




With mobile telephone systems like
NMT we have become familiar with
the flexibility and ease of use of
automatic roaming. With automatic
roaming the subscribers can access
the network where they happen to
be at the time of call. An exchange
in a mobile network must therefore
be able to serve any subscriber
entering its service area.

Such flexible service handling is not
possible in existing fixed networks
because call control for a subscriber
is permanently associated with a
particular exchange, i.e. the
exchange where his subscriber line
terminates. However, one of the
near term targets of service develop-
ment is to extend mobility to fixed
networks by introducing personal
mobility.

The introduction of mobile services has necessitated a change in
traditional network design. In order for an exchange to give ser-
vices to all roaming subscribers, subscriber data must be easily
retrievable from sources external to the exchanges. This leads to
the requirement that call control and subscriber data must be
functionally separated. In systems with personal mobility also
the service itself must be executed in separate network nodes.

Services such as advanced freephone, televoting, credit card
calling and virtual private networks will impose similar require-
ments on the network architecture. This enhanced architecture is
called Intelligent Network (IN).

The original idea behind IN was that certain services were more
efficiently implemented by allocating part of the service execu-
tion to separate network entities (Service Control Point). For
other services this was the only way in which they could be
implemented. One important point is that mobility and IN repre-
sent two routes towards the same type of network architecture.

An implementation of a network where a separation between
call control, service control and user data is introduced requires
the support of a signalling system capable of supporting real
time transaction oriented exchange of information between net-
work nodes dedicated to switching, data storage and service
processing.

The transaction Capabilities Application Part (TCAP) of Sig-
nalling System No. 7 has been developed for meeting these
requirements. It is also the first step towards a vendor indepen-
dent application layer interface between network entities.

In order to obtain harmonised IN
services internationally standards
must be developed. A first set of
such standards will be put forward
to the CCITT Plenary Assembly in
1993 for adoption as the Q.1200
series of Recommendations. The
Q.1200 series includes network
architecture, a set of capabilities or
building blocks for service creation
and allocation of functions to physi-
cal entities with associated proto-
cols. These protocols are the second
step towards a vendor independent
interface.

Looking at the way this interna-
tional work on IN has taken one
may say that IN is not a specific
technology but rather a methodol-
ogy for future network develop-
ment. 

Intelligence in the network means that services are separated
from basic switching and transmission.

When IN has been fully developed, it will offer several benefits
to all parties involved: network operators, service providers, ser-
vice subscribers and users. 

Some of these are:

- rapid introduction of new services

- reuse of software and software portability

- vendor independence

- customisation of services

- subscriber control of service attributes

- one stop shopping

- personal mobility.

In order to exploit the benefits much research is required on
methods and tools for

- service specification

- service creation

- service testing and validation

- service deployment.

Efficient solutions in these areas will be an important element in
an environment where network operators are competing for
gaining market shares. Those who can deliver what the users
need at the right time at an acceptable price will be the market
winners. IN evolution is thus one important strategic element
for network providers in the future. Many network operators are
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beginning to see this and are, therefore, putting much resources
into IN research. Since this research is expensive and requires
much resources, several network operators have joined forces,
for example in EURESCOM and RACE, even though they may
become competitors in the future. Most of them expect to gain
more from cooperation in research than they may eventually
loose from competition. Norwegian Telecom is also participat-
ing in this work. The advantages for us is that, being a small
network operator, we gain access to results that we otherwise
could not afford to produce on our own.

The research will also determine the direction in which IN stan-
dards develop and will in the long run replace the proprietary
standards the network operators are forced to buy from industry
today.
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Motivation and objectives
Until recently telecommunications ser-
vices in public networks were limited to
basic calls, that is to establishment of
connections between two users, with the
addition of a few simple supplementary
features. It is also recently that much of
the electro-mechanical equipment were
replaced by modern program controlled
exchanges interconnected with Signalling

System No. 7. The exploitation of the
vast computing power of these exchanges
and the capability of Signalling System
No. 7 to pass service related information
have led to the development of a large
number of new basic services such as
mobile services, enhanced freephone ser-
vices, virtual private networks (VPN),
universal personal telecommunications
(UPT), CENTREX, etc. In addition, the

number of supplementary services, i.e.
services or features that can be combined
with basic services to meet specific user
needs, has grown from a handful to more
than a fathomful. At the moment the
overall picture of the capabilities the net-
works can offer is complex and it is diffi-
cult for users both to choose the right ser-
vices and to use them in an efficient
manner. One motivation for IN is to pro-
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Figure 1 Handling of simple freephone service

In non-IN networks the conversion of freephone numbers to physical address takes place in a specialised resource
exchange (a)). The physical route of the call will be long and complex. In IN (b)) the outgoing exchanges can interrogate
a routing database in order to obtain the physical address.
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Figure 3 Televoting

The votes are counted by the local exchanges and subsequently passed to the management/IN database where they are
collected and formatted in a suitable form for the customer.

Figure 2 Handling large volume of traffic

By supervising the available traffic capacity on a number of paths between two subscribers, the management/IN database
can determine when there is sufficient capacity and then take actions to establish a suitable path.



vide solutions to these problems. Another
closely related motivation is to provide
mechanisms for rapid and efficient adap-
tation to market demands for new ser-
vices and features.

In order to offer the basic service capa-
bilities mentioned above in an efficient
manner the network needs to be
enhanced with additional infrastructure.
One objective of IN is to provide this
infrastructure. The basic services are, in a
broad sense, independent of the network
that supports them, i.e. whether it is
ISDN, broadband network or packet data
network. The same applies to supplemen-
tary features.

This paper will look at various aspects of
IN and explain them by help of exam-
ples. In this presentation the main focus
will be on principles rather than on cur-
rent standards and early implementations
in order to illustrate the evolutionary
potential of IN. Current standards and
implementations are devoted to practical
adaptation of the basic principles to
existing network implementations and
equipment design and do not take full
advantage of the capabilities an IN may
offer.

The exposition of this paper is based on
some of the key elements in the defini-
tion of IN adopted by the CCITT and
included in Recommendation Q.1201.

These are:

- efficient use of network resources

- subscriber control of service attributes

- reusability and portability of ideas,
methods and software

- flexible allocation of functions to
physical entities

- integration of all aspects of manage-
ment and administration of services.

The term subscriber will be used to des-
ignate the person or entity having the
contract with the service provider. The
user designates any party accessing the
network using own or other services.

Efficient use of network
resources

In order to illustrate the versatility of IN
to provide efficient network solutions,
three quite different examples will be
given: basic freephone service, traffic
volume booking and televoting.

The main characteristic of the freephone
service is that the calls are not paid by
the calling user. The freephone number,
i.e. the number dialled for accessing the
network, is normally a number that alone
does not identify the physical destination
of the service. Reasons for this are:

- it should be possible from the dialled
number to identify it as a freephone
number. Therefore, it is common to
allocate a general countrywide number
series for this service

- the destination of one freephone num-
ber may be conditional, depending on

time of call, call origin, etc. An exam-
ple of such freephone service is given
in the next section.

Therefore, a translation from the free-
phone number to the physical destination
number must take place in the network.
As illustrated in Figure 1a) this number
translation can be done by a special
resource exchange without the need for
IN. All calls to freephone destinations
must then be routed physically via this
exchange. However, by using IN, i.e. by
introducing a routing database which can
be interrogated by all exchanges in the
network, a more efficient routing requir-
ing fewer connection segments is obtain-
ed (see Figure 1b)).

For the simple freephone service the
database can be viewed as a look-up
table consisting of two columns, where
one column consists of all freephone
numbers and the other contains the corre-
sponding physical destination numbers.
When receiving a request for number
translation containing the freephone
number to be translated, the database will
find the corresponding physical destina-
tion number and return it to the exchange
for further call processing.

This example introduces one aspect of IN
(which has more or less become the
trademark of it), namely the use of
databases and other equipment external
to the exchanges. As we shall see later,
this facet of IN leads us towards a better
understanding of service execution and
service based network architectures.

Figure 4 Another view of televoting

In this view the service users and the service subscribers interact directly with the service execution function. The fact that
the latter is distributed over databases, exchanges, etc., is not important for description or understanding of the service.
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Figure 5 Evolution of a freephone service

In the next and later sections we will
return to the freephone example and
show how IN allows the service to be
enhanced in order to meet special sub-
scriber needs.

The service of the second example can
hardly be realised without some kind of
centralised function which can supervise
and take actions on the whole network.
Figure 2 shows a case where customers
(e.g. large computer installations) can
request the network to provide capacity
for transfer of huge volumes of data. The
centralised function (management/IN
database in the Figure) will monitor the
available capacity of switches and trans-
mission segments in order to decide
when and on which route to offer infor-
mation transfer.

The service resembles network traffic
and routing management which is one of
the capabilities of TMN (Telecommuni-
cations Management Network). It uses
functions required for that purpose:
determination of free capacity and avail-
able routes. The service is thus an exam-
ple of using features required for admin-
istration and operation of networks as an
element of a service offered to sub-
scribers. It may also be taken as an indi-
cation that much commonality can be
expected between TMN and IN.

The key feature of the service is efficient
utilisation of the transmission capacity of
the network. Variations of it could be:
- booking of capacity where the

requested capacity must be made avail-
able at the required time

- selling capacity cheaply at low traffic
hours

- select routes with desired characteris-
tics

- etc.

The third example is televoting. Televot-
ing can be used for elections, opinion
polls, melody contests, quiz programmes,
etc. Though quite different, all these
applications share some common
attributes that the network must support:
- ability to count votes on different vot-

ing alternatives

- ability to provide instructions to the
voters

- ability to present results to the service
subscribers.



- how to present the voting alternatives
and other instructions to the voters

- who are allowed to vote

- how acceptance or rejection of votes is
to be presented to the voters.

The set of attributes required for a simple
melody contest could be the start and
stop time of the contest, all other aspects
of the service being fixed by subscrip-
tion.

This example illustrates several things:

Figure 6 Service objects required at
different evolutionary steps of the free-
phone service

Televoting is, like freephone, a service
which has been offered for a long time
and without IN support. In non-IN imple-
mentations the calls representing voting
events are routed towards special termi-
nations in the network for registration,
counting and processing. Since televoting
often causes mass calling events with the
risk of overloading the network, an IN
solution like the one shown in Figure 3 is
preferable. In this solution votes are
counted in each local exchange and sub-
sequently transferred to the manage-
ment/IN database for further processing.
This processing may consist of format-
ting the results in a way convenient to the
service subscriber and delivered at times
determined by him. The local exchange
may also indicate to the voter that the
vote has been registered or rejected, as
the case may be. The indications to be
provided may be specific to the type of
televoting service used or in accordance
with the wishes of the service subscriber.

Overloading of the network is avoided
since calls exist only on user access lines
and counts can be transferred from the
local exchanges to the management/IN
database at a rate that will neither over-
load signalling links nor processors in the
database.

The example brings forward several
points which are also key characteristics
of IN even though they are not exploited
in the first phase of implementations. The
database contains information which has
been determined (and also inserted) by
the service subscriber. He can also alter
some of the data sets associated with the
service within given ranges. This point
will be explored further in the next sec-
tion.

The service is distributed in the sense
that the central database and processing
entity, though in control of the service,
performs only part of the service execu-
tion: formatting and presentation of vot-
ing results and interactions with the ser-
vice subscriber. The parts of the service
related to registration of votes and inter-
actions with the voters are decentralised
to local exchanges.

The service subscriber interacts directly
with the central database. The interaction
between the service users (voters) and
the service can, in a similar sense, be
regarded as being direct. The televoting
service may then be depicted as shown in

Figure 4. In this view the service is seen
as a single entity, although it is physi-
cally distributed. The service does not
require connection segments for passing
information between users since there is
no such information to pass. As we shall
see later, this is part of a more general
distributed IN architecture where service
control and the transmission and switch-
ing aspects of the network are separated.

The main target of this section was to
show how IN can be exploited in order to
make efficient use of network resources.
However, by giving three simple exam-
ples of IN services where efficient use of
resources has been a prime factor in
developing them, several other key
aspects of IN have been uncovered:

- that there exists a close relationship
between IN and TMN

- that there is a potential for allowing
service subscribers the capability of
manipulating certain service attributes

- that the service execution requires dis-
tributed processing and that this pro-
cessing may be described in terms of
an architectural concept in its own
right.

Subscriber control of 
service attributes and cus-
tomisation of services

In the televoting example given above
we saw that there are service attributes
that the service subscriber may want to
control. For a televoting service used for
opinion poll such attributes could be:

- the region where the voting is to take
place

- the number and type of voting alterna-
tives

- the form in which the results are to be
presented

- at what time and by which actions
results are to be presented: intermedi-
ate results, final results, at given times,
by request from the service subscriber,
etc.

- the start time and duration of the vot-
ing

9



- The type of attributes being available
for subscriber control will depend on
individual requirements.

- The service as viewed by the service
subscriber will look completely differ-
ent from application to application:
there is almost no commonality
between the opinion poll service and
the simple melody contest  service
from the service subscriber point of
view even though much the same
mechanisms are required in the net-
work for performing the two services.

- The way in which the service sub-
scriber interacts with the service may
take different forms depending on the
number and type of attributes being
available for manipulation. These
interactions may be anything from
complex menu driven procedures to
the use of simple push-button equip-
ment.

