0-201-19246-2.

15 Boehm, B W. Software life cycle
factors. In: Handbook of Software
Engineering. Ramamorthy (ed). Van
Nostrand Reinhold, 494-518, 1984.
ISBN 0-442-26251-5.

16 Lewi, J et al. Software Development
by LL(1) Syntax description.
Chichester, Wiley, 1992. ISBN 0-
471-93148-9.

17 Zawe, P. The operational versus the
conventional approach to software
development. Communication of the
ACM 2, 104-118, 1984.

18 Boehm, B W. A spiral model of
software development and enhance-
ment. IEEE Computer, 21(5), 61-72,
1988.

19 Basili, V R, Reiter, W R Jr. A Con-
trolled Experiment Quantitatively
Comparing Software Development
Approaches, IEEE Transaction on
Software Engineering, 3, 299-320,
1981.

20 Keyes, J. Gather a baseline to asses
case impact. IEEE Software
Magazine, 30, 30-43, 1990.

21 Brooks, W D. Software Technology
Payoff: Some Statistical Evidence,
Journal of systems and software, 2,
3-9, 1981.

52

A data flow approach to interoperability

B Y A R V E M E I S I N G S E T

Data flow

This section introduces some basic
notions needed for analysing inter-
operation between software systems, or
function blocks inside software systems.

A computer software system can receive
input data and issue output data accord-
ing to rules stated in a set of program
statements. This program code will com-
prise data definitions, logic and control
statements. See Figure 1a.

The control statements put constraints on
the sequence in which the logic is to be
performed. Most current computers (the
so-called ‘von Neuman architecture’)
require that the statements are performed
in a strict sequence (allowing branching
and feedback) and allow no parallelism.
This control flow together with the

logical (including arithmetical)
operations are depicted in Figure 1b.

The data flow, in Figure 1c, depicts data
to the logical operations and their
outcome. We observe that the data flow
states what operations are to be per-
formed on which data. The data flow per-
mits parallelism and is not as restrictive
as the control flow.

Data definitions are data which declare
the permissible structure of data
instances. Logical operations are data
which state constraints and derivations
on these data. Control flow is a flow of
data which is added to restrict the sequ-
encing of the logical operations on the
data.

However, more ways exist to achieve the
desired computational result than what is
stated in a chosen data flow, e.g. observe
that the parenthesis in the shown formula

in Figure 1c can be changed without alt-
ering the result.
(X - 3) * 2 + (Y+1)=2 * X + Y - 5, etc.

A specification of what data are needed
for producing which data, is called a pre-
cedence graph (4). This is shown in
figure 2a. To avoid arbitrary introduction
of unnecessary sequences, the preced-
ence graphs are only detailed to a certain
level. Decomposition is illustrated in
Figure 2b. The functions needed are
associated with the leaf nodes of the
graphs. However, when carrying out the
decomposition, no association to
functions is needed.

Precedence relations between data are
identified by asking what data are needed
for producing which data, starting from
the output border, ending up on the input
border of the analysed system. The con-
verse succedence relations are found by
starting from the inputs asking what out-

Abstract

This paper provides basic language notions and motivation for
understanding the ‘Draft Interoperability Reference Model’ (1,
2, 3). This reference model identifies candidate interfaces for
interoperability extensively between databases, work stations,
dictionaries, etc. This Abstract provides a technical summary,
which may be found difficult to read and therefore can be
skipped in a first reading.

The paper discusses language notions for data definition,
logical operations and control. Different groupings of these
notions are shown to lead to different computer software
architectures. A data flow architecture for the communication
between processes is proposed. The processes are controlled by
schemata which contain data definitions and logical operations.
The contents of the schemata provide the application specific
behaviour of the system.

In order to avoid introducing implementation details, the notion
of control flow is discarded altogether. Two-way mappings are
used to state the combined precedence-succedence relations
between schemata. This allows data flow to be stated as mapp-
ings between schemata without bothering about the existence
and functioning of processes. A mapping states permissible flow
of data. The two-way mapping allows data flow in both
directions between schemata, meaning that no distinction is
made between input and output to a system. Each collection of
data can appear as both input and output.

All permissible forms of data in a system are specified in
schemata. This introduces a layered architecture. For processes
to be able to communicate, they have to share a common
language. Each schema constitutes such a candidate set of
definitions that processes can share in order to be able to com-
municate. The different kinds of schemata are:

- Layout schema
- Contents schema
- Terminology schema
- Concept schema
- Internal Terminology schema
- Internal Distribution schema
- Internal Physical schema.

This layering results in a basic interoperability reference
model; the schemata constitute reference points which define
candidate interfaces for communication. The schema data are
themselves data. This implies that there are just as many
candidate forms of schema data as for any other data. Hence, a
nesting of the reference model is introduced. Therefore, we will
have to talk about the Layout form of the Layout schema, etc.

This proposed general reference model for information systems
is compared with the Telecommunications Management
Network (TMN) functional architecture. The TMN functional
architecture defines interfaces between the TMN and the outside
world. This may be appropriate for stating organisational
boundaries. However, when compared with the more general
reference model presented in this paper, it becomes evident that
the TMN model is not clear on what reference points are
intended, and that a better methodological approach is needed.
A comparison with the Intelligent Network (IN) architecture is
made, as well. This architecture is better on the distribution and
implementation aspects. However, the IN architecture is not
capable of sorting the external interface to the manager from
the services to the customer in an appropriate way. This is due
to the lack of nesting of the architecture.

This paper is based on experience obtained during the
development of the DATRAN and DIMAN tools and previous
contributions to CCITT SG X ‘Languages and Methods’.

681.3.01

53

puts can be produced. When the graph
this way is made stable, the combined
precedence and succedence analysis is
replaced by decomposition, called com-
ponent analysis, of the data and nodes,
and the analysis is repeated on a more
detailed level.

We observe that precedence graphs are
less concerned with implementation than
data and control flow graphs. However,
in practice, analysts are regularly confus-
ing these issues. In complex systems they
are unconsciously introducing both data
flow and control flow in their analysis,
which ideally should be concerned with
precedence relations only.

In order to separate data and control, we
will introduce direct precedence relations
between data. This is shown in Figure 2c.

Rather than associating the logical
operations with control, we will associate
them with the data. The result is shown
in Figure 2c. Here the logical operations
are depicted as being subordinate to the
data which initiate the processing. Other
approaches are conceivable. However,
the details of language design are outside
the scope of this paper.

The processes associated with control are
considered to be generic and to perform
the following function:

For each data item appearing on the
input

- Check if its class exists

- Validate its stated references

- Enforce the stated logical constraints
and derive the prescribed data

- Issue the derived output.

In order to access input to the validation
functions, precedence relations are
needed. In order to assign the result to
output, succedence relations are needed.
Therefore, two-way mappings are intro-
duced. The resulting architecture is
called a data flow architecture, because
processing is initiated based on the
appearance of input data.

Precedence relations are similar to
functional dependencies used when
normalising data according to the
Relational model. However, functional
dependencies are stated between indiv-
idual data items, while precedence
relations are stated between data sets.

X

Y
? ÷ + 1

u w

2

v

+

?

a

b

c

Process

Data

Z

X 3 Y

•

÷ + 1

u w

2 •

+

Z

X 3 Y

v

X

Y
? ÷ + 1

2

+

?

3

•

Figure 1 Depiction of an example total pro-
gram (a), control flow (b) and data flow (c).
The function performed is:
Z := (X - 3) * 2 + (Y + 1)

X 3 Y

Z

Z:=(X÷3)•2
 +(Y+1)

X Y

Z

Z:=
(X÷3)
•2+
(Y+1)

Z:=
(X÷3)
•2+
(Y+1)

a

b

c

Data flow

Relation

Figure 2 Simple example precedence graph
(a) and how it is identified by decomposition
(b). In (c) data are associated with relations
and logic

54

Software in the Data flow architecture is
partitioned into:

- Schema, consisting of Data
declarations and Logical statements to
be enforced on these data

- Processor, the mechanism which
implements the control functions that
enforce the rules stated in the Schema.

This generic separation is depicted in
Figure 3.

The collection of data instances which
are enforced according to the Schema of
the software system are collectively
called the Population relative to the
Schema. The Population data comprises
input, output and intermediate data, e.g.
u, v, w in Figure 1.

We recognise that, so far, all graphs
illustrate data classes and not data
instances, except in Figure 2c. Here the
direct data flow arrows between the pro-
cesses depict flow of data instances that
are enforced according to the rules stated
among the classes found in the Schema.
There may be no absolute distinction
between Schema and Population data. To
be schema data and population data are
just roles played by the data relative to
the processor and to each other. How-
ever, this issue is outside the scope of
this paper.

We will end this section with a last
remark about notation. The mapping
between schemata states that there exist
(two-way) references between data inside
the schemata. It is the references between
the data items that state the exact data
flow. The details of this is also outside
the scope of this paper.

The notions introduced in this section
allow the separation of data definitions,
including logical operations, from control
flow. This again allows the system ana-
lyst to concentrate on defining the
schema part without bothering about
implementation. We will use these
notions to identify candidate interfaces
for interoperation between software
function blocks.

Layering

For two processors to be able to com-
municate, they have to share a common
‘language’, i.e. they must have the same
data definitions for the communicated
data. Therefore, in order to identify inter-

faces inside a software system, we have
to identify the data that can be communi-
cated between software blocks and
constraints and derivation rules for these
data. These rules make up the schemata.
Hence, we will first identify the
candidate schemata.

Data on different media can be defined
by separate schemata for each medium:

- External schemata define the external
presentation and manipulation of data

- Internal schemata define the internal
organisation and behaviour of data.

See Figure 4. If we want to allow com-
munication from all to all media, we
have to define mappings between every
two schemata. Rather than mapping each
schema to every other schema, we intro-
duce a common centralised schema, lab-
elled the Application schema.

This Application schema

- defines the constraints and derivations
which have to be enforced for all data,
independently of which medium they
are presented on.

See Figure 5. Additional notions are
defined as follows:

- System schema contains, except from
the External, Application, and Internal
schemata:
⋅ System security data, including data

for access control

⋅ System directory data, including
data for configuration control

- System processor, includes the
External, Application and Internal pro-
cessors, administrates their inter-
operation and undertakes directory and
security functions

- System population contains, except
from the External, Application, and
Internal populations, data instances of
the System directory and System
security

- The notion of a Layer comprises a
grouping of processors which enforce
a set of schemata on corresponding
populations, including these schemata
and populations; no population can
have schemata outside the layer; the
processors, schemata and populations
of one layer have similar functional-
ities relative to their environment.

Inputa

Output

Processor Schema

Output

Input

Interm.data

P
r
o
c
e
s
s
o
r

Schema

P
r
o
c
e
s
s
o
r

Schema

Population

Pre-
scrip-
tion

Read

Write

b

c

Collection of data

Two-way mapping

Figure 3 Separation of Schema (a). Identifi-
cation of Population (b). Unification of
Schema and Population data (c)

55

ES

ES
IS

Processor

EP
EP

Population

AS

IPAP

IPAPEP

ES ISAS

Er IrAr

System schema

System processor

ILALEL

System population

TS OS TS DS PS

Lr Cr Tr Or Tr Dr Pr

LS

CP TP OP TP DP
IP

CS

LP PP

System schema

External schema Application schema Internal schema

External processor Application processor Internal processor

Mapping between sets of data

Two-way data flow

Set of data

Processor

Colours have

no significance

LS CS
TS OS

Application schema

Presentation schema

PS

TS

DS

PS

CS

LS
LS

Figure 8 Data flow between layers. The external and internal layers are unified into
Presentation (sub)layers around a common Application layer.
Mappings between collections of data state the permissible data flow (both ways), wit-
hout any concern of processors undertaking the communication.
The use of Concept schema can be avoided by using one of the Terminology schemata
as a substitute

ES

ES
IS

Processor

EP
EP

Population

IP

See Figure 6. Each layer can be de-
composed into a sublayer, containing
corresponding component schemata:

- External schema (ES), is composed of
⋅ Layout schemata (LS), which

defines the way data are presented to
the user

⋅ Contents schema (CS), which
defines the contents and structure of
the selected data and permissible
operations on these data in a specific
context

- Application schema (AS), is composed
of

Figure 4 Depiction of presentation
schemata for each medium. Mappings be-
tween data are indicated by dashed lines.
The sylinders indicate collections of data

Figure 5 Introduction of one centralised
Application schema for each system.
S = schema, P = population, E = external,
A = application, I = internal

Figure 6 The 3-layered software
architecture, consisting of the External
(EL), Application (AL) and Internal layers
(IL), r = processor

Figure 7 Data transformation architecture. Each layer contains schemata, corresponding populations and a processor.
L = layout, C = contents, T = terminology
The layered architecture can undertake transformation of data between any two media, here examplified by a screen and a database.
O = concept, D = distribution, P = physical

56

⋅ Terminology schema (TS), which
defines the common terminology
and grammar for a set of external
schemata

⋅ Concept schema (OS), which
defines the common structure,
constraints and derivation of data,
common for all terminologies that
are used in a system

- Internal schema (IS), is composed of

⋅ Distribution schema (DS), which
defines the subsetting of the Appli-
cation schema for one medium and
the permissible operations on this
medium

⋅ Physical schema (PS), which defines
the internal storage, accessing,
implementation and communication
of data and their behaviour.

See Figure 7.

It is possible to have several alternative
presentations, defined in the Layout
schemata, from one Contents schema. It
is possible to have several alternative
selections of data, defined in the
Contents schemata, from one Termino-

logy schema. It is possible to have
several alternative terminologies, defined
in the Terminology schemata, of the
same notions, defined in the single
Concept schema of one software system.
See Figure 8. This figure illustrates that
mappings asserting permissible data flow
can be stated between schemata without
any mentioning of processes.

Figure 9 illustrates how interfaces can be
identified and processes can be added
when the schemata are given. Two pro-
cesses have to share a common language
to be able to communicate. The schemata
of the reference model make up the
candidate ‘languages’ for communi-
cation. Therefore, they are called Refer-
ence points for communication. The
schemata serve as communication
protocols between communicating pro-
cesses. Data are enforced according to
the (schema) protocol on both sides of
the communication link. Note that all
transformation and derivation of data
take place inside the processes.

Nesting

In some cases the initial common langu-
age of two processes can be very limited.
This language can be extended by data
definitions using basic constructs of the
limited language only. The data defini-
tions must then be communicated using
the limited language, before communi-
cating the data instances according to
these definitions. The limited language is
a schema of the data definitions. The data
definitions make up a schema to the data
instances. The limited language is a
meta-schema relative to the data
instances. This way, by recursive usage
of the reference model, we can get gen-
eral and powerful means of communi-
cation and computation. The details of
this approach will not be dealt with in
this paper.

Let us study a second way of nesting the
reference model. The current layered
data flow architecture, as depicted in
Figures 7 and 8, is appropriate for com-
municating data instances between two
media. The data instances are basically
the same on these media. However, their
physical appearances and organisations

Lr Cr

LS CS

Cr Tr

CS TS

Tr Or

TS OS

Or Tr

OS TS

Tr Dr

TS DS

Dr Pr

DS PS

Pr

PS

Lr

LS

Li Ci Ti Oi Ti Di Pi

Figure 9 Candidate interfaces (i) for interoperability between function blocks

Yellow boxes are used to depict the processes (i.e. function boxes).
Note that communication can take place between identical schemata only

Manager

DatabaseEnd user

acess to
End user

help

Processor

Schema

Processor

IS

Executable code

ES AS IS
Manager

Dictionary
database

Code
generation

DatabaseEnd user

Processor

Executable code

DatabaseEnd user

Processor

Executable code

Processor

Executable code

Tool
developer

Manager Dictionary
database

Tool
specification

Figure 12 Bootstrapping of the systemFigure 11 Code generationFigure 10 Nesting of the Reference model

57

and meta-schemata. The result is a very
complex topic, labelled ‘The schema
cube’. The main message in these figures
is that it is not sufficient to settle what
schema (or interface) to specify. You
also have to choose what form (and what
interfaces) to apply to this specification.
For example, you may choose a Layout
form for the specification of the Layout
schema, or you may choose the internal
Terminology form, for programming the
Layout schema.

Comparisons

Figure 14 depicts the overall Telecom-
munications Management Network refer-
ence model (5). This reference model
delimits the TMN from its outside world,
and work is undertaken to define the
interfaces to this outside world. How-
ever, this way, the TMN model is an
organisational model, which defines what
is inside and outside TMN, and is not a
reference model in the technical sense we
have been discussing reference models in
this paper. Exceptions can be made for
the f and g interfaces, which are

technical. However, no progress is made
on specifying these. Figure 9 depicts the
available reference points from a
technical point of view. It is not clear
which of these reference points are
intended for any of the TMN interfaces.
Also, even if TMN languages are defined
for some of the TMN interfaces, it is not
clear what schema they correspond to,
and the relevant requirements on these
languages are not clearly identified.

The Intelligent Network architecture is
shown in Figure 15 (6,7). This
architecture has got a much more
technical character than that of the TMN
model. The bottom ‘planes’ correspond
quite well to the internal layer of Figure
7. But a minor warning must be made. In
Figure 9, the users, terminals, subsys-
tems, logical files, and physical resources
are defined in the directory part of the
System schema and not inside the Distri-
bution schema. The Distribution schema
states just what contents is mapped to a
physical resource. This allows communi-
cation and ‘distribution’ to take place on
any of the interfaces. In the IN

Figure 13 The schema cube. The horizontal dimension illustrates usage, i.e. data flow
between the HMI and the internal database. The vertical dimension illustrates
management, i.e. data flow from the manager to generated code.

The dimension going into the plane illustrates tool development. This defines the
manager’s environment

can differ. Also, their classes, defined in
the schemata, can be different. This
allows for substituting e.g. French head-
ings with Norwegian ones. If, however,
we want to replace one set of instances in
one terminology with another set in
another terminology, the existence of
both and the ‘synonymity’ references
between them have to be persistently
recorded in a database. For example,
John may correspond to 12345, Bill to
54321, etc. This way, the references
between data in different Terminology
schemata may not only state flow of
transient data, but can state references
between persistent data. Since all persist-
ent data are stored in a database, the
reference model itself is needed to
manage these references of the reference
model. This way, we get a nesting of the
reference model.

A third way of nesting the reference
model is shown in Figures 10 through 13.
Since all schema data are ordinary data,
these data can be managed using the
reference model itself. This is illustrated
both for the management of schemata

IL IC IT IO IT ID IP
Ixx

LC LT LO LT LD LILL

Manager view

C

T

O

T

D

Tool
developer

view

System schema

Target processors

Populations

End user
view

L L C C T T O O T T D D PP

OS

WSDCN
F

Q/F/Q3

MD

Q3/F

DCN

Qx

NEQANEQA

Q

Qx

Q3 Q3

TMN

TMN

OS
MD
DCN
WS
NE
QA

: Telecommunication
 Management Network
: Operation System
. Mediation Device
: Data Communication Network
: Work Station
: Network Element
: Q Adapter

Figure 14 The TMN physical architecture

58

architecture this seems to take place in
the Distribution plane only.

When we come to the top planes of the
IN architecture, it diverges even more
from the Interoperability reference model
presented in this paper. The Function
plane may correspond to the Application
schema. But the Service plane does not
fit in. The reason is that what is specified
inside the Service plane corresponds to
the External schema of the telecommuni-
cation service user. Therefore, this
should be at the same level as the
Function plane. For accessing both the
Function plane and Service plane we
need the Manager’s external schemata,
i.e. of the TMN operator. This requires a
nesting of the reference model, as shown
in Figures 10 through 13, which is not
provided in the IN architecture.

This comparison of reference models is a
first exposition of what kind of dif-
ficulties will be encountered when
attempting to analyse and integrate dif-
ferent systems developed according to
different reference models. (8) provides a
comparison of the TMN and IN reference
models. The result is summarised in
Figure 16. However, the paper lacks a
technical and methodological analysis, as
suggested in this article. The methodo-
logical problem with the two reference
models and the comparison is that they
start with identifying function blocks,
which necessarily must be imple-
mentation oriented. As explained in this
paper, the analysis and design of refer-
ence models should start with identifying
the data and their relationships.

FE 1

PE 1

Physical Plane

FE 1

FE 3

PE 2

SIB
FE
SF
IF
POI
FEA

: Service Independent Building Block
: Functional Entity
: Service Feature
: Information Flow
: Point Of Initiation
: Functional Entity Action

PE
EF
P
POR
BCP

: Physical Entity
: Elementary Function
: Protocol
: Point Of Return
: Basic Call Process SIB
: Pointer

P

EF

EF

EF

EF

EF

EF

IF

Information Flows (IF)

FE2

FE3

Distributed Functional
Plane

 F
 E
A

 F
 E
A F

 E
A

 SIB 1

 SIB 2

 SIB n

BCP

Global Functional Plane

POI

POR

 SF1

 SF2 SF3

Service 1 Service 2

Service Plane

Figure 15 IN conceptual model

59

Functional Architecture

&

Information Architecture

Physical Architecture Physical Plane

Distributed

Functional Plane

Global

Functional Plane

Service Plane

The TMN Architecture The IN Conceptual Model

Figure 16 Correspondence of the TMN architectures and the planes of the INCM

References

1 Meisingset, A. Draft interoperability
reference model. Norwegian
Telecom Research, Systemutvikling
2000, D-3 (2). Also contributed as
Working document to ETIS, Berlin
1993.

2 Meisingset, A. Identification of the f
interface. Norwegian Telecom Rese-
arch, Systemutvikling 2000, D-5 (2).
Also contributed as Working docu-
ment to ITU-TS SG 4, Bath 1993.

3 ITU. Draft Recommendations Z.35x
and Appendixes to draft Recomm-
endations, 1992. (COM X-R 12-E.)

4 Langefors, B. Theoretical Analysis of
Information Systems. Studentlitt-
eratur Lund, 1966. Philadelphia,
Auerbach Publishers Inc., fourth
edition, 1973.

5 ITU. Draft Recommendations
M.3010, 1991. (COM IV-R 28-E.)

6 ITU. Draft Recommendations
Q.1201, 1992. (COM XI-R 108-E.)

7 Skolt, E. Standardisation activities in
the intelligent network area. Telek-
tronikk 88(2), 1992.

8 ETSI. Baseline document on the
integration of IN and TMN. European
Telecommunications Standards Insti-
tute, 1990.

60

The draft CCITT formalism

for specifying Human-Machine Interfaces

B Y A R V E M E I S I N G S E T

Scope and its impact

This paper introduces the formalism part
of the draft CCITT Data Oriented Human
Machine Interface (HMI) Specification
Technique (1). This formalism can in
technical terms be characterised as a
context-sensitive language in an attach-
ment grammar for specifying the ter-
minology and grammar of HMI data. The
formalism allows the developers and
expert users to use the end users’ own
terminology only when writing and read-
ing HMI specifications.

In order to enforce harmonised pre-
sentations across many screens, there is a
need for a common and centralised
definition of the

- terminology
- grammar

for large application areas. This is called
the Terminology schema of the HMI. In
order to avoid divergent and hence, not
easily recognisable presentations, we
have to define all terms as they are actu-
ally presented. Likewise, in order to

make the statements recognisable to the
end users, we have to define the common
presentation rules/word order for all
statements in this application area.

This objective, to define and harmonise
the terminology and grammar, differs
from the scope of most other ongoing
work. Most work on human-machine
interfaces (HMIs) have focused on style
guidelines for surface structure aspects,
like windowing, use of buttons, menus,
colours, etc. Most work on specification
techniques have focused on defining
concepts or facts independently of pre-
sentation form and word order. However,
when wanting to make data recognisable
to the end users, harmonisation of the
deep structure form (terminology) and
word order is needed. Hence, to define
concepts and facts only is not satis-
factory.

For these reasons, the draft CCITT HMI
Specification Technique is addressing
other aspects than that of other and
related work, e.g. OSI management
specifications (2) for the management of

Network Name

Group

Exchange

Name

Name

Group Name

Capacity

Data tree

Network
Name

Group
Name

Exchange
Name Group

Name Capacity

Screen

Figure 1 Local names
A Group of the Network is a multiplex group. A Group of an Exchange is a
circuit group. However, they are both just labelled Group. The two groups have
different attributes. In their different contexts, Network and Exchange
respectively, the two identical labels both appear as headings on the screens.
Also, in this example there are three different Name attributes in different
contexts having different value sets. See the example screen picture

C

R

K2

K1

B

S

A

H

L

Network
Sweden

Network
Norway

Exchange

Group

Figure 2 Example graphical presentation
The presented Network object NORWAY is
only indicated alphanumerically. The
containment arrows are likewise suppressed

telecommunications networks. The dif-
ferent objectives will lead to different
solutions and to some co-ordination pro-
blems. Issues not considered in previous
specifications will have to be added and
lead to additions to and modifications of
existing specifications. The HMI is such
a central issue that the concerns made in
this area will have to be taken as a
starting point for the design of any
information system.

The formalism and

its motivation

Local names

In HMIs for large application areas we
want to have capabilities to reuse the
same class labels for different purposes
in different contexts. Therefore, the HMI
formalism has to handle local class labels
within the context of a superior class
label. This is illustrated in Figure 1.

Data tree

The upper part of Figure 1 depicts a data
tree. This notion of all data making up a
tree is implied by the requirement of
handling local names. A data item in the
data tree can have one superior data item
only. Each data item can have several
subordinate data items. Each label is only
unique within the scope of the superior

681.327.2

61

data item and hence cannot be addressed
without traversing the data tree from the
root via all intermediate data items to the
searched data item. Hence, in the basic
data tree there is no relation notion, only
subordinate and superior data items. This
containment is indicated by a bird-foot
arrow.

Instance labels

Figure 2 depicts instances of Exchanges
in a map. The Exchanges are connected
by Groups. The same icon is used for and
is repeated for each Exchange and
Group. Hence, the Exchange label is not
only referring to the class, but the
Exchange label, here symbolised by the
icon, is repeated for every Exchange
instance. Hence, the class labels do not
only appear as intermediate ‘non-ter-

minal’ nodes in the specification
‘grammar’, but the class labels are copied
into every instance. This is illustrated in
Figure 3.

In most alternative formalisms, only the
values – the leaf nodes of the syntax tree
– are left in the finally produced pop-
ulation. In an HMI formalism we see that
the superior labels are necessary to indi-
cate the classes and the contexts of the
data instances. This is the way context-
sensitivity is provided in the HMI form-
alism.

Instantiation

In Figure 3 we observe that superior
nodes always must appear, while
subordinate nodes may be omitted – if
not otherwise required. Therefore, we
call this formalism an attachment
grammar, not a rewriting grammar. Note
that due to the use of local names, the
terms cannot be listed independently of
the grammar. The data tree is the HMI
grammar and lists the terms.

Since exactly the same notions appear in
the schema and the corresponding pop-
ulation, we can use the same formalism
for both. This is also different from most

current approaches, which use separate
class templates in the schema and have
different or no notation for the instances.
A benefit of using the same notions is
that the user can easily foresee the
permissible instances when reading the
schema, or, when knowing some
instances, he can easily find his way in the
corresponding specifications (in the
schema). Copying is the only trans-
formation from classes to instances.

Significant duplicates

In Figures 2 and 3 we observe that many
Groups appear without a name assigned
to them. In fact, in a graphical dialogue
to a network planning system, the entire
network can be created without assigning
names. Therefore, the HMI must be
capable of handling significant dupli-
cates. The fact that the EDP system may
assign internal surrogates which uniquely
identify each data item is outside the
scope of our discussion on HMIs. The
impact of this is that the HMI formalism
itself must be capable of handling signifi-
cant duplicates – in (nested) ordered lists.

Group

System

Network

Network

Name

Group

Name

NORWAY

Sch

Exchange

NamePop

Group
Group

Group

Exchange
Exchange

Exchange

Na-
Na-
Na-
me

A
B

C

Network SWEDENName

S

P

Figure 3 Correspondence between
classes and instances
All classes are specified in a schema.
This is indicated by the S at the end of
the dashed two-way arrow. The data
instances are found in the population,
indicated by the P. Note that the data
items in the populations are exact copies
of data items in the schema branch. In
this example, classes for the individual
values are not illustrated. Also the refer-
ences between Groups and Exchanges,
shown in the map, are not illustrated

Group

System

Network

Network

Group

Term.
group

Sch

Exchange

Pop Group

Group

Exchange

Exchange

Term
Term
Term
Term.
group

S

P

Figure 4 References
According to the schema, an Exchange can have subordinate
Terminated groups, which refer (by an existential condition) to
Group. Terminated group is a Role of a Group as observed from an
Exchange. In the population one Exchange instance has three
subordinate Terminated groups, each referring to different Groups.
However, the last Exchange has one Terminated group only,
referring to the same Group as that of the last Terminated group of
the previous Exchange. This way, it is stated that this Group
connects two Exchanges

62

References

References between different nodes in
the data tree can be stated by introducing
Existential conditions. See figure 4. Such
a condition states that the conditioned
data item can only exist if the referenced
data item exists. The conditioned data
item is called a Role of the Referenced
data item.

Also, independent or mutually dependent
references in opposite directions between
two data items can be introduced. This is
illustrated in Figure 5.

Note that there can be several references
between two data items, and the refer-
ences may not necessarily be inter-
dependent.

We see that the graphs are starting to
become cluttered by all the details intro-
duced. Later we shall introduce a simpler
shorthand notation. However, for the
time being we will stay with the current
notation to show clearly some of the
details involved.

Values

Values have been introduced informally
in Figures 2 and 3. Figure 6 illustrates
how we can specify a finite permissible
value set.

We observe that everything permissible
in the population first has to be stated in
the corresponding schema. The schema
contains the originals which the instances
are copies of.

Recursion

We are now ready to introduce recursion.
The means for this is the schema-pop-
ulation reference. We have already stated
and shown that for HMIs we will use the
same formalism for instances and
classes. Therefore, the schema branch of
the data tree, or parts of it, can be consid-
ered instances of still other classes. This
is illustrated in Figure 7.

When the schema-population references
are applied recursively, we can consider
the schema data to be contained in a
database in the same way as the pop-
ulation data. The form of the schema data
is controlled by a meta-schema. The
effect of this is for the end user that he
can access population data and schema
data in exactly the same way, i.e. by the
same means. Also, he can navigate
between these data without having to
change presentation style or dialogue. In
fact, this has been a major objective of
the CCITT Data Oriented HMI Specifi-
cation Technique, to make all HMI speci-
fications accessible and readable by end

Group

System

Network

Network

Group

Term.
group

Sch

Exchange

Pop

Exchange

Exchange

Term.
group

Term.
group

S

P

Term.
group

Term.
Term.
exchange

System

Person NameSch

Pop

S

P

John

John

Bill

Mary

Person Name

BillPerson Name

Figure 5 Mutually dependent references
A Group has two Terminating exchanges. Each of the two referenced
Exchanges has a Terminating group referring to the Group. The
intention is that there should be a mutual dependency between two
opposite roles, Terminating exchange and Terminating group. We have
so far not introduced means to express this dependency

Figure 6 Values
Name in the schema has three subordinate data items: John,
Bill, Mary. These can be instantiated in the same way as
any other data item, like John and Bill as shown in the pop-
ulation. In this case we have instantiated one data item only
subordinate to each Name. Also, the two shown subordinate
items, John and Bill, of different Names of different Persons
are different. However, there is nothing prohibiting
multivalues and significant duplicates if these are not
explicitly prohibited in the schema. Means for this are not
yet fully introduced

System

Person NameSch

Pop

S

P

Person Name

Person Name

System A B C D Z

J O H N

B I L L

S

P

Figure 7 Recursive instantiation
Name of Person ‘inherits’ permissible subordinate values
from its S(chema), which is Alpha. The subordinate data
items of Alpha make up the alphabet extensively. There is no
restriction on how many values can be contained in one
Name. Hence, a Name can be any sequence of letters
subordinate to Alpha. Pop ‘inherits’ its classes from Sch,
and we see the chosen instances John and Bill

63

Figure 8 Real recursion
Sch has a subordinate Network, which has another subordinate Network in
addition to Name and #subnet (number of subnets). Name and #subnet
inherit their permissible values from Alpha and Num, in the ordinary way.
The important construction here is the subordinate Network, which inherits
all (subordinate) properties from its superior Network. This way, even the
inheritance mechanism is inherited. Therefore, this allows any Network in
Pop to contain Networks recursively in an arbitrarily large tree. Note that
the subordinate Networks are identified locally to their superior Networks
only

Figure 9 Cardinality
The schema contains no constraint on the minimum or
maximum number of Persons in the Pop. The depicted Pop
contains two Persons. However, for each Person there has to be
exactly one Name. For each Name there can be minimum zero
and maximum one subordinate value (here indicated by a blank
box). Note the distinction between the cardinality constraints on
the Name itself relative to its superior Person and the cardinal-
ity constraints on the value subordinate to the Name. The value
can contain an arbitrarily long sequence of letters – inherited
from Alpha. Also, the value can contain significant duplicates,
like the double l in Bill. Note that in this example the value itself
(subordinate to Name) has no label

users. The purpose of this paper is to
introduce the formal apparatus for mak-
ing this goal achievable.