The above brings forward another key
issue of IN, namely customisation of the
interaction between service subscribers
and the network. As we shall see later,
customisation is a wider aspect than this
and enters into all facets of IN.

In order to give a more systematic
approach to the issue of subscriber con-
trol of service attributes let us return to
the freephone example and expand that
in steps. In its simplest appearance this
service consisted of

- levying the charges against the service
subscriber

- converting the dialled freephone num-
ber to the number of its physical access
point in the network.

Note that it is specifically stated that the
charges are levied against the service
subscriber and not against the subscrip-
tion associated with the physical access
(or the called number). As will soon
become apparent, these subscriptions
may be independent from a service point
of view. 

Our service subscriber wants to expand
his business to three offices distributed
over the country with the arrangement
that

- the same freephone number is used for
all the offices

- each office shall cover a given region
of the country.

In order to support this service the net-
work must be able to convert the freep-
hone number to different destination
numbers depending upon the origin of
the call. Note that the simple conversion
table has now become more complex
since it is conditional by the origin of the
call. The situation is illustrated in Figure
5a).

The service subscriber then wants to
offer 24 hour service and service on holi-
days with the condition that only one
office is open outside normal working
hours. He also wants control of the
attributes associated with time (time of
day, weekdays, dates) and definition of
geographic region. The new scenario is
shown in Figure 5b) together with the
algorithm for choosing the right destina-
tion.

The business has now expanded so much
that there are several persons answering
calls at each office. The service sub-
scriber therefore wants line hunting in
order to choose free positions and ensure
equal loading of them. The line hunting
feature requires that the service control
function not only does number conver-
sion but also that it keeps a continuous
overview of which lines are free or busy
within each hunt group (see Figure 5c))
and how incoming calls are distributed
among them.

In the final step the line hunting feature
and the conditional routing on time has
been replaced by a centralised queue
where the queuing function supervises
which lines are free or busy and which
offices are open or closed. The condi-
tional number conversion arrangement of
step b) still applies with the exception
that if all lines are busy at one office, the
call can be routed to another office even
though that office is outside the region
normally served by that office. The ser-
vice subscriber has also changed the
charging arrangement such that calls
from a given group of customers to the
business always have calls free of charge
while other customers are charged if they
call outside normal working hours. The
service subscriber may also need cus-
tomised announcements to be inserted at
different call states. The announcements
could be indication of how many calls
are in the queue and expected waiting
time, indication that the call will be
charged to the customer, etc. He also
requires that the network provides the
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Figure 8 Virtual switch object

Figure 9 Service driven network architecture

announcements to the calling user in a
convenient way (voice, text, picture)
depending on the type of terminal used.
The service subscriber wants detailed
monthly statistics: number of calls, han-
dling times, line loadings, queuing times,
number of unsuccessful calls, etc. He
also requires control of most of the
attributes associated with his service and
even asks for customised security mecha-
nisms related to authentication, authori-
sation, rules for invocation of changes,
status of attribute values, etc. 

What this example illustrates is a realistic
evolution of a service after it has been
installed in its first simple form. The real
challenge for network operators and ser-
vice providers is to be able to respond
quickly to such demands for customisa-
tion of service. Customisation of services
and rapid response to market demands
require several prerequisits:

- methods and tools by which services
can be quickly created on customer
demands

- efficient deployment of the service into
the network once it has been created

- responsiveness of the network to
quickly adopt changes to the service in
order to meet new customer demands.

Reusability

The evolution of the freephone service
given in the previous example hints to a
possible decomposition of services into
reusable modules, where “reusable”
means that each module can be used in
different types of service. This is the key
to service creation and efficient service
execution.

In what follows we will refer to these
service modules as objects in order to
flag that they should obey all general
aspects of object oriented modelling and
design.

From the previous discussion we may
identify several service constituents that
may serve as reusable service objects:

- conditional branching, where the con-
dition can be any combination of call
origin, time of day, day of week, date,
terminal type, terminal characteristics,
etc

- statistics

- screening

- queue

- line hunting

- counter

- authentication

- authorisation

- charging

- announcement.

By combining one or more of these
objects a complete service can be built.
Figure 6 lists which objects are required
for each of the four evolutionary steps of
the freephone example of the previous
section. The list of objects is not enough
to characterise the service. It is also nec-
essary to specify exactly what each
object is expected to do. This can be
done by defining a set of attributes for
each object as shown in Figure 7. Each
attribute can again be defined in terms of
which operations can be performed on it.
The current queue length attribute of the
queue object can be increased or reduced
by 1 depending on whether a new call
arrives or a queued call is being serviced.

The above description is not formally
exact. It is intended only to give a first
idea on how object orientation enters into
service design. Accompanying papers
provide further insight into the formal
use of object orientation.

It may be convenient to let an attribute of
one service object consist of other ser-
vice objects. The call treatment attribute
of the queue module in Figure 7 may
thus contain conditional branching and
announcement objects. Note also that the
attributes required depend on the service:
for the freephone example with routing
on origin the conditional branching
object only needs the origin attribute,
while in order to provide routing condi-
tioned on working hours it will require
time of day, day of week and date
attributes.

The attributes in one object are available
for other objects in the service (or in
other services interacting with it). Such
interactions may involve reading
attribute values, changing them, etc.
Some attributes of an object may also be
available for external run-time manipula-
tion, for example by the service sub-
scriber. In the example with the queue
object it may be possible for the sub-
scriber to change the value of the “num-
ber of server” attributes and to delete or
insert new “identity of server” attributes.
This may require that security objects are
added to the service in order to avoid
illegal manipulation on the attributes.

Our modular decomposition of services
is so far incomplete since it has not
included what is the basic element of
most of them, namely the capability of
providing and maintaining connections
for information transfer between all par-
ties involved in a call. This requires two
important things:

- interaction between the services sub-
scribed to and requested by each party

- interaction between the services and
the physical network supporting the
information transfer.

The purpose of the first is to sort out and
resolve things such as
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- incompatibility between services

- responsibilities of each service in exe-
cuting the overall call

- ensuring that specific service condi-
tions are not overruled (e.g. main-
taining the integrity of closed user
groups, respecting screening condi-
tions, etc).

Studies of these problems have just
begun. They will require investigation
into areas of advanced computer science
such as concurrency, distributed process-
ing, distributed operating systems,
dynamic rule based execution, etc. This
is one of the biggest challenges in defin-
ing the evolutionary path of IN.

However, the existence of service inter-
action leads us to one of the basic con-
clusions of this section, namely the sepa-
ration of service and physical connec-
tions. Before going into details, we must
also look at how to handle the interaction
between the service objects and the con-
nections.

The first requirement concerning this
interaction is one which we have already
recognised as one of the objectives of IN,
namely that a service should be executed
in the same way on all types of network,
i.e. the service execution must not
depend on whether the physical network
is ISDN, B-ISDN or a public data net-
work. The second requirement is that the
model must provide the service with a
simple but consistent view of the net-
work for each call. The simplest
approach is to let the call configuration in
the network be represented by a service
object referred to as a virtual switch. This
was also the approach taken by ETSI
NA6 in their first definition of a call
model (this model has later been aban-
doned by the CCITT and replaced by a
much more network dependent and less
intuitive model). The virtual switch
object is illustrated in Figure 8. The
object contains two types of attributes:
leg and connection point where several
instances of each may be present (legs
and connection points may also be mod-
elled as objects with their own set of
attributes). The operations that can be
done on legs and connection points then
represent the manipulations that the ser-
vice can do on the physical network.
Note, however, that it is also necessary to
represent other features of the network
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The service domain is distributed differently in the two cases but the
resulting service is the same. Interaction between objects as indicated.



Figure 11 Network architecture including all three domains interconnected via a
common signalling network. The architecture may consist of many
instances of each type.

by objects available for service manipu-
lation: traffic filters, various types of spe-
cialised resources, terminal devices, etc.
These are not important for our presenta-
tion.

The virtual switch thus provides the ser-
vice with a “need to know view” of the
underlying network. In the hidden parts
of the object we may conceal the proto-
cols required for interacting with the net-
work and any network dependent infor-
mation. By carefully defining attribute
values related to legs and connection
points, one can make the part of the vir-
tual switch object which is visible to
other service objects independent of the
actual network. For service execution it
does not matter whether the connection
point lies within one exchange or is dis-
tributed over several exchanges, or what
switching technique is used: circuit,
ATM, packet, etc. This makes the virtual
switch also a reusable object.

At this stage we have at our disposal sev-
eral service feature related objects and
the virtual switch object. From these,
several services can be built, each service
exploiting the objects in different ways.
Hence, by our approach we have reached
another of the objectives of IN: reusabil-
ity of service components.

Our approach has also led us to a new
network architecture. By combining the
service feature related objects and the
virtual switch object, we can view the
whole service execution process indepen-
dently of the underlying physical net-
work. This enables us to define two inter-
acting domains: service domain and

switching domain as shown in Figure 9.
The service domain contains all objects
required for service execution while the
switching domain represents connections
and switches. As we saw for the tele-
voting service, there are services where
only the service domain is present.

In Figure 9 the signalling network (which
already exists for signalling system No 7)
has been included in order to clarify two
points which have not been incorporated
in present standards:

- The signalling network can provide for
direct interactions between the users
and the service domain. Hence, the
triggering function (i.e. to identify
where the service is to be processed) is
the responsibility of the signalling net-
work.

- The signalling network will provide
the transmission medium for all inter-
domain and intra-domain information
flow, i.e. information flow between
service objects.

Flexible allocation of
resources to physical
entities

In the previous section we derived an
architecture for IN from decomposing
services into interacting objects. The
decomposition was motivated by the
reusability aspect of service software.
However, this software must be run on
machines.

The object oriented approach we have
taken allows us more freedom in dis-
tributing the software. Figure 10 shows
an example of a service consisting of
four interacting objects distributed in two
different ways. The resulting service is
the same but the performance may be dif-
ferent: one distribution may be optimal
with respect to processing delay, the
other with respect to signalling network
loading. From this it can be inferred that
different strategies can be chosen for dis-
tributing the software and that the soft-
ware may be distributed differently for
different instances of a service or at dif-
ferent times, or when used on different
types of networks.

Three prerequisits are required. First, the
software must be portable, that is that it
can be run on machines from different
manufacturers. Second, there must be
protocol support that can map arbitrary
operations onto a general protocol stack.
Third, all objects must be addressable
within the signalling network. All of
these represent challenges for future stan-
dardisation.

It is not only software that can be dis-
tributed (and utilised) in an efficient
manner in INs. There is an increasing
need for customised network support
such as mailboxes and customer specific
announcements. Service interworking,
protocol conversion, speech recognition
and speech generation also require spe-
cial resources in the network. It is a ser-
vice feature and hence an IN task
- to determine that a special resource is

required for the service

- to find the appropriate resource and
provide it with required information,
and

- to control its application in the execu-
tion of the service.

As for the virtual switch, these resources
can be represented at the service level as
objects and thus be included in a network
independent manner.

Hence, IN opens for new ways of opti-
mising the network. It should be noted
that IN is likely to require large sig-
nalling resources. However, it will lead
to better utilisation of other parts of the
network.
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Management aspects

We have already seen that there is a close
relationship between IN and TMN: man-
agement can be offered as a service to
customers by use of IN features. How-
ever, there are three other areas where
the merging is complete: service cre-
ation, service deployment and service
management.

Service creation consists of designing
services from service objects, assigning
attribute values to them and defining
rules for how the component objects
should perform and interact in order to
provide the required service. Service cre-
ation is also closely related to subscrip-
tion management.

Service deployment concerns how, when
and where service objects are to be
loaded down into network equipment.
This area opens for much optimisation.
We have already seen that it may be pos-
sible to distribute the service in different
ways in order to optimise its performance
in one way or another. It may also be
possible to deploy the service or parts of
it at invocation or even at run-time.

The third aspect concerns management of
the service itself. This may imply that an
object may at the same time be defined
as a managed object for TMN and a ser-
vice constituent for IN, but where the
visibility for the two applications may be
different. An object which may have two
usages is the statistics object: it may be
used to record statistics on behalf of the
service subscriber and it may be used by
TMN for general network management
purposes. However, queue objects,
announcement objects, filters, etc. may
also serve two purposes. This is one rea-
son why a common object definition
should be developed for IN and TMN.

TMN has been developed assuming only
one domain, i.e. a domain where service
and switching are integrated in the same
machine. In a separated IN architecture
TMN must supervise two domains where
each domain will contain only elements
of a call. Another point that complicates
the picture is that IN will offer various
kinds of mobility. One type of mobility
we have already encountered, i.e. where
the same service may be executed on dif-
ferent machines at different times.
Another form of mobility is related to the

users where UPT (universal personal
telecommunications) offers them the
capability of making and receiving calls
at arbitrary terminals. In such cases the
service objects may be stationary while
the access point varies. Of course, a com-
bination of the two forms of mobility is
also possible. In this respect IN repre-
sents a tremendous challenge to TMN.

Figure 11 shows an overall network
architecture where all three types of
domains have been included. In the fig-
ure it is indicated that several instances
of the same domain may exist. For the
switching domain this illustrates the exis-
tence of different types of network:
ISDN, B-ISDN, packet data networks.
For the service and management domains
different development stages may coexist
in the future.

Conclusions

Based on its definition this paper has
investigated the evolutionary potential of
IN. The paper has not attempted to
describe IN as it is now implemented and
appearing in standards.

IN started about ten years ago in the
USA and was aimed at solving some
urgent problems with services such as
freephone. Its core element was then and
still is that some or all features of a ser-
vice are executed on equipment external
to the exchanges. Looking at the current
status of IN the following conclusions
may be drawn:

- The first real IN implementations are
brought into operation now.

- These implementations are meeting
very few of the objectives stated for
IN.

- IN is coming at a time of great insta-
bility in telecommunications: ISDN is
being introduced, many new supple-
mentary services are being imple-
mented before they have been fully
specified, the market has been opened
for competition of all kinds.

- IN standards are brought forward at a
tremendous speed motivated by net-
work providers to catch market shares
and win in competition

- The IN standards are intended to solve
short-term problems related to enhanc-

ing switching equipment for interact-
ing with external equipment.

It took five years of standardisation work
to get where we are today. It will proba-
bly take another ten years before we have
exploited all possibilities that the defini-
tion of IN promises.

This paper has presented some of these
possibilities focusing on which service
capabilities IN can offer. It has also
pointed at a possible evolutionary path
that the development of network inde-
pendent services may follow. However,
the main problems are unsolved: service
creation, service deployment and effi-
cient use of network resources, service
execution in a distributed environment,
service management and merging of IN
and TMN.

In order to solve them, new methodolo-
gies and a better understanding of what
services are need to be developed. Some
of these issues are treated in accompany-
ing papers.
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1 Introduction
In this paper we focus on the life cycle
for services in a future intelligent nework
(IN). The study of the IN service life
cycle will give us models of the environ-
ment in which IN services will exist. We
intend to show by example how such
models can be implemented. The terms
intelligent network, service and environ-
ment need explanations in order for the
reader to fully understand the focus of
this paper. It is also necessary to explain
some aspects of the modelling technique
we will use. In sections 1.1 through 1.3
we will make some scene-setting remarks
which will serve as brief introductions to
each of the terms mentioned. In section
1.4 we discuss the particular methodol-
ogy we use in the rest of the paper, and in
section 1.5 we give an overview of the
paper.

1.1 Intelligent networks

The common understanding of the term
intelligent network refers to a telecom-
munications network that supports fea-
tures such as fast service provisioning,
vendor independence and efficient use of
resources. It is currently expected that IN
activities will give solutions on service
creation, service interaction, pan-Euro-
pean services, modelling of specific ser-
vices (such as Universal Personal
Telecommunications and Virtual Private
Networks), etc. This enhancement of
requirements indicates that the major task
to be performed during the development
of an IN is to model all aspects of ser-
vices including what they are, how they
are specified, built, installed, activated,
invoked, executed, etc. In this way we
are able to uncover the detailed service
requirements of a target IN architecture
and finally identify a set of steps to
evolve from today’s networks towards
the target architecture.

Most international activities on IN (in
CCITT, ETSI, ECMA, etc.) seem to indi-
cate that modelling of services in an IN
primarily should specify service func-

tionality. In (1) we follow the idea of
complete separation of service related
functionality and switching related func-
tionality on the design level. In this con-
text separation implies separate mod-
elling of service related and switching
related functionality, bridging the two
models with a carefully designed inter-
face. An important consequence of this
separation is that it conveniently supports
the strive towards network independent
services. The aspect of separate mod-
elling has a built-in notion of indepen-
dence in the sense that when we are mod-
elling one part, we can only see the other
part from our side of the interface, i.e.
when we are modelling service related
functionality, we have no knowledge of
switching related functionality except for
those functions offered over the inter-
face. See Figure 1.

The proposal allows general service logic
to be considered without reference to the
actual network supporting the services
thereby achieving network independent
service specifications. This separation
simplifies the problem of modelling ser-
vices because it allows us to focus on
general properties of services rather than
switching dependent issues. In fact, the

separation represents a practical way of
defining subproblems and it allows for
easier incorporation of results from work
done outside the telecommunications
community.

1.2 Services in an intelligent
network

In principle services in an intelligent net-
work can be thought of as applications in
a huge distributed computing system. It
seems to be fruitful to utilise this analogy
as it allows us to reuse much of the
results from areas such as software anal-
ysis and design, programming tech-
niques, formal description techniques,
etc. It provides us with a flexible notion
of the concept of a service which simpli-
fies development of methods for fast,
secure, and efficient manufacturing of
service software.

In this article we will adopt a view of ser-
vices according to the ‘black box’ princi-
ple, i.e. the input and output of the ser-
vice are the only observable features of
the service. In other words, we do not say
much about the internal structure and
functionality of them - the focus is on the
environment they exist in.

The intelligent network service life cycle
B Y  H Å K O N  V E S T L I  A N D  R A Y M O N D  N I L S E N

Abstract
The intelligent network (IN) service life cycle is an abstract description of the structured, methodical development and modification
process showing the main stages in producing and maintaining IN services. Starting with the life cycle for ordinary software, a life
cycle model for IN services is developed. The description of this life cycle is supported by role models for each stage in the cycle.
The role models are simple object oriented models that we synthesise into one composite model. We map this composite model onto
a model of the physical entities that constitute a telecommunications network in order to exemplify how we can implement a service
environment that supports the IN service life cycle.

Figure 1 The intelligent network

In an intelligent network functions in the service domain use functions offered from
the switching domain. The idea of separation is built upon the client-server principle,
that is, the service domain is a client of the switching domain, which is a server of
connectivity in the telecommunications network.

621.39.05
681.324
681.3.01
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1.3 Service environment

We define a service environment as a
model of the surrounding functionality
that is necessary for a service to proceed
through its life cycle. The life cycle of a
service will be discussed in detail in sec-
tion 2. The set of models resulting from
the discussion in section 2 will be used as
a basis for the specification of a total run-
time environment for services. The scope
of this paper is to realise some guidelines
for how a service runtime environment
must behave.

There is no sharp boundary between
what can be defined as a service and
what can be defined as the service envi-
ronment. We can, however, introduce
one general principle for how we would
like to separate between services and the
service environment, namely that fea-
tures that are unique to a service should
be defined to be within that service,
while features that are common to many
services should be defined as parts of the
environment. It is also of importance to
design the service environment as gen-
eral as possible in order to be able to sup-
port future services.

1.4 Modelling technique

To support the descriptions of the various
life cycle stages, we use parts of an
object oriented modelling technique
called Object Oriented Role Analysis,
Synthesis and Structuring (OORASS),
see (4, 5) where the following description
primarily is taken from:

In general, an object oriented system may
be thought of as a kind of perfect bureau-
cracy, where each object is like a clerk
who is responsible for a certain part of
the whole operation (the clerk plays a
role in the undertaking of the operation),
and where things happen when the clerks
pass messages to each other. Object ori-
ented design is then to design the pattern
of this interaction and to delegate respon-
sibility to the individual objects in such a
way that the total system of objects is as
simple as possible while it shows the
desired behaviour.

OORASS is a comprehensive method for
industrial analysis, design, implementa-
tion and configuration of object oriented
systems. The OORASS methodology
comprises Role Modelling, Object Speci-

fication, Class Implementation, Structure
Configuration and System Instantiation.
In this paper we will only use Role Mod-
elling, which is separated into role analy-
sis and role synthesis.

In this paper, we use role analysis to
study the IN service life cycle. Each life
cycle stage will be supported by a role
model that offers an implementation-
independent description of interacting
roles. A role is to be understood in a tra-
ditional sense as an entity’s task or duty
in an undertaking - the focus is on
behaviour. For each role in a role model
we give it a name, describe its responsi-
bility, determine which other roles it
needs to know about, and determine the
messages it sends to these. If the
behaviour of a role is complex, it can be
represented by its own role model on a
lower level.

When we subdivide the area of concern
(the IN service life cycle) into smaller
areas (stages), creating role models for
each subarea, we reduce the modelling
problem to manageable proportions, but
create the new problem of integrating the
smaller models into a model of the entire
area of concern. In OORASS, the solu-
tion to the integration problem is called
role synthesis: Given a number of role
models, we create a set of objects, each
of which may play roles from different
role models.

For an example of role modelling, see
Figure 2. We have simplified and slightly
modified the OORASS way of drawing
role models in order to support our par-
ticular needs.

1.5 Paper overview

In section 2 we introduce and discuss our
definition of the IN service life cycle.
Starting with a description of the life
cycle for ordinary software, the IN ser-
vice life cycle is developed. We describe
in detail each stage and support these
descriptions with simple role models. In
section 3, these role models are synthe-
sised in order to get a composite model.
This model is then mapped onto a model
of the physical resources that constitute a
telecommunications network, in order to
exemplify how we can span the gap
between high-level modelling to concrete
implementation, yielding a service envi-
ronment that supports the IN service life
cycle. In section 4, we give our conclud-
ing remarks.

Figure 2 Role modelling

In Figure 2a) we model that a user works on a workstation which is connected to a
central file server. That the workstation uses a file server is transparent to the user. In
Figure 2b) we model that the file server controls a set of disks. We see that on the one
hand, the file server has to serve workstations, while on the other hand, it has to con-
trol the disks in order to be an efficient file server. These two File Server roles are
therefore not identical. In Figure 2c) we have made an object model based on the
synthesis of the role models in Figures 2a) and 2b).

Circles in Figures 2a) and 2b) represent roles, while the circles in 2c) represent
objects. Lines between roles or between objects indicate that messages flow between
them. Crow feet indicate cardinality. We have for example that a user can use many
workstations and a workstation can serve many users (a many-to-many relationship).
A workstation is related to one file server while the file server serves many work-
stations (a one-to-many relationship). We have a one-to-one cardinality when a line is
without any crow feet. Note that if a role has a one-to-many relationship to another
role, this means that the former can be related to one, two, or many of the latter. For
many-to-many relationships this comment applies in both directions.
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2 The life cycle model

We regard services as software applica-
tions to be run in the telecommunications
network. Since services are software we
can introduce the discussion of the ser-
vice life cycle by skimming through the
life cycle for ordinary software systems.

By common usage a life cycle model is
an abstract description of the structured,
methodical development and modifica-
tion process typically showing the main
stages in producing and maintaining exe-
cutable software (3). A typical life cycle
model is the following:

1 Analysis: Analysing the user’s require-
ments.

2 Specification: Describing what the sys-
tem should do, as seen from the user.

3 Design: Describing the system’s inter-
faces, functionality and structure as the
designers intend to implement them.

4 Implementation: Producing the pro-
grams.

5 Installation: Installing the programs on
the target computer system.

6 Use and maintenance: As the software
is used, errors and new requirements
are usually uncovered. Maintenance is
the task of modifying the software so
that the errors are eliminated and the
new requirements are taken care of.

Iteration between the phases is often nec-
essary, but it should preferably be con-
fined to successive steps.

What is specific about intelligent net-
work services software? First, the target
computer system on which the software
is to be installed, is a huge distributed
telecommunications network. Second,
there is a large amount of users, sub-
scribers and of potential services. Third,
there are severe constraints regarding
response time and availability of the ser-
vices in the network. These factors are
important in the modification of the ordi-
nary software life cycle so that it
becomes a service software life cycle.
The service life cycle we suggest is
shown in Figure 3.

2.1 The actors in the IN service
life cycle

In discussing the actors we will also
mention the various roles the actors will
be represented by in the role models to
follow in sections 2.2 through 2.4.

The User:
The User is the party that wants to use
services. That is, the Users constitute the
target group for a service. The subscriber
himself can be the only user, alterna-
tively the subscriber intends the service
to be used by other parties. The User will
be represented by the Service Requester
role.

The Subscriber:
The Subscriber wants to subscribe to a
service. This may require the creation of
the service if existing services cannot be
used to fulfill the Subscriber’s require-
ments. The Subscriber is represented by
the Subscriber role and indirectly by the
Service role.

The Service Creator (also called Service
Provider):
The Service Creator is a party that has a
license for producing telecommunica-
tions service software to be installed in
the telecommunications network. The
Service Creator receives requests for cre-
ating a service from a subscriber or can
initiate the creation of services himself,
in which case the Service Creator also
acts as Subscriber. General services can
be made intended for being subscribed to
by many people. Services can also be tai-
lor-made to one particular subscriber.
The service creator can be the network
operator, a network equipment vendor or
in general an independent software man-
ufacturer. The Service Creator is repre-
sented by the Service Creator role, which
will need various Handler roles: for Ser-
vice Descriptions, Service Specifications,
Service Designs and Service Implemen-
tations.

The Network Operator (also called Net-
work Provider):
The Network Operator is the party that
controls the physical resources required
for offering a telecommunications net-
work for use by the parties mentioned
above. The Network Operator will there-
fore be represented by a multitude of
roles: the Database, the Database Han-
dler, the Installation Manager, the Acti-
vation Manager, the Allocator role, the
Service Execution Manager, the Switch-
ing Domain role and also the roles con-

Figure 3 The life cycle model for 
services

The figure describes the various pro-
cesses a service goes through, from the
analysis of the subscriber’s requirements
to the service to the deinstallation of it.
After analysis, the service is specified,
designed, implemented and installed.
After activation the service can be
invoked an arbitrary number of times
(including none), each invocation to be
followed by the execution of the service.
At some time, the service is deactivated,
and eventually deinstalled. Arrows
between two processes depict that the
service can go from the first process to
the second.
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2.2 Early phases

The early phases of the service life cycle
comprise the activities from the service
idea is conceived until the service is acti-
vated and ready to be invoked, i.e. the
analysis, specification, design, imple-
mentation, installation, and activation
phases.