The scope of the end users’ HMIs is
defined to comprise:

- HMI population data

- HMI Layout Schemata

- HMI Contents Schemata

- HMI Terminology Schema.

For explanations, see (1, 3, 4, 5). The
contents of the Internal Schemata is
normally considered to be outside the
scope of the HMI.

Since the same formalism is used for
both instances and classes, we do not
need to distinguish between classes (e.g.
Name) and types (Alpha). We can use
the same formalism for instances, classes
and meta-classes. ‘Inheritance’ of ‘code’
from one of them to the other is stated by
using the schema-population references.
Note that there is no strict hierarchy be-
tween instances and classes. One data
item can contain schema-references to
several other data items, and classes can
even ‘inherit’ from their instances. Note
also that there is no distinction between
inheritance and instantiation. This is due
to the required free formation of class

and instance labels, which makes
ordinary inheritance obsolete.

In the above example we have used the
schema-population mechanism repeat-
edly. However, this is not really recurs-
ion. Real recursion we get when the same
classes are used to define the contents of
themselves. This is illustrated in Figure
8.

Figure 8 should clearly exemplify that a
data item is not defined extensionally by
its component data items. Rather, several
data items can be attached to an existing
data item.

System

Network NetworkSch

Pop

S

P

Alpha A B C Num

B

1 2

Name

#subnet

Network Network Name

NameNetwork

A

Name

#subnet

NameNetwork

A

2

B

S

S

P

P

P

System

Person NameSch

S

P

Alpha A B C D

P
(1.1) (0.1)

S

Pop Person Name

Person Name

J O H N

B I L L

Z

64

Cardinality constraints

So far, we have introduced three notions
of constraints: all data make up a data
tree, every data item is an instance of one
class only, and we have existential
conditions. Now, we introduce the
cardinality constraint on the minimum
and maximum number of instances of a
data item relative to its superior data
item. See examples in Figure 9.

The formalism allows the HMI data
designer to choose between multi-valued
attributes (i.e. several values in one
Name) and repeating attributes (i.e.
several Names of one Person) or the
combination or prohibition of these
options.

A unified language

The same formalism as already intro-
duced can be used to state the detailed
syntax of the values. See Figure 10.

Observe in Figure 11 that the detailed
structure of the value remains available
in the instantiated data. This structure
can, of course, be suppressed in the
mapping to the final presentation on the
end user’s screen. However, it can be
important to make this structure available
to the user. This is analogous to the pre-
sentation of control characters in docu-
ment handling systems.

The strength of the HMI formalism is, as
shown, that we can use exactly the same
basic notions to specify the overall
structure of the data as well as the
detailed syntactical structure of the
values. Also, the formalism can express
the required complex context-sensitive

System

Person NameSch

S

P

Alpha A B C D

P(1.1) (0.1)

S

Pop Person

Person

J O H N

B I L L

Z

P

S

-

-

System

CableSch

Pop

S

P

Alpha A B C Num

2

1 2

Name

Name

Pair

#subnet 2

Pair No.

S

P

P

Cable
A B C

No. 1

No.Pair

Name
Cable

B B C

No. 1Pair

S

Figure 10 Specification of syntax of values
A Name is defined to consist of three parts: a first name, a blank
(-) and a family name. The depicted Person’s Name is John
Grey

Figure 11 Local codes
Pair being defined subordinate to Cable implies that uniqu-
eness of the Pair identifying attribute No. is only controlled
within the scope of the superior Cable

System

Network NetworkSch

Pop

S

P
#subnet

Network Network

Network

#subnet

S

∆

∆

∆

2

P

Figure 12 Functions
∆ is an incremental derivation Function. When a
subordinate Network is inserted, the #subnet of its superior
Network is incremented by 1. The details of the navigation
to the right #subnet is not covered by this paper. If a
subordinate Network is deleted, the #subnet of its superior
Network is decremented by 1. The shown ∆ Function has no
Input, only an Output. Inputs and Outputs use hooked
arrows. Note that functions receiving data subordinate to
#subnet are not illustrated

65

syntactical structures of HMI data, which
is normally not achievable in most altern-
ative formalisms.

Local identification of instances

The purpose of using local object class
labels is to state that the instances of the
subordinate object class are identified
locally to an instance of the superior
class. See Figure 11, and about objects in
Figures 14 and 16. In general, instances
are identified locally to each other when
the corresponding classes are identified
locally to each other.

Functions

Cardinality constraints and existential
conditions are just special cases of a gen-
eral Function notion. Functions are used
to state arbitrary constraints on data and
derivations of data. Functions are consid-
ered to produce data in an algorithmic
way.

A Function can be defined subordinate to
any data item and is instantiated in the
same way as any other data item. Also, a
Function can be defined to contain any
other data item, including subordinate
Functions.

Inputs and Outputs are special cases of
subordinate data items to Functions. Inp-
uts and Outputs are stating references to /
roles of other data items in the data tree.
A Function is illustrated in Figure 12.

The Function notion allows constraint
and derivation routines to be attached to
any data item in the data tree, much the
same way as in attribute grammars. This
way, the HMI grammar is not only an
attachment grammar in a data tree, but it
also allows constraints, derivations and
references to other branches of the tree.

System

Specification

P

Legal person

Name (1,1)

Contract

Service

Contract

Number (1,1)

Price (0,1)

Service

Customer (1,1)

Product

Code (1,1)

Contract (0,1)

Customer (0,1)

Network

S

Legal person

Name

Contract

Legal person

Name

Contract

Service

Service

Contract

Number

Price

Service

Customer

Contract

Number

Price

Service

Service

Customer

Product

Code

Contract

Product

Code

Contract

Customer

Figure 14 Simplified alphanumeric
notation for both classes and instances

The Specification has three subordinate
object classes (underlined) with
subordinate attributes and object classes.
The latter are stating references to other
object classes, but this is not indicated.
Indentations indicate subordinate data
items. Natural language definitions and
explanations can be associated with each
indented data item. References can be indi-
cated by statements like ‘Service refers to
Product’, etc. Cardinality constraints, not
shown in Figure 14, are added.
Corresponding instances are shown
subordinate to Network. S(chema) and
P(opulation) references are indicated

System

Legal pers Contract

Number Code

Price

Service

Specfic-
ation

Product

Name

Contract

Customer

Contract

Service
Customer

Network

S

P

a. Detailed notation

The Specification has three subordinate object classes
(underlined): Legal pers, Contract, Product. These have
the attributes Name, Number and Price, and Code
respectively. The Contract is connected to the two
others by references in both directions, introducing the
roles Contract and Customer, and Service and Contract
respectively. Legal pers and Product are interconnected
by the two opposite roles, Service and Customer.

Legal pers

Name

Contract

Number
Price

Product

Code

Customer Service

Service

Customer

b. Shorthand notation

The System, Specification, and Network object classes
and the schema-population reference are suppressed.
Attributes are indented and depicted inside their
superior object classes. Two-way arrows indicate
mutually dependent references. One-way arrows
indicate single references (not shown). Role labels are
written next to the object class they refer to. Role
labels can be suppressed if they are identical to the
class label of the referenced object class. Cardinality
constraints can be placed next to the Role labels (not
shown).

Figure 13 Detailed and shorthand notations

66

Summary and comparison

In the previous section we have intro-
duced some basic notions of the HMI
formalism. However, we have not intro-
duced the very primitive notions and not
a complete set of notions. However, the
set introduced should provide a good
understanding of how the formalism can
be used and rationales for introducing
these notions in an HMI formalism.

The examples shown, so far, contain a lot
of details. In order to make the figures
more compact and more readable, we
introduce a shorthand notation in Figure
13. This shows that the graphical
notation has similarities to that of the
Entity-relationship formalism, but the
details and the application area are dis-
tinctively different.

Figure 14 provides an alphanumerical
notation for defining subordinate data
items only. Both classes and instances
are shown. Typically, definitions and
explanations are associated with each
class entry and are indented to the same
level.

At this point a short comparison with the
OSI Management formalism (2) is of
interest. The OSI Management formalism
requires that all object class labels are
globally unique and does not allow use of
local class labels. Hence, the formalism
is not capable of defining the terms as
they appear on the HMI. Also, the
restriction to the use of global class lab-
els only, will make the data tree of the
instances different from the data tree of
their classes, i.e. they will not be homo-
morphic. This will make it difficult to the
user to foresee the structure of the
instances when the classes are known
and vice versa. In fact, the OSI Manage-
ment formalism applies to classes only
and not to instances. This shortcoming on
how to define class labels is even more
evident for attributes. The formalism
allows attribute groups to be defined
when attributes are given. However, it
does not allow attributes to be defined
locally to other attributes and does not
allow definition of repeating attributes,
but allows for multi-values. The attri-
butes are defined in separete packages,
which make the specifications more dif-
ficult to overview. The formalism is not
applicable to defining values, and use the
ASN.1 notation for this purpose. Signifi-
cant duplicates are neither permitted for
classes nor for instances. The concrete
syntaxes of the OSI Management formal-
ism and ASN.1 are overloaded with
technical and reserved words, which

make them inapplicable for HMI usage.
This syntax is such that the formalism
cannot be used to define the structure of
the dictionary containing the specifica-
tions, i.e. the formalism is not applicable
to defining meta-schemata.

It is evident that the OSI Management
formalism is not appropriate as a user
oriented specification language, but must
be considered a candidate high level pro-
gramming language, or an imple-
mentation specification language, maybe
for the internal Terminology schema (3).
However, other object oriented languages
or other high level languages are more
general and powerful for this usage.
Alternative formalisms exist for the
specification of HMI data, like the
Entity-Relationship formalism and the
Relational (Model) formalism. These
have similar and even more severe short-
comings than the OSI Management form-
alism.

Abbreviations

CCITT Consultative Committee for
International Telegraph and
Telephone

EDP Electronic Data Processing

HMI Human-Machine Interfaces

References

1 ITU. Draft Recommendations Z.35x
and Appendices to Draft Recomm-
endations. (CCITT COM X-R 12.)

2 Kåråsen, A G. The OSI management
formalism. Telektronikk, 89(2/3), 90-
96, 1993 (this issue).

3 Meisingset, A. A data flow approach
to interoperability. Telektronikk,
89(2/3), 52-59, 1993 (this issue).

4 Meisingset, A. Perspectives on the
CCITT Data Oriented Human-
Machine Interface Specification
Technique. SDL Forum, Glasgow,
1991. Kjeller, Norwegian Telecom
Research, 1991. (TF lecture F10/91.)

5 Meisingset, A. The CCITT data ori-
ented Human-Machine Interface
specification technique. SETSS,
Florence, 1992. Kjeller, Norwegian
Telecom Research, 1992. (TF lecture
F24/92.)

1 Introduction

SDL (1) is the Specification and
Description Language recommended by
CCITT (International Telegraph and
Telephone Consultative Committee) for
unambiguous specification of the
behaviour of telecommunications sys-
tems. SDL is a fairly old language. The
first version was issued in 1976, followed
by new versions in 1980, 1984, and
1988. SDL has become a big language.
In this introduction we will try to intro-
duce the basic constructs without going
into all possibilities and details. For those
interested in a more thorough description
of the language, we refer to textbooks,
e.g (2, 3). The object oriented extensions
are introduced elsewhere in this issue (4).

SDL has two alternative syntaxes, one
graphical and one textual. In this pre-
sentation we will concentrate on the
graphical syntax, since this form is
regarded as being the main reason why
SDL has gained in popularity compared
to other specification languages missing
a graphical syntax. The textual syntax is
mainly motivated by the need of having
an interchange format between tools.

Traditionally, SDL has been used to
specify behaviour of real time systems,
like telephone exchanges. We now see
efforts to use it in new areas, like the
specification of Intelligent Networks ser-
vices (5).

2 The basic ideas

The most basic construct in SDL is the
process. The process is an Extended
Finite State Machine. A Finite State
Machine consists of a set of states, a
starting state, an input alphabet and a
state transfer function. When receiving
an input, the finite state machine goes
through a transition to a new state as
defined by the state transfer function.
Thus, the essential elements of the SDL
process are states, inputs (signals), and
nextstates. In addition, a transition is
composed of a possibly empty set of
additional elements that specify certain
actions (described later). A transition
from a specific state is initiated by an
input and terminates in a nextstate. An

input consumes the corresponding signal
from the input queue of the process.

An extended finite state machine is
extended to include local variables. This
allows transitions from one state to
depend on the current value of local vari-
ables. Figure 1 gives an example of a
simple process specification. The figure
also shows the basic symbols of states,
inputs, outputs, tasks, decisions, and the
declaration of local variables.

One process gives only a sequential
behaviour through a finite set of states.
Concurrent behaviour is introduced in
SDL by the block construct, which
groups together a set of communicating
processes. The processes are connected
by signal routes which communicate the
signals between the
processes. One
process can output
signals which are
delivered to other
processes by the
use of a signal
route. The signals
are put in the
receiving process’
input port. The
input port is a
FIFO-queue (First
In First Out), so
that the signals are
treated in the same
order as they
arrive. The com-
munication is
asynchronous, i.e.
there is no hands-
hake-mechanism
where the process
which sends a
signal has to wait
for a reply. Figure
2 gives an example
use of the block
construct.

We have now
introduced the
most basic
constructs in SDL,
processes which are
machines that are
either in a state or is

performing a transition between two
states, blocks that group together com-
municating processes, and signal routes
that convey the signals between the pro-
cesses. In the next section we will treat
the different constructs in greater detail.

3 Basic SDL

Basic SDL refers to a central portion of
the language which is sufficient for many
SDL specifications. This part of the
language was the first to be defined, and
the additional constructs are defined by
giving rules for how they can be
expressed using basic constructs only.

67

The CCITT Specification and Description Language – SDL

B Y A S T R I D N Y E N G

Abstract

This paper gives an introduction to the CCITT Specification and
Description Language SDL. The basic structuring notions in the
language are process and block. A process is an extended finite
state machine having a finite set of states,
a valid input signal set and transitions (with possibly outputs of

signals) between the states. The block construct groups together
processes into a system with communicating, concurrently
executing state machines. The communication
is asynchronous and based on sending signals to and reading
signals from infinite input buffers.

681.3.04

Ready

A

First

first:=
false

first:=
true

A 2 Ready

B

OK

Ready

dcl first
boolean:=true

process Simple

Start

State

Nextstate

Input

Output

Task

Decision

Text symbol,
used to
enclose
textual
definitions
(ssignals,
variables, etc)

Figure 1 A simple SDL process
The process accepts strings containing repeated sequences of AAB. The process
starts in the Ready state. In this state it only accepts the input A. After receiving A,
the process checks whether it is the first or second A received. If it is the first, the
process goes back to the same state, Ready, and waits for another A. If it has
received two, it goes to the state A1 and waits for B

3.1 Specification of structure

SDL has several structuring concepts.
The aim of this structuring is to manage
complexity by hiding details in one part
of the specification from another part and
also to offer specifications of different
details.

The most important structuring concept
is the already mentioned block concept
which groups processes. An SDL system

can be partitioned into several blocks,
connected by channels. The channels are
either bidirectional or unidirectional
communicating paths which convey the
signals from processes within one block
to processes within another block.

Figure 3 shows how the directory system
KAT-500 (6) is specified as an SDL-sys-
tem consisting of the two blocks DUA
(Directory User Agent) and DSA
(Directory System Agent) connected by
the two channels DUA_DSA and
DSA_DUA.

An SDL specification contains a hier-
archy of components arranged in a tree-
like structure. The system components
are blocks, channels, data types, and
signal definitions. The specification of a
block can either be done locally, i.e. wit-
hin the system, or be removed from the
context and be referred to within the sys-
tem. For real specifications of some size,
the latter alternative is most frequently
used. For the example in Figure 3, this
means that the blocks DUA and DSA are
only referenced within the system KAT-
500, their specification is elsewhere. All
specifications of components (signals,
data types, variables) are visible from the
point where they are specified and down
to the leaves of the hierarchy. At the
block level, processes, signals, data
types, and signalroutes are defined, the
processes can in addition contain vari-
ables, timers, and procedures. The proce-
dure construct is similar to procedures
found in programming languages. The
procedure construct can be used to
embody parts of the process graph, such
that it can be used in different places in
the process and also hide details in the
process graph. A procedure is a state
machine that is created when the proce-
dure is called and stops when the call is
returned. Figure 4 shows the main hier-
archical levels in SDL.

3.2 Specification of behaviour

The process is probably the best known
and most used construct in SDL. The
processes deal with the dynamic
behaviour of the system. A process
definition can have one or more instances
during its lifetime. The number of
instances is declared in the process head-
ing and gives the initial number of
instances, i.e. the number of instances
created at system initialisation, and a
maximum number of instances which can
exist at the same time. New instances can
be created by other processes.

A process definition has a declaration
part and a process graph (see Figure 1).
In the declaration part, local signals, data
types and variables are specified. The
process graph is the specification of the
state machine, which defines the process
behaviour. The process graph contains a
start transition which ends in some state.
The start transition is the first transition
to be executed after the process is initiali-
sed. The process graph has zero or more
states in which the process awaits arrival
of signals. In each state the process
accepts one or more signals which trigger
a possibly empty sequence of actions
followed by a nextstate. Figure 5 shows
the graphical symbols of the various
actions allowed in the transitions.

3.3 Specification of

communication

In the previous section we introduced the
different constructs used to specify one
process. We did not go into detail on how
the communication between the pro-
cesses takes place. Every process
instance has an associated input queue
where signals belonging to its so-called
complete valid input signal set is put.
The complete valid input signal set
defines those signals that the process can
accept. The allowed signals can be
carried on one or more signal routes lead-
ing to the process. A signal can arrive at
any time. Therefore every state should
define what actions to perform for all
signals. For some combinations of states
and signals the transition can be empty
and the state unchanged. This is not
specified by the SDL user, since all
signals not mentioned in a state are
consumed and followed by an implicit
transition back to the same state.

Outputs are used to send signals to other
processes. The signals may contain
values as parameters. There must always
be a communication path between the
sender and the receiver. If the receiving
process does not exist when the signal is
sent, the signal is discarded. SDL pro-
vides two possible ways to address the
signal receiver:

- Explicitly, by specifying a process
identifier (PId). In SDL, every process
has a unique address, of the predefined
sort PId. The SDL system manages all
PIds and ensures that they are unique.
There are four predefined expressions
giving values of PId for each process.
These are explained in Figure 6.

68

signal bind, bind_reply,
 keyboard, display,
 search, search_reply;

system KAT_500

User_DUA [keyboard]

DUA

DSA

DUA_User [display]

DSA_DUA
[bind_reply, search_reply]

DUA_DSA
[bind, search]

P1(1,1)

signal Sig1(integr);

block BL1

P2(1,1)
R1

[Sig]

R2

[Sig1]

Signal
declaration

R1 and R2
are signal-
routes.
R1 conveys
the signal Sig
defined at the
system level,
R2 conveys
the signal Sig1.

P1and P2 are processes

Figure 2 Example use of the block and signal route
constructs
The block BLI consists of the two processes P1 and P2.
The two processes are concurrently executing machines
communicating via the signal routes

Figure 3 Example use of the block and channel constructs
to specify system structure
The system KAT-500 consists of the Directory User Agent
block (DUA) and the Directory System Agent block (DSA).
The DUA can ask for a connection to the directory service
by sending the signal bind via the channel DUA_DSA, and
can ask for the search operation by sending the signal
search. Response is received via the channel DSA_DUA.
The DUA communicates with the user of the directory ser-
vice by sending signals to the environment using the
channel DUA_User, and receiving signals over the channel
User_DUA

Figure 6 shows an example of how two
processes can communicate sending
signals on signalroutes by using different
addressing mechanisms.

4 Additional concepts

For most specifications, the concepts
introduced above are sufficient. The sys-
tem consists of blocks connected by
channels, the blocks consist of processes
connected with signal routes, and pro-
cesses are specified by a process graph.

system Example

Bl1

Channel3

Channel1

Bl2
Channel2

P1(1,1)

signal A,B;block Bl1

P2(1,1)
R1 R2

[A,B]
R3

Pr1

State1

A

Pr1

process P2 procedure Pr1

- Implicitly, by omitting the address.
Then the system structure and its com-
munication paths are used to decide
which process will receive the signal.
It is possible to state explicitly on
which signal routes to send the signal.

Signal routes may be uni- or bidirec-
tional, just like the channels. Each
direction has an attached signallist,
which is a list of the names of the signals
that can be carried on the signal route in
that direction.

SDL has a number of predefined data
types (in SDL called sorts) and
constructs like struct and array which for
most users are sufficient to declare the
needed variables.

Here we will briefly mention additional
constructs which for the advanced SDL
user may add to the language power for
specifying large and complex systems.
So far we have only seen three levels of
specifications, the system level, the block
level and the process level. In addition, it

69

Proc(3)

S(2) to q

First

P(3)

i:=5

false true

Send the signal S with parameter 2 to
the process with q as identifier

Decision

Create the process P with the actual
parameter 3

Call procedure Proc with 3 as actual
parameter

Task, assignment of variables

Figure 5 Actions in transitions

P1(1,1)

signal B,C;
block B

P2(1,1)
Sr1

[A,B]
Sr2[A]

B A via
Sr1

A to
sender

A to
dest

process P1

Implicit addressing of out-
put signals. B can only be
sent on the signalroute Sr1.
Therefore the address of P2
can be omitted. The signal
A can be sent on both Sr1
and Sr2. Therefore the
address of the receiving
process ("to" followed by
a Pld value) or the signal-
route to send the signal
on (the "via" construct)
has to be specified.

Explicit addressing of outputs.
The signal receiver can be
addressed by its Pld value. The
keyword "to" is used in the output,
and it is followed by an
expression containing the
address of the reciving process.
The expression can be any of the
predefined ones (self, sender,
offspring, parent) or a variable
declared by the SDL user (e.g.
dest).
For each process there are four
expressions of sort PId:
- self, giving the address of
 the process itself;

- sender, giving the address of
 the process which sent the last
 consumed signal;

- offspring, giving the address
 of the process which has been
 most recent created by the
 process;

- parent, giving the address of
 process which created this
 process.

Figure 6 Specification of communication and addressing of
signals

Figure 4 The four main hierarchical levels in SDL
SDL has four main hierarchical levels, the system, the block, the process, and the
procedure. In addition, SDL defines block substructures (block in blocks) and ser-
vices (another way of structuring processes).

System Example consists of two blocks, the block Bl1 consists of two processes, the
process P2 defines and calls the procedure Pr1

70

newtype Number

literals 0,1;

operators

“+”: Number,Number ->

Number;

axioms

for all a,b,c in Number (

a+0 == a;

a+b == b+a;

(a+b)+c == a+(b+c);)

endnewtype;

Figure 7 Example data type specification
The declared newtype is Number. It is
defined to be composed of two literals, 0
and 1. The operator ‘+’ allows a Number
to be generated from other numbers by
repeated applications of the operator.
The axioms specify which terms repre-
sent the same value. For instance, 1 + 0
== 1, i.e. 1 + 0 and 1 represent the same
value

is possible to define a block substructure,
i.e. blocks within blocks in an unre-
stricted number of levels. Processes can
be partitioned into services, each service
being a state machine itself and repre-
senting a partial behaviour of the process.

SDL has a large number of so-called short-
hands allowing users to express a specific
behaviour in a compact way. All these
constructs can be expressed using more
primitive constructs. An example of such a
construct is export, which allows specifi-
cation of exported variables, i.e. variables
owned by one process can be made visible
to another process. The export construct
can be expressed using signal exchange
where the exporter sends the value of the
variable as a signal parameter to the
importing process. Another shorthand is
the asterisk concept, e.g. asterisk input. An
asterisk input is an input symbol with an
asterisk as signal name. This represents a
rest list of signals, for which no transition
is specified elsewhere for the state in
question. It is then possible to state that the
signals not explicitly mentioned will be
treated the same way, e.g. for specifying
error handling. For the rest of the short-
hands, we refer to textbooks (2, 3).

5 Data definition

So far we have only seen declaration and
use of data. Variables in processes and
procedures are in SDL declared to be of
specific types. These variables are used
in expressions in the tasks. We will now
briefly present how to define data in
SDL.

Data in SDL is based on the notion of
abstract data types (ADTs). This is
probably the most powerful part of the
language. Despite this fact, it is not much
used. This is because ADTs are regarded
as difficult both to read and write by non
experts. When we say that ADTs are not
much used, we refer to user defined
types. The language has a number of use-
ful predefined data types (integer, real,
boolean, etc.) and constructs like structs
and arrays which are sufficient for many
users.

A data type is called a sort in SDL. The
specification of a sort has the following
components:
- a name of the sort

- a set of literals (value names)

- a set of operators on the values

- a set of axioms (or equations) defining
the operators.

Figure 7 gives an example of a data type.

The literals, which can be considered as
operators without parameters, define a
subset of the values of a sort. In general,
a sort may have many more values. All
the values of a sort can be generated by
the repeated application of the operators
to the values of the sort. A combination
of applications of operators is called a
term. The axioms are used to define
which terms represent the same value.

6 The future of SDL

We have now given an overview of SDL,
its structuring mechanisms, the behaviour
part, the communication aspects and the
abstract data types. Hopefully, we have
communicated the basic ideas and what
they can express.

In addition to the constructs mentioned
here, there is an overwhelming number
of other concepts, some adding to the
language’s power, others to its flexibility
and complexity.

SDL is still a language in development.
In the years 1988 to 1992 many new fea-
tures have been added. These include
among others object oriented concepts,

remote procedures, algorithmic data
definition and a library concept. All these
new features have even further added to
the complexity of the language.

In the future, simplification of SDL will
be essential. Work is initiated in CCITT
SG 10 to harmonise the concepts and
hopefully reduce the size of the language.

Another important work item is how to
combine the use of SDL and ASN.1 (7).
ASN.1 is much used to specify and
standardise communication protocols.
Those who are implementing such
protocols do not want to specify already
defined ASN.1 types using SDL.

References

1 CCITT. CCITT Specification and
Description Language. Geneva,
1988. (Blue Book, Fascicle X.1-5,
Recommendation Z.100.)

2 Belina, F et al. SDL with Appli-
cations from protocol specification.
Englewood Cliffs, N.J., Prentice
Hall, 1991. ISBN 0-13-785890-6.

3 Saracco, R et al. Telecommunications
Systems Engineering using SDL.
Amsterdam, North-Holland, 1989.
ISBN 0-444-88084-4.

4 Møller-Pedersen, B. SDL-92 as an
object oriented notation, Telektron-
ikk, 89(2/3), 71-83, 1993 (this issue).

5 Møller-Pedersen, B et al. SDL-92 in
the description of Intelligent Network
services. Kjeller, Norwegian
Telecom Research, 1992. (TF report
R44/92.)

6 Bechmann, T et al. Katalogsystemet
KAT-500: Spesifikasjon av katalog-
klienten DUA(PC) ved bruk av spesi-
fikasjonsspraket SDL. Kjeller,
Norwegian Telecom Research, 1991
(TF report R37/91.)

7 CCITT. Recommendation X.208,
Information technology – Open Sys-
tems Interconnection – Abstract
Syntax Notation One (ASN.1), March
1988. (Blue Book, Fascicle VIII.4.)

71

1 Introduction

The last years have seen a lot of object
oriented analysis and specification
notations emerge. They have emerged
from converted Structured Analysis
advocates through many years, popped
up as extensions of ER notations, come
about as projections of object oriented
programming practice into analysis, or
simply sold as object oriented notations
because the keywords class and object
are used.

Many of these notations are simple-
minded, with simple-minded objects that
are nothing but a collection of data attri-
butes with associated operations, with
methods and message passing that is not-
hing more than a remote procedure call,
and few of them are real languages with
real semantics, with the implication that
deriving implementations from them is
more or less to do it all over again.

Behind the big scenes, in real-life pro-
jects (and big projects), the community
of SDL users tend to see their own appli-
cation of SDL as nothing to talk about.
They are just making very complex sys-

tems consisting of real-time, interacting,
concurrent processes, that really send
messages.

In March 1992 the CCITT plenary issued
the 1992 version of the CCITT recomm-
ended language SDL for specification
and description of systems, and now
SDL92 is (yet another) member of the set
of object oriented notations. The differ-
ence from most other notations is that it
is not just fancy graphics (in fact some of
the most fancy are left to tools to pro-
vide), but there is a real language behind,
with a formal definition. As a stand-
ardised language, it also has its weak
points, but most of what will be expected
by an object oriented notation (and some
more) is supported.

This contribution aims at introducing
SDL92 as an object oriented notation, by
using the same kind of gentle, informal
introduction to the concepts that is often
seen in papers on object oriented
notations, by providing a simple example
and by giving some elements of a method
as the introduction goes along.

2 SDL systems and SDL

systems specifications

SDL is a language intended for use in
analysis and specification of systems.
This is done by making SDL systems that
are models of the real world systems.
The real world systems can either be
existing or be planned to come into
existence. SDL systems are specified in
SDL system specifications.

The identified components of the real
world systems are represented by
instances as part of the SDL systems.
The classification of components into
categories and subcategories are repre-
sented by types and subtypes of
instances.

As part of the analysis and specification,
sets of application specific concepts will
often be identified. These are in SDL
represented by packages of type defini-
tions.

SDL is a language which may be used in
different ways – there is no specific met-
hod of identifying components and their
properties, or for identifying categories
of components. In this respect, SDL is
different from most analysis notations
that often come with a method. In the
following overview no attempt is made
to justify the choice of components and
their properties in the example system –
the intent is to introduce the main ele-
ments of the language, and not a method.
Figure 1 gives an informal sketch of the
example system being used here.

3 Processes, the main

objects of SDL Systems

In different notations there are different
approaches to what the main elements
are. In extended Entity-Relationship
formalisms they are sets of entities, in
scenario based notations (or in role
models) they are roles, and in object ori-
ented notations they are either objects,
classes of objects or mixtures of these.
Often there is no hint on how the
behaviour of these elements are organ-
ised, if they have behaviour at all.

An SDL system consists of a set of
instances. Instances may be of different
kinds, and their properties may either be
directly defined or they may be defined
by means of a type. If it is important to
express that a system has only one
instance with a given set of properties,
then the instance is specified directly,
without introducing any type in addition.
If the system has several instances with

SDL-92 as an object oriented notation

B Y B I R G E R M Ø L L E R - P E D E R S E N

681.3.04

AccountNo

Balance
Customer

(1,NoOfCust)

[deposit,
withdraw]

s1

[deposit,
withdraw]

s2

Account
(1,NoOfAcc)

BankAgent
(1,NoOfAgents)

CustomerId AccountNo

Balance

Customer Account BankAgent

deposit,
withdraw

deposit,
withdraw

Figure 1 Elements of an example Bank System
The Bank System consists of the following components: Account, Customers, and
BankAgents. The BankAgent requesting operations on an Account is supposed to
model any automatic transaction on the Account, e.g. deposit of salary and wit-
hdrawals in order to pay interest and repayment on loans in the bank. This is an
informal sketch of some of the attributes and of interactions between these objects; this
would be the kind of specification supported by many object oriented analysis nota-
tions

Figure 2 Process Sets representing the elements of the bank system
The parentheses are stating the initial and the maximum number of process instances
in the sets. If these numbers are not known (or not interesting at this point), then they
are not specified. The implication will be that there will be initially 1 element, and that
there is no limit on the number of instances. The Customer and BankAgent processes
may concurrently perform deposits and withdrawals on the same account. The signals
on the signal routes (s1 and s2) indicate possible interaction by signal exchange. The
deposit and withdraw signals will carry the amount to deposit and withdraw,
respectively

72

the same set of properties, then a type is
defined, and instances are created
according to this.

The main kind of instances in SDL sys-
tems are processes. A process is
characterised by attributes in terms of
variables and procedures, and by a cer-
tain behaviour. Processes behave
concurrently and interact by means of
asynchronous signal exchange. The
behaviour of a process is represented by
an Extended Finite State Machine. Attri-
butes of processes can be variables and
procedures. Procedure attributes are
exported so that other processes can
request them to be performed. Variables
are of data types defining values with

associated operators or of Process Identi-
fier types defining references to pro-
cesses.

In a model of a bank system, where it is
important to model that customers and
bank agents may update an account
concurrently, processes are obvious
candidates for the representation of these
components of the model.

Processes are elements of process sets.
When the components of the system have
been identified, and they should be repre-
sented by processes in the model SDL
system, then they are contained in pro-
cess sets. The notation for process sets is
illustrated in Figure 2. The specification

of a process set includes the specification
of the initial number and the maximum
number of instances in the set, i.e.
cardinality constraints.

The simplest form of interaction between
processes is exchange of signals. In order
to specify that processes may exchange
signals, the process set symbols are
connected by signal routes. The signal
routes between the process sets and the
signals associated with the signal routes
specify possible signal exchanges. Other
notations like Message Sequence Charts
are needed to illustrate the sequences of
signals sent between two or more pro-
cesses.

Signal routes indicate a combination of
control and data flow. Processes execute
independently of each other, but the flow
of control of a process may in a given
state be influenced by the reception of
signals sent from other processes. Signals
may carry data values which the receiv-
ing process may use in its further
execution.