Phase 1. Analysis of the subscriber’s
requirements

The main task is here to produce a defini-
tion of the characteristics of the service,
focusing on how the subscriber wants the
users to see it. This implies close cooper-
ation between the service creator and the
subscriber in order to bridge the gap
between the subscriber’s requirements
and the service creator’s assessment of
what is a feasible service. See Figure 4
for the Service Analysis role model.

Phase 2. Service specification

In this phase, the service is specified
according to the subscriber’s require-
ments. The output from the previous
phase must determine this specification
as unambiguously as possible. The speci-
fication should be written in a formal lan-
guage so that it can be checked for con-
sistency and also so that programs gener-
ated later can be verified against it.
Another reason for formalising the speci-
fication is that it increases the possibility
of automation in the design and imple-
mentation of the service.

The specification is supposed to be
developed under the constraints or
restrictions the network as a whole
imposes on all services. That is, we can-
not in practice allow for arbitrary appli-
cations to be installed in the telecommu-
nications network - there has to be a
strict control of which applications are
allowed as services. Therefore, it must be
checked that the specification represents
a meaningful telecommunications ser-
vice, and that the service does not com-
promise the network, the network opera-
tor or other network users.

It is important that the subscriber can
confirm that the specification produced
satisfies his requirements, i.e. that it rep-
resents the service he wants. This is usu-
ally called validation. One way to vali-
date a service is to rephrase the specifica-
tion in a language the subscriber is accus-
tomed to, e.g. natural language.

During this phase, the service creator will
find out to what extent existing services
can be used. It may be that the service is
unprecedented in the network, which
means it must be specified, designed,
implemented and installed. On the other
hand, it may be that the subscriber’s
requirements are fulfilled by subscribing
to an existing service, and the design and
implementation phases can therefore be
omitted. If that existing service is ade-
quately installed to serve the new sub-
scriber, the service is ready for activation
of the new subscription, but if not, then
the service goes to the installation phase
first.

See Figure 5 for the Service Specifica-
tion role model.

Phase 3. Design

To facilitate rapid and efficient introduc-
tion of new services, we envisage exten-
sive reuse of specifications and software.
In the design phase services are designed
by assembling reusable software compo-
nents in a controlled manner. Most of the
software components are already
designed in detail - the design of the ser-
vice concerns the problem of putting var-
ious software components together
according to the specification. This
should be a trivial task, supposing there
is a well-defined mapping between the
specification constructs and the design
objects.

We can envisage that such software com-
ponents are standardised, in order to
facilitate international IN services. On
the other hand, a service creator must be
allowed to produce software not covered
by the set of standardised software com-
ponents, both to support the subscribers’
particular needs and also to get a compet-
itive edge in the service market. This
means that new software components can
be made at the service creator’s discre-
tion. This new software has to be
designed in detail in this phase, so that
the service as a whole is completely
designed.

See Figure 6 for the Service Design role
model.

Phase 4. Implementation

The implementation phase concerns the
production of complete programs that

Figure 4 The Service Analysis role model

The Subscriber negotiates with the Service
Creator in order to develop the Service
Description, which is handled by the Service
Description Handler. The description is stored by
the Database Handler.

Figure 5 The Service Specification role model

The Service Creator develops a Service Specifi-
cation, with additional support from the Sub-
scriber. The specification is handled by the Ser-
vice Specification Handler and stored by the
Database Handler.

cerning Communications, Monitoring,
Resource Management, Traffic Manage-
ment and Data Management.

These actors constitute a hierarchy that
can be described by client-server rela-
tionships:

- The User is a client of the Subscriber,
which is a server of services.

- The Subscriber is a client of the Ser-
vice Creator, which is a server of ser-
vice software.

- The Service Creator is a client of the
Network Operator, which is a server of
the physical telecommunications net-
work.
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satisfy the specification of the service.
The implementation will ordinarily con-
tain both new software and reused soft-
ware. Reused software is taken from a
software library while the new software
has to be implemented now.

When we have the complete source code,
we may be able to formally verify that
this code satisfies the specification.
There can be features required by the
subscriber that are not formalisable. Such
requirements will lie outside the scope of
verification, and to complement the veri-
fication activity, testing or simulation of
the service should be performed.

See Figure 7 for the Service Implementa-
tion role model.

Phase 5. Installation

Performance is of utmost importance in
the telecommunications network. This
concerns the speed with which services
are executed and the requirement that all
services are available at all times. To
cope with this requirement, we need a
decentralised solution, where software
and data can be distributed in the net-
work instead of residing in a centralised
network node. Distribution concerns both
how one unit is divided into different
parts and how these parts are replicated
in the network. Note that when software
or data are replicated we get problems
concerning the consistency between dif-
ferent copies of the same unit.

The distribution of service software is a
typical optimisation problem, where the
objective is to minimise the volume of
data and the number of messages trans-
mitted across the network during the exe-
cution of services. Parameters in this
optimisation problem are the locations of
users, the frequency of usage, the net-
work topology, database sizes, etc. Ide-
ally, once the service is installed it
should be possible to dynamically mod-
ify the distribution of software and data
as these parameters change.

When the distribution of the software is
determined, the source code can be com-
piled into machine code depending on
the hardware of the network, and then
this can be installed.

We should have seamless addition of ser-
vices. That is, the actual installation

should be performed without any inter-
ruption of the network.

See Figure 8 for the Service Installation
role model.

Phase 6. Activation

Activation means that the service is made
available to the users, that is the service
can now be invoked. We refer to the acti-
vation of a service in three different
cases:

- The service is freshly installed, and has
not been in use.

- The service has been used by other
subscribers, and this new subscription
is handled by modifying the new sub-
scriber’s service profile.

- A subscriber modifies a service’s
parameters by operating directly on his
service profile (not all subscribers have
the right to do this). The modification
is effectuated by activating his modi-
fied service. This can be viewed as a
maintenance activity. Security require-
ments must be addressed at this point.

Activation can be limited to a certain set
of users, a certain geographical area, etc.

See Figure 9 for the Service Activation
role model.

2.3 Invocation and execution

The service is now activated and ready to
be invoked. Here we describe in more
detail the invocation and execution
phases.

Phase 7. Invocation

A service is invoked when a user sends a
request for the execution of the service to
the network. The network has to identify
the user requesting the service, the ser-
vice that is requested (possibly demand-
ing user authentication or authorisation),
retrieve the information necessary to start
the service (including data or program
code), and finally initialise it. See Figure
10.

Phase 8. Execution

The service has now been invoked and
initialised and is now executing. A role
model to support the description is
shown in Figure 11.

Figure 6 The Service
Design role model

The Service Creator
develops a Service
Design, which is handled
by the Service Design
Handler. The design is
stored by the Database
Handler.

Figure 7 The Service Imple-
mentation role model

The Service Creator develops a
Service Implementation, which
is handled by the Service Imple-
mentation Handler. The imple-
mentation is stored by the
Database handler.

Figure 8 The Service Installation role model

The Service Creator now sets parameters for the
installation and requests the Service Installation Manager
to install the service. The Database Handler is responsible
for the actual storage throughout the network. That is, the
Database Handler controls the various Databases through-
out the network.

Figure 9 The Service Activation role model

The Subscriber requests the Activation Manager to activate
his service.
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Figure 10 The Service Invocation role model

The Service Requester requests the initiation
of a service. The Service Requester can repre-
sent a human user of the network (in reality
his terminal agent), it can be a computer
application such as another service, etc. The
Allocater accepts requests for the execution of
services, and processes these. The Service is a
computer application and has a functionality
of arbitrary complexity.

Figure 11 The Execution role model

The Service Execution Manager monitors and controls running services. It can also
receive requests from Services regarding status of the network or other information
(e.g. time and date). The Switching Domain represents the switched network, that is,
the physical telecommunications network. The knowledge of what kind of network this
actually is should be of less relevance to the Service, which controls the Switching
Domain via the intermediary roles called Communications (C), Monitoring (M),
Resource Management (RM), Traffic Management (TM) and Data Management (DM).

requesting the invocation of the chosen
service. The point is that executing ser-
vices can invoke other services. This is a
part of the problem area of service inter-
action.

The Service’s Interface to the Switching
Domain
Since it is desirable to define services
independently of the type of network, the
running service software should not have
direct access to the interface between the
service domain and the switching
domain. The service applications should
rather use roles in the service domain that
know how to talk to applications in the
switching domain, i.e. roles in the service
domain representing switching function-
ality. For this purpose a Communications
role can be constructed that represents
the switching domain’s functionality
regarding connections in the telecommu-
nications network. For instance, if the
service application wants to establish a
connection between two parties, it
requests the Communications role to do
this. The Communications role maps this
request onto the protocol between the
service domain and the switch-based
connection control functions.

Extending this example, a set of roles
that together with the Communications
role cover the switching domain func-
tionality can be constructed. The Moni-
toring role offers monitoring of connec-
tivity in the telecommunications network.
The Resource Management role offers
management of resources in the telecom-
munications network. The Traffic Man-
agement role offers management of
telecommunications network traffic. The
Data Management role offers manage-
ment of data in the switching domain.
Note that these intermediary roles can be
addressed by several services. This
allows for one service transferring the
control over for example a Communica-
tions role to another running service. The
design of these roles is inspired by
ETSI’s Connection Control Model (2).

2.4 The last phases

Sooner or later, the service is getting
obsolete. This requires deactivation and
deinstallation.

The Service as a Service Requester
The service to be executed can be a sim-
ple service, e.g. a two-party-call. On the
other hand, the service can be a service
application that on the basis of a dialogue
with the end user determines another ser-
vice that is to be invoked. For example,
imagine that the end user has a computer
as his terminal equipment. Imagine fur-
ther that the user is running a window
manager on his computer. One of the
menu items the user can choose in his
root window can be a telecommunica-
tions service called, say, TeleMenu.
When TeleMenu is invoked, it presents
the end user with a menu containing a list
of all his telecommunication services,
e.g. video conference, remote database
access, remote interactive video. When
choosing one of these, the service Tele-
Menu then acts as a service requester,
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Phase 9. Deactivation

Deactivating a service is making it
unavailable to users, that is, it can now
not be invoked. The service can be reac-
tivated at a later stage. Deactivation can
be performed for a certain set of users, a
certain geographical area, etc. We can
here use the same role model as for Ser-
vice Activation, see Figure 9.

Phase 10. Deinstallation

Deinstallation occurs when the sub-
scriber wants to quit his subscription, or
if the subscriber for some reason or other
is not allowed to subscribe to this ser-
vice. Reusable parts of the specification
and program code can be retained, but
the service software should be deleted
from active network resources unless it is
shared by other subscribers. We can here
use the same role model as for Service
Installation, see Figure 8.

2.5 A scenario

Let us give an example of how we think
this life cycle would look like in a con-
crete case. This is a very simplified
example, and it is only meant to illustrate
the previous discussion of the service life
cycle.

Gary, the boss of a travel agency, has
plans for opening a new chain of travel
agencies across the country. He is
already heavily using IN services, and
has now an idea for a tailor-made IN ser-
vice to be used by his customers in his
new travel agency chain. Let us proceed
through the IN service life cycle to see
how his idea for an IN service is gradu-
ally refined into a new service.

1. Analysis of the subscriber’s require-
ments

Gary makes an appointment with the ser-
vice consultant Berke at the closest
authorised IN service creator, a company
called IN Services Ltd. When they meet,
Gary comes up with his service idea. His
travel agency chain has offices in four
cities. Gary wants one phone number to
cover the entire chain, he wants his cus-
tomers to be able to call his offices free
of charge, and that the calls are routed to
the nearest office. If all extensions at one
office are busy or the office is closed at
that moment, the caller will be rerouted
to another office. When there is a call

outside working hours, the caller is to be
told when the office opens. Gary and
Berke discuss this idea thoroughly,
uncover all details Gary has not thought
of on his own, and they end up with a
document written in natural language that
describes the service. They meet a couple
of days later to make the last adjustments
to this description.

2. Service specification

Berke now takes the service description
with him to his workstation, where his
specification tool is running. He finds no
existing specification he can reuse, so he
has to go through the service description
very thoroughly and transcribe it into a
formal language. The specification he
produces looks a lot like mathematics,
but is in fact rather easy to read. In the
specification tool, there are service
checkers that go through the specification
to find inconsistencies and things that
could disrupt the network. After a couple
of iterations, Berke is satisfied with the
specification. He puts it through a trans-
lator, gets a natural language version of
the formal specification, and makes an
appointment with Gary. At that meeting,
Berke goes through both the formal spec-
ification and the rephrased version with
Gary to get a confirmation that this is
really the service Gary wants. It turns out
that Gary is very happy with the specifi-
cation.

3. Design

Berke now uses his service design tool to
transform the specification into a con-
crete design of the service. This is a
rather trivial job, since there is a well-
defined mapping between the formal
specification language and the object ori-
ented language the design is written in.
There are some small enhancements to
the design, but Berke is satisfied with the
design after a relatively short period of
time.

4. Implementation

The source code of the software compo-
nents that were reused in the design, is
retrieved from a software library. Berke
only has to implement those small
enhancements he made to the design in
order to get a complete implementation.
The resulting piece of software has a
well-defined interface to the IN service
environment, and is supposed to fit in

without problems. Berke is convinced of
that after he has churned his code
through a verifier to check it against the
specification.

5. Installation

The appropriate parts of the software
produced are compiled and put in IN
nodes in the four cities mentioned above.
System software on each node is modi-
fied to take account of the new service.
Central registers are updated with Gary’s
new subscription, charging rates are
stated, etc.

6. Activation

When all the software is properly
installed and all registers are updated, the
service can be activated. That means that
the service can now be used. At activa-
tion time, Gary is extensively running
commercials in order to make the market
aware of his new travel agency chain and
of the IN service the customers can use
in order to reach its offices.

7. Invocation

Paulina has for a long time been thinking
of taking a well-deserved vacation to the
Seychelles. But the trip is expensive, and
she has not had the time to do it. Now
she sees in the paper the commercial for
Gary’s travel agency chain, which
includes a good offer for trips to the Sey-
chelles. She sees the freephone number
and runs for the phone.

The software in Paulina’s terminal that
transfers the digits to the network is play-
ing the Service Requester role. The Allo-
cator role in the network analyses the
digits, loads the data concerning the
dialled number from the Database Han-
dler role and ‘understands’ that Paulina is
requesting Gary’s freephone service. The
Allocator then puts the service’s machine
code in memory, and initialises the ser-
vice to be run.

8. Execution

The Service role analyses Paulina’s num-
ber and uses the Communications role to
set up a connection to the nearest office,
which the service supervises by using the
Monitoring role. The Service Execution
Manager role supervises the running of
the service. Paulina gets the connection
and ends up with ordering one of the
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during a period of a couple of years,
Gary finds out that the service is too
expensive for his travel agency chain. He
calls Berke and asks him to deactivate his
service, so that customers can no longer
use the freephone number. Another of
Gary’s services is modified in order to
give the travel agency chain the same
phone number as the rest of Gary’s travel
agencies, so that people can still reach
them. However, he wants to have the

chance to activate the service later, if the
customers’ responses should turn out to
be too negative.

10. Deinstallation

Some time passes by. Gary’s customers
have not been too negative to the change,
so Gary makes the decision to deinstall
the service. He makes a call to Berke,
who takes care of the deinstallation.

3 Realisation

Having discussed the stages of the life
cycle and presented simple models for
describing some of their most important
characteristics, we will show how these
results can be used to derive an imple-
mentation of a system that supports such
a life cycle. We will show the flexibility
of the results with respect to allocating
functionality to physical entities.

The procedure for specifying the imple-
mentation goes through two steps. The
first step is to transform all models in
section 2 into one big model in terms of
objects and relations, as described in sec-
tion 3.1. In the second step we map
objects onto physical entities thereby
finalising the specification necessary to
do the implementation of the system.
This is described in section 3.2.

3.1 The synthesis of models

In section 2 we have presented one role
model for each stage in the life cycle.
Although many of these models are still
lacking in detail they remain realistic and
suitable for further elaboration and devel-
opment. In this section our aim is to cre-
ate one model described in terms of
objects and their relations from a set of
models described in terms of roles and
relations between roles. The principles
for doing this synthesis have been
explained briefly in section 1.4.

Before proceeding with the synthesis we
give a short summary of the modelling
results of section 2 as we for each role
model list the names of the roles that
belong to it:

- Service Analysis role model: Sub-
scriber (1), Service Creator (2), Ser-
vice Description Handler (3) and
Database Handler (4)

Figure 12 A synthesised object model

Here we show a composite model based on the role models in section 2. The process of
synthesising role models is far from trivial, and a whole range of alternative object
models can be made. For example, if we would like a stronger separation between the
behaviour of the Service Creator in the Analysis and Specification stages and the
behaviour of the Service Creator in the Design, Implementation and Installation stages,
we could replace the Service Creator object by an Analysis-Expert object playing roles 2
and 6 and a Design-Expert object playing the roles 9, 12 and 15.

low-price trips to the Seychelles. As she
breaks the connection, the Service role
sends messages to the Database Handler
in order to update Paulina’s and the
travel agency’s billing information, and
also some network statistics, and is then
finished.

9. Deactivation

After a lot of invocations and executions
of the service all over the country, and
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- Service Specification role model: Sub-
scriber (5), Service Creator (6), Ser-
vice Specification Handler (7) and
Database Handler (8)

- Service Design role model: Service
Creator (9), Service Design Handler
(10) and Database Handler (11)

- Service Implementation role model:
Service Creator (12), Service Imple-
mentation Handler (13) and Database
Handler (14)

- Service Installation role model: Ser-
vice Creator (15), Service Installation

Manager (16), Database Handler (17)
and Database (18)

- Service Activation role model: Activa-
tion Manager (19), Subscriber (20) and
Database Handler (21)

- Service Invocation role model: Alloca-
tor (22), Service Requester (23), Ser-
vice (24) and Database Handler (25)

- Service Execution role model: Service
Execution Manager (26), Service (27),
Database Handler (28), Service
Requester (29), Communication Man-

ager (30), Monitoring Manager (31),
Resource Manager (32), Traffic Man-
ager (33), Data Manager (34) and
Switching Domain (35).

Note that although many roles have the
same name in different role models they
are not identical. For example, the sub-
scriber role may have a very different
behaviour in the analysis phase compared
to the specification phase. However, the
detailed modelling of behaviour is out-
side the scope of this paper. Also note

Figure 13 An intelligent network architecture

This architecture could be extended to explicitly handle the distribution of functionality. This can be done by further detailing
existing objects to include distribution related behaviour, e.g. by adding role models on lower levels in section 2.



that for the sake of convenience we will
use the numbers attached to the roles as
references in the text rather than their
names.

We now identify the objects of our object
model and allocate to them the roles they
will play in the system. Effectively, we
constrain our models by defining which
roles must be played by the same object.
The message flows between objects are
determined by the allocation of roles to
objects. If two roles in a role model,
being connected by a message flow, are
allocated to two different objects in an
object model then there will be a mes-
sage flow between the objects that corre-
sponds to the message flow in the role
model. Similarly, synthesis maintains the
cardinality of relations between roles.
The total message flow between two
objects in an object model defines the
interface between them.

Let us define an object called Subscriber
and have it play roles number 1 and 5.
Similarly, let us define an object called
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Service Creation Manager and have it
play roles number 3, 7, 10 and 13. We
can continue like this until we have allo-
cated all 35 roles in the list to some
object. Our object model is shown in Fig-
ure 12.

The synthesised model constitutes a
specification for the implementation of
the behaviour captured in the object
model. Note that such a specification is
independent of programming language
and does not yet specify any distribution
of objects onto physical entities. This dis-
tribution will be described in the follow-
ing section.

3.2 Mapping objects to physical
entities

This section is concerned with the alloca-
tion of objects of an object model onto a
set of physical entities. When we talk
about physical entities in this context we
mean either human beings or some sort
of machine capable of processing soft-
ware. In the case where objects are allo-
cated to human beings, their expected
behaviour is specified by the roles that
make out the particular objects and they
can only interact with other entities
(obeying cardinality information) using
the messages that are defined between
the objects they represent.

On the basis of the object model we are
now in a position to create many scenar-
ios for how to map behaviour to physical
entities without being unduly constrained
by predisposed (and often unnecessary)
ad hoc decisions. It allows us to reuse our
modelling results in highly differing
alternative physical architectures. Figure
13 presents a scenario that is similar to
descriptions of realistic initial IN imple-
mentations whereas Figure 14 shows
how the same behaviour can be intro-
duced into a physical architecture for
experimental use like simulations or
demonstrations. Excluding the Switches,
these implementations will belong to the
service domain described in section 1.1
thereby adhering to the principles for
achieving network independence.

In Figure 13 we continue the example
from section 3.1. We suggest to allocate
the Subscriber, User and Service Creator
objects to human beings. Note that the
object model allows several Subscribers,
Users and Service Creators. We choose
to allocate the Service Creation Manager

to a computer which will be labelled the
Service Creation Environment. This
machine can be a desktop office machine
in the Service Creator’s office just as
described for Berke in the scenario in
section 2.5. A database machine will be
responsible for all aspects of data access
which in our models include the
Database Handler object and the
Database object. The Switching Domain
object is a representation of all switching
and transmission functionality in the
telecommunication network including
necessary interface functionality to the
Switching Domain Manager object and
may be assumed to be implemented by
modern switching machines and trans-
mission equipment between them. The
service control and execution can be
done by a separate machine labelled the
service management environment and
has allocated the Service Manager, Ser-
vice and the Switching Domain Manager
objects.

In Figure 14 we depict an architecture
that could be suitable for an IN labora-
tory activity. The Service Creation Man-
ager, Database Handler, Database, Ser-
vice Manager, Service and Switching
Domain Manager objects have been allo-
cated to the same machine which could
be a Sun workstation. The Switching
Domain object can here be either a physi-
cal switch with controlling software like
an ATM based experimental broadband
switch or simply the necessary simula-
tion software on a computer.

4 Concluding remarks
We have in this paper developed a life
cycle for IN services and given examples
of what a service environment could look
like. We have achieved the mapping
from the life cycle model to a set of
physical entities constituting a service
environment by using a simple object
oriented approach.

The life cycle we have developed is more
detailed than the generic life cycle in
ordinary software. It has been possible to
do this because we have a specific con-
text (the IN) in which the software is pro-
duced. In particular, the response time
and availability requirements for services
indicate a separation between activation,
invocation and execution. We have
added the deactivation and deinstallation
phases because these are non-trivial in an
IN.

Figure 14 An intelligent network laboratory architecture

The introduction of a simulator program to compensate for
the removal of the switch would simplify the implementation
and reduce the cost for a laboratory.
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One of the important observations con-
cerning the intelligent network is that it is
a service-driven, that is, a customer-
driven network. The flexibility we want
to achieve by introducing the IN intro-
duces some general problems that the
software community has been aware of
for a long time. These include the follow-
ing problems concerning the communica-
tion challenge between the one who initi-
ates the creation of the service and the
one who produces it:

- There is a gap between the subscriber
and the service creator. It is therefore
essential that the service creator fully
understands what the subscriber wants
and also that he is able to discuss what
a reasonable telecommunications ser-
vice is.

- The subscriber does not always know
exactly what he wants. This implies
that the analysis should go very thor-
oughly through the subscriber’s initial
requirements so that his set of require-
ments are actually stabilised.

- The subscriber’s requirements to the
service might change in the interval
between his acceptance of the specifi-
cation and the activation of the service.
This stresses the importance of rapid
introduction of services.

This paper is an attempt to refine our
ideas about the intelligent network, and it
will be suitable as input both to the Euro-
pean Institute for Research and Strategic
Studies in Telecommunications
(EURESCOM) and to our own work on
services and service specification. It will
also be fruitful in our efforts to initiate an
IN laboratory. There are numerous
important aspects related to modelling
and implementation of IN not included in
our discussion. This is mainly because
our primary focus for this paper is the
service life cycle. Topics such as service
creation, connection control, signalling,
protocols, terminal aspects, concurrency,
distribution, user interfaces, etc. will
demand a much higher level of detailing
and are therefore topics for future
research.
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1 The current situation
The demand for advanced telecommuni-
cation services has increased enormously
the last few years. This has led to situa-
tions where the network operators have
clashed new services into their networks
at high speed to satisfy the customer
needs. Today, when the telecommunica-
tion monopolies are breaking up, the
fight for market shares has become hard.
New services are marketed as intelligent
services and network operators are talk-
ing about intelligent networks.

This chapter will handle the service con-
cept as it is today by defining some dif-
ferent types of services and describing
some sample services. The role-players
in the service market are described to
give an impression of who are involved,
and the different problems and solutions
concerning current services are touched,
just to give an impression of the com-
plexity the telecommunication
researchers are facing today.

1.1 The service concept

The word ‘service’ has turned out to be a
piece of magic in the telecommunication

world the last couple of years. Every-
body’s attention has moved from switch-
ing technology to this word. The service
market is expected to grow incredibly in
the near future, and the winners of the
game are those who can offer the best
services at the lowest price. The cus-
tomers’ needs are put in focus, and they
shall be satisfied by an irresistible set of
fantastic services.

But still, with this enormous focusing on
services, this word is somewhat fuzzy
and ambiguous. There are so many
aspects of services that there is a need for
explanation of some of the most used
terms.

Telecommunication services is a com-
mon name for all services offered by, or
over, a telecommunication network. It is
normally subdivided into bearer services
offered by the network, and teleservices
offered by the terminals, but it can also
be divided into basic services and supple-
mentary services.

Bearer services are capabilities for trans-
mission between two points, including
physical routing and switching. The ser-
vices are offered by the network and used
by terminals to set up communication
paths and transmit information through
the network. Examples of bearer services
are: circuit-mode speech, circuit-mode
audio, circuit switched data and packet
switched data.