The notation for specifying process sets
is used to indicate that the system will
have sets of process instances; the prop-
erties of the processes are described in
separate process diagrams, see Figure 3
for examples.

4 Classification of pro-

cesses: Process types

Often there will be different sets of
objects with the same properties in a sys-
tem (e.g. a set of good and a set of bad
customers), or the same category of
objects should be part of different sys-
tems. In object oriented notations this is
reflected by defining classes of objects.
In SDL it is reflected by defining process
types. These may either be specified as
part of the specification of a single SDL
system, or as part of the specification of a
package.

Most object oriented methods will have
an activity that from a dictionary of terms
within an application domain, (or by
some kind of analysis, or by experience
from other similar systems), identifies
application specific concepts. In SDL,
these concepts are represented by types
of various kinds of instances, and for a
given application domain these may be
collected into packages. Figure 4 gives
an example on how a package of bank
system specific types is specified. The
advantage of the package mechanism is
that it allows the definition of collections
of related types without introducing arti-

process Customer

dcl CustomerId
 Identification;

process Account

dcl AccountNo Number;
dcl Balance, amount BalanceType;

process BankAgent

goodStanding

deposit
(amount)

Balance:=
Balance +
amount

withdraw
(amount)

Balance:=
Balance -
amount

Figure 3 Process Diagrams specifying the properties of processes
Only the Account is (partially) specified: two variables (of types Number and BalanceType) and a
fragment of the process behaviour is specified: in the state goodStanding it will accept both deposit
and withdraw signals, and the Balance will be updated accordingly

newtype Number; ... ;
newtype BalanceType; ... ;

signal new(Identification), close(Number),
 deposit(BalanceType), withdraw(BalanceType);

Customer Account BankAgent

package bankConcepts

Figure 4 Package of Type Definitions
The Process types Customer, Account, and BankAgent are specified as
part of a package, together with the types of attributes and signals used in
bank systems. The process type symbols in the package diagram indicate
only that three process types are defined as part of the bankConcepts
package. The symbols are merely diagram refrences to process type dia-
grams defining the properties of the process types

73

ficial types just for this purpose. Types in
SDL are intended for the representation
of common properties of instances of
systems, and collections of types are not
instances.

The properties of process types are speci-
fied by means of process type diagrams.
Process type diagrams are similar to pro-
cess diagrams: they specify the attributes
and behaviour of types of processes. The
only differences are the extra keyword
type and the gates at the border of the
diagram frame, see Figure 5 for
examples. Different process sets of the
same process type may be connected by
signal routes to different other sets. For
this purpose, the process type defines
gates as connection points for signal
routes. The constraints on the gates (in
terms of ingoing and outgoing signals)
make it possible to specify the behaviour
of process types without knowing in
which process set the instances of the
type will be and how the process sets are
connected to other sets. Gates can only
be connected by signal routes which
carry the signals of the constraint.

Process sets may be specified according
to process types, as illustrated in Figure
6. The process set specification will
specify the name of the set and the pro-
cess type.

Note the distinction between process
types, process sets and process instances.
Process types only define the common
properties of instances (of the type), while
process sets have cardinality. Variables of
Process Identifier type identify process
instances, and not sets. Signal routes
connect process sets.

5 Grouping of objects:

Blocks of processes

Unlike most notations for object oriented
analysis and specification, SDL does not
only support the specification of classes
and objects (by means of process types
and processes) with their interaction, but
also the grouping of objects into larger
units. This may either be used in order to
decompose a large system into large
functional units (if functional decomposi-
tion is the preferred technique) or it may
be used to structure the SDL system into
parts that reflect parts of the real world
system.

Blocks in SDL are containers for either
sets of processes connected by signal
routes, or for a substructure of blocks
connected by channels. These blocks

may in turn consist of either process sets
or a substructure of blocks. Figures 7 and
8 give examples of both alternatives.
There is no specific behaviour associated
with a block, and blocks cannot have
attributes in terms of variables or
exported procedures. Therefore, the
behaviour of a block is only the
combined behaviour of its processes.

In addition to containing processes or
blocks, a block may have data type
definitions and signal definitions. Signals
being used in the interaction between

processes in a block may therefore be
defined locally to this block (providing a
local name space).

Signals sent on channels between blocks
will be split among the processes (or
blocks) inside the outer blocks. The
connected channels and signal routes give
the allowed signal paths. Blocks also pro-
vide encapsulation, not only for signal
definitions as mentioned above, but also
for process instance creation. Apart from
the initially created processes, all other
processes have to be created by some pro-

process type Customer

dcl CustomerId
 Identification;

process type Account

dcl AccountNo Number;
dcl Balance, amound BalanceType;

process type BankAgent

goodStanding

deposit
(amount)

Balance:=
Balance +
amount

withdraw
(amount)

Balance:=
Balance -
amount

Exit [deposit,
withdraw]

Exit [deposit,
withdraw]

Entry [deposit,
withdraw]

Figure 5 Process Type Diagram
The keyword type indicates that these are type diagrams. Entry and Exit at the border of the diagram
are gates. Gates are connection points for signal routes. In Figure 6 these gates are connected by
signal routes

[deposit,
withdraw]

s2

[deposit,
withdraw]

s1

theCustomers
(1,NoOfCust):

Customer

theBankAgents
(1,NoOfAgents):

BankAgents

theAccounts
(1,NoOfAcc):

Account

E
xi

t

E
n

tr
y

E
xi

t

E
n

tr
y

Figure 6 Process sets according to Process Types
In the specification of a process set according to a type there is both a process set
name (e.g. theBankAgents) and a type name (BankAgent). The gates are the ones
defined in corresponding process type diagrams

block theBankblock Customers

[(acc)]

s1

theCustomers
(1,NoOfCust):

Customer

theBankAgents
(1,NoOfAgents):

BankAgents

theAccounts
(1,NoOfAcc):

Account

E
xi

t

E
n

tr
y

E
xi

t

E
n

tr
y[(acc)]

c1

[(acc)]

s1

[(acc)]

s2

Figure 7 Blocks of Processes
By using the block concept, it is indicated that Account and BankAgent processes are
part of the Bank, while Customer processes are not

74

SDL system assumes that the environ-
ment has SDL processes which may
receive signals from the system and send
signals to the system. However, these
processes are not specified.

7 Specification of

properties of attributes:

Data types

Data types of variables define values in
terms of literals, operators with a signa-
ture, and the behaviour of the operators.

In the example used here, only simple
structured data types are used:

newtype BalanceType
struct

dollars
Integer;

cents
Integer;
endnewtype BalanceType;
newtype Number

struct
countrycode

Integer;
bankcode

Integer;
customercode

Integer;
endnewtype Number

The operators may either be specified by
means of axioms or by means of operator
diagrams that resemble procedure dia-
grams.

8 Specification of

behaviour: States

and transitions

With respect to behaviour, a process is an
Extended Finite State Machine: When
started, a process executes its start
transition and enters the first state. The
reception of a signal triggers a transition
from one state to a next state. In transi-
tions, a process may execute actions.
Actions can assign values (of express-
ions) to variables of the processes,
branch on values of expressions, call pro-
cedures, create new processes, and output
signals to other processes. Figure 11 is a
behaviour specification of a process type.

Each process receives (and keeps) signals
in a queue. When being in a state, the
process takes from the queue the first
signal that is of one of the types indicated
in the input symbols. Other signals in the
queue will be discarded, unless explicitly
saved in that state. Depending on which
signal has arrived first, the corresponding
transition is executed and the next state is
entered.

block theBankblock Customers

[(acc)]

s1

theCustomers
(1,NoOfCust):

Customer

theDepartmentstheAccounts
E

xi
t [(acc)]

c1

[(acc)]

c1

[(acc)]

s2

Figure 8 Block with Subblocks
theBank block is further decomposed into two blocks. theDepartments may e.g. contain Bank-
Agents, while the theAccounts may contain the Account processes (not shown here)

block theAccounts

c1 [deposit,
withdraw]

theAccounts
(1,NoOfAcc):Account

Ent
ry Entry

Entry
c2

AccountAdm(1,1)

[deposit,
withdraw]

s12 s2

[close][new,
close]

s11
s

Figure 9 The Interior of theAccounts block
Accounts will not (and cannot) be created
directly by Customers (outside the block), but
by a special process, AccountAdm, which will
assign a unique AccountNumber to the
Account. This process is part of the block
containing the Accounts. Note that the incom-
ing signals are divided into (new,close) that
are directed to AccountAdm, and
(deposit,withdraw) which are directed to
theAccounts. The dashed line from
AccountAdm to theAccount indicates that
AccountAdm creates processes in theAccount
process set

block theBankblock Customers

[(adm),
(acc)]

s1

theCustomers
(1,NoOfCust):

Customer

theDepartmentstheAccounts

E
xi

t

[(adm),
(acc)]

c1

[(adm),
(acc)]

c1

[(acc)]

c2

signallist acc=deposit, withdraw; signalist adm=new, close;

system BankSystem

use bankConcepts;

Figure 10 System Diagram
A complete specification of a Bank system. The specification uses the types defined in the package
bankConcepts. By incorporating the customers in the system, there is no interaction with the
environment. If not incorporated, the c1 channel would just connect theBank block with the frame of
the diagram, indicating interaction with the customer processes that are then supposed to be in the
environment

cess (by the execution of a create
request), and this may only take place
within a block. The implication of this is
that creation of processes in a block from
processes outside this block must be mod-
elled by sending special signals for this
purpose. See Figure 9 for an illustration
of both the splitting of channels and
remote process creation.

6 Specification of sys-

tems: Set of blocks

connected by channels

Having identified the right set of blocks
and processes and their connections, the
whole truth about a system is expressed
in a system specification. The system
specification delimits the system from
the environment of the system. An SDL
system consists of a set of blocks
connected by channels. Blocks may also
be connected with the environment by
means of channels. Figure 10 gives an
example on a system diagram.

If the system interacts with its environ-
ment, then the signals used for that pur-
pose is defined as part of the system. The

75

9 Attributes of potential

behaviour: (Remote)

procedures

The behaviour of a process or process
type may be structured by means of
partial state/transition diagrams repre-
sented by procedures. A procedure
defines behaviour by means of the same
elements as a process, i.e. states and
transitions, and a process follows the
pattern of behaviour by calling the proce-
dure.

Processes may export a procedure so that
other processes can request it (by remote
procedure calls) to be executed by the
process which exports it, see Figure 12
for an example.

In simple cases, all exported procedures
are accepted in all states, but in general it
is possible to specify that a procedure
will not be accepted in certain states, just
as for signals.

While process communication by means
of signals is asynchronous, the process
calling a remote procedure is
synchronised with the called party until
the procedure has been executed. When
the called party executes the transition
associated with the procedure input, the
caller may proceed on its own.

10 Classification of blocks:

Block types and

specialisation of these

by adding attributes

Types are used in order to model
concepts from the application domain
and to classify similar instances. The use
of types when defining new instances or
types has been illustrated above. The
notions of generalised and specialised
concepts are in SDL represented by
(super)types and subtypes.

Blocks may be used either to group pro-
cesses in different functional units or
they may be used to model directly
“physical” entities in the system being
described. In the BankSystem the blocks
are used to model that the customers are
not part of the bank: there is a block
containing customers and a block that
represents the bank.

Suppose that the bank block should
model the whole of a given bank, and
that it is important to model that it
consists of headquarters and a number of
branches, see Figure 13. Each branch

will have departments and accounts, the
same will the headquarters. A branch will
in addition have a bank manager, while
the headquarters in addition will have a
board.

This classification is in SDL supported
by block types and by specialisation of
block types. Figure 14 indicates the sub-
type relation, while Figure 15 gives the
details of the block subtype diagrams.

In general a (sub)type of any kind of
instance (and not only blocks) can be
defined as a specialisation of another
(super)type. A subtype inherits all the
properties defined in the supertype defini-
tion. In addition it may add properties and

it may redefine virtual types and virtual
transitions. Added properties must not
define entities with the same name as
defined in the supertype.

11 Specialisation of

behaviour I: Adding

attributes, states and

transitions

When classifying processes into process
types, the need for organising the identi-
fied process types in a subtype hierarchy
will arise. Figure 16 illustrates a typical
process type hierarchy in the bank
account context. The behaviour of the

process type Account

dcl AccountNo Number;
dcl Balance BalanceType;

´initialize´

deposit
(amount)

Balance:=
Balance +
amount

[deposit,withdraw] Exit [overdraw]Entry

WaitFirstDeposit

goodStanding

close

*

´close the
account´

deposit
(amount)

Balance:=
Balance +
amount

goodStanding
Balance:=
Balance -
amount

virtual
withdraw
(amount)

goodStanding

overdraw

amount >
balance

-Balance:=
Balance -
amount

overDraw

balance >
ZeroBalance

Balance:=
Balance +
amount

overDraw

deposit
(amount)

overDrawgoodStanding

True False

True False

Figure 11 Specification of Behaviour (of Account processes) by States and Transitions
Compared to former sketches of the theAccount process type, this one also outputs the signal overdraw. In
all states it will accept the signal close (* means all states). In state goodStanding it will accept both
deposit and withdraw, while in state overDrawn it will only accept deposit. As Account is specified here,
withdraws in state overDrawn will be discarded (signals of type withdraw is not input in state over-
Drawn); if they were saved, then they could have been handled in other states. The input transition wit-
hdraw in state goodStanding is specified to be a virtual transition. This implies that the transition may be
redefined in subtypes of Account. Non-virtual transition cannot be redefined in subtypes

76

Figure 12 Remote Procedures used to provide a new, unique account number, and to release the use of a
number
The procedure newNumber is a value returning procedure. This fact is used in the call of the procedure.
The number obtained from the procedure (No) is given to the new process created in the process set
theAccounts. The releaseNumber procedure is just called, with the number to be released as a parameter

Figure 13 Blocks according to Block Types
A bank with headquarters and a set of branches

Figure 14 Illustration of the Block Subtype Hierarchy
Block subtype relation, with the Bank representing the
common properties of BankHeadquarters and Bank-
Branch. This is not formal SDL, but just an illustration

virtual transitions. The behaviour of an
instance of a subtype will follow the
redefinitions of virtual types and transi-
tions, also for the part of the behaviour
specified in the supertype definition. As
an example, calls of a virtual procedure
will be calls of the redefined procedure,
also for calls being specified in the super-
type.

The notion of virtual procedures that may
be redefined in subclasses is a well-
known object oriented language mechan-
ism for specialising behaviour. A more
direct way of specialising behaviour is
provided in SDL by means of virtual
transitions. Figure 18 illustrates the rede-
finition of a virtual transition.

In addition to virtual input transitions, it
is also possible to specify the start transi-
tion to be virtual; and as for a virtual
input transition it may be redefined in
subtypes. A virtual save can be redefined
to an input transition.

13 Specialisation of

behaviour III:

Redefining virtual

procedures and types

If it is not intended that a whole transi-
tion shall be redefinable, then virtual
procedures is used. Figures 19 and 20
give an example of the definition and
redefinition of virtual procedures.

In order for the supertype with the virtual
procedures to ensure that redefinitions
are not redefinitions to just any proce-
dures with the same name, virtual proce-
dures may be constrained by a proce-
dure. Redefinitions then have to be speci-
alisations of this constraint procedure.
The specialisation of procedures follows
the same pattern as for process types:
adding variables, states and transitions,
and redefining virtual transitions and
virtual procedures. The constraint proce-
dure may be so simple that it only speci-
fies the required parameters, but it may
also specify behaviour. This behaviour is
then assured to be part of the redefini-
tions.

Types in general (and not only proce-
dures) may be defined as virtual types. In
addition a virtual type may be given a
constraint, in terms of a type. This
implies that the redefinition cannot be
just any type, but it has to be a subtype of
the constraint.

subtypes are supposed to inherit the
behaviour of the process supertype.

As for a block subtype, a process subtype
inherits all the properties defined in the
process supertype, and it may add prop-
erties. Not only attributes, like variables
and procedures, are inherited, but the
behaviour specification of the supertype
is inherited as well.

Transitions specified in a subtype are
simply added to the transitions specified
in the supertype: the resulting (sub)type
will thereby inherit all the transitions of
the supertype, see Figure 17 for an
example.

12 Specialisation of be-

haviour II: Redefining

virtual transitions

A general type intended to act as a sup-
ertype will often have some properties
that should be defined differently in dif-
ferent subtypes, while other properties
should remain the same for all subtypes.
SDL supports the possibility of rede-
fining local types and transitions. Types
and transitions which can be redefined in
subtypes are called virtual types and

the Accounts(No)

idle

new

process AccountAdm

import newNumber result Number;
import releaseNumver(Number)

close(AccNo)

releaseNumber
(AccNo) to
AccountNumbering

procedure
newNumber

idle

idle

No:= call
newNumber to
AccountNumbering

idle

idle

exported
releaseNumber

exported
newNumber

idle

procedure
releaseNumber

process AccountNumbering

block theBank

theBranches
(NoOfBranches):
BankBranchE

nt
ry theHeadQuarter:

BankHeadQuarter

[(adm),
(acc)]

c1

BankHeadquarter BankBranch

Bank

77

theBankManager

block type
 BankBranch inherits Bank

block type
 BankHeadquarter inherits Bank

block type Bank

theAccounts theDepartment

[(adm),
(acc)]

c1

[(adm),
(acc)]

Entry

[(adm),
(acc)]

c2

theBoard

Figure 15 Block Types inheriting from a common Block Type
The common properties of a bank are modelled by a block type Bank. The block type
Headquarters is a subtype of this, inheriting the properties of Bank and adding a
Board, while BankBranch is a subtype of Bank, adding the BankManager

ChequeAccount CreditAccount

Account

Figure 16 Illustration of Subtype Hierarchy of Pro-
cess Types

The analysis of accounts in the bank system may
have concluded that there are two special types of
accounts: cheque accounts, which will allow wit-
hdrawals based on cheques, and credit accounts,
which have a limit on overdraw. Specifying the
corresponding process types as subtypes of Account
ensures that they will have all the properties of
Account. The figure is not formal SDL, but just an
illustration

-

process type
 ChequeAccount inherits Account

chequedraw(chequeId,
amount)

goodStanding

´cheque
checkId´

amount >
balance

Balance:=
Balance +
amount

reject
cheque

-

True False

[chequedraw]

Entry

[rejectcheque]

Exit

Figure 17 Adding Transitions in a Subtype
The process type ChequeAccount inherits the prop-
erties of process type Account, and adds the input of a
new type of signal (chequedraw) in state goodStanding
and a corresponding transition. The fact that the gates
Entry and Exit are inherited (and not added) is indi-
cated by the gate symbols being dashed

-

process type
 CreditAccount inherits Account adding

redefined
withdraw(amount)

goodStanding

amount >
balance+

Limit

Balance:=
Balance -
amount

Reject

-

True False

dcl Limit BalanceType;

-

withdraw(amount)

overdrawn

amount >
balance+

Limit

Balance:=
Balance -
amount

Reject

-

True False

Figure 18 Redefining a virtual Transition in a Subtype
The virtual transition withdraw in state goodStanding is redefined in the subtype
CreditAccount, in order to express that for a credit account a withdraw is allowed
until a certain Limit amount in addition to the balance. If not redefined, then wit-
hdraw in state goodStanding would have the effect as specified in the supertype
Account, i.e. just testing if amount is greater than balance. By adding a withdraw
transition in state overdrawn it is also specified that for a credit account it is also
possible to withdraw from an overdrawn account. (Remember that Account simply
specifies that withdraw in state overDrawn will be discarded)

78

14 From partial function-

ality to complete

processes: Composition

of services

Instead of specifying the complete
behaviour of a process type, it is possible
to define partial behaviour by means of
service types. A process type can then be
defined to be a composition of service
instances according to these service
types. In addition to services, the
combined process can have variables.
Services do not execute concurrently
with other services, but alternate between
them – uniquely determined by the
incoming signal or by signals sent from

one service to another. Services share the
variables of the enclosing process and
may directly access these.

In some approaches it is recommended to
identify different scenarios or different
roles of a phenomenon in different
contexts, and then later combine these.
By considering a little more comprehen-
sive account concept than shown above,
two different scenarios may be identified:
one covering the interaction between an
account and a customer (with the signals
deposit and withdraw) and one covering
the interaction with an administrator (e.g.
with the signals status and close).

In order to completely specify the
behaviour of the different roles by ser-

vice types, the attributes of the combined
role (represented by a process) have to be
manipulated by the services. In this case
both roles have to manipulate e.g. the
Balance attribute. From a methodological
point of view, however, it should be
possible to define the service types inde-
pendently of where they will be used to
define the combined process type. It
should even be possible to use the same
service types in the composition of dif-
ferent process types.

SDL provides the notion of parameter-
ised type for this purpose. A parameter-
ised type is (partially) independent of
where it is defined, and this is expressed
by context parameters. When the para-
meterised type is used in different
contexts, actual context parameters are
provided in terms of identifiers to defini-
tions in the actual enclosing context.

In this case, the independency of the
Balance is expressed by a variable
context parameter, see Figures 21 and 22,
and in the combined process type, the
actual context parameter is the variable
Balance in the enclosing process type,
see Figure 23.

The only requirement for the aggregation
of services into processes is that the input
signal sets of the services are disjoint.

As for block and process types, service
types may also be organised in subtype
hierarchies.

15 Keeping diagrams

together: Diagram

references and

scope/visibility rules

An SDL system specification consists of
a system specification with enclosed
specifications of block types and blocks,
these will again consist of specifications
of process types and process sets, etc.
This nesting of specifications is the basis
for normal scope-rules and visibility
rules known from block structured
languages.

Figure 19 Process type with virtual Procedures
A partial ATM (Automatic Teller Machine) type is specified. It is supposed to model an
automatic teller machine being used in order to access accounts for withdrawal of cash.
In the complete bank system it will be in between customers and the accounts. Based upon
a code and the account number, the machine will grant access to the account – in SDL
terms this access is provided by sending to the Customer process a Process Identifier
denoting the actual Account process. The parts of the ATM that control the user interface
of the machine, in case the code is either OK or not OK, are represented by two virtual
procedures. These may then be redefined in different subtypes of ATM representing differ-
ent ways of presenting this information to the customer. The behaviour of ATM that has to
be the same for all subtypes is specified as non-virtuals

process type ATM

Code

virtual
WhenNOK

idle

validation

Code
via U

virtual
WhenOK

OK

idle

OK
to panel

via P

idle

validation

WhenOK

´get account
number and deliver id
to Account process´

NOK

NOK
to panel

via P

WhenNOK

[Code]
[OK,NOK]

P
[OK,NOK]
[Code]

U

process type specialATM inherits ATM

redefined
WhenOK

redefined
WhenNOK

Figure 20 Polite ATM with redefined
Procedures
A subtype of ATM is specified. The redefined
procedures will have separate procedure dia-
grams giving the properties of the redefinitions

79

In principle, the corresponding diagrams
could be nested in order to provide this
hierarchy of specifications within specifi-
cations. For practical purposes (as e.g.
paper size) it is, however, possible to
represent nested diagrams by so-called
references (in the enclosing diagram) to
referenced diagrams. As an example a
block type reference in a system diagram
reference a block type diagram that is
nested in the system diagram. Signals
defined in the system diagram are thereby
visible in the block type diagram. Figure
24 illustrates the principle.

A diagram may be split into a number of
pages. In that case each page is numbe-
red in the rightmost upper corner of the
frame symbol. The page numbering
consists of the page number followed by
the total number of pages enclosed by (),
e.g. 1 (4), 2 (4), 3 (4), 4 (4).

16 SDL-92 in perspective

A recent survey of notations for object
oriented analysis, specification, and
design concludes that most of them lacks
mechanisms to support the following
cases:

- The number of objects and classes are
large, and they have a natural grouping
in some kind of units. These units are
not objects as supported by the
notations, and if they should be
objects, they would be objects of a
special kind that may enclose other
objects in a different way than part-
objects.

Most notations are very good at de-
scribing the attributes of objects or
classes in isolation, and the relations
between a limited set of these.

The notion of blocks in SDL provides
a consistent grouping of processes.

- When most of the objects in a given
system relies on the interaction with a
common resource object, then
graphical notations for expressing this
will have problems.

SDL provides identifiers that may
identify common processes by means
of names. Nesting of definitions, and
scope-rules provides convenient identi-
fication of common definitions.

In general terms, these problems stem
from the fact that there is no language
behind most of these notations. SDL is a
complete (even formal) language, where
the graphical syntax is just one concrete

way of representing an SDL specifi-
cation.

The following issues are often discussed
in the evaluation of object oriented
notations.

Multiple Inheritance is (almost)
regarded as a must for notations that aims
at reflecting concept classification hier-
archies, even though existing solutions
on the problems with multiple
inheritance are rather technical and ad
hoc. Some of the approaches give, how-
ever, detailed advice on how to avoid
multiple inheritance if possible. The rea-
son is that the technical solutions make it
complicated to use the mechanism prop-
erly.

SDL only supports single inheritance.
The reason is that multiple inheritance
used for concept specialisation has not

reached a state-of-the-art understanding
yet. As an example, no solutions provide
an answer to the problem involved if the
superclasses of a class are not the final
classes, but only superclasses for a set of
hierarchies.

Virtual procedures are in most
notations not directly supported, in the
sense that there is no distinction between
virtual and non-virtual procedures (called
methods, operations, ...). In general it is
assumed that all procedures may be rede-
fined in subclasses, and for some of the
notations (or rather the accompanying
method) it is advocated that redefinitions
should be extensions of the original pro-
cedure in the superclass, without provid-
ing language mechanisms for it.

SDL makes a distinction between virtual
and non-virtual procedures (and types in

[deposit,withdraw] Exit [overdraw]Entry

service type CustomerAcc<dcl AccountNo Number; dcl Balance BalanceType>

´initialize´

deposit
(amount)

Balance:=
Balance +
amount

WaitFirstDeposit

goodStanding

deposit
(amount)

Balance:=
Balance +
amount

goodStanding
Balance:=
Balance -
amount

virtual
withdraw
(amount)

goodStanding

overdraw

amount >
balance

-
Balance:=
Balance -
amount -free

overDraw
balance >

ZeroBalance

Balance:=
Balance +
amount

overDraw

deposit
(amount)

overDrawgoodStanding

True False

True False

Figure 21 Service Type representing the CustomerAcc role of an Account
Note that the variables AccountNo and Balance are context parameters (enclosed in < >). The reason for
this is that the final Account will be a composition of a service instance of this type with a service of a
service type representing another role. The combined process will have the variables representing the
account number and the balance. The service type manipulates the context parameters as if they were
variables

80

general), and it enforces (syntactically)
that redefinitions are extensions of the
virtuality constraint. The advantage of
this distinction is that it is possible to
express, for a general type, that some
(crucial) procedures should not be rede-
fined.

Polymorphism is regarded as one of the
big advantages of object orientation.
There are many definitions on poly-
morphism, so the following just gives the
facts for SDL:

- The same type of signal, e.g. S, may be
sent to processes of different types,
and as variables of type Process Identi-
fier are not typed, then the effect of an

output S to aP

where aP is a Process Type variable,
depends on which process is identified
by aP.

- Remote procedures may be virtual, so
a remote call to such a virtual proce-
dure vP of a supertype

call vP to aP

will depend on the subtype of the pro-
cess identified by aP, and the redefined
procedure for the actual subtype will
be performed.

17 Conclusion

The major language mechanisms of SDL
supporting object orientation has been
gradually and informally introduced by
means of one example system. Focus has
been on the structural aspects of SDL.
The behaviour of processes, services and
procedures can be specified in more
detail than covered here. By using the
mechanisms presented here, it is possible
to sketch the structure of SDL systems
consisting of blocks connected by chann-
els, blocks consisting of blocks or pro-
cesses, processes possibly consisting of
services, and procedures being used for
representing patterns of behaviour. By
using the full language, a complete,
formal specification is obtained. This
formal specification can then be used for
different kinds of analysis.

[close,givestatus] Exit [status]Entry

service type AdmAcc<dcl AccountNo Number; dcl Balance BalanceType>

close

´close the
account´

*

´prepare
report´

*

givestatus

-

status

Figure 22 Service Type representing the AdmAcc role
Also here the variables AccountNo and Balance are context parameters
(enclosed in < >)

process type Account

dcl AccountNo Number;
dcl Balance BalanceType;

adm:
AdmAcc

<AccountNo,
Balance>

Entry Exit

custom:
CustomerAcc
<AccountNo,

Balance>

Entry Exit

Entry

[deposit,
withdraw,

givestatus,
close]

Exit

[overdraw,
status]

[givestatus,
close]

s1

s2

[deposit,
withdraw]

[status]

[overdraw]

s3

s4

Figure 23 Composition of Services
Two service instances of type AdmAcc and CustomerAcc are composed into a process
type representing a complete Account. The actual context parameters are identifiers to
the variable definitions in the enclosing process type. Manipulations of the context para-
meters in the service types will thereby become manipulations of the variables in the
process. In this example the Entry gate of Account has been kept, with the implication
that the incoming signals are split and directed to each of the services. Correspondingly
for the Exit gate. Alternatively, the aggregated Account could have had one set of gates
for the administrative interaction and one set of gates for the interaction with the
customer

81

References

1 Belsnes, D, Dahle, H P, Møller-Ped-
ersen, B. Definition of OSDL, an
object oriented extension of SDL.
Mjølner Report Series N-EB-7, Janu-
ary 1987.

2 Belsnes, D, Dahle, H P, Møller-Ped-
ersen, B. Rationale and Tutorial on
OSDL: an object oriented extension
of SDL. Mjølner Report Series N-EB-
6, April 1987.

3 Belsnes, D, Dahle, H P, Møller-Ped-
ersen, B. Rationale and Tutorial on
OSDL: an object oriented extension
of SDL. In: SDL 87: State of the Art
and Future Trends, Proceedings of
the Third SDL Forum 1987. Amster-
dam, North-Holland, 1987.

4 Belsnes, D, Dahle, H P, Møller-Ped-
ersen, B. Rationale and Tutorial on
OSDL: an object oriented extension
of SDL. Computer Networks and
ISDN Systems, 13(2), 1987.

5 Belsnes, D, Dahle, H P, Møller-Ped-
ersen, B. Transformation of OSDL to
SDL. Contract 700276.

6 Belsnes, D, Dahle, H P, Møller-Ped-
ersen, B. Revised Rationale and
Tutorial on OSDL, an object oriented
extension of SDL. Contract 700276.

7 Bræk, R, Haugen, Ø. Engineering
Real Time Systems: An Object-ori-
ented Methodology using SDL.
Englewood Cliffs, N.J., Prentice
Hall, 1993. (BCS Practitioner Ser-
ies.)

8 Haugen, Ø, Møller-Pedersen, B.
Tutorial on Object-Oriented SDL.
SPECS-SISU Report, Report No
91002. SISU c/o Norwegian Com-
puting Centre, P.O. Box 114 Blind-
ern, N-0314 Oslo.

9 Hauge, T, Haugen, Ø. OST - An
Object-oriented SDL Tool. Fourth
SDL Forum, Lisbon, Portugal 9-13
October 1989.

10 Haugen, Ø. Applying Object-Ori-
ented SDL. Fifth SDL Forum, Glas-
gow, UK, 29 September - 4 October
1991.

11 Møller-Pedersen, B, Haugen, Ø,
Belina, F. Object-Oriented SDL.
Tele, 1, 1991.

12 Olsen, A et al. Systems Engineering
using SDL-92. Amsterdam, North-
Holland, 1993.

system bankSystem

theATMs

(NoOfATMs):ATM
c

b

h

a
theBranches

(NoOfBranches):
BankBranch

h

ah

[bankTransActOK,
bankTransActNOK]

hb

[withdraw]

[card,code,
amount]

ac

[cast,receipt,
failure]

1(1)

block type BankHeadQuarter:
 inherits Bank

block type BankBranch
 inherits Bank

block type ATM

[receipt,
(failure)]

[card,code,
amount]

s1

[card,code,
amount]s2

[receipt,
(failure)]

CashDispenser

Panel Controller

[cash]

s3

s4

[paycash]
[transactOK,
[transactNOK,
(failure)]

[verify,
transaction]

1(1)

[transactOK, transactNOK,
failure)]

[verify, transaction]

theHeadQuarter:

BankHeadQuarter

process Panel process CashDispenser process Controller 1(2)1(2)1(2)

ATMBankHeadQuarterBankBranch

Figure 24 Referenced Diagram
The three block type symbols in the
system diagram indicate that three
block types are defined locally to
the system, and they reference three
block type diagrams. The block
symbols with the names theATMs,
theHeadQuarters and theBranches
are not references to block dia-
grams, but simply specifications of
block sets according to type. The
three process symbols are also
specifications of processes to be
parts of blocks of type ATM, but
they are also references to diagrams
defining the properties of these pro-
cess instances. Reference symbols
are used in the case where an
enclosing diagram refers to dia-
grams that logically are defined in
the enclosing diagram. In order to
identify diagrams that are defined in
some enclosing diagram, identifiers
are used; the examples here are the
block supertype identifier Bank in
the two block type diagrams Bank-
HeadQuarters and BankBranch.
Bank identifies a block type dia-
gram defining the block type Bank

82

The story behind object orientation in

SDL-92

This version of the story is the version as seen from the

author, and it may therefore be biased towards Norwegian

contributions. If the complete story should be written it

would require some more work together with the many

people involved; time has not allowed that.