Teleservices include all capabilities for
communication between two applica-
tions. The services are offered by the
communication software in the terminals
and used by applications to set up con-
nections and communicate. Examples of
teleservices are: telephony, telefax and
videotex.

Basic services are capabilities necessary
to handle basic calls, i.e. call setup and
call release. These services are always
present when telecommunication services
are used and can be viewed as the
mandatory part of all telecommunication.
There are basic bearer services as well as
basic teleservices, and examples of those
are mentioned above. 

Supplementary services are optional
capabilities that can be used as a supple-
ment to basic services. These services
can only be used together with basic ser-
vices, and some examples are: calling
line identification, call forwarding, and
call waiting.

Value added services is a term often used
for advanced supplementary services,
especially services that can be offered
and marketed as stand-alone products.
Examples of such services are freephone,
premium rate and televoting. Many value
added services can be offered by special
service providers connected to the net-
work.

Service features are the basic compo-
nents of all telecommunication services.
The services are built up by different fea-
tures like e.g. routing, charging, call con-
trol, logging, security and management.
Different services are normally distin-
guished by how these features are used.
In many ways these features can be seen
as services themselves, or at least service
components, since it is the sum of these
features that are called telecommunica-
tion services.

1.2 Some service examples

From an intelligent network point of
view, the most interesting services are
the so-called value added services. They
have the largest market potential and can
easily be offered as stand-alone products.

This section will first describe the Plain
Old Telephony - POT - service, from
which most value added services are
developed, and then describe some of
those services in the light of the POT ser-
vice. The services described here are
only a few examples out of hundreds of
new services, some already implemented
and some which are coming up in the
near future.

The Plain Old Telephony service (POT)
is based upon a quite simple concept
where all users are permanently con-
nected to the network by single telephone
lines with only one information channel.
This channel is used both for interaction
with the network and for conversation
with other users.

How to handle all the services?
B Y  H A R A L D  S E I M

Abstract
This article gives an overview of the current situation of telecommunication services and describes how advanced technologies are
applied to solve the complexity of an ever-increasing number of services in the telecommunication networks and to satisfy the
requirements of a more and more market oriented situation for the providers.

Figure 1 The telecommunication services can be divided
into bearer services and teleservices, or basic
services and supplementary services.
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The basic version of this service allows
only three phases to be passed in the
right order, namely establishment, con-
versation and release. During the estab-
lishment phase, the user gives informa-
tion to network by dialling a destination
number. The number is analysed to find
the right destination before the connec-
tion is set up. After setup there are no
possibilities for further interaction with
the network. There is only one path to
follow, and that leads to disconnection.

Newer versions of the POT service allow
interception during the conversation
phase. This is used to give the network
new directions in how to serve the user.
Other versions are using a separate sig-
nalling channel, by which the user can
interact with the network during conver-
sation. These techniques are utilised in
many new services like e.g. call waiting
and call conferencing.

The call waiting service is normally pro-
vided as a supplement to the POT ser-
vice. The network informs busy users
about incoming calls, i.e. waiting calls,
so that they can answer them if desired.
Normally, the user must disconnect the
existing call to be connected to the wait-
ing call. Sometimes it is possible to ask
the network to hold the existing call, so it
can be resumed at a later point in time.
This last feature requires relatively
advanced interaction between the user
and the network.

The freephone service allows users to
make free calls, i.e. make calls without
being charged for it. Normally, the called
party is charged, but it is also possible to
let a third party pay for the calls. Ini-
tially, the only difference from the POT
service is the charging, but many net-
work operators provide additional fea-
tures, like e.g. flexible routing, together
with this service to make it more attrac-
tive.

The freephone service does not require
any special interaction between the user
and the network. It is more of an internal
affair for the network to handle the
charging aspects. But, the network still
has to be triggered in some way to make
the right charging. Today this is done by
using a specific area code, also called
service code, for the freephone service.

The premium rate service is another
example of a typical charging service.
Here the calling party is given an addi-
tional charge for services provided by the
called party. These extra services are nor-
mally some kind of valuable information.
The network provider charges the service
users and pays the information providers.
This service is triggered the same way as
the freephone service, namely by a spe-
cific area code.

The universal personal telecommunica-
tion service (UPT) enables the user to
receive incoming calls and initiate outgo-
ing calls from any terminal in any net-
work, based upon a unique number called
the UPT number, which is assigned to
every UPT subscriber. The UPT number
can be registered at any terminal in any
network to give personal mobility. Out-
going calls are charged to the UPT num-
ber and not to the terminal being used.
Based on the dialled UPT number,
incoming calls are automatically routed
to the terminal where the UPT number is
currently registered.

This service involves many advanced
features. Both routing, charging and user
interaction is much more complex to
handle for a UPT service than any of the
previously described services. In addi-
tion, new aspects like security and man-
agement of subscriber information have
to be addressed.

1.3 The service role-players

The previous section used terms like
‘service users’, ‘service subscribers’,

‘network providers’ and ‘service
providers’. But who are they, and what is
their impact on the future telecommuni-
cation services? This section describes
the different role-players, their needs,
requirements and offerings.

There are mainly two groups of role-
players: the customers and the providers.
The customers are those who are request-
ing, paying or using the services, nor-
mally called service users and service
subscribers. The providers are those who
are providing and selling services to the
customers, and they are normally
grouped into network providers and ser-
vice providers.

The service users are those who are
served by the telecommunication net-
work in order to satisfy some need they
have. Normally, a user wants to commu-
nicate with someone, but in many cases
the communication is subordinated to
other needs, like e.g. access to informa-
tion of some kind.

Both the calling party and the called
party are service users during a call,
regardless of who initiated the call and
regardless of who is paying for it.

Today’s service users want more and
more advanced services, but this also
puts more requirements on the service
users themselves. Advanced services are
difficult to use, and normally this
involves complicated interaction proce-
dures and advanced terminal equipment.

The service subscribers are those who
have more or less permanent needs for
being identified by the network, either to
be reached by others or to be treated in
specific ways during service usage. Nor-
mally, the subscribers are paying for per-
manent connections to the network, from
where they can use telecommunication
services and be reached by other users.

Today, the subscribers want more and
more control of the services they are sub-
scribers of. They want flexible services,
which they can customise to fit their spe-
cific needs and economies. There are also
needs for more flexible network connec-
tions. Some subscribers do not want to be
bound to a fixed location, but rather be
identified by a mobile identity. An exam-
ple of this are the UPT subscribers.

The network providers are those who
own, run and maintain the telecommuni-

Figure 2 Almost all modern telecom-
munication services are based upon the
plain old telephony service, and the
advanced supplementary services are
just reinventions of the early days’
human operators.
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cation networks, either fixed networks,
land mobile networks or satellite net-
works. The networks consist mainly of
transmission systems and switches. In
addition, the bearer services are consid-
ered as essential parts of the networks.

Until now, most network providers have
been protected by monopolies, and have
therefore controlled all the services in
their networks, including supplementary
services and value added services.

The service providers are those who offer
services to the service users. Until now,
the service providers have been identical
with the network providers, but in the
future, the network providers will only be
one of many kinds of service providers.
In addition, we will find providers of dif-
ferent value added services as well as
providers of basic services based on
leased lines.

Service providers not having their own
networks, will need some special connec-
tions to networks owned by network
providers. The European Commission is
going to regulate those connections by
the Open Network Provision - ONP.
These are regulations for the interfaces
between network providers and service
providers.

1.4 Current problems and 
solutions

The current network solutions, where the
service software are mixed together with
the switching software, and new service
features are added on as and when it
becomes necessary, are starting to be
very complex and difficult to manage.
Every new service is treated ad hoc, and
the networks and switches are looking
more and more like enormous software
conglomerates.

Long implementation time is much of a
hindrance for introduction of new ser-
vices today. Lack of modularity implies
that all new service software has to be
merged with existing software, and for
most new services this has to be done in
all network nodes, which can be several
thousand.

An alternative way of introducing new
services is to keep their operation to only
a few centralised network nodes. By
doing this, implementation time and
costs are saved by avoiding updating of
all network nodes. A drawback with this
solution is that all usage of such services

has to be routed via the specialised ser-
vice nodes. This implies a very poor util-
isation of network resources, since even
local calls may have to be routed twice
across the network in order to use a ser-
vice.

When all services are treated differently,
and many of them also executed in dif-
ferent nodes, interaction between them
may be quite difficult. There will be situ-
ations where two services may cooperate,
but there will also be situations where
simultaneous invocation of two services
will imply conflicts.

There will also be a need for pan-Euro-
pean services. If such services are im-
plemented by interaction between na-
tional services, one will meet problems
with different implementations of the ser-
vices in different countries. Lack of com-
mon specifications, common im-
plementations and common interfaces
makes it almost impossible to implement
pan-European services by interconnect-
ing national services. Security will also
cause problems here, since many net-
work operators are careful concerning
access to their data.

With a large number of services, the
users are facing a lot of opportunities.
But many users find it difficult to use and
utilise all these new features. It is diffi-
cult to remember how to invoke different
services, and the procedures for doing it
are often very complicated. Because of
this many of the new services are very
seldom in use, even though many people
would have liked to make use of them.
One way of solving this problem, is to
have more intelligent terminals. Termi-
nals with specialised function buttons, or
menu choices, can make it easier to use
the services.

2 New approaches
One of the main goals with the intelligent
networks is fast and efficient introduction
of new services. Another goal is flexible
services, allowing a large degree of cus-
tomising. Much research effort has been
put into reaching these goals and to solve
the increasing number of problems con-
cerning telecommunication services. The
networks and the services are modelled
in new ways and advanced software tech-
nologies are applied to manage some of
the problems.

This chapter presents some of the
research going on in the intelligent net-

works area. The first section describes
the separation of network and services.
The next two sections describe how
object oriented techniques can be applied
to modelling of network and services and
how rule based techniques can be applied
to marketing, creation, administration
and execution of services.

2.1 Separation of network and
services

Characteristic for the intelligent networks
is the separation of the service logic from
the physical network. There are different
opinions about exactly where this separa-
tion should be done, but the main princi-
ples are commonly accepted. Regardless
of where the separation is made, new ser-
vices may be introduced much easier
since they can be implemented without
modification of the underlying network.

The separation of services and switching
requires a well defined interface between
the two domains. The switches have to
send requests and status information to
the service logic, while the service logic
will have to do operations on the switch-
ing network. If the interface is made very
general and independent of particular
networks and services, the two domains
can be changed independent of each
other. 

2.1.1 Partial separation of network
and services

In the first versions of intelligent net-
works, the separation is true only for the
supplementary services, and even not for
all of them. All basic call processing, and
some of the simplest supplementary ser-
vices, will be handled by the switching
nodes themselves. Only in more complex
situations the control will be handed over
to some specialised service nodes. This
implies that the basic services and the
simplest supplementary services will be
handled as they are today. A standard
basic call process will be used, and this
has to be current in all network nodes.
The basic call process will need a trigger
table describing the situations for which
it has to request help from a service node.

These early versions of the intelligent
networks are based on the client/server
model where the switching nodes are
clients served by the service nodes. It
requires that the service nodes are pas-
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sive until they are asked for help. This
type of separation is quite suitable for
services requiring some kind of advanced
analysis during call establishment or call
release, e.g. for number translation, spe-
cial charging or conditional routing.

The service logic in the first versions of
intelligent networks will only be able to
control one end of the call at a time. For
this purpose, one basic call process
model for the originating end and one for
the destinating end of a call have been
defined. The two models are used to
describe how the basic call process shall
behave in different situations at the two
ends of a call. The basic call models con-
tain trigger points at which the service
logic may be invoked. If new service
logic requires trigger points not yet
defined, the basic call process has to be
modified, and this may have to be done
in all nodes all over the network. So,
with a partial separation of network and
services, it will still be necessary to mod-
ify the switches, even when working with
services.

2.1.2 Total separation of network
and services

In some later versions of the intelligent
networks all services, except from the
bearer services, are separated from the
switching network. The result of such
total separation is a pure switching
domain and a pure service domain. The
switching domain is only concerned with
transmission and switching, and offered
by this domain are the bearer services.
The service domain contains all other
services, i.e. both basic services and sup-
plementary services. Then all call han-
dling are done in the service domain,
since the bearer services do not include
call handling, only capabilities for trans-
mission and switching.

Also in this last model, there will be a
natural client/server relation between the
service domain and the switching
domain, but now the service domain is
the client and the switching domain is the
server. The switching domain consists
more or less of resources controlled by
services in the service domain. There are
also similar client/server relations
between the service users and the ser-
vices and between different services.

Figure 3 When network and services are partly separated, the basic services and
some supplementary services are executed in a basic call process together
with the bearer services, and the external service logic is invoked only
when the basic call process needs help.

Figure 4 When network and services are totally separated, only the bearer services
are executed by the switching network, and the network is acting like a
server for the service logic. The users interact directly with the service
logic.
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2.1.3 The IN platform

When the service logic is removed from
the switches, there will be a need for a
set of common switching operations pro-
vided by the network. This set of opera-
tions will be used by the service logic to
control the resources in the network. The
actions taken by the service logic will
then be sequences of such operations.
Examples of operations for call process-
ing are: join, split, modify, etc.