It all started in the sixties with the definition of SIMULA.

Developed in a setting where the problems were to make

operational models of complex systems, SIMULA became

not only a programming language, but also a modelling

language. Inspired by this use, the pure specification

language DELTA was developed, also at the Norwegian

Computing Centre. In the eighties, the combined experi-

ence with SIMULA and DELTA led to the definition of an

object oriented programming language, BETA (Norwegian

Computing Centre, University of Aarhus, University of Aal-

borg). The approach in this series of developments has

been called the Scandinavian approach to object orient-

ation.

For SDL it started in 1985 when EB Technology (now ABB

Corporate Research) started work on the design of a

graphical, object oriented specification language. With

background in the SIMULA tradition, the group at EB

Technology had no doubts that this was possible to do in

Norway. The Norwegian Computing Centre was engaged to

help in defining it. The first intentions were to design a

language from scratch.

This project triggered in 1986 the Møjlner Project, a 3 year

Nordic research project with participants from Denmark,

Norway, and Sweden, funded by the Nordic Industry Fund.

The theme of the project was object orientation, and it

should produce languages and tools for industrial use. At

that time, object orientation was still for the few and still

regarded as something useful for making toy systems in

isolated laboratories. Discussions early in the project reve-

aled that users of the project results would rather see an

object oriented extension of the CCITT recommended

language SDL, than a new language. The reason was that

SDL was widely used in some of the organisations. So,

while the Danish part of the project (Sysware Aps and Uni-

versity of Aarhus, Computer Science Dept.) made the first

implementation of BETA and elements of a programming

environment, and the Swedish part (TeleLOGIC and Uni-

versity of Lund) made an advanced programming environ-

ment for SIMULA, then the Norwegian part of the project

(EB Technology and Norwegian Computing Center) aimed

at defining an object oriented extension of SDL and imple-

menting a tool supporting this. The working title of the

extended language became OSDL.

The first proposal was made as part of the Mjølner Project

(1). It is dated January 12, 1987. The authors had no pre-

vious experience with SDL, which also meant that they had

no predefined attitudes towards what was possible or not.

The main ideas behind the proposal were based upon the

Scandinavian approach to object orientation. Two

examples may illustrate this: According to this approach,

objects shall have their own action sequence, and they

shall be able to act concurrently – this led to the choice of

SDL processes to be the primary objects. It shall also be

possible to specialise action sequences – this led to the

notion of virtual transitions. Virtual procedures is a well-

known and accepted mechanism in almost all object ori-

ented languages, so that was introduced as well.

Around this first proposal the Norwegian part of the project

had very valuable discussions with the Swedish partners in

the project, including Televerket. The first proposal was a

rewrite of the whole recommendation.

In light of object orientation, some of the (strange) differ-

ences between e.g. blocks and systems, were removed,

and processes and blocks were allowed to be at the same

level.

A separate proposal on remote procedures in SDL came at

the same time from Sweden. This notion was also part of

OSDL. At later stages these proposals were merged.

A tutorial on the extensions was ready April 30, 1987 (2).

This formed the basis for the paper at the SDL Forum in the

Hague, April 1987, where OSDL was presented for the first

time (3). The authors were rather new in this field, so they

were not aware that among the audience were most of the

people that were going to join the work on object oriented

SDL the next 5 years. These were especially people being

active in the Study Group X of CCITT, maintaining SDL.

A more comprehensive version of the conference paper

appeared later in Computer Networks (4).

A contract with Norwegian Telecom Research brought

about the important work on transforming OSDL to SDL

(5). In addition, specific language mechanisms as e.g.

virtual process types were asked for, and included (6). This

work turned out to be important when it was presented as a

proposal for CCITT.

The RACE I project SPECS started in 1988. The aim was to

reach a common semantic platform for SDL and LOTOS,

and to define corresponding methods for SDL and LOTOS.

EB Technology became partner of the project, with

Norwegian Computing Center, Kvatro, and DELAB as

subcontractors.

The project had to adhere to standard languages, so SDL-

88 was the language. On the other hand, for the methodo-

logy part the project studied mechanisms for component

composition and reuse. It was therefore natural to con-

tinue the work on object oriented SDl in the project.

Even though SPECS was an important vehicle for the

development of SDL-92, the final SPECS Book is based

upon SDL-88. The reason is that it was not possible to co-

ordinate the various methods and tools developed in the

project on SDL-92.

83

The SPECS project was financed by NTNF and NTR

The SISU Project started at almost the same time, with

participation from a series of Norwegian companies

involved in real-time systems engineering. The project

decided to base its methodology work on OSDL.

A requirement for using OSDL was that the extensions

became part of the CCITT Standard. The SISU project

therefore contributed to the work in CCITT.

The CCITT work on extending SDL started at the last mee-

ting of the 1984-1988 study period. The first document

describing the extensions as needed by CCITT is dated

December 23, 1988. The real work began at the CCITT

meeting in May, 1989.

The first question was whether the extensions should be

contained in a separate recommendation or incorporated

in Z.100. For the first 2 years the work was directed towards

a separate recommendation. When the work became more

detailed, it turned out that there would be many cross-

references between the two, so it was decided to merge

the extensions into Z.100 and at the same time organise

the document so that it would be easy to spot the extens-

ions.

During 1989 and first part of 1990, two proposals were

regarded as kind of competing: The OSDL proposal and a

Danish proposal on parameterised definitions, expected to

cover both context parameters, gates, and virtuals. At the

last meeting in 1989 it was decided to merge the two pro-

posals, and at the June CCITT meeting in Espoo, Finland,

the two proposals were merged into one written proposal.

The Danish proposal corresponds more or less to the

notion of context parameters, so they came in addition to

virtuals from the OSDL proposal. At one point in time, it

was investigated if the context parameters could also

cover gates, but it turned out that gates were of a different

nature: context parameters are parameters of definitions

(disappearing when given actual parameters), while

instances of types with gates will have the gates as

connection points.

Through a number of experts meetings and more formal

CCITT meetings during 1990 and 1991, the proposal was

re-worked several times, implications for the rest of SDL

was considered and a formal definition was given by trans-

formation to Basic SDL.

Even though it started in Norway, the work with the pro-

posal could not have been undertaken without the efforts

of the members of the Study Group X.

- The Chairman of the group and rapporteur for SDL

maintenance kept all the loose ends, ran very efficient

meetings, and as a last contribution in the study period,

he edited the final version of the SDL-92 standard.

- The formal definition rapporteur pin-pointed many

inconsistencies and points for discussions and clarifi-

cation.

- The rapporteur for the Methodology Guidelines

(and therefore engaged in what the users might think

about the new SDL) gave valuable contributions.

- Telia Research made a semantic checker for the new

SDL, thereby posing nasty questions, but also contri-

buting with possible answers.

- The UK delegation was always ready with a good

formulation and good choice of words – in addition to

representing all the good traditions of SDL.

The CCITT plenary meeting in Helsinki in March, 1993

recommended a new version of SDL with the extensions as

proposed by Study Group X.

In addition to the CCITT work, several of the people

involved have contributed to the spreading of the ideas to

established and potential users of SDL. Highlights in this

activities are (according to the knowledge of the author):

- OSDL courses held at EB as part of the Møjlner project

and OSDL as part of university courses, 1989-1992

- Numerous SISU courses, based on methodology work in

the SISU project, and leading to a book (7)

- Numerous talks by the Chairman of the study group

- Talk on tools for OSDL at the SDL Forum 1989, by EB

Technology (9)

- A combined SPECS-SISU tutorial (8)

- A talk on applying Object-oriented SDL (10)

- Tutorials at the FORTE 90 conference and at the SDL

Forum 91, based on the SPECS-SISU tutorial, by

Norwegian Computing Centre

- A joint talk at Telebras in Brazil, in conjunction with the

CCITT meeting in Recife, by Norwegian Computing Cen-

tre, TFL and Telia Research

- Various SDL-92 seminars at: TeleLOGIC, SPECS, ARISE,

GPT, BNR, ATT, by Norwegian Computing Centre

- Forthcoming book on SDL-92 (12).

84

An introduction to TMN

B Y S T Å L E W O L L A N D

Motivation, scope

and objectives

Management of telecommunications
resources have up to now been a mixture
of manual, automated (or computer-sup-
ported) and automatic functions. These
have usually been performed by stand-
alone, ad-hoc procedures or systems. The
systems have been equipment specific
and vendor supplied. Or they have been
developed by the telecoms operators as
stand-alone systems for a specific pur-
pose.

The last few years have seen a growing
effort to specify the management aspects
of the various telecoms resources
(network elements, networks and ser-
vices) so as to present themselves to the
management functions in a uniform
manner. This work has focused on har-
monised management interfaces and gen-
eric management functions. By stand-
ardising the interfaces there is no longer
a need to duplicate large parts of the
specification and development work for
each operator and supplier.

The potential for re-using data defini-
tions, registrations and repositories,
management procedures and software or
indeed management hardware resources
like processors, storages or communi-
cation channels have until recently only
been exploited to a small extent. The sav-
ings in having a common set of manage-
ment resources (people, data and proce-
dures) all interacting using a common
management network (physical or
logical) promise to be very great indeed.

Some of the benefits have been touched
upon already:

- Vendor independence

- Equipment, network and service inde-
pendence

- Reusability of management data and
functions

- Reusability of management personnel
and organisation (the choice of cen-
tralised or distributed management
becomes more flexible)

- Internationally standardised manage-
ment interfaces

- Less costly specification and procure-
ment of management applications

- Increased interoperability of national
and international management resour-
ces.

All these factors should lead to decreased
specification, procurement and
operational costs for management. Other
benefits are increased functionality and
performance including quality of service.

The possibility of allowing customers or
other operators access to a restricted set
of management functions is also being
explored. The obvious threat is security
and integrity of potentially valuable and
sensitive management data and functions.
On the other hand, there are considerable
savings to be had for both providers and
users with such facilities.

TMN –Telecommunications Manage-
ment Network – is the term adopted by
ETSI and CCITT for describing the
means to transport and process
information related to the management of
telecoms resources. The term denotes an
integrated and interoperable approach to
distributed management of these resour-
ces. That is to say, the monitoring, co-
ordination and control that is required
for smooth operation of all the telecoms
means. There is a very similar notion
within ISO/IEC for the management of
OSI (Open System Interconnection)
resources. There it is called OSI Manage-
ment. Work is going on to bring these
notions in line. This harmonisation work
is done by CCITT SG VII and ISO/IEC
JTC1/
SC21/WG4. The two notions are now to
a large extent identical.

Basic concepts of TMN

The basic ideas of TMN are inter-
operability, re-use and standardisation of
management capabilities together with an
evolutionary approach to the introduction
of TMN into the present network.

The basic concepts used for TMN are
illustrated in Figures 1 and 6. A further
detailing of the concepts can be found in
CCITT Recommendation M.3010,(1),
ISO/IEC IS 7498-4 (2) and ISO/IEC IS
10040 (3).

The functional view of TMN is described
in terms of function blocks and reference
points between these. The purpose of the
function blocks is to group related
functionality together so that specifi-
cation and implementation may be
simpler. The interaction between the
function blocks defines service bound-
aries and they are described by reference
points which are collections of data and
operations. The reference points are
candidates for implementation as inter-
faces. There are five types of function
blocks. Operations Systems Function
(OSF), Mediation Function (MF), Work
Station Function (WSF), Network Ele-
ment Function (NEF) and Q Adapter
Function (QAF). The OSF processes
information for the purpose of manage-
ment of telecoms resources or other
management resources. The NEF com-
municates with the TMN for the purpose
of being managed. The WSF provides the
means to interpret and present the TMN
information to the management end user.
The MF acts on information passing
between an OSF and an NEF or a QAF
by storing, adapting, filtering, threshold-
ing and condensing this information to
facilitate the communication. The QAF
connects non-TMN entities to the TMN
by translating between a TMN reference
point and a non-TMN (proprietary) refer-
ence point.

The function blocks are interconnected
by reference points (RP). The reference
points are conceptual points describing
the functional interaction or information
passing between two function blocks.
They define the service boundaries
between the blocks.

The first type of RP is between the OSFs
(where some of the management
capability is implemented) and the
telecoms resources (Network Elements,
Networks, Services). This is denoted q
(q3 and qx; see Figure 6).

The second type of RP is between the
management functions and the pre-
sentation tool (in most cases a work
station). This RP is called f.

A third type of RP is between two OSFs
in two different TMN domains, e.g. two
telecoms operators. This RP is foreseen

621.39.05:65

OSF WSF

NEFQAF

MF

TMN
OSF -

WSF -

MF -

QAF -

NEF -

Operations
System
Function

Work Station
Function

Mediation
Function

Q Adapter
Function

Network
Element
Function

Legend:

Figure 1 TMN Basic concepts (functional view)

85

to have security attributes to enable the
negotiation of strict security functions in
addition to a (more restricted) set of
management functions. This RP is called
x.

A reference point can be implemented by
adopting a particular communication
protocol and a particular communication
service (message set). They are then
called interfaces and capital letters are
used to denote them. In TMN the RPs are
candidate interfaces. They become inter-
faces in case the function blocks are
implemented in different physical
locations.

Functional block Functional components Associated message
communications functions

OSF MIB, OSF-MAF (A/M), HMA MCFx, MCFq3, MCFf

OSF subordinate(1) MIB, OSF-MAF (A/M), ICF, HMA MCFx, MCFq3, MCFf

WSF PF MCFf

NEFq3
(2) MIB, NEF-MAF (A) MCFq3

NEFqx
(2) MIB, NEF-MAF (A) MCFqx

MF MIB, MF-MAF (A/M), ICF, HMA MCFq3, MCFqx, MCFf

QAFq3
(3)(4) MIB, QAF-MAF (A/M), ICF MCFq3, MCFm

QAFqx
(4) MIB, QAF-MAF (A/M), ICF MCFqx, MCFm

Table 1 Relationship of functional blocks to functional components

Legend: PF = Presentation Function

MCF = Message Communications Function

MIB = Management Information Base

MAF = Management Application Function

ICF = Information Conversion Function

A/M = Agent/Manager

HMA = Human Machine Adapter

Note: MAF (A/M) means management application function in Agent or manager role.

(1) This is an OSF in the subordinate layer of the logical layered architecture.

(2) The NEFs also include Telecommunications and Support resources that are outside of the TMN.

(3) When QAFq3 is used in a manager role the q3 reference point lies between the QAF and an OSF.

(4) The use of QAF in the manager role is for further study.

In this table the subscripts indicate at which reference point the functional component applies. Individual functional com-

ponents may not appear or may appear multiple times in a given instance of a functional block. An example of multiple

occurrences is of several different management application functions (MAFs) in the same instance of a functional block.

Performing
Management
Operations

Emitting

Notifications

Communicating
Management
Operations

Notifications

MIS-USER
(manager

role)

MIS-USER
(agent
role)

Managed
Objects

Telecom
Resources

Tele-
service

MANAGING SYSTEM MANAGED SYSTEM

Figure 2 Basic TMN communication and processing

86

This is summed up in Figure 6, which is
a functional representation of the
management capabilities.

It is important to note that in TMN it is
the interfaces that are being standardised
internationally and not the function
blocks. The status in 1993 is that the Q3
interface is fairly well advanced on the
way to being standardised. The X inter-
face is at an early stage and the F inter-
face is beginning to receive the first
attention.

The function blocks are composed of ele-
mentary function blocks called functional
components. There are six types of
functional components: Management
Application Function (MAF), Manage-
ment Information Base (MIB),
Information Conversion Function (ICF),
Presentation Function (PF), Human
Machine Adaptation (HMA) and
Message Communication Function
(MCF). MAFs perform the actual
management functions by processing
Managed Objects (MO)(see below and
also separate article in this volume).
MIBs are conceptual repositories for the
MOs. The ICFs convert between the dif-
ferent information models of two inter-
faces. The HMAs perform the conversion
of the information model of the MAF to
the information model of the PFs. The
PFs perform the translation between the
TMN information model to the end user
presentation model. The MCFs are per-
forming the physical exchange of
management messages with peer entities.
The definitions of these can be found in
CCITT Rec. M.3010 (1). Table 1 gives
the relationship between the function
blocks and the functional components.

Basic management

communication and

processing

The basic TMN management communi-
cation interactions and operations are
shown in Figure 2.

The Management Information System
User (MIS-U) can either be a manage-
ment application (OSF) in the Manager
role (which is a role that the management
process can play during one particular
management interaction in the communi-
cation process) or in the Agent role. The
definition of the manager is that it can
direct management operations to the
remote agent and receive management
notifications. The definition of the agent
(which again is a role the process can

Business
Management

Layer

Service
Management

Layer

Network
Management

Layer

Network Element
Management

Layer

Network
Element

Layer

VASP 1

TMN 1

VASP N

TMN N

TMN Z

Service Providers
Transport
Provider

x

x

OSF OSF OSF

OSF

NEF

MF

OSF OSF

OSF

OSF

TMN 1 ...N -

TMN Z -

Service Provider

Transport Provider

Figure 3 Non-peer-to-peer interaction between management operators and layers
(example)

Business
Management

Layer

Service
Management

Layer

Network
Management

Layer

Network Element
Management

Layer

Network
Element

Layer

VASP 3

TMN 3

VASP 2

TMN 2

VASP 1

TMN 1

Between Service Providers
Within

Administration

x

OSF OSF OSF

OSF

NEF

MF

OSF OSF

OSF

OSF

OSF

OSF
x q

Figure 4 Peer-to-peer interaction between operators and layers (example)

87

have during one particular interaction)
can perform management operations and
receive management notifications from
the Managed Objects (MO) and receive
directives for operations from and send
notifications to the manager.

The MOs are elementary management
capabilities seen from the MIS and they
represent an abstraction in the form of a
management view of the telecoms
resources. An MO is defined in terms of
attributes it possesses, operations that
may be performed on it, notifications it
may issue and its relationships with other
MOs.

There are two things to note about the
MOs. The first is that MOs are being
standardised internationally. The second
is that MOs are specified in an object ori-
ented fashion. The template for the speci-
fication is the ISO/IEC OSI Guidelines
for the Description of Managed Objects
(GDMO) (4). For a further definition of
MOs, see separate article in this volume
(6).

The managing and managed systems
together are viewed as a distributed
management application. They interact
via standardised interfaces with protocols
that reference the MOs. As already ment-
ioned, these interfaces are essential for
the TMN concept.

The idea of a mediation function was
already introduced above. From Figure 6
and Figure 7, a further elaboration can be
made. As the name indicates, this
function takes care of a set of pre-pro-
cessing tasks before the management
data and operations are processed proper.
Mediation is foreseen for communication
with data concatenation (to reduce the
volume of data flows) and connection
concentration (to reduce the number of
connections between a potentially large
number of network elements and a
smaller number of operations systems
(OS)). Other examples of management
mediation is decision making (for
example thresholding alarms), routing of
management messages and conversion
between different management inter-
faces. The Mediation Device (MD) shall
on the one hand interconnect telecoms
resources to OSs via the mediation
function and on the other hand inter-
connect telecoms resources to OSs again
via the mediation function. The telecoms
resources will in some cases support a
more simple management interface than
the OS. Hence, a mediation device will

have two TMN interfaces – one for the
OS side and one for the NE side.

Adaptation is a management function
required in case the interface to a
telecoms resource is not TMN standard.
The adaptation function will either be
performed in the network element or in a
separate Adapter. The purpose is to
convert a proprietary interface of the NE

to a TMN interface. This will allow inter-
connecting for example existing non-
TMN NEs with a TMN. This will also
permit internal, proprietary interfaces for
internal communication inside the
telecoms resources, while providing a
TMN interface for external management
communication. Hence, an adapter will
only have one TMN interface.

Mgt. Appl.

(NE-MAF)

Telecom
Resource
(service)

CMISE

2 5 6

7

1
alarm

NE

CMISE

ACSE ROSE

3 4 1

8

OS

DB
(MIB)

Mgt. Appl.

(OS-MAF)

ACSE ROSE

Figure 5 Example of management communication and processing (physical)

m

WSF

NEFQAF

WSF

NEF QAF

MF

OSF OSF

MF

g g

f f

ff

q3 q3

q3q3

q3 q3 q3q3

qx qxqxqx qx qx

m

x x

Figure 6 TMN interaction (functional view)

88

Logical layered

architecture

ISO categorises management into five
functional areas: Fault, performance,
configuration, accounting, and security.
CCITT and ETSI use a different cate-
gorisation with more functional areas
when seen from the management end
operator. This division is not important.
The final management capability to be
provided at the operator interface is not
for standardisation, but will be decided
by the requirements of the individual
telecoms operators. Their needs will
depend on the business idea for their off-
ering of the telecoms service, their
investment profile and their management
organisational requirements. This offer-
ing of management capability will be an

area open for competition between the
telecoms operators in the future. This
does not, however, preclude some
aspects of this interface to be stand-
ardised.

Seen from the manager/agent view, the
management capability can be divided
into four areas with respect to what
aspects of the telecoms resources they
address: Network Element, Network,
Service, and Business. This grouping of
management functionalities is called the
Logical Layered Architecture (LLA) and
is recommended for TMN. If these layers
are implemented in different physical
resources or locations, there will be an
interface between the layers and the lay-
ers will be implemented in different OSs.

How is management

performed?

Figure 5 shows an example of how
management interaction and processing
take place in the case of an alarm for a
telecoms resource (NE).

The alarm causing event happens for
some reason inside the telecoms
resource. The event is registered there
and is communicated through a non-
TMN interface to an MO. There is an
ensuing state change of this object (attri-
bute value change). For certain events
there is defined a certain behaviour for
the MO. In this case there is a notifi-
cation emitted by the MO. The NE-MAF
as an agent receives the alarm notifi-
cation from the MO and decides to report
this to the manager. The agent first
establishes the connection over the TMN
to the manager by invoking the com-
munication service primitives of the ISO
OSI ACSE (Association Control Service
Element) which is always used for TMN
communication. As a result of this invo-
cation, an association (connection) is set
up between the agent and the manager
management processes. This is done
prior to the management data exchange
proper. Management data exchange is
performed by invoking the ISO/IEC OSI
and CCITT CMISE (Common Manage-
ment Service Element) (5) service primi-
tives for communicating management
data. The CMISE services basically
reference the MOs for the purpose of
processing these. The CMISE makes use
of the common ISO OSI ROSE (Remote
Operations Service Element) to com-
municate its management operations and
data directives. By using these communi-
cation services and protocols, the
management functions can exchange

their operations on managed objects and
receive notifications. By processing the
operations on the MOs, the MAFs can
effect management of the telecoms
resources in a generic and standardised
way.

Centralised or distributed

management?

TMN is a distributed concept for cen-
tralised management!

TMN will allow centralised management
through the use of harmonised manage-
ment interfaces to telecoms resources, an
interoperable management network,
mediation devices and adapters.

TMN will allow an evolutionary app-
roach (gradual introduction) by using
adapters that will allow co-existence of
present non-TMN management and
telecoms systems and new TMN sys-
tems. Hence, the investment in manage-
ment resources and equipment today
should be well protected. A revolutionary
approach would have been meaningless
in terms of economics.

Achieving centralised and standardised
management for the different network
and service resources can potentially be
very cost-saving. A cost-reduction can be
obtained from a decrease in the number
of required management personnel, a
possible simplification in the training
required due to the introduction of auto-
mation (although potentially training can
become more complex if more sophisti-
cated management is undertaken), the re-
use of management systems that require
to be specified, developed and procured,
the re-use of the management data that
require to be defined, registered, pro-
cessed and stored, the re-use of the pro-
cessing platforms that the management
systems run on, etc.

But TMN is a concept for distributed
management as well!

TMN encompasses concepts for peer-to-
peer management communication
between managing systems and managed
systems. In a particular management data
exchange, the managed system acts as an
agent and the managing system acts as
the manager. The agent is capable of
receiving management directives from
the manager and executing the directives
by accessing the managed objects, pro-
cessing these and returning answers if
required. Hence, even if TMN is taking
place in an integrated fashion logically,

DCN

MD

OS

DCN

Q A NEQ A NE

WS

TMN

X

X/F/Q3

F

Q3/F

QxQ3Q3

Qx Qx

Interfaces

Figure 7 Simplified physical architecture (example)

Note 1: For this simplified example the building blocks are
considered to contain only their mandatory functions (see
Table 1).

Note 2: The interfaces shown on either side of the DCN are
actually a single interface between end systems for Layers 4
and above. For Layers 1 to 3 they represent the physical,
link, and network interface between an end system and the
DCN

89

the management processing can be reali-
sed as a distributed process.

This characteristic of logical integration,
but optional physical centralisation or
distribution, allows a great degree of
flexibility in the implementation of the
management functions.

TMN functional

reference model

Figures 1 and 6 summarise the TMN
functional reference model.

Here, the types of functional blocks and
reference points that interconnect these
are identified for TMN.

Table 1 gives the relationships between
the TMN function blocks and the TMN
functional components that can exist in a
TMN.

From Figure 6 we notice that an operator
is capable of interacting directly over the
network both with the operations system
and the mediation device through the F
interface. This is not the case for the
telecoms resource (here represented by
the NE) and the adapter.

From Figures 3 and 4 we also notice that
two telecoms operators (either service
operators or network operators) can
interact directly with each other through
the X interface. We see that normally
two service providers (in this case they
are value-added-service-providers,
VASPs) are expected to interact via the x
reference point at the service layer in a
peer-to-peer fashion. However, in special
cases the interaction may take place via
an X interface other than the service
layer. This is shown in Figure 3, where
the interaction is not required to be peer-
to-peer.

Conclusions

TMN is a wide and complex area, and
international agreement has taken a long
time to emerge. Due to the wide scope of
TMN, it will take some time yet before
the final shape can be seen. However,
TMN is a concept for gradual intro-
duction and enough of the specifications
are in place to allow early realisations at
this stage. Since the basic idea is to per-
form generic, standardised management
over a large and diverse range of ele-
ments, networks and services, it is not
surprising that the realisation will take its
time.

However, the status in 1993 for TMN is
that the first implementable and indeed
implemented functions are beginning to
emerge. For management communi-
cation, the ISO/IEC CMIS/CMIP
protocol has been standardised and
implementations can be obtained comm-
ercially.

The proposed standards for the managed
objects are in many cases close to fin-
alisation. In this area the work is going
on with full strength. The MOs for
network element management are fairly
well specified. The MOs for network
level management and service manage-
ment are yet at an early stage. Naturally,
the generic aspects of management are
specified first. MOs describing a wide
spectre of common management
capabilities like fault handling and per-
formance handling, etc., are addressed in
a series of emerging standards and
recommendations. In addition, managed
objects for specific areas such as
management of SDH (Synchronous
Digital Hierarchy) and ATM
(Asynchronous Transfer Mode) are
receiving a lot of attention. The first pro-
posals have been available for some time.

References

1 CCITT. Principles for a Telecom-
munications Management Network.
(Recommendation M.3010.)

2 ISO. OSI Basic Reference Model
Part 4: Management Framework.
(ISO/IEC IS 7498-4.)

3 ISO. OSI Systems Management
Overview. (ISO/IEC IS 10040.)

4 ISO. OSI Structure of Management
Information – Part 4: Guidelines for
the Definition of Managed Objects.
(ISO/IEC IS 10165-4.)

5 ISO. OSI Common Management
Information Service Definition/Com-
mon Management Protocol Specifi-
cation. (ISO/IEC IS 9595/9596.)

6 Kåråsen, A G. The structure of OSI
management information. Telektron-
ikk, 89(2/3), 90-96, 1993 (this issue).

90

The structure of OSI management information

B Y A N N E - G R E T H E K Å R Å S E N

1 Introduction

This article presents the structure of OSI
management information. Details
concerning the notation used to express
this information are not included. How-
ever, the notation of the OSI manage-
ment formalism is visualised by pre-
senting some examples. First, the context
in which OSI management information is
applied, namely OSI management, will
be briefly described.

OSI is an abbreviation for Open Systems
Interconnection, which defines a fra-
mework for interconnections between
systems that are “open” to each other.
When providing interconnection services
between open systems, facilities are
needed to control, co-ordinate and
monitor the communications resources
involved. Within an OSI environment,
this is the concern of OSI management.

OSI management is required for several
purposes, and covers the following
functional areas:

- fault management

- accounting management

- configuration management

- performance management

- security management.

OSI management is accomplished
through systems management, (N)-layer
management and (N)-layer operations.
Systems management provides the
normal management mechanisms within
an OSI environment.

The systems management model, de-
scribed in (1), identifies the various
aspects of systems management. These
aspects are:

- management information

- management functions

- management communications

- organisational aspects.

(2) introduces the OSI management fra-
mework, and (1) gives a general
description of systems management. The
logical structure used to describe systems
management information, i.e. the
information aspect of the systems
management model, is the topic of this
article. The main source of information
on the topic is (3).

2 General

The management information model pro-
vides methods to model the management
aspects of communications resources,
and to structure the exchange of manage-
ment information between systems. The
information model is object oriented, i.e.
it is characterised by the definition of
objects with specified properties. In gen-
eral, these objects are abstractions of
physical or logical entities. Objects that
represent communications resources
being subject to management are termed
managed objects, and are OSI manage-
ment’s view of the resources in question.

Management of a communications
environment is an information processing
application. Management applications
perform the management activities by
establishing associations between sys-
tems management application entities.
These application entities communicate
using systems management services and
protocols. Management applications are
termed MIS-users, and each interaction
takes place between two MIS-users,
acting as manager and agent,
respectively. Figure 1 illustrates systems
management interactions and related
terms.

Management has access to managed
object properties that are visible at the
managed object boundary, i.e. properties
exposed through the object’s attributes,
operations and notifications (see chapter
3). The internal functioning of the
managed object and the resource being
represented are otherwise not visible to
management. This principle of encap-
sulation serves to protect the integrity of
the managed object and the resource it
represents.

The set of managed objects within a sys-
tem, together with their attributes, consti-
tute the system’s Management
Information Base (MIB). The MIB com-
prises all the information that may be
transferred or affected through the use of
management protocols within the system.

3 Managed object classes

Managed objects having the same
defined properties are instances of the
same managed object class. Specification
of a managed object class and its associ-
ated properties is documented by using a
set of templates (see chapter 9).

The managed object class definition, as
specified by templates, consists of:

- the position in the inheritance hier-
archy (see chapter 4)

- a collection of mandatory packages
(see section 3.1)

- a collection of conditional packages,
and the condition under which each
package is included

- an object identifier (see chapter 6).

A package structure consists of the
following:

- attributes

- operations

- notifications

- behaviour.

Generic and specialised managed object
classes are defined in several CCITT
Recommendations, and are also defined
by other international organisations, such
as ISO/IEC and ETSI. These organ-
isations collaborate in the field of sys-
tems management. Within OSI manage-
ment, (4) defines the generic managed
object classes from which other classes
are derived. To illustrate some of the
terms introduced in this article, the
definition of one of these generic
managed object classes is shown in
Figure 2. The logRecord managed object

681.327.8:006

MIS-user

(manager role)

MIS-user

(agent role)

performing
management

operations

emitting
notifications

managed
objects

communicating

notifications

management operations

Managing open system Managed open system

Figure 1 Systems management interactions

91

class definition is chosen as an example
because it is comparatively short and
simple.

3.1 Packages

The properties of managed objects,
described through their attributes,
operations, notifications and behaviour,
are collected in packages within the
managed objects. This is primarily done
to ease the specification task. If a
package comprises some particular set of
properties that are common to several
managed object classes, previously
defined packages may be re-used in new
class definitions.

Packages are either mandatory or
conditional when included in a specific
managed object class definition. Attri-
butes, operations, behaviour, and notifi-
cations defined in mandatory packages
will be common to all instances of a
given class. Attributes, operations,
behaviour, and notifications defined in a
conditional package will be common to
those managed object instances that
satisfy the conditions associated with that
particular package.

Only one instance of a given package
may be included in a managed object.
For this reason, name bindings are not
assigned to packages. Name bindings are
defined separately, and are not part of the
managed object class definition (see
section 5.2).

To ensure the integrity of managed
objects, operations are always performed
on the managed object encapsulating the
package, not on the package itself. As
packages are an integral part of the
managed object, they cannot be instanti-
ated by themselves. A package and the
managed object to which it belongs must
be instantiated and deleted simul-
taneously.

Managed objects include a separate
Packages attribute that identifies all
packages being present in that particular
managed object instance.

The logRecord managed object class
includes the mandatory package
logRecordPackage, and the package
definition is directly included in the
managed object class definition. If the
package in question had been defined
separately, using a complete package
template as described in (5), the construct
“CHARACTERIZED BY logRecord-
Package” could have been used in the
managed object class definition, referen-
cing the package.

3.2 Attributes

Attributes are properties of managed
objects. Attributes are formally defined
by using an attribute template, described
in (5).

An attribute has an associated value, and
this value may have a simple or complex
structure. Attribute values may be visible
at the managed object boundary, and may
determine or reflect the behaviour of the
managed object. Attribute values may be
observed and manipulated by attribute
oriented operations, described in section
8.3.

The syntax of an attribute is an ASN.1
type (see chapter 11) that abstractly de-
scribes how instances of the attribute
value are carried in communication
protocols. The concrete transfer syntax is
not specified by the ASN.1 type.

A number of attribute properties are not
directly included in the attribute defini-
tion. These properties are listed when
referencing the attribute in the managed
object class definition. Attribute value
restrictions, default or initial attribute
values associated with the attribute, and
operations that may be performed on the
attribute, are included in the property list.

Restrictions on attribute values may be
defined through the use of permitted
and/or required value sets for the attri-
bute. The permitted value set specifies all
the values that the attribute is permitted
to take. The permitted value set will be a
subset of the attribute syntax values. The
required value set specifies all the values
that the attribute must be capable of tak-
ing. The required value set will be a sub-
set of the permitted value set.
Restrictions on the attribute value set
should only be made if they are based on
specific features inherent in the
semantics of the attribute.

An attribute may be set-valued, i.e. its
value is an unordered set of members of
a given type. The size of the set is vari-
able, and the set may be empty. How-
ever, the cardinality of the set is subject
to restrictions. Members of set-valued
attributes may be added or removed by
use of defined operations.

Several attributes may be addressed
collectively by defining an attribute
group. An attribute group may be fixed
or extensible. The attributes comprising
the attribute group are specified individu-
ally, and operations addressed to the
attribute group will in fact be performed
on each attribute in the group. Attribute
groups do not have values of their own.

The attributes included in the logRecord
managed object class are both single
valued. No attribute value restrictions are
defined, and the attributes have no
defined initial or default values. The
property lists consist of “GET”, and this
indicates that both attributes are read-
only. The logRecord managed object
class does not include any attribute
groups.

The logRecordId attribute definition and
ASN.1 syntax is shown in Figure 3.

3.3 Operations

Two types of operations are defined,
namely operations that affect the attri-
butes of a managed object and more
complex operations that affect the
managed object as a whole. Create,
Delete, and Action are operations of the
latter type. Operations are further
described in chapter 8.

3.4 Notifications

Managed objects may emit notifications
that contain information relating to
internal or external events that have

logRecord MANAGED OBJECT CLASS

DERIVED FROM top;

CHARACTERIZED BY

logRecordPackage PACKAGE

BEHAVIOUR

logRecordBehaviour BEHAVIOUR

DEFINED AS “This managed object represents the information

stored in logs”;;

ATTRIBUTES

logRecordId GET,

loggingTime GET;;

REGISTERED AS {smi2MObjectClass 7};

Figure 2 The logRecord managed object class definition (from (4))

92

occurred. Notifications, and the
information they contain, are part of the
managed object class definition. The
notifications themselves are formally
defined by use of a notification template,
described in (5).

3.5 Behaviour

Behaviour is a description of the way in
which managed objects or associated
attributes, name bindings, notifications
and actions interact with the actual
resources they model and with each
other. In particular, behaviour definitions
are necessary to describe semantics, e.g.
constraints, that are of dynamical nature.

As of today, behaviour definitions are
documented by use of natural language
text. This causes several problems. A
given behaviour description may often be
interpreted in different ways, and it can-
not be automatically converted into
executable code.

The use of formal description techniques
for the specification of behaviour, e.g.
SDL and Z, is under study.

4 Specialisation

and inheritance

All managed object classes defined for
the purpose of OSI management are posi-
tioned in a common inheritance hier-
archy. The ultimate superclass in this
class hierarchy is the managed object
class “top”.

A managed object class is specialised
from another managed object class by
defining it as an extension of the other
managed object class. Such extensions
are made by defining packages that
include some new properties in addition
to those already present in the original
managed object class. The new managed
object class is a subclass of the original
managed object class, which in turn is
the superclass of the new class. The posi-
tion in the inheritance hierarchy is
included in every managed object class
definition. The construct “DERIVED
FROM top;” in Figure 2 indicates that
the logRecord managed object class is
specialised directly from “top”.

Some superclasses are defined solely for
the purpose of providing a common base
from which to specialise subclasses.

These superclasses are never instantiated.
Top is an uninstantiable superclass. (4)
defines top and some other generic
managed object classes from which
subclasses are specialised. Figure 4
shows an example of an inheritance hier-
archy.

A subclass inherits all the properties of
the superclass, i.e. all operations, attri-
butes, notifications, and behaviour. Wit-
hin OSI management, only strict
inheritance is permitted. Every instance
of a subclass shall be compatible with its
superclass, and specialisation by deleting
any of the superclass properties is not
allowed.

A subclass may be specialised from more
than one superclass. This is termed mul-
tiple inheritance. Care must be taken to
avoid contradictions in the subclass
definition when it is specialised by mul-
tiple inheritance. If the same properties
are present in multiple superclasses,
these properties will only be inherited
once.

5 Containment

and naming

5.1 Containment

A managed object of one class may
contain other managed objects of the
same or different classes. This contain-
ment relationship is between managed
object instances, not classes. A managed
object may only be contained in one
other managed object. A containing
managed object may itself be contained
in another managed object.

The containment relationship may be
used to model physical or organisational
hierarchies. Figure 5 gives an example of
the latter.

A contained managed object may be sub-
ject to static or dynamic constraints
because of its position in the containment
hierarchy. If so, this must either be speci-
fied in the containment relation definition
or in the class definition of the contained
or containing managed object.

5.2 The naming tree

and name bindings

The containment relationship is used for
naming managed objects. A managed
object is named in terms of its containing
managed object. Contained and
containing managed objects are referred
to as subordinate and superior objects,
respectively.

logRecordId ATTRIBUTE

WITH ATTRIBUTE SYNTAX Attribute-ASN1Module.LogRecordId;

MATCHES FOR EQUALITY, ORDERING;

REGISTERED AS {smi2AttributeID 3};

LogRecordId ::= SimpleNameType (WITH COMPONENTS {number PRESENT,

string ABSENT})

SimpleNameType ::= CHOICE {number INTEGER,

string GraphicString}

Figure 3 The logRecordId attribute definition and ASN.1 syntax (from (4))

top

discriminator

eventForwarding

Discriminator

eventLog

Record

logRecordsystem

Figure 4 Illustration of an inheritance hierarchy (extract from (4))

93

The combination of the superior object
name and a Relative Distinguished Name
(RDN) constitutes an unambiguous name
of the subordinate object. The RDN uni-
quely identifies the subordinate object in
relation to its superior object. This nam-
ing relationship is recursive, and all
managed objects will have distinguished
names that are formed by the sequence of
RDNs of the object itself and each of its
superior objects.

The complete naming structure within
OSI management is a hierarchy with a
single root. The hierarchy is referred to
as the naming tree, and the top level is
termed “root”. Root is an object that has
no associated properties, i.e. a null
object, and it always exists.

When a managed object class is defined,
rules have to be made for naming
instances of that class. A name binding
relationship identifies a superior object
class from which instances of the
managed object class may be named, and
one or more attributes that may be used
for RDN. Name bindings are not a prop-
erty of the superior or subordinate
managed object class. Multiple name
binding relationships may be defined for
a given class, and the managed object
instances may use different name bind-
ings. To ensure unambiguous naming,
each managed object instance is per-
mitted to have only one name binding.

Certain rules in connection with object
creation and deletion are also included in
the name binding definition.

Name binding relationships are formally
specified by using a name binding
template, described in (5). Figure 6
shows a name binding defined for the
logRecord managed object class (and
subclasses). The superior object class is
the “log” managed object class (and
subclasses). The attribute logRecordId is
to be used for RDN. The name binding
also includes a rule that prohibits the
deletion of a logRecord managed object
if it contains other managed objects.

5.3 Name structure

The name binding specifies which attri-
bute to use for RDN. Certain require-
ments have to be satisfied in order to use
an attribute for this purpose. The attribute
must be included in a mandatory
package, and it must be able to retain a
fixed value through the lifetime of the
managed object that uses it for naming. It
must also be testable for equality.

(4) defines the managed object class
“system”. A system managed object
represents the managed system, and it
has two attributes that may be used for
naming, systemId and systemTitle.

Within OSI systems management, either
global or local name forms may be used.
The global name form specifies the name
with respect to the global root. The local
name form specifies the name with
respect to the system managed object,
which will be the top level in the local
naming tree. The local name form does
not provide identification that is globally
unique, but may be used within OSI sys-
tems management.

6 Object identifiers

The definition of managed object classes,
name bindings, actions, and notifications
are identified by use of object identifiers.
Package and attribute definitions need
object identifier values if referenced in a
managed object class definition. Once an
object identifier value has been assigned,
a definition must not be changed in any
way that alters the semantics of the item
defined.

Object identifiers are globally unique.
The object identifier type is a simple
ASN.1 type, defined in (6). An object
identifier will be a sequence of integers,
and object identifiers constitute a hier-
archy termed the object identifier tree.
Although this hierarchical structure is not
related to either the naming tree or
containment tree, the principle of allo-
cating global object identifiers is ana-
logous to the global naming of managed
objects. All object identifier values
registered in systems management
Recommendations and Standards are
allocated under the arc (joint-iso-ccitt
ms(9)) in the object identifier tree. (5)
defines the allocation of arcs below this
level.

The construct “REGISTERED AS
{smi2MObjectClass 7}” in Figure 2
assigns an object identifier to the
logRecord managed object class defini-
tion. The object identifier smi2MOb-
jectClass is specified by the assignment:
smi2MObjectClass OBJECT IDENTI-
FIER ::= {joint-iso-ccitt ms(9) smi(3)
part2(2) managed-ObjectClass(3)}.

containing
managed

object

contained
managed

object

legend

directory

sub-directory 1 sub-directory 2

file 2file 1

Figure 5 Illustration of containment relationship

logRecord-log NAME BINDING

SUBORDINATE OBJECT CLASS logRecord AND SUBCLASSES;

NAMED BY

SUPERIOR OBJECT CLASS log AND SUBCLASSES;

WITH ATTRIBUTE logRecordId;

DELETE

ONLY-IF-NO-CONTAINED-OBJECTS;

REGISTERED AS {smi2NameBinding 3};

Figure 6 A name binding definition for the logRecord managed object class (from (4))

94

7 Compatibility

and interoperability

7.1 Interoperability

When performing systems management,
the managing and managed systems must
have a certain common knowledge of
relevant management information. This
principle of shared management
knowledge between managing and
managed systems is described in (1).

Interoperability is required between
managing and managed systems. For the
management of a given managed object,
this implies that a system must be able to
manage another system if the managed
system has equal or less knowledge of
the managed object class definition of the
object in question. To the extent feasible,
a system must be able to manage another
system even if the managed system has
greater knowledge of the managed object
class definition of the object in question.
This interoperability must be maintained
if the managed system is enhanced, or if
managed object definitions are extended.
Shared management knowledge may not
be sufficient to ensure interoperability
between systems.

7.2 Compatibility rules

Rules are defined for compatibility be-
tween managed object classes, and this
contributes to attaining interoperability
between the managing and managed sys-
tems. These rules ensure that a managed
object being an instance of one managed
object class (the extended managed
object), is compatible with the definition
of a second managed object class (the

compatible managed object class). While
this principle is used for defining strict
inheritance, it may also apply to managed
object classes that are not related by
inheritance.

In connection with extending managed
objects, rules for compatibility are
defined for the following:

- adding properties in general

- package conditions

- constraints on attribute values and
attribute groups

- constraints on action and notification
parameters

- extensions to behaviour definitions.

The compatibility rules are described in
(3).

7.3 Allomorphism

Allomorphism is a method the managed
system may use to ensure inter-
operability. Allomorphism is a property
of managed objects. It entails that a
managed object may be managed as if it
were an instance of one or more managed
object classes other than its actual class.
This is possible if the managed object
supports allomorphism and is compatible
with these other managed object classes.

An allomorphic class may be one of the
superclasses of the managed object’s
actual class, but this is not required. On
the other hand, compatibility is an
absolute requirement for allomorphism.

If a managed object supports allomorph-
ism, this must be considered when per-
forming management operations and

emitting notifications. Allomorphic
behaviour, if any, is included in
operation and notification definitions.

If the managed system does not provide
the capability of allomorphism, a
managed object will always respond
according to its actual class definition. In
this case, the managing system has to
handle any unexpected or unintelligible
information it receives from the managed
system.

Some level of interoperability between
the managed and managing systems may
be achieved even if the compatibility
rules are not satisfied. However, the
degree of interoperability between the
systems is closely related to the degree of
compatibility.

8 Systems management

operations

Management operations may be per-
formed on managed objects if the
operations are part of the managed object
class definition. The effect of such
operations on the managed object and its
attributes, is also part of the definition. If
an operation affects related managed
objects, this will be specified as well.

There are two types of management
operations; those that apply to the
managed object attributes, and those that
apply to the managed object as a whole.
In order for an operation to succeed, the
managing system invoking the operation
must have the necessary access rights,
and no consistency constraints must be
violated. Such consistency constraints are
part of the attribute or managed object
class definitions.

vehicle

car

wheel motor

bus

chassis

w2 w3w1

generalization

aggregation

classification

specialization

decomposition

instantiation
instances

subclass

superclass

superior
object class

inheritance

subordinate
object class

containment

Figure 7 Illustration of terms for inheritance and containment (naming)

95

Some operations are always confirmed,
i.e. the operation invoker requires feed-
back on the result of the operation. Other
operations may be confirmed or uncon-
firmed as selected by the operation
invoker. The management operations
referred to in sections 8.3 and 8.4 are
primitive operations visible at the
managed object boundary. For such
operations, management has access to
some information, even if the operation
mode is unconfirmed.

Figure 1 illustrates the interactions taking
place between manager and agent when
performing management operations.

8.1 Scoping and filtering

Selecting managed objects for manage-
ment operations involves two phases:
scoping and filtering.

Scoping entails an identification of the
managed objects that may be eligible for
an operation. Scoping is based on the
management information tree concept,
which denotes the hierarchical arrange-
ment of names of managed object
instances in a MIB. The management
information tree of a given system is
identical to the local naming tree of that
system. A base managed object is given
for the scoping, and this object is defined
to be the root of the (management
information) subtree where the search is
to start. Four different scoping levels are
defined, the base object alone and the
whole subtree being the two extreme lev-
els.

Filtering entails applying a set of tests
(filters) to the scoped managed objects.
Filters are expressed in terms of ass-
ertions about the presence or values of
certain attributes in the managed object.
Attribute value assertions may be
grouped together in a filter using logical
operators. (3) describes the concept of
filtering in more detail.

The subset of scoped managed objects
that satisfy the filter is selected for the
management operation in question.

Scoping and filtering is actually part of
the management communications aspect
of systems management. Facilities
required to perform scoping and filtering
are provided by CMIS (see chapter 10).

8.2 Synchronisation

When identical management operations
are performed on several managed
objects, synchronisation of these
operations may be necessary. Two types

of synchronisation are defined: atomic
and best effort.

Atomic synchronisation implies that the
operations shall succeed on all the
managed objects selected for the
operations. If that is not possible, the
operations shall not be performed at all.
Each operation must have a definition of
success. Atomic synchronisation does not
apply to the Create operation.

Best effort synchronisation implies, as
the name indicates, that the operations
shall be performed on the selected
managed objects to the extent possible.

Operations synchronisation is actually
part of the management communications
aspect of systems management. Facilities
required to perform operations synchron-
isation are provided by CMIS (see
chapter 10).

8.3 Attribute oriented

operations

Attribute oriented operations are defined
to be performed on the managed object,
not directly on the attributes. This
enables the managed object to control
any manipulation of the attribute values,
and thereby ensure internal consistency.

The managed object receiving the
operation request must determine if and
how the operation is to be performed.
This is usually done by filtering, based
on information given in the operation
request.

Attribute oriented operations operate on a
list of attributes. This implies that all the
attributes included in the attribute list of
an operation request will be part of a
single operation. The operation succeeds
if it is performed successfully on all attri-
butes in the list. After the operation,
relevant information on attribute identifi-
ers and values, and any error indications,
will be available to management at the
managed object boundary.

Because of existing relationships in the
underlying resources, operations per-
formed on attributes in a managed object
may have indirect effects. Attributes wit-
hin the same managed object may be
modified, and attributes in related
managed objects may be affected as well.
The behaviour of the managed object
may change as its attributes are modified,
and so may the behaviour of related
managed objects.

The following attribute oriented
operations are defined:

- Get attribute value

- Replace attribute value

- Replace-with-default value

- Add member

- Remove member.

Descriptions of these operations are
given in (3).

8.4 Object oriented operations

As opposed to attribute oriented
operations, some management operations
apply to the managed object as a whole.
The effect of these operations is gener-
ally not confined to modification of attri-
bute values. The following primitive
operations are defined:

- Create

- Delete

- Action.

The Create operation requests the
creation and initialisation of a managed
object instance. The Delete operation
requests the managed object to delete
itself, and may also entail the deletion of
contained objects. The Action operation
requests the managed object to perform
some specified action and to indicate the
result.

The managed object class definition shall
include the semantics of these operations.
Interactions with related managed objects
shall be specified, as well as the effects
the operations may have on the resource
being represented.

Detailed descriptions of these operations
are given in (3).

9 Notational tools

The definition of managed object classes,
packages, attributes, etc., have to be
formally documented. (5) defines a set of
templates for this purpose. The following
templates are defined:

- managed object class template

- package template

- parameter template

- name binding template

- attribute template

- attribute group template

- behaviour template

- action template

- notification template.

96

The templates define the constructs that
are to be included, mandatory or
conditional, and the order in which the
constructs shall appear. The definitions
shown in Figures 2, 3, and 6 are made
according to the templates defined for
managed object classes, attributes and
name bindings, respectively.

If attributes, operations, notifications,
etc., are defined by the use of their own
templates, and are assigned separate
object identifiers, they may be globally
referenced in other managed object class
definitions. In order to increase common-
ality of definitions, possible re-use of
already defined managed object prop-
erties should always be considered when
defining new managed object classes.

10 CMIS and CMIP

The Common Management Information
Service (CMIS) is an application service
used by application processes to
exchange systems management
information and commands within a
management environment. Systems
management communication takes place
at the application layer, ref. (7).

The CMIS definition includes the set of
service primitives constituting each ser-
vice element (CMISE), the parameters
that are passed in each service primitive,
and the necessary semantic description of
the service primitives.

As indicated in Figure 1, there are two
types of information transfer, namely
operations and notifications. CMIS pro-
vides services accordingly; a manage-
ment operation service and a manage-
ment notification service. In addition to
this, CMIS provides facilities to enable
linking of multiple responses to a given
operation. It also enables scoping, filter-
ing, and operation synchronisation as
described in sections 8.1 and 8.2. It may
be noted that CMIS does not provide
operations synchronisation across mul-
tiple attributes within a managed object.

The CMISE services are listed below:

- M-EVENT-REPORT

- M-GET

- M-SET

- M-ACTION

- M-CREATE

- M-DELETE.

Establishment and release of application
associations are controlled by using
ACSE, defined in (8).

(9) defines CMIS, CMISE and the
associated service primitives and para-
meters.

The Common Management Information
Protocol (CMIP) is a communication
protocol used for exchanging manage-
ment information between application
layer entities. CMIP supports CMIS.
Information on CMIP and associated
subjects is found in (10).

11 ASN.1

Instances of attribute values are carried
in management protocols. In order to
interpret these values correctly, their
syntax has to be formally defined. Abs-
tract Syntax Notation One (ASN.1)
specifies a collection of data types for
this purpose. In addition to defining the
type of the attribute value, the ASN.1
data type will define the type of the attri-
bute itself, e.g. if the attribute is single-
valued or set-valued. Once an ASN.1
type has been assigned to an attribute,
instances of this attribute will be
assigned values of that given type.

ASN.1 data types may be specified in
connection with parameters, notifications
and actions as well. The ASN.1 type of a
parameter may either be specified
directly or by referring to an attribute
whose syntax is used. The syntax of
information and replies associated with
actions and notifications may be speci-
fied directly by including information
syntax and/or reply syntax in the defini-
tion of a given action or notification.

The topic of ASN.1 is rather extensive,
and deserves a paper of its own. Refer-
ence is given to (6) for details.

12 Abbreviations

ACSE Association Control Service
Element

ASN.1 Abstract Syntax Notation One

CCITT The International Telegraph and
Telephone Consultative
Committee

CMIP Common Management
Information Protocol

CMIS Common Management
Information Services

CMISE Common Management
Information Service Element

ETSI European Telecommunications
Standards Institute

IEC International Electrotechnical
Commission

ISO International Organisation for
Standardisation

MIB Management Information Base

MIS Management Information Ser-
vices

OSI Open Systems Interconnection

RDN Relative Distinguished Name

SDL Specification Description
Language.

References

1 CCITT. Recommendation X.701,
1992.

2 CCITT. Recommendation X.700,
1992.

3 CCITT. Recommendation X.720,
1992.

4 CCITT. Recommendation X.721,
1992.

5 CCITT. Recommendation X.722,
1992.

6 CCITT. Draft Recommendation
X.208-1, 1992.

7 CCITT. Recommendation X.200,
1988.

8 CCITT. Recommendation X.217,
1988.

9 CCITT. Recommendation X.710,
1991.

10 CCITT. Recommendation X.711,
1991.

Introduction

Norwegian Telecom has currently
several network management systems.

In this article we will delimit the pre-
sentation to technical support systems
outside the network elements. Also, basic
systems to undertake and support com-
munication to, from and between
network management systems are left
out. Systems on Personal Computers, e.g.
network planning systems, are left out as
well. Finally, reporting and statistics pro-
duction systems are excluded. The list is
delimited to systems considered to be
commonly used or recommended by the
Networks Division of Norwegian
Telecom. This means that systems used
by other divisions or business units are
not covered.

The network management systems are
grouped into the categories common sys-
tems, access and transport network,
telephony and ISDN, service network,
and a category of other networks. This
categorisation is not officially
recognised, but corresponds loosely to
the internal organisation of the Networks
Division and helps to indicate what
technology is managed. The systems are
listed alphabetically in each category,
independently of size or importance.

From a functional point of view, network
management is often divided into four
levels: network element, network, ser-
vice, and business. We will only consider
the first three of these. The first level is
typically concerned with alarms and
aspects of one network component. The
second level is concerned with resource
utilisation, resource management and the
topology of the network as a whole. The
third level single out these aspects for a
single service or customer.

Table 1 provides an overview of network
management systems. The overview uses
the three levels presented above, and uses
a sub-categorisation of five application
areas which are commonly known as
functional areas of OSI management.

Common systems

Common systems are systems which sup-
port several of the categories outlined in
the introduction.

AK is an alarm and command system
which collects operation and environ-
ment alarms and communicates
information for remote control of
telecommunication equipment. The AK
systems also conveys alarms to alarm

97

Network management systems in Norwegian Telecom

B Y K N U T J O H A N N E S S E N

Abstract

This article provides an overview of software systems for
network management in Norwegian Telecom. A few words are
needed to explain what is meant by network management.

The digitalisation of the telecommunication network has intro-
duced a large number of processors into the network. In many
cases the processors constitute full-blown complex computers.
The processors detect, process, communicate, and implement
status, alarm and control information to and from the network.
This information is managed in a separate set of computers and
software applications outside the network itself. These sup-
porting systems we call Operation, Management and Admin-
istration Systems (OM&A systems), or for short network
management systems.

In this article we will concentrate on applications which support
the management of the network. Below we will explain how we
delimit the scope of this presentation. Norwegian Telecom curr-
ently has a long range of software systems for the management
of the network. Most of these are closely related to the network
elements, e.g. System 12 exchanges from Alcatel and AXE
exchanges from Ericsson. Many of these systems have functions
for the handling and configuration of equipment, while the
applications developed by NT itself are more concerned with the
integrative management of components and services. This com-
prises charging, performance monitoring, alarm management,
and administrative databases about resources and couplings in
the network.

621.39.05:65

AOE
ATME
AUTRAX
CMAS
DKO
LV/Measurement
MCC (DEC)
NESSY
NMAS
OPENVIEW
SKUR

Service

Fault Configuration Accounting Performance Security

INFOSYS INFOSYS
INSA
TELSIS-LK
NUMSYS

MEAS INFOSYS

Network DGROK
INSA
TMS

DGROK
INKA
INSA
NMS/DXX
INTRA
NETCON-D
TELSIS-LK

AUTRAX
MEAS
TVP
TVPM

Network
element

AK
ALARM-S12
BSCOPT/SSC
CU/PDA
CMAS
DKO
FBS/DIGIMUX
INFOSYS
MCC (DEC)
NETCON-D
NMAS
NMS (Sprint)
OPENVIEW
REVAL
SLMS
STRAX
SSC
TDT2
TMS
TPRF3
TREF

AK
CMAS
FBS/DIGIMUX
INFOSYS
INRA
CMBAS
MCC (DEC)
NETCON-D
NMAS
NMS/DXX
NMS (Sprint)
NUMSYS
OPENVIEW
RLPLAN
SALSA
SMAS
SYMKOM
STAREK
STRAX

NMAS
SMAS

FILTRANS
NESSY
NMAS
NMS (Sprint)
OOBS/DEBO
SMART
SPESREGN
TCA
TELL
VISDA

Table 1 Classification of systems

centres and security corporations (the Al-
Tel service). The AK system is imple-
mented on Norsk Data Computers, ND-
100.

INSA is a database application for the
administration of the long lines and trunk
network. A relatively new usage of INSA
is the integrated analysis of alarms from
various network elements and graphical
presentation of possible causes, resulting
consequences and rerouting alternatives.
INSA runs on IBM mainframes and
graphics is provided on both PCs and
Unix workstations.

INTRA is a database application for the
administration of equipment and cross
couplings inside transmission and
switching centres. INTRA runs on IBM
mainframes.

TMOS is a family of Telecommunication
management operation support systems
from Ericsson. Norwegian Telecom has
installed three sub-systems: NMAS,
SMAS, and CMAS. These are shortly
described in subsequent sections. TMOS
runs under SunOS on Sun computers.

TMS, Telecommunication Management
System, is undertaking integration of
alarms from various sources (System 12,
MTX and AK). The most important
function is alarm analysis provided
together with INSA.

Access and

transport network

The access and transport network com-
prises the common infrastructure of the
network. Most of the support systems in
this category are test and supervision sys-
tems. These are based on measurement
equipment close to the network elements
and central systems to manage the
measurements. Measurement equipment
and central equipment are often
connected by the circuit switched
DATEX network. The measurement
equipment is not included in the list pro-
vided below.

ATME is Automatic transmission
measuring equipment for measurement
of the quality of the long lines network.
The system runs on ND-100 computers
in trunk exchanges all over the country.

BSCOPT provides graphical and alp-
hanumerical presentations on PCs from a
support system for radio links.

CU/PDA is a PC-based system for the
identification of failures of 64 kbit/s

DIGITAL circuits. The system is used to
create test loops on all parts of a circuit.

DGROK is a system which can switch
high level multiplex systems to a reserve.
This is a centralised system running on a
VAX computer.

DKO provides supervision of 140 Mbit/s
multiplex systems on radio links and
optical fibres.

FBS/Digimux provides alarm
information, reconfiguration and tests of
subscriber modems in the Digital mul-
tiplexing network. The system runs under
SunOS.

INKA is a database application providing
topographic maps about the cable
network. INKA runs on AIX.

INRA is a database application providing
data about radio link and broadcasting
stations and is communicating Autocad
drawings about these stations. The sys-
tem runs on IBM mainframes.

LV/Measurement equipment is used in
some regions for remote control of sub-
scriber line measurements and tests of
subscriber modems. These measurements
do not include lines covered by SLMS or
measurement systems inside the network
elements.

NETCON-D/DACS provides alarm and
quality supervision and configuration
control of the DACS network. DACS is a
first-generation digital access and cross-
connect equipment. The system runs on
PC user terminals connected to an OS/2
server.

NMS/DXX provides alarm supervision
and configuration control of the DXX
network. DXX is a second-generation
digital access and cross-connect equip-
ment. The system uses both OS/2 termin-
als and an OS/2 server.

RLPLAN is a database application about
the positioning of and equipment in radio
stations and provides information about
channels and frequencies. The system
runs on IBM mainframes. Graphical pre-
sentations of height curves is provided by
the Diman tool.

SSC, System and station control equip-
ment, collects and presents alarms from
country wide radio links and broad-
casting stations. The system runs on NEC
computers.

STAREK is a database application
containing data about broadcasting sta-
tions. The system runs on IBM mainfra-
mes.

TELSIS-LK is a database application
about the subscriber network. TELSIS-
LK is a subsystem of the TELSIS system
and runs on IBM mainframes.

Telephony and ISDN

Telephony and ISDN belongs to the cate-
gory service network, but is treated
separately, due to the size of the area.

Alarm-S12 is a system for presenting
alarm information for all Alcatel S12
exchanges controlled by a Network
Switching Centre. The system runs on
ND-500.

AOE is used to transfer data from
AUTRAX to Norsk Data computers. The
system runs on ND-100.

AUTRAX, Automatic traffic recording
terminal, provides traffic measurements
on analogue exchanges, both for
operation and maintenance and pro-
duction of statistics. The data are trans-
ferred to MEAS on Norsk Data comput-
ers.

FILTRANS is a set of small software
systems that are used for communication
and conversion of data files from Erics-
son AXE phase 0 exchanges. FILTRANS
utilises basic functions in NMAS release
1.

MEAS provides measurements and stat-
istics for operation and planning. Curr-
ently the system runs on Norsk Data
computers.

NESSY administrates file transfer be-
tween S12 and its support systems. The
system runs on ND-500.

NMAS, Network management system,
undertakes alarm, command and file
management of AXE and S12 exchanges.
Norwegian Telecom has developed some
minor systems to interconnect NMAS
with existing administrative systems,
such as RITEL for billing.

NUMSYS is a database application
which manages subscriber data to S12
and AXE phase 0 exchanges. The system
runs on ND-500 computers.

OOBS/DEBO, Originating observation
system/Detailed billing observation, is
used to handle bill complaints related to
S12 exchanges. FILTRANS is used for
the same function related to AXE phase 0
exchanges. SENTAX will be used for
ISDN.

REVAL, Report evaluation, is used to
ease the understanding of reports from

98

S12. The system runs on ND-500 com-
puters.

SALSA is a system for inputting sub-
scriber data to S12 and AXE exchanges
and for the planning of cabling. The sys-
tem runs on SunOS.

SKUR provides control of registers in
analogue exchanges. The data are ana-
lysed on ND-100 computers.

SLMS is a Subscriber line measurement
system for exchanges which do not have
built-in functions for this.

SMART, Subscriber monitoring and
registration terminal, is used to control
billing information from analogue
exchanges. The system runs on ND-100.

SPESREGN, Specified billing, converts
billing information from S12 format to
RITEL-FAKTURA, the common billing
system for Norwegian Telecom.
SENTAX will replace SPESREGN for
S12 package 4. FILTRANS and a con-
version program converts AXE data to
S12 format. SPESREGN runs on ND-
500.

SYMKOM is a new system which
converts data from SKUTE (a new sys-
tem for the management of customer
data) to Man-Machine Language com-
mands towards S12 and AXE.
SYMCOM runs under UNIX.

TCA, Telephone call analyser, registers
data from analogue exchanges for the
handling of billing complaints. The pre-
sentation part of the system runs on ND-
100.

TELL is used to supervise abnormal
changes in billing data. Currently this
system is to a large extent replaced by
TURBO-TELL and SUPER-TELL. Later
these will be replaced by SENTAX. The
system runs on ND-500.

TREF is a system for registration and
handling of failures on subscriber lines
connected to both analogue and digital
exchanges. TREF has interfaces to a long
range of other computer systems. The
system runs on ND-500.

VISDA is used to collect large amounts
of data from S12 and package 1-3 and
AXE phase 0. VISDA will be replaced
by SYMKOM for S12 package 4. The
system runs on ND-500.

Service networks

Service networks is a category of
networks and equipment which provide
either a single or a family of similar ser-
vices (e.g. X.25 data communication).

CMAS, Cellular management system, is
a subsystem of TMOS from Ericsson and
is used for network management of the
GSM mobile network.

INFOSYS provides customer access to
information about the Datapak and the
Datex networks. The system is imple-
mented under IBM AIX.

MBAS is a database application about
base stations in the mobile network. The
system runs on IBM mainframes.

NMS, Sprint network management sys-
tem, provides network management of
network elements which provide inter-
connection between the ISDN network
and Datapak.

STRAX provides alarm information
mainly from the Datex, Telex and Mobile
network exchanges in the Oslo region.
The system runs under IBM AIX.

TDT2, Telenet diagnostic tool, is used to
monitor and control status, configuration
and performance of Datapak exchanges.
The system is implemented on Prime
computers.

TPRF3, Telenet processor reporting
facility, distributes alarms from the
network elements of the Datapak
network via a national centre to regional
centres.