The switching operations represent a set
of network independent instructions to be
used by all services. They will make the
platform upon which all services have to
build, and this platform is called the IN
platform.

2.1.4 A generic service definition

When all services are taken out of the
switches, it will also be easier to treat
them in a unified way. To do this, we
need a generic definition of what a ser-
vice is. One definition could be:

A service may be either a set of capa-
bilities that is offered to an end-user,
e.g. conference call, or a set of capa-
bilities that is used in support of these
end-user services, e.g. translation of
freephone numbers to real telephone
numbers.

With this understanding of what a service
is, we can start modelling the service
domain.

2.2 Object oriented techniques

Object orientation is a way of structuring
data and operations in modules called
objects. The technique has many advan-
tages to traditional structured program-
ming, and some of the main benefits that
can be utilised in the work with intelli-
gent networks are described below.

Modularisation. The objects represent
modules which can be arranged in ways
that are more understandable for human
beings. The reliability will increase with
increasing understandability. It may also
be possible to test and verify an object
once and for all, and then rely on that for
later use and reuse.

Object descriptions, called classes, can
be reused over and over again, and if
they do not fit exactly, new specialised
subclasses can be defined. These sub-
classes will inherit data and functionality

from the more generic classes, and by
this reuse as much as possible. An inheri-
tance hierarchy will be very easy to
maintain, since global changes can be
done just by modifying the generic root
class, from which all the other classes
inherit.

Encapsulation. All data are encapsulated
by the objects, and can only be accessed
by calls to the operations. Encapsulation
is done to protect the data by controlled
access through operations. Object opera-
tions are invoked by message passing.
The messages, normally implemented as

function calls, have to be defined with
names and parameters. Many systems are
also using contracts to restrict the access
and to guarantee the results of the opera-
tions. 

Encapsulation of data will also hide
internal differences in the objects. The
internal representation of data is un-
essential as long as the message passing
is well defined. Therefore, specification
of objects are mainly concerned with the
object interfaces, i.e. the operations, and
not with the internal structures.

Figure 5 The real network, consisting of various kinds of equipment, is modelled as
objects and relations. Each object is an abstract description of a real entity
with attributes, operations and relations to other objects.
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For telecommunication services, encap-
sulation can be used for hiding imple-
mentation specific solutions and thereby
to gain manufacturer independence as
well as network independence.

Dynamic binding. Dynamic, or late,
binding is another feature used by most
object oriented systems. It means that
function calls are bound to the functions
at runtime, rather than at compilation
time. This can be utilised by having
dynamic objects, i.e. objects that are cre-
ated, deleted or changed at runtime.

The dynamic binding feature gives a
flexibility that can be of great value for
provisioning of services. In the service
logic, different objects may have to be
used depending on e.g. the user, sub-
scriber or even time of day. By dynamic
binding, a program’s control structure
can be changed dynamically at run-time,
resulting in more flexible service provi-
sioning.

2.2.1 Network modelling

Object orientation has shown up to be
one of the most adequate techniques for
data modelling. It can be used for mod-
elling of the network resources used by
the services as well as the services them-
selves. When used to model the network
resources, the object model can be
viewed as a map of the network, showing
only the details necessary for service
execution.

In the following, some examples of
objects representing network resources
used for call handling are described.

The call object represents a request from
a service user. This may be a request for
connection or just a request for informa-
tion. Normally, a call contains informa-
tion describing what service the user
wants, e.g. connection to a given address,
quality of service for a connection, etc.

The call queue object is a list of calls, i.e.
a place where calls can be stored tem-
porarily while they are waiting for some-
thing. The call queue may be a special
case of a more generic list object, or
maybe just of a database object.

The conference bridge object represents
the resources needed for switching, mix-
ing and presentation of information in a
conference with several users. The object
should be able to handle both plain tele-

phony conferences and multimedia con-
ferences, e.g. voice, video and text.

The connection object is an active com-
munication path between two service
users. A connection may be a set of legs
interconnected by connection points.

The connection point object represents an
interconnection of two or more legs.

The counter object represents a generic
counter. It can be used for counting of
calls, etc.

The database object represents a storage
place for information. It should have an
interface with functionality for authenti-
cation, batch reporting, dialog manage-
ment, electronic mail, job control, graph-
ics, ordering, reorganisation, etc.

The information object represents infor-
mation provided by the network. Infor-
mation objects may contain announce-
ments, directory entries, mail, user dialog
boxes, user profiles, etc. Information
may be stored as data, picture, text,
video, voice, etc. Information objects
may be stored in databases and transmit-
ted over connections.

The leg object represents a communica-
tion path between two addressable enti-
ties. Two or more legs may be intercon-
nected by a connection point.

The subscriber object represents a ser-
vice subscriber, including all subscriber
specific data, or at least references to
them. Examples of subscriber specific
data are: service profiles, user profiles,
etc.

The timer object represents a generic
timer which can be used for measuring of
call duration, automatic disconnection,
etc.

2.2.2 Service modelling

By an object oriented analysis we can
break down the services to their basic
components. The set of service compo-
nents will then cover all capabilities nec-
essary to offer the current services. If we
define the components so they can be
used as building blocks for services, they
can be reused in a large number of ser-
vices just by putting them together in
varying combinations.

The first step in a top-down analysis of
the services should be to define a set of

generic objects covering all the main ser-
vice features. Then, more specific fea-
tures can be defined by subclassing the
more generic object classes. A first top-
down analysis of current services could
end up with the following objects:

The charger object is responsible for all
charging of service usage. The following
types of charging may be done:

- Call state dependent charging

- Geographic dependent charging

- Normal charging

- Premium rate charging

- Reverse charging

- Service dependent charging

- Split charging

- Third party charging

- Time dependent charging.

The call controller object is responsible
for handling of all calls from the service
users. It may be subclassed into e.g. basic
call controller, conference call controller,
etc. The following functionality must be
covered:

- Call queueing (automatic call back,
number in queue, priority, queueing
time estimation, etc.)

- Call set-up (quality of service, e.g.
charging, priority, transmission, etc.)

- Call release (automatic (call duration
limit) or manual)

- Call transfer

- Call waiting

- Completion of call to busy subscriber

- Completion of not answered calls

- Conference calling (add-on, leave,
meet-me, three-party, etc.)

- Delivery to alternative destinations

- Explicit call transfer

- Hold/retrieve

- Suspend/resume.

The logger object is responsible for log-
ging of all relevant information. The fol-
lowing functionality should be covered:

- Call counting

- Call logging
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- Subscriber statistics

- Traffic measurements.

The manager object is responsible for all
management activities. This includes the
following:
- Billing (specified bill, etc.)

- Business management

- Network element management

- Network management (accounting,
configuration, fault, performance and
security)

- Service management

- Service profile management

- Service profile verification

- Subscriber administration.

The router object is responsible for rout-
ing of all calls, messages, requests, pack-
ets, etc. between different network enti-
ties. The following functionality should
be covered:
- Abbreviated dialling

- Alternative destinations

- Call barring

- Call blocking

- Call deflection

- Call distribution

- Call diversion

- Call forwarding

- Call gapping

- Call limiter

- Compatibility handling (service/termi-
nal dependent)

- Direct dialling in

- Distribution (list)

- Electronic mail (text)

- Follow-me diversion

- Hotline, direct or delayed

- Line hunting

- Mobility

- Number translation

- Prioritising

- Queueing

- Restricted area covering

- Sub-addressing

- Traffic filtering

- Voice mail.

The securer object is responsible for all
the security in the network. The object
should guard both the network’s data and
the transmitted information from unau-
thorised access. It should be possible to
execute services with different security
level, according to the needs of the net-
work operator, the service provider and
the service user. The security object
should cover the following functionality:

- Access control

- Authentication

- Authorisation

- Calling card validation

- Closed user group

- Confidentiality

- Encryption

- Screening

- Verification.

The user object represents a user of a
telecommunication service. A user may
be a person, a computer program or a
combination of these two, i.e. what nor-
mally is called an application. A user
object may request a service by creating
a call and send it to a user agent object.
The user object is responsible for the fol-
lowing:

- Call answering (accepting)

- Call initiating

- Call rejecting

- Call state changing, e.g. disconnecting,
holding/retrieving, rearranging, releas-
ing, suspending/resuming, transferring,
etc.

The user agent object is responsible for
all interaction with service users and is
therefore an essential part of the user/net-
work interface. The following functional-
ity should be covered by this object:

- Advice of charge

- Announcement

- Calling line identification presenta-
tion/restriction

- Connected line identification presenta-
tion/restriction

- Dialog management (including
alphanumeric and graphical dialogs)

- Directory

- Distinctive ringing

- Information collection

- Prompting.

2.3 Rule based techniques

Rule based techniques have until recently
only been a part of the mysterious
domain of artificial intelligence. But,
during the last years, rule based tech-
niques have been approved by many
excellent implementations, and are now

Figure 6 The main components of a rule based system are the database, the rule
base and the inference engine.
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designer will need a lot of information
about network configurations, possibili-
ties and limitations, existing services and
the subscribers. A rule based expert sys-
tem can give easy access to all this infor-
mation.

The service creation process will also
require a lot of intelligent reasoning,
where expert systems could be used. This
can be for selection of service modules
and for right combination of them in
order to get the desired service.

2.3.3 Service administration

Service administration will become a
heavy job in the intelligent networks.
Service logic will be distributed in the
network according to needs, and the dis-
tribution will be done in real time, i.e.
during service execution. This implies an
automatic distribution based on a set of
rules for how to distribute. The distribu-
tion has to take into account things like
performance, response times, resource
utilisation, etc.

Another service administration problem
is the integration of a large number of
databases. Service logic and service data
has to be stored in databases all over the
network, and even over many networks.
All these databases must cooperate in the
provision of services. Some services may
need information from several databases,
and both logic and data has to be moved
around between different databases.
There are expert systems on the market
which are designed especially for inte-
gration of databases, and from which
ideas can be taken to solve the database
integration problem also in the intelligent
networks.

2.3.4 Service execution

Today, most services are implemented as
sequential functional programs. This
gives very little flexibility and few of the
benefits described for object oriented and
rule based techniques in this article. It is
therefore expected that features from
both these techniques will be used in
future developments. Object oriented
techniques have already been introduced
to some current systems, while rule based
techniques still remain in the prototype
stage.

Some of the benefits of using rule based
systems for service execution are:

executed will change continuously. This
is called data driven control.

An inference engine is used for evalua-
tion of conditions and triggering of rules.
This generic inference mechanism will
provide domain specific reasoning when
applied to a set of domain specific data
and rules.

When the inference engine is running, it
follows a cycle with pattern matching,
conflict resolution and rule execution.
The inference engine keeps the data on a
blackboard, so they can be accessed by
all rules. Common data on the black-
board represent the only coupling
between different rules. This weak cou-
pling between system modules gives rule
based system a high degree of flexibility.

2.3.1 Service marketing

Even today, the service marketing and
sales people need access to a lot of tech-
nical information in their contact with the
customers. When the intelligent networks
are being implemented, the increase in
number of services and customised solu-
tions will be enormous. The marketing
and sales people will need support to find
the best solutions, estimate prices and
costs, give proposals and answer ques-
tions. System specifications and manuals
will be of great help, but even with all
information available, one will need
much experience to find the relevant
information and to know how to use it.

Much of the expertise needed for market-
ing and sale could be stored in an expert
system. Such a system could help the
marketing and sales personnel to find the
relevant information, and it could use
information gathered from the customers
for analysing needs and giving recom-
mendations. Some examples of what
expert systems could be used to, are:

- Analysis of service needs

- Support in describing new services

- Information about existing services

- Information about possible services

- Information about costs

- Information about equipment require-
ments.

2.3.2 Service creation

Service creation is a very knowledge
intensive process where rule based sys-
tems could be of great value. A service

widely used by the telecommunication
industry. The most common use of rule
based techniques is in expert systems.
There heuristic rules are used for imple-
mentation of expert knowledge. The
main components and features of rule
based systems are described below, and
in the following sections some applica-
tions of rule based systems are intro-
duced.

Data represent an essential part of every
rule based system. Data structures are
used to make models of the real world or
to store temporary information. The data
in a rule based system are often called
‘facts’.

Data can be represented in many ways.
Frames have been used in many imple-
mentations. Frames may be viewed as a
kind of objects. They offer modularity
and inheritance, but they have no encap-
sulation and no operations. Frames are
well suited for symbolic data, which is
the main data type in rule based systems.

Rules are modules used for representa-
tion of logical knowledge in a system,
i.e. knowledge about how to use the data,
when to take different actions and where
to find necessary information. All rules
have a set of conditions and a set of
actions. The actions describe what to do
and the conditions describe when to do it.

Conditions are logical expressions that
can be evaluated to either ‘true’ or
‘false’. Symbolic data are used in the
expressions. If all conditions of a rule
evaluate to true, then the actions in that
rule can be executed. The actions can be
operations on the data, and if the data are
changed, then the set of rules that can be

Figure 7 Expert systems will be of great
help for both service sales people and
service designers in their contact with
customers. The systems can be used to
give information, analyse needs and
suggest solutions.
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- Rules are well suited for taking com-
plex decisions.

- Rules are well suited for handling
symbolic data, like e.g. object oriented
network models.