TVP is used to supervise the traffic
congestion and quality of service in the
Datapak packet switched network. The
system consists of several remote units
connected to a central. Statistics is gener-
ated on an ND-100 computer.

TVPM is a mobile network version of
TVP, mentioned above.

Other networks

This category includes networks and sys-
tems not covered by previous categories.

HP Open view, Network node manager,
is used for the management of internal
ARPA-IP networks.

MCC from DEC uses the Simple
Network Management Protocol to
manage broadband Supernet inter-
connecting universities in Norway. The
system runs under Unix.

SMAS, Service management network, is
a subsystem of TMOS from Ericsson and
is used for network management of Intel-
ligent Network services. The system also
allows assembling of service components
to create more complex services. The
system runs on SunOS.

99

100

Centralised network management

B Y E I N A R L U D V I G S E N

Situation assessment

The Telecommunications Management
Network interface recommendations are
regulatory rules for the outline of the
Network Element boundaries to the
Operation, Administration and Manage-
ment systems. Also recommendations of

interfaces for the interchange of data
between applications are being develo-
ped. However, the interface recomm-
endations do not contain a design of the
OA&M systems themselves and do not
currently recommend their functioning –
neither their detailed software
architecture, nor their concrete human-

machine interfaces. So far, the OA&M
systems have to be designed and develo-
ped by the telecommunication operators
or vendors themselves. The need to
adjust the OA&M systems to national
terminologies, existing administrative
systems, organisation dependent
regulations, competitive functions, etc.,
can for a long time imply a need to adjust
the OA&M systems to the particular
operator’s organisation.

The TMN interface standardisation will
restrict the Network Element vendors to
compete on price, quality and service,
while the technical specifications for the
NE’s are rather fixed. However, the same
means will provide a preparation and
opening up of the market for generalised
or tailored OA&M systems.

Intelligent Network

management

The most important resource for intellig-
ent network management is a networked
database of all resources and connections
in the telecommunications network. Such
a database will provide means to

- reason about the causes and consequ-
ences of alarms and failures in the
network and provide rerouting alterna-
tives

- automatically present different geo-
graphic or schematic graphs of the
network, showing its current constitu-
ent structure, plans, routing alterna-
tives, sub-networks, etc.

A prerequisite to achieving intelligent
network management, is a database that
is a realistic model of the network itself,
so precise that it can replace the network
for all reasoning purposes. Some com-
puter vendors have these kinds of tools

Abstract

This article gives a presentation of key tools for efficient
centralised network management in Norwegian Telecom.
The following measures are identified as prerequisites for
obtaining intelligent network management:
- a realistic data model of the network
- a detailed database of the network
- analysis and derivation routines on the network data
- automatic/semi automatic graphics from the network

database.

Norwegian Telecom has implemented intelligent network
management through the following software tools:
- the INSA database application for administering long lines

and trunk networks, including alarm handling and the provi-
sioning of graphics

- the INTRA database application for transmission equipment
and cross couplings inside transmission centres, including re-
lated applications

- the DATRAN tool for efficient development and usage of
database applications

- the DIMAN tool for presenting, manipulating and communi-
cating complex graphics to remote workstations via
narrowband wide area networks.

621.39.05:65

INSA

End users: 1620

Number of databases: 1

Database size (bto): 1.5 Gb

Data model - objects: 87, implemented through 207 record types

- relations: 312

- attributes: 2000

Screen pictures: ca. 100

INTRA

End users: 825

Number of databases: 7

Total database size (bto): 2.7 Gb

Data model - objects: 73, implemented through 96 record types

- relations: 214

- attributes: 570

Screen pictures: ca. 50

Figure 1 Key figures for INSA and INTRA
DATRAN allows for repeating attribute group(s). This is the main reason why 207
record types are needed to implement 87 object classes in INSA. DATRAN allows
screen pictures which are larger than the screen in both the horizontal and the vertical
dimensions. Some empty screen pictures in INSA can take up 6 full screens each. Also,
different kinds of editing is permitted in the same screen picture. This is why 2000
attributes can be presented in different ways in several screens using 100 screen
pictures only. Generic databases for dictionary, access control, electronic main and
graph management are not included in the above figures. The figures provide some
insight into the complexity of the INSA and INTRA applications

3

1. ALBERW O/F 192001 RES.LAGT
2. CH/A SG/B S192003 FEIL
3. M O/F 192001 RES.LAGT
4. A CH/A S192002 FEIL

42
1

1

1

3

3

LSN

HM

O/O2

SB

M

TB

ÅRHW

O/F2

O/F1

O/O1

GK

LM

TD

ÅL

BR/A

SG/B

CH/A

A

SK

D

O/O TD 3004
O/O TD 3005
TD ØST24 92228294
O/O TD 3006

TD ØKE 3004
O/O TD 3001
TB TD 8

D TD 1
SK TD 1
FG TD 4
FG TD 5

SB TD 1
SB TD 2
SB TD 3
TB TD 20015522

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

O/O TD 48003

N

N
N

N

O/O TD 12006

O/O TD 12012

O/O TD 12007

SB TD 12001

101

LØN

EM

VÅS

FLS

KNÆ

BRV

KSR

SKS

ÅR

SØS

FTS

ÅKR

HM

SYK

BYT

RÅH

JM

LSM

LØR

O/A

C

O/F

O/MC

N
Å

O/O

ØKE

3

1

1

3

1

1

1

1

3

10

9

3 25

3

5
4

4

3

3

4049

5111

5079

5102

5103

5104 2
5

5044

Ruting av samband i forh.nr:

RUT-RES 859
SB: KSR ØKE 4011084
SB: KSR ØKE 4011085

Figure 2 Routing of two circuits, required to have different
routing, between two end stations
The graph is provided automatically from the INSA database by
the use of DIMAN. The end user can move icons and otherwise
edit and transform the graph without destroying the
connections and references to the source data in the INSA data-
base. Manual production of these graphs by using a commer-
cial drawing package would have been unfeasible

Figure 3 Part of a multiplex hierarchy
The graph is provided automatically from the
INSA database using DIMAN. The end user
can edit the graph and get the old editions
included in new versions, which are produced
automatically and contain new data. This way,
DATRAN and DIMAN integrate manual
editing and automatic production of graphs

Figure 4 The DGROK network
The DGROK network allows automatic re-routing of digital
multiplex groups. The graph shows free, occupied, fault,
planned and reserved resources and is automatically updated
in real time when the state of a resource is changed. The graph
is provided automatically from the INSA database using
DIMAN

for computer networks. However, our
experience is that public telecommuni-
cations networks, have a much more
complex structure, due to the use of very
high level multiplexing, diverse techno-
logies and complex administrative proce-
dures and relations to other systems. For
example, existing files for the cable
network and the radio link network often
tend to serve as references to detailed
paper based graphs and plans rather than
being full blown models of the network.
Therefore, in the INSA project,
Norwegian Telecom developed a precise
data model of the long lines and trunk
network in Norway for all technologies,
including satellites, radio links, cables,
multiplexers, switches, circuit groups,
circuit routing, data networks, mobile
communication networks, rerouting
plans, etc.

The INSA data model forms the basis for
the INSA database for the long lines and
trunk network for all of Norway. While
the INSA database is used to administer
the resources between the transmission
centres, the INTRA database – imple-
mented by the same tools – has been
added to administer equipment and cross
couplings inside each transmission and
switching centre.

INSA also includes an order management
system, allowing the operators to issue
the appropriate routing and cross coupl-
ing orders to the local technicians and to
get reports of execution back. The order
management system covers both the
INSA and INTRA system. In addition to
an electronic document interchange-part
(EDI), the order management system
contains a historical database. In this
database information about how resour-
ces were disposed or how circuits were
routed before a particular routing and
cross coupling order was executed, can
be obtained.

The reporting back routines in the order
management system automatically
updates the INSA and INTRA databases.
By means of this, the databases show at
any time a real picture of the long lines
and trunk network, which is utilised in
Network Management.

Currently commands to the network itself
cannot be issued automatically from the
INSA system; whenever appropriate,
such commands have to be keyed into a
dedicated system for this purpose.

The INSA and INTRA databases have
become key tools for administering the
long lines and trunk network in Norway
in an efficient way. However, more bene-
fits are provided by creating add-ons to
these database applications.

Automatic graphics

Many administrations, including
Norwegian Telecom, have been develop-
ing schematic graphs of the network –
often by using commercial PC tools.
However, one recurrent problem is to
keep the graphs updated as the resources
of and the routing in the network are
changing. This is solved in INSA by pro-
viding a graphical interface to the
network database itself, where the graphs
are automatically updated at the users
premises. The user can even modify the
graphs manually and keep these
modifications maintained when the data-
base is updated. We would like to point
out that in most graphs of the network,
we do not want a pure geographic pre-
sentation, rather a more schematic and
readable presentation of the structure of
the network is wanted, and still we want
the graphs to be produced automatically.
INSA does this.

INSA automatically produces a large
variety of schematic graphs of the mul-
tiplex hierarchy, personal communication
network, leased lines networks for large
customers, routing of circuits, circuit
groups, etc. for the whole or a specified
part of the network.

Real time analysis

The above measures, in the following
descending priority,

- a realistic data model

- a detailed database

- analysis and derivation routines

- automatic graphics

are needed to provide intelligent manage-
ment of the network. For real time ana-
lysis of the network, in addition, a data
communication facility between the
Network Elements and the network data-
base is needed. This data communication
facility may be a recommended TMN
interface or various proprietary solutions,
for which adaptions have to be made.

Various alarms from Network Elements
– from switches and pieces of transmiss-
ion equipment – are automatically fed
into the INSA database application
according to the users’ selections and an
automatic analysis procedure is started.
Then the users initiate a presentation of
the selected alarms in a map of the
involved resources. A next graph shows
common resources for the alarms, which
are candidate sources for the primary
alarms and failures. The last step in the
analysis shows rerouting alternatives to
the involved resources. The entire ana-
lysis and graphical presentations can take
place in a few minutes. And the initiation
of the analysis and graphical presentation
of the results can take place at remote
terminals all over the country. The users
can also initiate an analysis procedure to
detect the consequences of the alarms.
Instead of a graphic presentation, the user
can initiate a paper list presentation.
This presentation can be focused either
on leased lines customers, or on the vari-
ous service networks. In addition to
feeding alarms into the INSA system,
the consequences of planned outage of a
transmission system can be detected by
the same analysis. This gives us the
possibility to point out a suitable period
to do necessary maintenance on Network
Elements.

102

Past and present

Without these tools, the OA&M
operators previously spent hours and
days investigating the sources of the
alarms, and taking the necessary actions.
The knowledgeable OA&M reader is
aware of the complexity of the tasks
involved. If a large transmission centre
has a blackout, tens of thousands of
circuits can be involved, making it just
about impossible to sort out all parties
involved and to create satisfactory altern-
ative solutions in a short period of time.
If a radio link to the western part of the
country is involved, this can cause fallo-
uts also in the northern and southern part
of the country, due to complex mul-
tiplexing and routing. Often the reserves
for the sub-groups can be unknowingly
routed on the same fallen out link. And
often we are not able to spot manually all
rerouting alternatives existing as many
step paths of free resources in the
network. Therefore intelligent network
management facilities are needed.

Norwegian Telecom has made attempts
to install commercial tools for automatic
presentation of alarms in pre-made
graphs. The problems with these tools
have been the manual updating of the
graphs and the lack of intelligence in the
analysis, due to the lack of access to the
network database itself. Furthermore,
neither initiation nor utilisation of the
analysis were easily distributed all over
the country. The INSA system provides
all this.

Future

A further development of the alarm
handling, in the INSA system, will be the
development of a method to link detected
alarms to registered transmission systems
in the INSA database. This gives us a
possibility to produce statistics, telling us
something about the reliability and
availability of the different transmission
systems.

In an earlier paragraph we described the
analysis which led to the detection of
consequences of alarms from network
elements or planned outage of a trans-
mission system. This consequence ana-
lysis makes it possible for us to inform
important customers automatically when
their connections are affected by network
failure or planned outage. In principle, all
customers having leased lines or data
connections, can be informed.
Norwegian Telecom has, however,
decided that only strategic customers,
that is, customers with a particular ser-
vice contract, will receive this kind of
information.

The analysis starts with the alarms fed
into the INSA database. The results of
the analysis are distributed to the custom-
ers via the TELEMAX-400 network to a
telefax machine, or to a PC. A test pro-
ject, with very few (2 -3) customers
involved, was started in December 1992.

In the digital multiplex network,
Norwegian Telecom has introduced a
Digital Rerouting System (DGROK).
Today, when reserves for sub-groups are
activated, the INSA database has to be
updated by an operator to obtain a correct
result of the consequence analysis. In the
future, an automatic updating of the
INSA database from the DGROK system
will be developed.

103

104

The DATRAN and DIMAN tools

B Y C A T O N O R D L U N D

Background

DATRAN is a general application which
easily can be tailored to reading and
writing in different databases. DATRAN
has been used to replace traditional
development for several large and com-
plex applications. Each time costs and
development time have been considera-
bly reduced.

DIMAN is a dialogue manager for alp-
hanumeric and graphic dialogues. This
provides an advanced graphical front-end
to DATRAN applications.

This article gives an overview of the
mentioned products as well as their
usages.

The work with DATRAN started back in
the late seventies and was from the beg-
inning connected to the INSA project
within Norwegian Telecom. The task
was to develop a system for the admin-
istration of the long lines and trunk
network, a very complex application,
with all kinds of telecommunication
technologies involved. The system was
to be on-line all the time, and its data
should be updated from terminals all
over the country. Experiences from
several projects developing similar sys-
tems, led to the conclusion that enough
EDP personnel was not available to solve
the task in a traditional way. Hence an

activity to develop the necessary tools to
reduce significantly the programming
and testing efforts was established. This
work was conducted by Norwegian
Telecom Research.

Even at that time software products for
applications like reporting, salaries, and
accounting were available. Also more
general programs for word processing
and text editing existed, but tools for
application development were scarce and
poor.

However, almost all programs in an on-
line database application do very much
the same: read some data from the data-
base, present them to the user, receive
input, validate it, update the database and
display some sort of confirmation. Com-
plexity is added due to access control,
where the program must consider user
categories versus function and data own-
ership, and also when data is gathered
through several forms to assure complet-
eness before updating. Much of the effort
is spent to write and debug code eventu-
ally not to be used, write and debug
similar code for slightly different cases,
propagate corrections and improvements
into earlier written code, make user inter-
face convenient and consistent, and so
on.

If one could make one product doing all
these operations, controlled by paramet-

ers or a specification of the application,
most of the repetitive and time consum-
ing work could be removed from the sys-
tem developing process. Also, since the
same code can be used by all appli-
cations, the quality will increase for all
users. In addition, the same common user
interface will be provided for all appli-
cations, and thereby greatly reduce the
need for user education concerning the
EDP system. This is of course the same
advantages as acquired for all generalised
software, but which is unfortunately not
so well focused in on-line database appli-
cations.

And DATRAN was developed according
to these guidelines. The name
“DATRAN” is an abbreviation for “DAta
TRANsformation”, which accentuates
the main idea of the product. Data are
read from one medium and written on
another, and the whole process is con-
trolled by rules specific for that particular
transformation. The rules are stated in
application specific schemata and are
removed from the generic transformation
program. The contents of the schemata
are treated as ordinary data and are
themselves managed in an ordinary
DATRAN database.

DATRAN

DATRAN is based on a layered
architecture, commonly referred to as a 3
schema architecture. Most important is
the application layer. Here the appli-
cation is defined, with objects, related
objects, attributes and their valid values.
The names used in the application layer
are from the user terminology, not the
programming or database terms. Often
the application layer is called a data
model for the application, but what it
really is, is the complete set of names and
restrictions for the application system. As
these definitions are readily available for
users as well as system developers, they
are often accompanied by textual
explanations not used by DATRAN
itself.

The internal layer of the architecture
contains the database entities. That is
areas, records, sets, items, table spaces,
tables, columns, keys, programs and so
on, depending on the chosen database
system for storing the application data.
Much of the content in the internal layer
can be generated automatically from the
application layer, but there will always
remain some choices and imple-
mentations to be made by the database
administrator. The application layer is

Figure 1 DATRAN and DIMAN
DATRAN manages data, enforces data structure and application logic on central IBM
mainframes. Presentations can be made on dumb terminals, PCs or workstations.
DIMAN provides a seamless dialogue of alphanumerical and graphical presentations

681.3.01

105

mapped to the internal layer, so that
every entity in the application layer has a
representation in the internal layer. The
internal layer specifies how the appli-
cation data are stored.

The screen definitions of the system
constitutes the external, or better – pre-
sentation layer of the application. Each of
the presentation forms consists merely of
a list of objects, related objects and attri-
butes from the application layer. How-
ever, the entities cannot be chosen
arbitrarily, they must form a subset of
what is previously defined in the appli-
cation layer. If a data item is allowed to
be updated through that particular form,
it is provided with an operation code for
insertion, modification or deletion. The
developer needs not bother with how the
operations are implemented. This way of
realising a screen picture, approaches a
theoretical minimum of effort involved.

The presentation of data in a form
follows a predefined grammar. It means
that the context of the data item is signi-
ficant. Related objects are placed close to
their origin object, and attributes are
placed so that it is clear to which object
they belong. Any user aware of this fact

will understand a lot about the appli-
cation merely by having a look at the
form. The layout of data items in a form
is automatically generated by the system,
but may to some extent be controlled by
the developer, and even by the end user
himself. No traditional “ screen painting”
is needed. The form may contain more
data than what can be seen within a
single screen simultaneously.

When DATRAN retrieves data from the
database, the items are arranged accord-
ing to the actual form. Headings are pro-
vided only when necessary. Thus the
form is expanded when multiple
occurrences of the same data type are to
be presented. Not all the data in the data-
base are necessarily retrieved in one step,
only as much as what fills up a prede-
fined or user defined work area is
retrieved. Browsing of data outside the
actual screen is possible, (up, down, left,
right), and more data may be read from
the database in a next retrieving step. The
various retrieving operations are initiated
by commands and retrieving criteria
given by the user. The commands are
independent of the application, they
belong to DATRAN. Transitions are
possible to all data in the form, if there is

defined a suitable form for the item
pointed at. There is no application code
involved to provide these operations.

When data are inserted or modified, the
given input is controlled according to
what is defined as valid in the application
schema, and default values are provided.
Also the updating operations are initiated
by standard DATRAN commands and
involve no application code. However,
more complex operations involving cal-
culations, derivations and wanted
redundancy in the data system must be
provided as code in some form. In
DATRAN these tasks are performed by
COBOL programs, automatically
invoked by DATRAN when the specified
operations are executed. These appli-
cation dependent programs are written in
accordance with the rules in the appli-
cation layer of the system, but are
addressing the entities in the internal
layer. The programs do NOT contain any
presentation specific code, so typically in
a DATRAN system there are far less pro-
grams than objects. The centralised
application logic makes all objects
behave in a consistent way independent
of which context they are used in.

Db 2

Db 1

Internal

schemata

External

schemata

Application

schema

MEDA

Dialog

 Job

 Graph

 Batch

Access

control

DATRAN

Controler

Dumb

terminal

Line

Printer/plotter

PC

Electr.mail
Batch & graph

Access

Main reg.

Figure 2 The DATRAN environment
DATRAN is controlled by specifications of the application, contained in the 3-layered MEDA dictionary. The layers contain
External, Application and Internal schemata. All implementations (of control structures) are hidden from the developer inside
DATRAN itself. The Dictionary is an ordinary DATRAN application. DATRAN contains an advanced access control system. Also,
DATRAN contains pre-made subsystems for dialogue handling, job control, graph management and batch processing. Pre-made
databases are provided for the dictionary, electronic mail, graph management and access control

The reason for coding in COBOL is
obvious. The programming language
must have a runtime system working
with the commonly used transaction
monitors as well as in batch and against
the chosen database system. Also the
language must be complete and pre-
ferably in common use.

The dialogue itself is modeless. Every
step in the end user’s dialogue with
DATRAN is a finished piece of work.
All the work may not be done, but what
is done has updated the database and is
available for that user later on and also
for other users. The idea is that the user
shall have full control over
the data processing sys-
tem, not the other way
around.

There are no traditional
functions in a DATRAN
application, only data.
Thereby, not much work is
done to analyse and pro-
gram organisation of work,
tasks and their sequences,
routines, and so on. As a
consequence of this, it is
not necessary to make
changes in the data system
if and when the mentioned
conditions are changed.
The functions in
DATRAN consist of
screen forms and serve the
purpose of access control.
All the forms with the
same set of access rights
are gathered in the same
function. When a user
chooses a particular form,
DATRAN checks in an
access control database
whether the user has the
right to use the form. If
not, access is denied. It is
even possible to specify
for which set of data occurrences access
right is granted. Thus, there is no need
for application code concerning access
control.

In addition to these main functions of any
on-line database system, DATRAN pro-
vides various means to facilitate the work
for the user. Many of the facilities would
have been far too expensive to imple-
ment in most conventionally developed
systems. For instance, the user may on-
line customise a screen form to serve his
particular needs, remove data items that
are not needed, reduce or remove head-
ings, retrieve related data satisfying

TDMO*READ, COMPANY, COMPANY, TELE 21/72 0001/1
company
SSL
address
SYSTEMSERVICES LMTD., OSLO NORWAY
remark
-CONSULTANTS IN ELECTRONIC DATA PROCESSING
-DISTRIBUTORS OF DATRAN
-OFFERS CUSTOMIZED COURSES IN DATRAN AND SYS.DEV.METHODS
sales agent
code
RT
SG
JEJ

OL
LTH
ED
warehouse
code
SSL
OCW

name
RICARDO TOWERS
SERGE GAMBI
JOHN ERIC JACOBSEN

ODD LARSON
LIV TORUNN HOPE
EDWARD BERNARDO

name/address
WAREHOUSE 1
OSLO CENTRAL WAREHOUSE

district
code

STB
JAP
STB
LIL
BAR
PHI

telephone
06 202020
02 039303

telephone
410120

IDMS7*IDMO, MESSAGE,, ROGERS, IDF0210, 92.0.131*14.08

status
A

01 1 0025
02 00 01401MORE NEXT PAGE01

106

given criteria, and cut and paste data
from several forms. The screen may be
divided into several windows showing
different or the same form with appli-
cation data. It is also possible to copy
data within or between windows. The
form may be expanded at any point for
insertion of new data occurrences.

End users write DATRAN commands
either in particular command fields on
the screen or in a general command area
to the left of where the application data is
presented. The most common commands
have an equivalent PF-key, and pointing

may be done by cursor positioning. All
the items in the DATRAN screen, includ-
ing the commands, are documented in
their own database, available through the
DATRAN Help command or the PF-key
for Help.

Maybe the most powerful dialogue
facility in DATRAN is how it handles
dialogues. On user request DATRAN
will save all the data related to the actual
screen picture, briefly named a “dia-
logue”. This makes it possible to re-
invoke that picture or dialogue on request
at a later stage, and to continue the work

3a

Function Line

Physical Screen

Modus Command
Field

Size value indicator of
the Electronic sheet

window

Relative position indicator
of the Physical Window
within the Electronic Sheet

Picture Part

1
2
3

5

7

10

12

14

16

18

20

22

Line
Command
Fields

+m → (X)

These two lines consitute the Message Region

Scroll Command
Field for the Message Region

Status Line Dialog
Command
Field

23

24

25

3b

107

with that origin. A common transition is
to access the documentation database for
viewing valid attribute values, and then
to return to the application. Also the user
may have a look at another object in the
same database, or leap to a different
(DATRAN) application system, possibly
for cutting and pasting data.

DATRAN provides some mechanisms to
automatically assign values to attributes.
By choosing a particular form, insertion
of an object will assure that the included
attributes for that object will get their
default values. If the form already pre-
sents a suitable occurrence of an object,
it is straight forward for the user just to
modify relevant attributes and in this way
insert a similar object. Eventually, values
can be inserted by an application pro-
gram which may be invoked when the
database operations are executed.

Internally DATRAN is implemented
with the same structure as that of any
other transaction program. On the top, a
control module is handling the terminals
and the DATRAN dialogues, as well as
invoking the other modules in the
runtime system:

- a module for transformation of input
data to DATRAN internal format

- a module for analysis of commands
and requests concerning the form in a
window

- a module for analysis of commands
acting on application data items and
preparation for updating of the data-
base

- a module for access control

- a module for updating the database

- a module for retrieving data

- a module for processing selection
criteria for the retrieved data, and fin-
ally

- a module for transforming data from
the DATRAN internal format to the
screen format.

Even if this is not a client-server
architecture, the separation of the various
tasks in the processing of a transaction
will facilitate a client-server like pro-
cessing. See below about DIMAN.

The DATRAN system

family

The DATRAN environment contains
several subsystems and utilities to be
mentioned:

MEDA, the MEta DAta system for
DATRAN, is the system developer’s
tool. Specification data for the various
applications are stored in the meta data-
base, where they are updated and
retrieved by MEDA, which is itself a
DATRAN application. Via MEDA the
application system is defined, with its
three layers, as mentioned before. These
meta data form an on-line documentation
database, which is integrated with the
application system. The meta data are
used both by the end user and the system
developer, as well as by DATRAN itself.
However, when used by DATRAN, they
are transformed from the database to a
load module form, due to performance
reasons. It is important to point out that
the screen layout, as well as the com-
mands applied in MEDA, are just the
same in MEDA as in any other
DATRAN application.

ADAD, the ADmission ADministration
system for DATRAN, is used for
updating the access control database that
DATRAN uses to grant access. Even
ADAD is a DATRAN application with
all the common facilities. During access
control database data are used in their
original form, without any trans-
formation. The ADAD database contains
entities for users and user groups, termin-
als and terminal groups, systems,
(DATRAN) functions and ownership of
sets of data occurrences, called
DATRAN data areas, as well as
permissible combinations of these enti-
ties. ADAD is very close to a draft
CCITT recommendation for access con-
trol administration, described elsewhere
in this book.

Figure 3 Figure (a) shows an ordinary alphanumeric picture from DATRAN. Figure
(b) depicts the standard layout of a DATRAN picture. Figure (c) shows how data
relate to each other. Figure (d) shows a Help screen for a specific field, provided by
direct access to MEDA. The many pre-made dialogue features of DATRAN are not
illustrated

company

sales agent

warehouse

warehouse

sales agent district

sales agent district

sales agent district

sales agent district

sales agent district

TDMO*READ. COMPANY. COMPANY. TELE 21/72 0001/1
company
SSL
address
SYSTEMSERVICES LMTD., OSLO NORWAY

attribute
glo.name
IDMO COMPANY STATUS
remark
THE STATUS DEFINES WHETHER THE COMPANY IS DOING
ACTIVE MARKETING OR NOT
d value
 contents
* A
* P
* -

status
A

01 1 0025

02 00 01401

IDMS7*IDMO, MESSAGE,, ROGERS, TDF0210, 92.0.131*14.08

MORE NEXT PAGE

MEDA*READ, ATT, ATTRIBUTE

01

telephone
410120

remark
ACTIVE
PASSIVE
UNKNOWN

3c

3d

108

JOBB is a third subsystem of DATRAN,
and another DATRAN application. The
JOBB database has data about (batch)
jobs, parameters, JCL, users, and everyt-
hing that is necessary to start a prede-
fined batch job, but it does not contain
any mechanism for supervision of the
execution or eventually the printout. This
is to some extent undertaken by GRAF.

GRAF contains structures for storing and
maintaining graphical data and files. In
this case the database serves more as a
distribution means than an ordinary end
user data system. DATRAN provides the
required functions for transferring data to
and from the database, and the recovery
mechanisms in the database management
system assures consistent updating of the
data, as well as access by multiple users.
The format of the graphical or file data
stored in the GRAF database is unknown
and of no interest to DATRAN, which in
this case operates only as a server for this
database.

In addition to these DATRAN database
applications, there are a few tools and
utilities:

SADA is a batch version of DATRAN,
but only for data retrieval and printout.
On the basis of an ordinary DATRAN
presentation form, SADA selects one
particular or any given number of object
occurrences from the application data-
base, retrieves the data specified, and
presents them to a file or for printing.

For debugging of application programs
as well as of the DATRAN modules, sys-
tem developers are provided with the
DATRAN DEBUG system, which makes
it possible to stop at any label in a
COBOL program and display the various
data involved.

At last there is CDML, a Conversational
Data Manipulation Language for quick
and easy reading and writing in CODA-
SYL databases. CDML has a shorthand
notation for the data manipulation state-
ments and operates on the unformatted
database record. It needs no compilation
or pre-processing and can access data
through any existing sub-schema, if
permission is granted by the database
management system.

DATRAN is mainly written in CO-
BOL.II, but there are a few minor
assembler modules. The system runs on
IBM mainframes in a pure IDMS
environment or in a mixed CICS
transaction and IDMS database set-up.
Recently both the on-line and batch

runtime system have been expanded with
full access facility for DB2, and the main
subsystems, MEDA and ADAD, have
been given a DB2 implementation.

DATRAN applications

INSA was the first DATRAN appli-
cation. This is an information system for
the trunk and long lines network, which
also was the justification for DATRAN
itself. Since late 1983 INSA has grown in
every way, data types, data occurrences,
number of users and functionality. It is
the most complex and one of the most
important databases in Norwegian
Telecom.

In 1987 Norsk Hydro was licensed to use
DATRAN, and their integrated pension
system, IPS, was operative less than a
year later, realised through DATRAN.

In 1989 a new major DATRAN appli-
cation was put into operation, INTRA, a
system for managing the equipment and
cross couplings in the transmission centre
in the telecommunication network. This
system has a close relationship to INSA,
but has a much larger amount of data.

The same year SIRIUS/R, the main sys-
tem for general accounting, budgeting
and reporting in Norwegian Telecom was
implemented using DATRAN. A year
later, SIRIUS/R was followed by
SIRIUS/P, a system for project planning
and supervising.

In addition to these, there are other
DATRAN applications:

- REGINA, instrument administration

- DATAKATT, data term catalogue

- STAREK, radio broadcasting station
administration

- MARIT, marketing support system

- TIMEREG, internal activity reporting

- KATB, commercial telephone cata-
logue announcements

- INFUTS, portable and spare tele
equipment administration.

Several experimental DATRAN systems
have been developed. Among these are
GEOINSA, a system for geographical
data and map making related to INSA,
TELEKAT, X.500 electronic directory,
SDL, a CCITT specification database,
JUDO, a journal and document handling
system. As already mentioned, most sub-
systems of the DATRAN family are
themselves implemented by DATRAN.

The reason for choosing DATRAN for
several of the above systems has been to
reduce development costs and time. No
other tool could deliver the application in
due time with the resources available.
Application developers have been able to
use DATRAN with very high productiv-
ity after just a few days of training.

Currently about 5,000 end users utilise
DATRAN applications.

DIMAN

A separate product, but with a rela-
tionship to DATRAN, is DIMAN. This is
a dialogue manager for alphanumeric as
well as colour graphic dialogues.
DIMAN was originally developed as a
DOS PC-application, but is now
converted to Windows and UNIX
environments.

Most graphic applications require large
amounts of data to be transferred from
the host computer to the terminal where
the data are presented. For this use
narrowband lines are usually too time
consuming or in practice impossible. A
basic idea behind DIMAN is to reduce
the data transport to an extent that
ordinary terminal connections are usable
for graphics. The terminal used is an
ordinary Personal Computer. The
reduction in data transport is achieved
through the intensive use of inheritance.
Only the significant, different data are
transferred for each occurrence of the
graphical objects.

Another feature that distinguishes
DIMAN from most graphical systems is
that the drawings are composed of
interrelated, graphical objects (icons). It
is not just the graphical primitives that
are communicated. In this way, objects
can be moved around without loosing
their connections to other objects on the
screen. DIMAN also allows icons to
represent objects from an application
database, reference these objects and
make operations on them. This is taken
advantage of when DIMAN operates in
conjugation with DATRAN. Data are
retrieved from the application database,
provided with the necessary graphical
information, and sent to DIMAN as a
meta file containing data types as well as
data occurrences. DIMAN then makes
the presentation on the screen.

When more processing is necessary to
produce a drawing, the task is done as a
batch job, and the result is stored in a
suitable database, namely the DATRAN

109

subsystem GRAF. DATRAN and
DIMAN have the required protocol to
exchange these drawings, as well as
ordinary files stored there.

Among the more usual features of
DIMAN is windowing, dialogue handl-
ing of the same type as in DATRAN,
mouse operations, zooming, panning,
local editing of the drawings, printing
and plotting the whole or part of the
graphs. Close integration of graphics and
alphanumeric forms is a strength of
DIMAN. Edited drawings can be stored
on the PC or sent back for storing in the
GRAF database. Old editing and new
graphs may be integrated and automati-
cally kept consistent.

DIMAN has been used for presentation
of alarm analysis for the telecommuni-
cation network, as well as for presenting
alternatives for circuit routing, specific
sub-networks and so on. Another appli-
cation is the presentation of height dia-
grams between existing and planned
radio link stations. This is of great value
as a planning tool in mountainous
Norway. In addition business graphics as
well as data models are provided.

Currently some tens of different graph
types exist. For these several thousands
graph instances are produced automati-
cally and distributed to some hundred
users by DATRAN and DIMAN.

Figure 4 Graphical presentation by DIMAN
The example shows a height curve between two radio stations. When geographical co-ordinates of the two stations are provided, the
curve is produced automatically from a height database of all of Norway

stasjon
sign
h.o.h
pos.n
pos.ø
retn.
ant.h.

: Rundemanen
: RDM
: 0565 m
: 602448
: 052209
: 067.6 G
: 83 m

avstand
terr.ru.
hopp el.
terr. el.
frekv.

: 65.10 m
: 42.00 m
: 11.88 mrad
: 14.7 mrad
: 4.00 GHz

0 4 8 12 16 20 24 28 32 36 40

-4-8-12-16-20-24-28-32-36-40

500

1000

m
1500

stasjon
sign
h.o.h
pos.n
pos.ø
retn.
ant.h.

: Lønahorgi
: LHO
: 1409 m
: 604139
: 062456
: 268.6 G
: 12 m

barmark

fjell/is

vann

siktelinje

30% 1. fresnel

1. fresnel

km
K-faktor: 1.33 (eff: 0.85)

udefinert

skog

bebygd

110

DIBAS – A management system for distributed databases

B Y E I R I K D A H L E A N D H E L G E B E R G

1 Distributed databases

1.1 What is a distributed

database?

Definition (2): “A distributed database is
a collection of data which are distributed
over different computers of a computer
network. Each site of the network has
autonomous processing capability, and
can perform local applications. Each site
also participates in the execution of at
least one global application, which
requires accessing data at several sites
using a communication subsystem.”
Figure 1 illustrates this definition.

Each computer with its local database
constitutes one site which is an autono-
mous database system. During normal
operation the applications which are
requested from the terminals at one site
may only access the database at that site.
These applications are called local appli-
cations. The definition emphasises the
existence of some applications which
access data at more than one site. These
applications are called global appli-
cations or distributed applications.

In this article only relational distributed
database systems are considered.

1.2 Fragmentation and

replication

Performance and availability enhance-
ments in a distributed database is usually
achieved by storing copies of data on
sites where the data are frequently used.
Each table in a relational database can be
split into several non-overlapping
portions which are called fragments. The
process of defining the fragments is
called fragmentation. There are two types
of fragmentation, horizontal frag-
mentation and vertical fragmentation.
Fragments can be located on one or
several sites of the network.

Horizontal fragmentation means parti-
tioning the tuples of a table into subsets,
each subset being a fragment. This way
of partitioning is useful if the users/appli-
cations at one site use one subset of the
tuples of a table more frequently than
other tuples.

Vertical fragmentation is the subdivi-
sioning of attributes of a table into
groups, each group is called a vertical
fragment. Vertical fragments are defined
when users/applications at different sites
access different groups of attributes of a
table.

Abstract

The dramatic improvements in hardware, cost and performance
for data processing and communication permit rethinking of
where data, systems and computer hardware belong in the
organisation. So far, most database applications have been
implemented as rather isolated systems having little or no
exchange of data. However, users require data from several sys-
tems. This implies that integration of data and systems has to be
addressed, and at the same time providing the local control and
autonomy required by the users. Both intra-application integra-
tion (integration of data stored on different geographical sites
for the same application) and inter-application integration
(integration of data from different applications possibly stored
on different sites) are required. Organisational changes may
also affect the way data, systems and hardware are organised,
because of new requirements resulting from changes in
responsibility, management control, user control, etc. The
solutions sought after must provide a trade-off between the
integration and the local control and flexibility for organ-
isational changes. This article will discuss how distributed data-
bases can contribute to this.

Distributed databases can provide feasible technical
options/solutions to the user requirements. They can increase
data sharing, local autonomy, availability and performance.
Distribution transparency of data to applications is often want-
ed. This means that the aspects related to distribution of data
are invisible to the application programs. Theory of distributed
databases was developed in the late 70s and the 80s, but still

there are few commercial products that have implemented the
wanted features suggested in theory. A distributed database sys-
tem easily becomes very complex. Therefore, more modest
approaches are developed, which provide a selection of import-
ant features.

Norwegian Telecom Research has several years of experience
with developing distributed database management systems. The
Telstøtt project developed a prototype DDBMS, called TelSQL,
which provided full integration of databases (1). The Dibas dis-
tributed database management system takes a practical appro-
ach to distributed databases. Dibas is based on the idea that the
responsibility for generation and maintenance of data are allo-
cated to a number of organisational units located at different
geographical sites, e.g. regions. Reflecting this responsibility
structure, the tables of the database can be partitioned into
ownership fragments, where updates of the data are allowed
only at the owner database site. The ownership fragments can
be fully or partially distributed to (i.e. replicated at) other sites,
so that the other organisational units can read relevant data.
The replicas are distributed asynchronously. This means that
consistency of data is controlled, but is not enforced in real
time.

In this article, Dibas is presented in the perspective of distri-
buted database theory. Two database applications, MEAS and
TRANE, illustrate the feasibility of Dibas. MEAS will establish
seven isolated regional databases and wants interconnection,
while TRANE has a centralised database but considers distri-
buting the data.

681.3.07

Local application

at site 1

Part of global

application at site 1

Local

database

at site 1

Computer at site 1

Part of global

application at site 2

Local

database

at site 2

Computer at site 2

Local application

at site 2

Figure 1 A distributed database. A global application accesses data at several sites

111

It is also possible to apply a combination
of both vertical and horisontal partition-
ing. This is called mixed fragmentation.

Replication consists of locating identical
fragments at several sites of the network
in order to increase performance and
availability when the same data are fre-
quently used at several sites. Replication
introduces redundancy to the database.
Note that in traditional databases redund-
ancy is reduced as far as possible to
avoid inconsistencies and save storage
space.

1.3 Distributed database

management system

Definition (2): A distributed database
management system (DDBMS) supports
the creation and maintenance of distri-
buted databases.

What is the difference between a
DDBMS and an ordinary Data Base
Management System (DBMS)? An
ordinary DBMS can offer remote access
to data in other DBMSs. But a DBMS
usually does not provide fragmentation
and replication and supports only a limi-
ted degree of distribution transparency,
while these capabilities usually are sup-
ported properly by a DDBMS. A
DDBMS typically uses DBMSs for stor-
age of data on the local sites.

An important distinction between differ-
ent types of DDBMSs is whether they are
homogeneous or heterogeneous. The
term homogeneous refers to a DDBMS
with the same DBMS product on each
site. Heterogeneous DDBMSs use at
least two different local DBMSs, and this
adds to the complexity. Interfacing of
different DBMSs will be simplified by
using the SQL standard (3).

1.4 Distribution transparency

A central notion in database theory is the
notion of data independence, which
means that the physical organisation of
data is hidden to the application pro-
grams. Data independence is supported
by the three schema architecture of
ANSI/SPARC, since the internal schema
is hidden for the application programs. In
distributed databases we are concerned
with distribution transparency, which
means independence of application pro-
grams from the distribution of data. The
degree of transparency can vary in a
range from complete transparency, pro-
viding a single database image, to no
transparency at all and thus providing a
multi database image.

Analogous with distribution trans-
parency, (4) states a fundamental prin-
ciple of distributed databases; “To the
user, a distributed system should look
exactly like a non-distributed system”.
From this principle, twelve objectives
(analogous to transparency) for distri-
buted databases have been derived:

1 Local autonomy. A database site
should not depend on other sites in
order to function properly.

2 No reliance on central site. There
must be no reliance of a master site
because of problems with bottlenecks
and central site down time.

3 Continuous operation. Shutdown of
the system should not be necessary
when table definitions are changed or
new sites are added.

4 Location independence, also called
location transparency. This means
that the location of data at various
sites should be hidden to the appli-
cation program. This transparency is
supported by the allocation schema of
the proposed reference architecture in
section 1.5.

5 Fragmentation independence, also
called fragmentation transparency.
This means that application programs
should only relate to full
relations/tables and that the actual
fragmentation should be hidden. This
transparency is supported by the frag-
mentation schema in section 1.5.

6 Replication independence, also called
replication transparency. This means
that the replication of fragments
should be invisible to application pro-
grams. Replication transparency is
part of the location transparency
notion, and is supported by the allo-
cation schema in section 1.5. The
basic problem with data replication is
that an update on an object must be
propagated to all stored copies (repli-
cas) of that object. A strategy of pro-
pagating updates synchronously wit-
hin the same transaction to all copies
may be unacceptable, since it requires
two-phase-commit transactions (see
section 1.6) between nodes. This
reduces performance and autonomy.
This problem can be removed by
relaxing the up-to-date property of
stored copies, see section 1.7.

7 Distributed query processing. If the
application program makes queries
about data which are stored on
another site, the system must transpar-

ently process the query at the
involved nodes and compose the
result as if it was a local query. This
involves:

⋅ Translation of the “global” query
into local queries on the fragments
stored locally.

⋅ Query optimisation. Queries
accessing several sites will result in
a message overhead compared to a
centralised database. Effective
optimisation strategies are crucial
to avoid large amounts of data
being shuffled between sites. A
“send the query to the location of
the data” strategy will reduce this
problem compared to a big-inhale
strategy. Replication of relevant
data so that global applications are
not necessary, can reduce this pro-
blem.

8 Distributed transaction management.
A distributed database transaction can
involve execution of statements (e.g.
updates) at several sites. A transaction
is a unit of work which either should
be completely executed or rolled back
to the initial state. Concurrency and
recovery issues must also be handled,
see section 1.6.

9 Hardware independence.

10 Operating system independence. This
is relevant in case of use of various
operating systems.

11 Network independence. This is
relevant in case of use of several
networks.

12 DBMS independence, also called
local mapping transparency. This
means that the mapping to the local
DBMS is hidden to the application
program. This transparency is sup-
ported by the local mapping schema
in section 1.5.

1.5 A reference architecture

for distributed databases

The reference architecture depicted in
Figure 2 only shows a possible organ-
isation of schemata in a distributed data-
base. A schema contains definitions of
the data to be processed and rules for the
data. Communication aspects and imple-
mentation aspects are not shown in this
architecture. The architecture is based on
the three schema architecture of
ANSI/SPARC, developed for non-distri-
buted databases, where the three
following kinds of schemata are covered:

112

- The external schema, which defines a
presentation form for a subset of the
information defined in the conceptual
schema. There will be several external
schemata related to the conceptual
schema.

- The conceptual schema, which defines
the complete information content of
the database. It includes integrity rules
and business rules for the data.

- The internal schema, which defines the
internal storage of data. There is one
internal schema related to the
conceptual schema.

In distributed databases the conceptual
schema is also called the global schema.
It defines all the data which can be
contained in the distributed database as if
the database was not distributed at all.
We will focus on distribution and storage
of the data. Hence, the ANSI/SPARC
architecture has been extended with an
additional schema called the distribution
schema, which defines fragmentation and
allocation of data to database sites. There
will be several internal schemata (one per
site). Because DBMSs are used on each
site for storage, the internal schemata are
covered by the database schemata of the
DBMSs on each site. There are mappings
between all the schemata (external,
conceptual, distribution and internal) of
the architecture. An important mapping
for distributed databases is the mapping
between the distribution schema and the
database schemata of each site. The
mapping is defined in the local mapping
schema. The resulting extensions and
modifications are:

- The distribution schema, which
defines the distribution rules for the
data in the conceptual schema and has
been split into two schemata; frag-
mentation schema and allocation
schema. The fragmentation schema
defines the splitting of a table into
several non-overlapping fragments.
The allocation schema defines on
which site(s) a fragment is located.
The architecture supports separation of
data fragmentation from data allo-
cation and explicit control of redund-
ancy. Note that the conceptual schema
and the distribution schema are DBMS
independent schemata and also inde-
pendent of local naming and mappings

- The local mapping schema, which
maps the allocated fragments to the
data definitions of the local DBMSs

- The database schema, which contains
the data definitions of the local DBMS.

When an application program wants to
access data in the databases, the program
inputs e.g. a query which is processed
through all the schema-levels of the
architecture. At the conceptual schema
level, the global query will be evaluated,
while at the distribution schema level, the

query has been split into queries on frag-
ments, which are evaluated against the
fragmentation schema. The sites that are
going to process the queries can be
decided from information in the allo-
cation schema. At the involved sites, the
fragment queries are mapped onto the
local database queries and evaluated
against the local database schemata. This
finally results in database operation(s)

Application
Program

Local

database

at site 1

External
Schema

Conceptual
Schema

Fragmentation
Schema

Allocation
Schema

Distribution
Schema

Local Mapping
Schema 2

Local Mapping
Schema 3

Local Mapping
Schema 1

Database Schema
of DBMS at site 1

Database Schema
of DBMS at site 2

Database Schema
of DBMS at site 3

Local

database

at site 2

Local

database

at site 3

Internal
Schemata

Figure 2 A reference architecture for organisation of schemata in a distributed data-
base. All the schema types will typically be present on all sites. The three branches of
the lower part of the figure indicate that these schemata are site dependent. The
conceptual schema and the distribution schema are relevant on all sites

113

against the database(s). On the way back
from the databases to the application pro-
gram, the results of the local database
queries will be combined into one result
and given as output to the application
program.

1.6 Distributed transaction

management

1.6.1 Transactions

Users/application programs use
transactions in order to access the data-
base. A transaction is a logical unit of
work and can consist of one or several
database operations in a sequence. A
transaction has the following properties,
called ACID-properties:

- Atomicity: All operations are executed
(commitment) or none
(rollback/abortion). This is true even if
the transaction is interrupted by a sys-
tem crash or an abortion. Transaction
abortion typically stems from system
overload and deadlocks.

- Consistency: If a transaction is
executed, it will be correct with respect
to integrity constraints of the appli-
cation.

- Isolation: Processing units outside the
transaction will either see none or all
of the transaction changes. If several
transactions are executed concurrently,
they must not interfere with each other,
and the result must be the same as if
they were executed serially in some
order. This is called serialisability of
transactions, and serialisability is a
criterion for correctness. Concurrency
control maintains serialisability. In
order to avoid that other transactions
read partial results of a transaction, the
data that have been read or updated by
the transaction, are locked. Other
transactions have to wait until the
locks are released before they can
access these data. The locks are
released once the execution of a
transaction has finished. In certain
cases the locking can lead to deadlock
situations, where transactions wait for
each other. Deadlock detection and
resolution are usually handled by the
DBMS.

- Durability: Once a transaction has
been committed, the changes are per-
manent and survive all kinds of
failures. The activity of ensuring
durability is called recovery.

So far, the discussion of this section has
been valid for both non-distributed and
distributed databases. In distributed data-
bases there will be distributed
transactions as well as local transactions.
A distributed transaction contains data-
base operations that are executed at
several different sites, and still the
ordinary transaction properties have to be
maintained.

1.6.2 Concurrency

The most common techniques for
concurrency control and recovery in a
distributed database are the two-phase-
locking (2PL) protocol and the two-
phase-commitment (2PC) protocol.

The 2PL protocol have these two phases:

- In the first phase locks on the data to
be accessed are acquired before the
data are accessed.

- In the second phase all the locks are
released. New locks must not be
acquired.

The 2PL protocol guarantees serial-
isability of transactions if the transactions
hold all their locks until commitment.
For distributed transactions, serial-
isability is often called global serial-
isability. The locking creates overhead
compared to a centralised database,
because each lock needs to be communi-
cated by a message. For replicated data,
all the copies have to be locked. An
alternative locking method for replicated
data is primary copy locking, where one
of the copies are privileged, see section
1.7. Deadlocks are often called global
deadlocks for distributed transactions.
Deadlock detection and resolution is
more difficult in a distributed system
because it involves several sites.

1.6.3 Recovery

A distributed transaction can be divided
into a number of subtransactions, each
subtransaction being the part of the
transaction that is executed on only one
site. The atomicity property requires that
each subtransaction is atomic and that all
subtransactions go the same way
(commit or rollback) on each site also in
case of system crashes or transaction
abortion. The 2 PC-protocol ensures
atomicity. It has a co-ordinator which
sends messages to the participants and
takes the decision to commit or rollback.
Roughly, the two phases are:

- In the first phase all the participating
sites get ready to go either way. Data
are stored on each site before
execution of the transaction and after
the transaction has been executed. The
coordinator asks prepare-to-commit,
and the participants reply ready, if they
are ready to commit, or rollback, if
they cannot support both the initial and
the final state of the data. When all the
participants have answered, the co-
ordinator can take the decision either
to commit or to rollback.

- In the second phase the commit or roll-
back decision is communicated to all
the participants, which bring the data
to the right state (final or initial,
respectively).

The 2PC-protocol means overhead and
loss of autonomy, see section 1.7 for
alternatives.

1.7 Increasing performance,

availability and autonomy

Maintenance of global consistency when
replicated data are updated, may become
costly. It is suggested in several papers
(e.g. (1), (5) and (6)) that availability,
autonomy and performance can be
increased in a distributed database if it is
acceptable to relax consistency and dis-
tribution transparency. Often the up-to-
date requirement can be relaxed and
asynchronous propagation of replicas
from a master fragment will be sufficient.
Asynchronous means that updates to the
master fragment will not be distributed to
the replicas within the same transaction,
but later.

The approach proposed in (5) is to parti-
tion the database into fragments and
assign to each fragment a controlling
entity called an agent. Data can only be
updated by the owner agent, which is a
database site or a user. When a fragment
has been updated, the updates are propa-
gated asynchronously to other sites,
transaction by transaction. Global serial-
isability of transactions is not guaranteed.
A less strict correctness criterion, frag-
mentwise serialisability, is introduced:

- Transactions which exclusively update
a particular fragment are globally seri-
alisable.

- Transactions which read the contents
of a fragment at a site never see a
partial result of a transaction.

114

- There is no guarantee that transactions
which references data in several frag-
ments are globally serialisable.

2 The Dibas DDBMS

2.1 Introduction

The vendors of relational DBMSs also
have products for distributed databases.
They typically offer remote access to
data, support for execution of distributed
transactions and some other features.
Fragmentation and replication are usually
not supported. Distribution transparency
is only partly supported. Support for
creation and maintenance of the distri-
buted database are typically not good.

Dibas has been designed from the experi-
ence of the Telstøtt project (1), from the
ideas of section 1.7 and from the appli-
cation requirements of TRANE (see
chapter 4).

2.2 Basic idea

Dibas is a homogeneous DDBMS, which
is rather general in the sense that it can
be used for various applications. A distri-
buted database managed by Dibas
consists of a number of Sybase (7) data-
bases containing distributed tables with
common table definitions in all the data-
bases. Dibas provides the following fea-
tures for distributed tables (see (8) for a
more comprehensive description):

1 A table can be partitioned into frag-
ments. Each fragment is owned
exclusively by one database site,
which means that updates to this frag-
ment are only allowed by users at this
site. A distributed table will have own-
ership fragments at all sites. An own-
ership fragment can be empty, include
some tuples or contain all the tuples of
the table.

2 Read access to fragments owned at
other sites is provided by replication.
Fragments can be fully or partially
replicated to other sites. Each site can
receive different subsets of the owners-
hip fragment of a site. There is only
read access to replicas.

3 Updates are propagated
asynchronously. A separate distri-
bution program performs
asynchronous propagation of repli-
cated data. Only changes to the data
after the last distribution of a copy, are
distributed. The distribution is initiated
periodically and/or on request from the
users. Hence Dibas offers relaxed, but
controlled consistency.

4 A distributed data definition language
called DSQL has been defined to
express the ownership and distribution
rules of a table, see section 2.3 and 2.4.
The full set of rules for each table are
equal at all sites.

Figure 3 illustrates the fragmentation and
replication of a distributed table in Dibas.
It is also allowed to define local tables on
each site which can be read and updated
by users at the local site exclusively.

The result of 2 and 3 above is that the
application programs on the local sites
will only execute as local applications.
They do not require distributed query
processing and distributed transactions.
There are no reliance on a central site.
Therefore Dibas provides a high degree
of autonomy. Sybase mechanisms for
concurrency control and recovery can be
utilised. This is a major simplification.
Also, installations of the Dibas system
are equal at all sites.

Dibas has good support for distribution
transparency. This means that the appli-
cations can be developed as if they were
running on a centralised database,
because they see the same tables and
expect to find the needed data. Each site
only holds relevant data for its own
users. Read transactions on these relevant
data are offered complete distribution
transparency except for reduced
timeliness of replicated data. Update
transactions can only access owned data.
If this restriction corresponds to defined
responsibility for data and needed access
control, transparency will be offered for
update transactions. Dibas can only run
on Sun work stations under the UNIX
operating system at the moment.

Tuples imported
to site A

from site B

Private tuples
of site B

Private tuples
of site A

Tuples imported
to site B

from site A

Fragment
owned by

site B

Fragment
owned by

site A

Fragmentation of a global table

Tuples exported
to site A

Private tuples
of site B

Fragment
owned by

site B

Fragment
owned by

site A

Replication of fragmens on local sites

Tuples imported
from site A

(ready-only access)

Site B

Tuples imported
from site B

(read-only access)

Private tuples
of site A

Tuples exported
to site B

Site A

export/

import

export/

import

Figure 3 A distributed table in Dibas

115

2.3 Definition of ownership

fragments

In Dibas, there is one rule specifying
ownership for each distributed table. The
ownership rule together with data in
tables determine the partitioning into
non-overlapping fragments. Because dif-
ferent tables will require different frag-
mentation, several types of ownership for
a table have been defined. These types
are presented below with the attached
DSQL syntax:

1 Entire table. The table is owned enti-
rely by a given site. This ownership
type is particularly useful for stand-
ards/domain/type information which
should be updated by one organ-
isational unit at one site and be repli-
cated to several/all other sites. The
owner site can be defined at com-
pilation time (the expression BY
<site>) or defined run-time in a
dictionary table:

[DEFINE] OWNERSHIP FOR
<tables> [AS] OWNED ENTI-
RELY [BY <site>]

2 Column value. Ownership is deter-
mined by the value of a given column
which directly tells the ownership site
of each tuple:

[DEFINE] OWNERSHIP FOR
<tables> [AS] OWNED
DIRECTLY GIVEN BY <attr>

3 Indirect through foreign key. Owner-
ship for each tuple of the table is deter-
mined indirectly through a foreign key
to another table. For applications it is
common that ownership of tuples of a
table can be derived from another table
in this way, see chapter 4.

[DEFINE] OWNERSHIP FOR
<tables> [AS] OWNED

INDIRECTLY GIVEN BY
<attrlist> VIA <table>

Usually the ownership of a tuple is the
same as the tuple it references through
a foreign key. However, it is possible
to define a separate ownership rule for
the tables that references another table
(column value ownership):

[DEFINE] INDIRECT OWNERS-
HIP VIA <table> [GIVEN BY
<attr>]

2.4 Definition of replication

Distribution rules specify the replication
of data. Distribution should also as far as
possible be determined without modifi-
cations to the application’s database
schema. The distribution fragments will
always be subset of the ownership frag-
ment. The distribution types are:

1 Entire fragment. The entire ownership
fragment is distributed to all other sites
(see the first DSQL expression) or to
specified sites (see the second DSQL
expression). In case of the latter, a
dictionary table will contain data about
the recipient sites. This makes it
possible to decide and modify the list
of recipient sites at run time.

[DEFINE] DISTRIBUTION FOR
<tables> [AS] DISTRIBUTE
TO ALL

[DEFINE] DISTRIBUTION FOR
<tables> [AS] DISTRIBUTE
TO SOME

2 Indirect through foreign key. The dis-
tribution fragment and the recipient
sites are determined through a foreign
key to another table. This referenced
table is usually a dictionary table
which contains tuple identifiers and the

recipient sites for these particular
tuples. See chapter 4 for examples.

[DEFINE] DISTRIBUTION FOR
<tables> [AS] DISTRIBUTE
INDIRECTLY GIVEN BY
<attrlist> VIA <table>

3 Arbitrary restrictions. Sometimes it is
necessary to define arbitrary
conditions for the distribution.
Arbitrary restrictions are expressed in
SQL and can be added to all the distri-
bution types:

[WITH] [<tables>]
RESTRICTION <cond>]

4 Combination of distribution types.
There can be several distribution rules
for each table.

2.5 Creation of the

distributed database

The ordinary application database
schema (definitions of tables, indexes,
triggers, etc.) and the additional owners-
hip and distribution definitions for each
of the tables to be distributed are taken as
input to a definition tool, which parses
the information and creates the defini-
tions to be installed in the database, see
Figure 4.

For each table, the definition tool creates
a trigger (a trigger is a database object
which is activated by operations on a
table) and a log table. If there already
exists an application trigger, this trigger
will be extended. The purpose of the
trigger is to check correct ownership
based on the defined ownership rule and
to log changes to data including a
timestamp for the time of the change in
the log table. This means that the own-
ership rule in DSQL has been translated
into an ownership SQL-expression.

For each table, the definition tool also
creates an SQL-expression which
extracts the tuples to be distributed to the
recipient sites from an owner site. In
normal operation, the SQL-expression
only extracts changes to the data, i.e.
tuples from the log tables. Initially, full
replicas are extracted from the tables
themselves. The SQL-expressions are
created from the distribution rules
defined for the tables.

Administration utilities install the data-
base definitions generated by the Dibas
definition tool, install owned data and
install the Dibas distribution program.

Sybase
DBMS

Application

tables Triggers
Log

tables

Distribution

SQL-expression

Application

database schema

Dibas Definition Tool

Definitions of ownership

and distribution in DSQL

Figure 4 Creation of the distributed database

116

2.6 Run time system

components of Dibas

The application programs run as local
applications on each site and access the
Sybase DBMS directly. Sybase triggers
are activated immediately by insert,
delete and update operations on the data-
base to verify ownership and to log
changes.

A separate distribution program propa-
gates the updates which are to be repli-
cated. The distribution fragments to be
distributed are selected by the distri-
bution SQL-expressions which are stored
in the Dibas dictionary.

Also a tool for run time administration of
Dibas offers user initiation of the distri-
bution program, information about
timeliness of replicated data, parameters
for control of distribution, etc.

2.7 Dibas and the proposed

reference architecture for

distributed databases

Dibas mainly follows the previously
described reference architecture. The
conceptual schema will be the ordinary
database schema of the application.

The distribution schema of Dibas
consists of ownership fragment defini-
tions and distribution definitions
expressed in DSQL for each distributed
table. The ownership fragments defines
the fragmentation and corresponds to the
fragmentation schema, but it also defines
the allocation of the master copy of the
fragment. Hence, it also has allocation
schema information. The distribution
definitions in DSQL defines replication,
which belongs in the allocation schema.

Dibas is a homogeneous DDBMS with
Sybase as the local DBMS. There is no
local naming or other mappings between
the tables of the conceptual schema and
the local database tables. Hence, the
local mapping schema disappears from
the architecture. Because Dibas and the
database applications are identical on all
sites, the database schemata will be
identical as well.

2.8 Management of distributed

transactions in Dibas

The only global application in Dibas is
the distribution program, which transfers
data from one site to another. The Sybase
2PC-protocol is used by this program. In
case of crashes and other failures,
ordinary recovery of the local Sybase
databases will be sufficient. Global dead-
locks will not appear, because the pro-
gram itself will do a time-out if it has to
wait for locks.

3 Advantages and

disadvantages of Dibas

The list of advantages and disadvantages
has been assembled from (2), (3), (4),
(5), (6), (9), (10), and our own experi-
ence.

3.1 Advantages of Dibas

3.1.1 Local autonomy and

economic reasons

Many organisations are decentralised and
a distributed database fits more naturally
to the structure of the organisation. Dis-
tribution allows individual organisational
units to exercise local control over their
own data and the computers involved in
the operation.

Due to the closeness of data, it is often
easier to motivate users to feel
responsible for the timeliness and
integrity of the data. Thus, higher quality
of data may be achieved.

An organisational unit with responsibility
for its own economic results prefers to
control its investments and costs. It can
control the cost of operating a local data-
base, while expenses to be paid to a cen-
tral computer division are harder to con-
trol. In the past, hardware costs were
smaller for large mainframes than for
smaller hardware. Hardware was the
most significant cost driver when a sys-
tem was bought. Today the economy of
scale motivation for having large, cen-
tralised computer centres has gone. It
may be cheaper to assemble a network of
smaller machines with a distributed data-
base.

3.1.2 Interconnection of existing

databases: Data sharing

If several databases already exist in an
organisation and the necessity of per-
forming global applications arises, then
Dibas can provide integration of data in
the databases. This can be a smooth
transition to data sharing. The distributed
database will be created bottom-up from
the existing local databases.

3.1.3 Performance

Data in a Dibas distributed database are
stored in the databases where they are
used. If only a small amount of the data
owned by the other sites are relevant for
a local site, this means that the data vol-
ume in the local database can be reduced
considerably compared to a centralised
database containing the sum of data for
all organisational units. Reduced data
volume can improve the response time.

The existence of several database sites
doing autonomous processing increases
the performance through parallelism (the
transaction load is divided on a number
of database sites).

When running local applications, the
communication is reduced compared to a
centralised database and thus lead to
reduced response time.

3.1.4 Local flexibility

A centralised database with access from
a lot of users and with a heavy
transaction load will require strict control
of the applications which access the data-
base, development of additional appli-
cations ,etc., and this prevents flexibility.
For Dibas where each database site is
autonomous and has fewer users and
smaller load, less control is required.
This eases the usage of new tools,
creation of additional tables, develop-
ment of additional applications, and
experimenting in general.

117

3.2 Disadvantages of Dibas

3.2.1 Increased complexity

and economic reasons

Compared to a centralised database or to
several isolated databases, the distributed
database adds to complexity and can add
extra costs. The Dibas system compon-
ents have to be installed, operated and
maintained. Also, the distribution of data
needs to be managed.

However, since Dibas is a relatively
simple system, the complexity overhead
and the economic overhead is kept low.

3.2.2 Timeliness and correctness

Disadvantages with Dibas are relaxed
timeliness and correctness. The cor-
rectness of Dibas is less strict than the
global serialisability (see section 1.6) and
fragmentwise serialisability (see section
1.7). Dibas offers local consistency and
serialisability at each site (handled by
Sybase), which ensures that locally
owned data will be correct. Data are pro-
pagated to other sites table by table
according to timestamps. Transactions
may see inconsistent data because data
which have been updated on other sites
may not have been propagated yet.

3.2.3 Ownership restriction

Data can only be updated on the owner
site. This restriction cannot be accepted
for some applications.

The potential security problems of distri-
buted databases is avoided in Dibas.
Users can only update data on their own
site, and only relevant data are available
from other databases.

4 Application examples

In this chapter we present two database
applications, MEAS and TRANE, which
are candidates for a distributed database
solution. The cases have different initial
states and therefore there are different
motivations for a distributed solution.
Examples of the suitability of the Dibas
mechanisms are given for the MEAS
case. Before presenting the applications,
trends that will impact the applications
and increase the need for data transfer
mechanisms are outlined.

4.1 Trends in traffic

measurements of

the telecom network

The text of this section is based on (11).
New opportunities for traffic measure-
ments emerge with the introduction of
digital switches. This has revolutionised
the possibility of conducting measure-
ments of the traffic load on different
network elements. These measurements
will give better data on which to base
decisions concerning utilisation, recon-
figuration, extension and administration
of the telecom network. Measurements
showing free capacity make possible a
more dynamic utilisation of the telecom
network.

The increasing amount of measurements
data are stored in files and then trans-
formed from files to databases. All the
new measurements data give rise to an
increasing need for storage capacity.

New user groups take advantage of the
measurement data. Planners and admin-
istrators of the telecom network have
been the traditional users of the traffic
measurement data. Today there is a trend
that economists need this kind of data,
e.g. to find the price elasticity of different
services. Also, marketing people and
managers in general demand this kind of
data.

Because of the increased use and import-
ance of measurement data, high quality
and availability is of vital importance.
The data quality should be improved.

The impact of the above trends is:

- The increasing volume of data gener-
ated locally implies a need for increas-
ing local storage capacity.

- Measurement data are actually gener-
ated and stored locally. There is a need
for some mechanisms to transfer data.

- High quality data are demanded in
both regions and central offices to pro-
vide a countrywide view.

4.2 MEAS

MEAS (MEasurements And Statistics) is
an application for processing and storing
incoming traffic measurements data from
different types of switches. The primary
goal of the MEAS-application is to pro-
duce data on which to base decisions
concerning the addition of new equip-
ment and optimal usage of existing
equipment in the telecom network.

Mid-Norway

Oslo

SouthStavanger

Bjørgvin

Mid-Norway

Oslo

SouthStavanger

Bjørgvin
Dibas

Central
database

Figure 5 The MEAS system

a) The initial state consisting of “isolated” regional databases

b) Distributed database for MEAS with an additional central database

Cross border data can be exchanged between regions. Data can be distributed from the regional data-
bases to the central database in order to provide a countrywide view of relevant data about the network
and measurement statistics. Selected measurements can also be provided to the central database. The full
set of measurement data is only stored locally. Replicated data have been indicated in yellow in the figure

118

Examples of different types of measure-
ments:

- Traffic on trunks between switches

- Traffic on trunks to Remote Subscriber
Units (RSUs)

- Traffic on trunks to Private Automatic
Branch Exchange (PABXs)

- Utilisation of enhanced services

- Accounting data.

Measurements data are generated from
the switches by the TMOS-system and
other systems, see (12).

MEAS consists of seven isolated, regi-
onal databases. The purpose of the distri-
buted database solution will be to pro-
vide exchange of relevant data between
existing regional databases and also to
support the establishment of a central
database with a countrywide view, see
Figure 5.

4.2.1 The regional structure of the

organisation and its influence

on the data

The network equipment is located in
regions. Regional administrators are
responsible for maintaining the equip-

ment and the data about it. There are two
classes of data: Network configuration
data, which describe available equipment
and the current configuration, and
measurement data, which describe curr-
ent load and performance of the equip-
ment.

In Dibas tables can be fragmented into
ownership fragments to support the regi-
onal control. For example the table
SWITCH can be fragmented into regi-
onal ownership fragments by using the
existing relation to the table ORGUNIT
(organisational units). Ownership type 3
of section 2.3, “Indirect through foreign
key”, can be used to define ownership for
SWITCH.

A lot of equipment data and other data,
like routing data, subscriber data, and
measurements are related to the switch.
Therefore, in most cases, these “related”
data should be owned by the owner of
the switch. There is already defined a
foreign key to the table SWITCH from
these related data in the data model. In
Dibas the ownership can be defined as
“Indirect through foreign key” from the
related tables to the SWITCH-table. Thus
the ownership is transitively defined via
SWITCH to ORGUNIT.

Note that no extension of the MEAS
datamodel is necessary.

4.2.2 From regional databases

to a central database

and vice versa

The central administration needs copies
of the regional network configuration
data and regional measurement data (e.g.
busiest hour per day) for the entire coun-
try in order to:

- Produce reports covering the complete
network

- Check the quality of data

- Assure appropriate dimensioning of
the telecom network.

Today, in order to produce the necessary
reports, a lot of manual procedures must
be performed. Files must be transferred
from regions, pre-processed and loaded
into an IBM-system called System410
(see (13)) for further processing.

The disadvantages of the current solution
are (11):

- The need of manual routines and
people in order to transfer and prepare
MEAS data for System410. It takes a

long time to get data from the regions,
to produce the reports and report back
to the users in the regions

- 12 % of measurements are lost.

It would be preferable if the relevant
measurement data and network con-
figuration data automatically could be
transferred from the regions to the central
administration without a long time delay.
The statistical data could then be trans-
ferred back immediately after being pro-
duced. In Dibas the distribution of all
regional data for specified tables to the
central administration can be defined by
using distribution type 1 of section 2.4,
“Entire fragment”, and specify the cen-
tral site as the recipient. This will result
in central tables consisting of replicas of
regional fragments.

The co-ordinator wants to order measure-
ments on specified trunks and to get the
results as soon as possible. The traffic
load measurements can be returned to the
co-ordinator without a long time delay. If
there is an extraordinary situation, like
the olympic games, national co-
ordination of network traffic can be done.
This can be achieved by the Dibas sys-
tem in a similar manner as mentioned
previously.

Domain tables are tables that specify
legal values. The introduction of a central
database makes it possible to have cen-
tralised control over these domain tables.
If the central administration is the only
one which can update these domain
tables and distribute them to the regions,
this ensures consistency between the
domain data of all regional databases. In
Dibas this is achieved for all domain
tables by specifying ownership type 1,
“Entire table” (owned by central admin-
istration) and distribution type 1, “Entire
fragment” to all.

4.2.3 Exchange of data

between regions

Some resources cross regional borders,
like trunks connecting switches located
in different regions, see Figure 6. In
order to improve the quality of data, it is
preferable to measure the load on a trunk
from both switches, located in different
regions. Sometimes measurements from
the switches are incorrect or do not exist
at all. Therefore, each region wants a
copy of measurements conducted in other
regions to correlate these with their own
measurements on border crossing trunks.

switch

Databases

Region South Region Stavanger

Telecommunications
Cross-border trunk

trunk (between switches)

Figure 6 The telecommunications network and its database
representation for two regions. Cross-border-trunks and
connected switches are replicated. Local switches and
trunks are stored only in the local database

119

The challenge is to distribute only
relevant data between neighbouring regi-
ons. The relevant table fragment is usu-
ally a very small subset of the ownership
fragment, so we do not want to use distri-
bution type 1, “Entire fragment”. This
neighbour distribution is illustrated for
the TRUNK-table. An additional table,
TRUNK_DIST, which contains data
about distribution of TRUNKs must be
created, and makes it possible to specify
distribution of individual trunks to
selected recipients. The individual distri-
bution is achieved for the TRUNK table
by distribution type 2, “Indirect through
foreign key” from TRUNK to
TRUNK_DIST. The TRUNK_DIST
table is initialised with distribution data
about the border crossing trunks.

Other “related” tables, describing
measurement on TRUNKs, etc., should
also be distributed to the neighbouring
region. This can also be achieved by dis-
tribution type “Indirect through foreign
key” from the measurement table to
TRUNK_DIST.

4.3 TRANE

The objective of the TRANE (traffic
planning) application is to support traffic
planning for the telecommunication
network in regions, as well as coun-
trywide. The system contains historical,
present, and prognostic data. TRANE is
initially a centralised database. The pur-
pose of distributing the centralised data-
base is to achieve local autonomy, better
performance and availability, see Figure
7.

Concerning the distribution, there are very
few differences between MEAS and
TRANE but TRANE needs distribution of
planning data instead of measurements
data. The central administration wants read
access to regional data describing the
network and regional plans. There is a
need for exchanging border crossing data.
Most of the necessary ownership and dis-
tribution information is easily derivable
from existing data. Quite similar owners-
hip and distribution rules as in the MEAS
case can be used to distribute TRANE.
Domain data should be distributed from
central to regional databases in the same
way as shown in the MEAS case.

5 Conclusion

The Dibas DDBMS will be useful to
database applications with some of the
following characteristics:

- The organisation wants to have local
control.

- Responsibility for maintaining data is
clearly defined and distributed to
organisational units at different sites. It
will then be possible to define owners-
hip fragments for tables.

- Large volumes of input data are gener-
ated locally.

- The transaction load can be divided on
several sites (parallelism).

- There is a need for partial replication
of the data. The data volume of a local
database will be significantly less than
the volume of a centralised database
having all data, and therefore per-
formance can be improved.

- Users have local area network
connection to the local database while
having wide area network connection
to a centralised database.

- The existing databases are distributed
but they lack suitable interconnection.
This means that the databases have
been installed and that administration
of the databases has already been
established. Cost and training overhead
will then be reduced.

In chapter 4 the distribution requirements
of two applications at Norwegian
Telecom have been described. Dibas
seems to fulfil the requirements for a dis-
tributed database for the MEAS and
TRANE applications. Interconnection of
databases (MEAS), increased per-
formance (TRANE), local autonomy
(MEAS and TRANE) and improved data
quality (MEAS; correlation of measure-
ments, and maintenance of domain data
on one site) can be achieved. The
following Dibas mechanisms are useful:

- Horizontal fragmentation, because
some tables, e.g. switch and trunk
tables, will need locally stored parti-
tions in each region

- Local control of updates on horizontal
fragments, because each region has
responsibility for and will update their
own data exclusively

Figure 7 The TRANE system

a) The initial state

b) Distributed database for TRANE

Performance will be increased because the total transaction load will be divided on all the regional data-
bases. An additional improvement results from significantly less amount of data in each regional data-
base than in the initial centralised database. The total set of data will be partitioned into regional parts
and allocated to the regions where they belong. The amount of replicated data is small compared to the
owned data in each region

Dibas

Central
database

120

- Replication of fragments or parts of
fragments which are owned by other
database sites, because the users/-
applications want

. Data from the regional databases
available in the central database

. Data from the central database
available in the regional databases

. Exchange of cross border data
between regional databases.

Modifications to the application database
to implement ownership and distribution
are not needed. The definition language
DSQL is well suited.

References

1 Risnes, O (ed). TelSQL, A DBMS
platform for TMN applications.
Telstøtt project document, March 14,
1991.

2 Ceri, S, Pelagatti, G. Distributed
databases, principles and systems.
New York, McGraw-Hill, 1986.

3 Stonebreaker, M. Future trends in
database systems.

4 Date, C J. An introduction to data-
base systems, vol 1. Fifth edition.
Reading, Mass., Addison-Wesley,
1990.

5 Garcia-Molina, H, Kogan, B. Achie-
ving high availability in distributed
databases. IEEE Transactions on
Software Engineering, 14, 886-896,
1988.

6 Pu, C, Leff, A. Replica control in dis-
tributed systems: An asynchronous
approach. Proceedings of the 1991
ACM SIGMOD International Confer-
ence on Management of Data, 377-
423, October 1992.

7 Sybase Commands Reference, release
4.2, Emeryville, Sybase Inc., May
1990.

8 Didriksen, T. Dibas System Docu-
mentation: Part 3. Implementation of
Run Time System. Kjeller, Norwegian
Telecom Research, 1993. (TF paper
N15/93.)

9 McKeney, J, McFarlan, W. The
information archipelago – gaps and
bridges. A paper of Software State of
the Art: Selected Papers, by T
DeMarco and T Lister.

10 Korth, Silberschatz. Database system
concepts. New York, McGraw-Hill,
1986.

11 Nilsen, K. Trafikkmålinger og tra-
fikkstatistikk i Televerket, 15 Jan
1993. (Arbeidsdokument i Tele-
verket.)

12 Johannesen, K. Network Manage-
ment Systems in Norwegian
Telecom, Telektronikk, 89(2/3), 97-
99, 1993 (this issue).

13 Østlie, A, Edvardsen, J I. Trafikk-
målinger i telefonnettet. Vektern, 1,
1990.

Data design

(1) contains an Annex providing a me-
thod and practical guidelines for data
design for an application area. These
issues will not be presented here. Rather,
the development of an Application
schema for Access Control Admin-
istration will be used to exemplify data
design.

The specification of the Access Control
Administration application area is based
on the notion of an access control matrix.
See Figure 1.

The matrix can be constructed by using
Users corresponding to lines, Resources
corresponding to rows and Access rights
as the elements of the matrix. The ele-
ments indicate relationships between
particular Users and Resources. This is
shown in Figure 2. See notation in (1, 2).
An example access matrix is depicted in
the Population. The object classes for the
access matrix are shown in the Schema.
We observe that the relational object
class Access right serves as the class for
all the matrix elements. Note that there is
no need for Access rights for non-
existing elements, as would have been
the case in a real matrix. If only one
Access right between one User and one
Resource is wanted, this uniqueness
requirement will have to be explicitly
stated. Note that cardinality constraints
would not do for this. However, if one
Access right can refer to only one User
and one Resource, this can be stated by
using the cardinality constraints (1,1)
associated to the User and the Resource
references, respectively.

We also observe that in this simple
access matrix all Users, all Resources

and all Access rights have to be globally
and uniquely identified independently of
each other. In particular this is
unfortunate for the Access rights, as this
will impose a vast amount of admin-
istrative work to assign identifiers, insert
the Access rights and to state references
to and from Users and Resources. There-
fore, the Access rights could have been
replaced by two-way references between
Users and Resources. However, this will
not allow attributes to be associated with
the Access rights.

Since an Access right can only exist if a
corresponding User exists, we can avoid
the cumbersome administration of
globally unique Access right identities by
defining Access rights locally to the
Users. This is shown in Figure 3. We see
that the Access right identities can be re-
used within different Users. Also, since
the number of Access rights per User is
expected to be small, usually ten or less,
the Access right identities can be
dropped altogether. This requires that the
administrator must be able to point at the
appropriate Access rights at his HMI.
This way, we have got a polarised (non-
symmetrical) access matrix, which
allows one Access right to refer to
several Resources. This makes the matrix
very compact, which means that the
amount of data to read and to write will
be small and efficient to the access con-
trol administrator.

We believe that many Users in an organ-
isation will often have the same Access
rights. Then it will be very inefficient to
insert similar Access rights to each of
these Users. Therefore, we can create
groups of Users having the same Access
rights. This is achieved by a two-way
reference from Users to Users. The

Member users inherit all rights from their
Set of users.

Similarly, the Resource side of the matrix
can be compressed by introducing groups
of Resources. The compression is intro-
duced by recursive references in Figure
4. The figure is extended from the pre-
vious ones to illustrate the compression.

A two-dimensional matrix is a too
simplistic model for a realistic Access
Control Administration system. Already
we have allowed a fan out of references
to several Resources from one Access
right. This will be used to state that
access is granted to the disjunction of the
listed Resources, i.e. access is granted to
each of the listed Resources from this
Access right.

However, we also need mechanisms to
state that access is granted to a con-
junction of Resources. In particular this
is needed in order to state that a User can

121

Data design for access control administration

B Y A R V E M E I S I N G S E T

Abstract

The purpose of this paper is to

- illustrate use of the draft CCITT Human-Machine Interface
formalism (1)

- illustrate some of the considerations undertaken when
designing HMI data

- present a specification of an advanced Access Control
Administration System (1)

- compare this with alternative models for Access Control.

The messages conveyed in this paper can be summarised as
follows:

- The HMI formalism provides more syntactical and expressive
power and precision than many alternative formalisms.

- The HMI formalism is used to define data as they appear on
the HMI, and this should not be confused with similar, e.g.
internal or conceptual, specifications of databases.

- Data design is a complex task to undertake; alternative
designs have great consequences to the end users; to foresee
these consequences requires much experience, and you have
no certain knowledge on how much the design can be impro-
ved.

- Current models for access control have definite shortcomings,
and improvements are proposed.

The proposed specification is an extract of (1) and is an
extension of the Access Control Administration system ADAD,
which has been used during more than ten years within
Norwegian Telecom.

681.327.2

Resources

U
s
e
r
s

Matrix elements

Figure 1 Access matrix
Each filled in matrix element states that a
User is granted access to the appointed
Resource

122

SchemaSchema Population

Resource
 Identity

Access right
 IdentityIdentity

User
 Identity A,

User
 Identity B,

Resource
 Identity 1,

Resource
 Identity 2,

Resource
 Identity 3,

Access right
 Identity i,

Access right
 Identity ii,

Access right
 Identity iii,

S

P

Lines

Rows

Matrix elements

User

Figure 2 Formal specification of an Access matrix
The Schema states the permissible structure of all ‘access matrix’ Populations. Access right corresponds to the matrix element.
However, several Access rights are allowed between a User and a Resource

Schema Population

Resource
 Identity

Access right
 Identity

User
 Identity

User
 Identity A,

User
 Identity B,

Resource
 Identity 1,

Resource
 Identity 2,

Resource
 Identity 3,

Access right
 Identity i,

Access right
 Identity ii,

Access right
 Identity iii,

S

P

Lines

Rows

Matrix elements

Figure 3 Access rights contained locally in Users
Access right has no more a globally unique identifier locally to Schema. Except from the change of name scopes, this specification
allows the same statements as in Figure 2

Schema Population

Resource
 Identity

Access right
 Identity

User
 Identity

User
 Identity A,

User
 Identity B,

Resource
 Identity 1,

Resource
 Identity 2,

Resource
 Identity 3,

Access right

Access right

S

P

Resource
 Identity 4,

Resource
 Identity 5,

Resource
 Identity 6,

User
 Identity C,

User
 Identity D,

User
 Identity E,

User
 Identity F,

Figure 4 Compressed access matrix
Users and Resources are assembled into superior Users and superior Resources. Access rights stated for the superior items are
inherited to the subordinates. This provides a compact matrix and efficient administration

only apply a certain external Function,
e.g. screens, or set of Functions to a cer-
tain set of data. This set of data we call a
Data context. Note that a Data context is
identifying a set of Population data. This
set can be whatever collection of data for
which users need a specific access right.
The set can be all data of a certain class,
some instances of a class, some attributes
of some object classes, etc. A three-
dimensional polarised fanned out access
matrix allowing to state access rights to
both disjunctions of similar resources and
conjunctions of dissimilar resources is
shown in Figure 5. A formal specifi-
cation is shown in Figure 6.

Lastly, we will allow Users to be defined
locally to Users in a hierarchy. This is
provided by the two-way schema-pop-
ulation reference (S-P) between
subordinate User and superior User. A
similar hierarchy is provided for
Functions. There are also many other
aspects of the final specification which
we have no room to discuss in this paper.
However, the resulting specification of
Example Recommendation YYY on
Access Control Administration follows
below. This specification is organised
into the following sections:

- Application area

- Application schema graph

- Textual documentation

- Remarks.

Roles and references are explicitly stated
in the Application schema graph. The
Textual documentation includes the data
tree only, without references, as they are
only expressed in the natural language
text, which is left out here, due to lack of
space. For the same reason, the Remarks
are left out. Note that Time interval
appears in several of the object classes.
The specification could have been made
more compact by the use of inheritance,
i.e. a schema-reference, from a common
source. However, this inheritance may
not be of relevance to the end user or
expert user reading the specification.

Example

Recommendation YYY

Access control administration

Application area

Access Control is the prevention of
unauthorised use of a resource, including
the prevention of use of a resource in an
unauthorised manner.

Access Control Administration, as defined
here, is delimited to the administration of
the access rights of the users.

This recommendation is concerned with
the access to those resources which are
defined in the External layer, Application
layer and the Internal layer of the
Human-Machine Interface Reference
Model (1, 3).

123

Data Contexts

U
s
e
r
s

Matrix elements

Functions

Figure 5 Three-dimensional Access matrix
The resources are split into external Functions and Data
contexts. This allows for stating that a certain User can only
access a Data context by using certain Functions. Arbitrary
access is disallowed

Schema Population

Function
 Identity

Access right
 Identity

User
 Identity

User
 Identity A,

User
 Identity B,

Function
 Identity 1,

Function
 Identity 2,

Access right

Access right

S

P

Lines

Rows

Matrix
elements

Data context
 Identity

Data context
 Identity 1,

Figure 6 Specification of access rights to conjunctions of Functions and Data contexts
This is a formal specification of the three-dimensional Access matrix in Figure 5. Several Access rights connecting a User and a
particular resource are allowed

This recommendation covers Access
Control Administration for all kinds of
users, including human beings and com-
puter systems.

This recommendation views the resour-
ces from the perspective of an access
control administrator. The resources are
identified within the scope of one Access
Control Administration system only. The
resources can be related to one appli-
cation, a part of an application or several
applications. This recommendation does
not cover the co-ordination of several
Access Control Administration systems.
However, how this can be achieved is
indicated in some of the Remarks –
which are left out in this extract.

Application schema graph

The application schema graph is shown
in Figure 7.

Textual documentation:

User
. Identity (1,1)
. Transfer (0,1)
. . Yes, (0,1)
. . No, (0,1)
. . Possible, (0,1)
. Reception (0,1)
. . Yes, (0,1)
. . , (0,1)
. Time interval
. . Start (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. . Stop (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. User

. . User (0,1)

. Member user

. Set of users

. Terminal

. Access right

. . Time interval

. . . Start (0,1)

. . . . Year (1, 1)

. . . . Month (1, 1)

. . . . Day (1, 1)

. . . . Hour (1, 1)

. . . . Minute (1, 1)

. . . . Second (1, 1)

. . . Stop(0,1)

. . . . Year (1, 1)

. . . . Month (1, 1)

. . . . Day (1, 1)

. . . . Hour (1, 1)

. . . . Minute (1, 1)

. . . . Second (1, 1)

. . User(0,1)

. . Function

. . . Action

. . . . Read, (0, 1)

. . . . Insert, (0, 1)

. . . . Modify, (0, 1)

. . . . Delete, (0, 1)

. . . Access right

. . Data context

. . . Action

. . . . Read, (0, 1)

. . . . Insert, (0, 1)

. . . . Modify, (0, 1)

. . . . Delete, (0, 1)

. . . Access right

. . Terminal
Function
. Identity (1,1)
. Accessibility (0,1)
. . Public, (0,1)
. . , (0,1)
. Transfer (0,1)
. . Yes, (0,1)
. . No, (0,1)
. . Possible, (0,1)
. Reception (0,1)
. . Yes, (0,1)
. . , (0,1)
. Time interval
. . Start (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. . Stop(0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)

124

Figure 7 Application schema graph for access control administration
Subordinate User inherits (S-P) attributes from superior User. This allows for instantiation of a directory tree of Users. Similarly for
Functions. One User and one Data context may be grouped into several Set of users and Superior data contexts, respectively. These
groupings allow for inheritance of Access rights, but are independent of name scopes. Note that inheritance of Access rights is outside
the scope of the Access Control Administration system. It concerns the Access Control system only and is therefore not stated here.
The administrator has to know the implications for the Access Control system, but the inheritance statement is outside his scope. This
may or may not be the case for inheritance of a common definition of Time interval, as well. Note that the class label Function is re-
used for several purposes. Also, that permissible Actions can be associated with the Function and Data context roles. For further
explanation of the figure, see (1). Note all the details provided in this very compact specification

Identity
Transfer
Reception
Time interval

Function
Identity
Accessibility
Transfer
Reception
Time interval

(1,1)
(0,1)
(0,1)
(0,1)

S

P

Function

Subordinate
data

Superior
data context

Data context
Identity (1,1)
Time interval

Data context

Action

Action
Function(1,1)

(0,1)
(0,1)

S

P

Access right

Time interval
User

Terminal context
Identity (1,1)
Time interval

Terminal

Terminal

Terminal

Terminal

Terminal group

Terminal

Set of
users
Member users

User

. . . Second (1, 1)

. Function

. . Function (0,1)

. Terminal

. Function
Data context
. Identity
. Time interval
. . Start (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. . Stop (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. Subordinate data
. Superior data context
. Terminal
. Data context
Terminal context
. Identity (1,1)
. Time interval
. . Start (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. . Stop (0,1)
. . . Year (1, 1)
. . . Month (1, 1)
. . . Day (1, 1)
. . . Hour (1, 1)
. . . Minute (1, 1)
. . . Second (1, 1)
. Terminal
. Terminal group
. Access right
. User
. Function
. Data context

Bell-LaPadula

The Bell-LaPadula model (4) for access
control introduces the notions of Clear-
ance and Classification: Users are
assigned a Clearance level. Resources are
assigned a Classification level. If the
Clearance is greater or equal to the
Classification, the user is granted access
to the resource.

This model can be interpreted using the
Application Schema in Figure 7. Some

instances of the user side are illustrated
in Figure 8 . A ‘Member user’ inherits all
the access rights of its ‘Set of users’ in
addition to its own access rights.

Note that a hypothetical introduction of
an extra attribute ‘Clearance level’ of
‘User’ would add no extra information,
since the ordering of the values still had
to be defined to the Access Control sys-
tem and to the Access Control Admin-
istration authority. ‘Clearance levels’
correspond to the Identities of the Users.
Introduction of an extra attribute for this
would imply introduction of an alterna-
tive and redundant identifier, and nothing
else.

From the above, we realise that exactly
the same kind of reasoning applies for
the assignment of sensitivity Classifi-
cation levels to the resources, e.g. to Data
context and Function. Hence, we do not
repeat this argumentation, but conclude
that sensitivity Classification level is a
subset of the resource Identity values.

How Clearance levels relate to Classifi-
cation levels is depicted in Figure 9.

We realise that the Clearance-Classifi-
cation notion is just a trivial special case
of the Member user and Subordinate data
context notions. The User and Data
context notions are much more powerful,

as they allow inheritance from several
superiors and contain several subordinate
items. Also the User notion can be used
to denote real organisation units, rather
then the artificial rewriting into “Clear-
ance levels”. Similarly for the resources
– Data context and Functions. Also the
Access right notion can state more com-
plex references between the Users and
the Resources.

In particular the Clearance-Classification
notion lacks the needed expressive power
to arrange the Actions Read, Insert,
Modify, Delete, etc. into appropriate
sensitivity Classes. For instance, a User
may have access rights to Insert data into
a Data context, but not to Delete the
same data. Another User may have rights
to Delete the same data, but not to Insert
new data. Hence, the different Actions
cannot be arranged in a Classification
hierarchy. Neither do we need the notion
of sensitivity “Classification levels”,
since we can express the access rights
directly from Users to the Resources,
including statements about which
Actions can be applied.

Finally, the Clearance-Classification
notions introduces a strict and static
numbering of levels which can be cumb-
ersome to change when needed.

125

User
 Identity 1,

User
 Identity 2,

User
 Identity 3,

User
 Identity 4,

User
 Identity 5,

User
 Identity 6,

User
 Identity Secret,

User
 Identity Top secret,

Member user

Set of users

Set of users

Member user

Lower Clearance level

Higher Clearance level

Figure 8 Ordering of Clearance levels
The two-way reference Set of users/Member user replaces the Clearance levels. In fact, the
User notion is a more general and flexible way to label user groups. The use of subordinate
User is not illustrated here

126

Figure 10 Objects and Attributes for Access Control
Here, only a two-way reference, i.e. a binary relationship, is provided between initiators and targets. Figure 7 allows for much
more, provides more carefully designed name scopes and efficient administration

Objects and attributes

for access control

An interpretation of (5) is depicted in
Figure 10. This is a simplification of (5),
as a lot of inheritance is used to accom-
plish the shown structure. Attributes of
subclasses of initiators are included in
initiators.

Also, the specification in (5) is difficult
to read, as it is spread over many sections
(for the same item) within the document
with references between them and out of
the document. The notation is overloaded
with technicalities which do not contri-
bute significantly to the specification.
Figure 10 uses the HMI graphical
notation, as the OSI management formal-
ism provides an alphanumeric notation
only.

The specification (5) allows only the
binary path via itemRule (similar to
Access Right) between initiators (i.e. set

accessControlObjectName
denialResponse
accessPermission

Global rule

accessControlObjectName
initiatorACImandated
accessControlList
capability
securityLabel

initiators

accessControlObjectName
defaultAccess
domainName
denialGranularity

accessControlRules

accessControlObjectName
validAccessAttempts
invalidAccessAttempts

notificationEmitter

accessControlObjectName
managedObjectClasses
managedObjectInstances
scope
filter

targets

operationType

operation

accessControlObjectName
accessPermission

itemRule

User
 Identity Secret,

User
 Identity Top secret,

Set of users

Member user

Member user

Access right Data context
 Identity 10,

Subordinate data

Superior data context

Superior data context

Access right Data context
 Identity 9,

Figure 9 Access rights
This figure exemplifies how Access right statements replace the comparison of Clearance
and Classification levels. Again, the mechanism is more general and flexible than the Bell-
LaPadula model

of users) and targets (i.e. set of resour-
ces). However, there is a lot of intricacy
about this ‘relation’. The references to
initiators and targets are accomplished by
the multi-valued attributes initiatorList
and targetsList (not shown), respectively.
Hence, each itemRule can connect
several initiators and targets items. Each
itemRule maps to the accessPermission
attribute values deny or allow. This
makes it difficult to overview the impli-
cations of the total set of maybe con-
flicting access right statements. Each
itemRule has to be assigned a globally
unique name.

In addition, globalRule has an access-
Permission attribute which allows access
from the referenced initiators to all
targets to which access are not explicitly
denied.

There is no explicit reference from ini-
tiators and targets to itemRule. The
permissions of one initiators item can
only be found by searching for it in the
initiatorList of all itemRules. However,
inclusions in the initiatorList and targets-
List require that the referenced initiators
and target items already exist.

Individual users are listed in access-
ControlLists of initiators. There is no
means to list all initiators in which a user
is listed, except via a global search of all
initiators for the given user name in the
accessControlList.

Also, the resources are listed within lists
in targets. It is not clear how manage-
dObjectClasses and managed-
ObjectInstances relate to each other, i.e.
how you specify certain instances of cer-
tain classes only. This may be done
(redundantly?) via the Filter.

The Filter attribute references a filter
name. The contents of the filter can be a
complex ASN.1 expression.

There are no means to state access rights
for individual users or resources without
creating an initiators and/or targets item.
Also, the individual users and resources
are assigned globally unique names, and
there are no means to define directory
trees, allow delegation of rights or to
inherit rights from other users or resour-
ces.

For each target item a finite set of
operations can be specified. This means
that if different users will have permiss-
ion to perform different operations on the

same resource, then different targets have
to be defined for this resource.

No means is provided to state contextual
access rights, e.g. that a particular user is
granted access only if he is using a cer-
tain external function (e.g. program), a
certain terminal and if the access is und-
ertaken within a certain time interval.

Figure 10 can be interpreted to define
data as they are communicated from an
Access Control Administration system to
an Access Control system. Ref. the
notion of an Access Control Certificate
(5). There seems to be no simple means
to select the data which are needed for
validating the access rights for a
particular request. Also, the data defini-
tions seem to be neither appropriate nor
efficient for prescribing the data as seen
by an access control administrator at his
HMI.

A model of authorisation

for next-generation data-

base systems

(6) presents a specification which is
definitely more developed than the pre-
vious two. However, this specification
has also definite shortcomings.

The first problem is that (6) is based on
Set theory, while the proposed specifi-
cation in the current paper is based on
lists within lists. Set theory disregards the
details of data design and disallows many
of the designs used in this paper. This
paper is concerned with the exact design
of data, their labels and identifiers, to
make them manageable to the end users –
in this case the access control admin-
istrator.

A second problem is that (6) is based on
the algebraic theory of lattices. As
explained in the section on the Bell-
LaPadula model, this kind of ordering is
too restrictive and artificial in an
advanced access control administration
system.

Concluding observations

This paper indicates how a rather
advanced specification of Access Control
Administration can be developed, taking
the primitive notion of an access control
matrix as the starting point. We observe
that seemingly minor changes to the
specification can have comprehensive
consequences for the end users. There-
fore, the designer should carefully figure
out the implications of his design choices
on the final presentations and instanti-
ations to the end users. This study can
conveniently be carried out by creating
example instances in population graphs.

Experienced designers are likely to see
more problems and more opportunities
than novice designers. Users will have
difficulties foreseeing the impact of the
specifications and hence to validate
them, even if the users seem to under-
stand when the specifications are
explained. The problem is to see the
limitations and alternatives, which are
not pointed out in the specification.
Therefore, test usage of the resulting
information system, allowing real users
to provide feedback, is essential to
identify problems and validate designs.

The specification technique allows and
requires generality, precision and details
which users are not likely to match in
their requirement texts. Therefore, most
of the data design is creative design work
and is not like a compilation of end user
requirements. The designers’ responsi-
bility is to create good and efficient data
designs for their users. The task is not to
organise existing terms only.

Also, the way the work is carried out is
no guarantee for success, even if the
development procedure used – the met-
hod – can provide some confidence about
the result. But, even if you apply ‘the
same procedure as Michelangelo’, it is
not likely that you can produce somet-
hing which matches his quality. So also
for data designs. The problem is that
there is no objective measure on how
optimal is the current design and how
much can be achieved by improvements.
You only know this gain relative to the
alternatives available.

It is likely that many choices will be
made on subjective grounds and that they
will cause disagreement. However, data
designers should estimate costs of
converting data to the proposed new
design and estimate how much can be

127

gained, e.g. reduction of work, by using
the new design. All concerns not quanti-
fied should also clearly be spelled out
before decisions are taken for each and
every data item.

The HMI formalism provides a very
compact specification and provides good
overview. See Figure 7. The boxes and
arrows can easily be used by end users as
icons to access more detailed
explanations and specifications. The
graph will become their ‘brain map’.

Also, the HMI formalism allows usage
and specification of syntaxes that are not
matched by most other formalisms, e.g.
the Entity-Relationship (ER) formalism
and the OSI Management formalism. We
have seen a tendency to use ER-diagrams
as illustrations (bubble charts) rather than
formal specifications. It is essential that
knowledge is developed for making pro-
fessional data designs. To design data for
HMIs is more demanding than designing
databases, from which data can be vari-
ously extracted and presented. The HMI
data design prescribes the final pre-
sentation.

The comparison between the data design
for Access Control Administration of this
paper and other specifications from the
literature indicates that much and chall-
enging work remains to be done.

References

1 CCITT. Draft recommendations
Z.35x and Appendices to draft
recommendations, 1992. (COM X-R
12-E).

2 Meisingset, A. The draft CCITT
formalism for specifying Human-
Machine Interfaces. Telektronikk,
89(2/3), 60-66, 1993 (this issue).

3 Meisingset, A. A data flow approach
to interoperability. Telektronikk,
89(2/3), 52-59, 1993 (this issue).

4 Hoff, P, Mogstad, S-A. Tilgangskon-
troll-policyer basert på Bell-
LaPaluda-modellen. Kjeller,
Norwegian Telecom Research, 1991.
(TF paper N21/91.)

5 ISO, ITU-TS. Information Techno-
logy – Open Systems Interconnection
– Systems Management – Part 9:
Objects and Attributes for Access
Control, 1993. (ISO/IEC JTC 1/SC
21 N7661. X.741.)

6 Rabitti, F et al. A model of aut-
horisation for next-generation data-
base systems. ACM transactions on
database systems, 16(1), 1991.

128