- Rule based systems are data driven and
the program control changes with
changing data.

- New services can be developed
evolutionary by stepwise prototyping
and simulation.

- Rules based on conditions and actions
are well suited for describing services.
Human reasoning can easily be
expressed and many service interaction
problems can be solved.

- Rule based systems are easier to main-
tain because of the modularity and the
loose bindings between different rules.

The best way of implementing complex
systems like service logic and service
execution environments is probably to
combine several techniques using the
best features from all of them. Currently,
the object oriented and rule based tech-
niques are the most promising, together
with conventional programming tech-
niques.
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with a specification of the desired pro-
duct. If the producer then delivers a pro-
duct which is according to the specifi-
cation, she has done her job. The
consumer cannot expect more and the
producer need not supply more, than
stated in the specification. Verification
consists of checking that a product is
satisfying a given specification. If the
product is e.g. a computer program, it
can never be “correct” in and of itself.
Correctness in this context is only
defined relative to a specification.
Section 5 discusses this matter in further
detail.

3 Precision
Specifications are written to be used as
input to a production process where the
result depends explicitly on the specifi-
cations entering the process. In our case
this is the IN service creation process.
The term service creation is used to
designate the process from specification
up to and including deployment of the
finished service.

A small difference in perception of
meaning in a description may imply very
large differencs in the characteristics of
the end product, which is undesirable. If
the process towards the finished product
is long and involves many links in a
chain, small imprecisions in the initial
phases are likely to grow larger as they
pass through the chain.

In an object oriented environment, object
interfaces must be according to specifi-
cation in order for objects to be able to
cooperate. In the specification of classes
this results in a specification that is “open
ended”. That is, it does not specify every
detail, only what is necessary at the inter-
face. A specification may thus allow
various implementations which are all
correct, since the specification leaves
some decisions open. Precision is nevert-
heless required as before in the interface
specifications and the further specifi-
cation of the interior of classes.

Our goal is to make IN service creation

- fast

- flexible

- reliable.

We believe that service description and
specification are two main issues in
achieving these goals, and that successful

flicting requirements, since a higher
degree of exactness often means a more
involved description, which may reduce
clarity. This is an important issue for us
and we must take care to cater for this as
we develop our methods. We may talk
about differing levels of precision being
right for different uses and thus justify
varying descriptions to obtain maximum
clarity on each level.

A description is coherent if its parts fit
naturally and logically together. If a term
is not used with the same meaning in all
parts of a description, it may become dif-
ficult to see how the parts relate to each
other.

In order to assure coherence in the
description of IN services, a set of
concepts that are particular to the subject
need to be defined. An attempt to define
these concepts is found in the CCITT
Q.1200 Recommendation Series, see (9),
which draws a picture of the IN concept
and some of the services that it supports.
In our opinion, these definitions are too
rough and may cause divergent under-
standings of the concepts. Since several
persons usually collaborate in describing
the services, coherence is at stake.

A service can be given different de-
scriptions, each focusing on different
aspects while abstracting others away.
This does not necessarily mean that there
is incoherence as long as the different
descriptions are related to each other in
such a way that they complete each other
and give a consistent view of the service.

A specification constitutes a reference
against which a product is evaluated.

Definition 1 (Quality) A product has
the right quality if and only if it is
according to specification.

When strictly defined quality is binary
term taking values “right” or “wrong”,
not “good” or “bad” or something in
between. This may seem a strange way
of judging quality, but it is the only veri-
fiable or quantifiable way. Quality
concepts which are not amenable to veri-
fication or testing are useless in technical
environments, a specification constitutes
a protection for producer and consumer
alike. Ideally the consumer knows what
to expect from the product and the pro-
ducer knows what she must supply. It is
the consumer who supplies the producer

1 Introduction
A public network operator offering Intel-
ligent Network (IN) services to its
customers must be able to describe the
services not only to their users, but also
to the subscribers of the services and to
the service and equipment providers. A
subscriber can customise a service to her
specific needs by setting values to differ-
ent parameters or selecting features. This
implies that the subscriber needs a more
detailed and deeper understanding of the
service and its components than the user.
The differing needs of the user and sub-
scriber must be reflected in the
descriptions aimed at each of them. A
description aimed at the service and
equipment provider will have yet another
focus. In this case, the role of the public
network operator is to specify a product.
Implementational details are not always
critical. However, the specification must
be precise enough to allow for a quality
evaluation of the product.

In order to operate services on an
international scale across different
networks and have services adapt
smoothly to technological changes, ser-
vices must be described independently
from any specific network. This should
be the case whether the descriptions are
aimed at the users, the subscribers or the
providers.

The requirements above are specific to
IN service description. In addition there
are the usual requirements that every
description or specification should meet,
such as precision, coherence and veri-
fiability. In the following we shall
discuss how the latter can be met in the
context of IN.

Services cannot be described entirely in a
natural language. In a final section,
criteria for appropriate choices of
description languages are discussed.

2 Goals
Any description or specification should
be precise. To ensure a common under-
standing of “precision” we quote the
following interpretation from a standard
dictionary:

“precision exactness and clarity; qual-
ity of being precise (stated clearly and
accurately).”

Note that precision embodies not only
exactness but also clarity. Clarity and
exactness may be perceived as con-

Description and specification of services in 
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be introduced to denote instances of
objects in the extension of these
concepts. Used with care symbols are of
great value to us, and in formal specifi-
cations they are key ingredients. The
success or failure of a formal specifi-
cation language may rest with its use of
symbols. This is particularly true when
the language is to be used by people wit-
hout heavy mathematical training.

3.3 Unambiguity

Ambiguities in specifications invariably
lead to faults and products which are not
exactly as the specifier intended. Note
that a product may well be said to be
conforming to an ambiguous specifi-
cation, if it is conforming to one of the
possible interpretations of the specifi-
cation. People seem to have a strong
capacity to arrive at what they think is a
reasonable interpretation when faced
with an ambiguous specification.

Lives may or may not be lost if the speci-
fication of an intelligent network service
is misinterpreted, but time and money
will surely be at stake. Ambiguity is not
an easy thing to control and its source is
often in the initial phases of specification
where ideas are transformed into specifi-
cations. We may not even be aware of
the ambiguities in our own ideas. This
initial fuzzyness can never be completely
removed, and its presence is a part of the
creative process. However, once a decis-
ion is made to go forward and turn the
idea into a product the unwanted
ambiguities must be removed.

According to a standard Oxford
dictionary ambiguity means

“presence of more than one meaning”.

Thus, to remove ambiguity we need to
ensure that concepts have only one
meaning, if we want them to have only
one meaning. Natural language draws
some of its power from the fact that it has
an abundance of words which have dif-
ferent meaning in different contexts and
usages. This is often not perceived as
ambiguity since it is a natural part of our
language, but it makes unrestricted
natural language unsuitable for many
description and specification tasks. Ironi-
cally this feature of natural language is
perceived as enriching the expressive
power of natural language while it can be

3.2 Clarity

Even if clarity may be seen as an aspect
of readability it has its own particular
needs. We shall look into two which we
see as especially important, the use of
definitions and symbols.

Definitions are crucial in any description
which aims to be precise and consistent.
Many descriptions become cluttered and
unclear because the central concepts lack
a good definition. Worse still, a concept
may be ill-defined such that its extension
is vacuous or trivial. Definitions are the
means to help us fix and delineate our
concepts. For any discussion of concepts
or description of concepts, the definitions
form the basis from which all further rea-
soning proceeds.

Consider as an example the service
concept of the IN. We talk freely about
service creation, service features, service
interactions, etc., the service concept
permeates the entire discussion of IN. It
becomes necessary to consider a defini-
tion of the service concept. Note that this
does not mean a narrowing of the service
concept’s extension, since our intention
in the intelligent network is a wider
extension, but always retaining a precise
understanding of exactly what it
includes.

Following the object oriented line of
thought we could start by defining so-
called “service-constituents” from which
we aim to build other services, and then
define what it means to put these
together. One possible definition of a
service is then “whatever is put together
by the (correct) use of service-constitu-
ents”. We have then moved the problem
of defining complete services to the pro-
blem of defining its constituents and the
way these are put together. Hopefully,
this will make the problem more
tractable.

The use of symbols should be restricted
to obtain clarity without throwing
readability out of the window. A docu-
ment packed with symbols tend to appear
impenetrable or unduly compact, especi-
ally if each symbol carries a lot of
meaning, which they tend to do. Used
with care symbols are of great value
when writing specifications. They let us
use a more compact language and thus
reduce the chances of misunderstandings
and errors following from a verbose pre-
sentation. When good definitions have
been made of concepts, then symbols can

solutions to these issues will be of crucial
importance.

In the intelligent network we aim for
high precision and formality in specifi-
cations which will be created by people
with various training on many levels of
sophistication. This is the novel chall-
enge posed to us by the intelligent
network concept. Below we shall further
concentrate on three key characteristics
of specifications:
- readability

- clarity of exposition

- unambiguity.

We shall discuss each of these in turn.

3.1 Readability

The readability of a description is
obviously crucial for how successful it is
in bringing across the intended meaning.
Whether it is considered readable
depends on the profession of the reader.
Law text is readable to lawyers and
mathematical text to mathematicians but
not necessarily vice-versa. This is of no
problem since lawyers mostly stick to
law and mathematicians to mathematics
as professionals. The challenge of IN ser-
vice creation is that specifications must
be readable yet precise, to a quite wide
audience and across many levels of abs-
traction and sophistication.

Attaining readability can be done in
many ways, and possibly by different
means for different readers. The structure
of a specification is probably one of the
most important parameters deciding
readability. A poorly structured docu-
ment is more difficult to read than one
with a good structure. It is not obvious
that the same structure is good for all
kinds of documents, so we will have to
consider the various kinds separately.
The structures will have to serve differ-
ent purposes at various levels of detail
and formality.

The structure of a formal specification is
of special importance. By its nature a
formal specification has to have a strict
structure from which we cannot deviate,
and this structure is a part of the form-
ality of the method. When we choose a
formal method we also choose its way of
structuring specifications. The technique
must have available structures which
achieve the wanted readability. For
examples of different structures we refer
the reader to e.g. (3, 5, 8, 1).
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defined. Such a network should capture
the universal character of a network. A
common characteristic of networks is
that they allow for information transport.
Connections and their end points are also
common to all networks. Technology
dependent aspects such as transmission
speed should only be reflected in the
functional network insofar as they are
needed in describing the semantics of a
service. The transmission speed could,
e.g., be reflected by a parameter with no
specific value assigned to it.

4.2 Coherence through 
mathematical rigor

In order to provide the semantics of IN
services in a coherent manner, a set of
concepts that we shall hereafter refer
collectively to as the “functional
network” must be defined. Genericity
constraints imply that the concepts are
abstract in the sense that they do not refer
to any specific network. Abstraction does
not imply vagueness, however. We view
the relation between the functional
network and the possible realisations of
it, as similar to the relation between a
mathematical concept, described by some
theory, and the specific models satisfying
the theory. Figure 1 explains this ana-
logy. The relation between the functional
network and the possible realisations of it
should be compared to the relation
between the notion of a group and the
different models that satisfy the group
axioms such as (ZZ, +), (QQ, +), ... By
adopting mathematical rigor in the
description of the functional network, we
believe we can satisfactorily handle abs-
tract concepts.

4.3 Coherence through 
object orientation

Throughout this article we advocate an
object oriented approach to service
descriptions. From a coherence point of
view, there are two major reasons for
adopting object orientation. First, there is
the reusability aspect. If two descriptions
use the same classes at least some coher-
ence is achieved. Object orientation sup-
ports reusability particularly well due to
its encapsulation and inheritance prop-
erties (for a presentation of the virtues of
object oriented programming, see e.g.
(7)). Second, object orientation allows
different “viewpoints” to be related to
each other in a well-defined manner.
Consider a distributed database. From a

ficult to give a definition that covers all
uses of the term call.

4.1 Missing concepts

Missing concepts often result in gaps in a
description, which are another source of
incoherence.

The semantics of a service is provided by
its functional description, stating what
the service does rather than how it does
it. In the IN model described in (9),
Q.1202, the “Global Functional Plane” is
intended to provide (the concepts necess-
ary for providing) functional descriptions
of services. How a service is executed is
taken care of on another “plane”, the so-
called “Distributed Functional Plane”.
Here the execution of a service is
described as a set of processes running
concurrently on different “functional
entities”. However, the way the Global
Functional Plane is described today, ser-
vice descriptions are not amenable to any
precise description without resorting to
the Distributed Functional Plane. This
means that in order to get a complete
picture of a service’s functionality, one
has to analyse it as a set of different pro-
cesses running on different functional
entities. The notions necessary to give
complete functional descriptions of ser-
vices are missing in the Global
Functional Plane (contrary to what seems
to be the intention). What remains after
distribution aspects have been stripped
from the service descriptions is so little
that it becomes difficult to find coher-
ence.

The reason that it is not possible to give a
precise functional description of services
that are entirely contained in the Global
Functional Plane is that a description of
the network is missing. On the Global
Functional Plane the “IN structured
network is viewed as a single entity”, see
(9), Q.1203. However, no description of
such a network is provided. Since it is
not possible to give a description of a
service without involving the network,
and since (9) only gives a description of
the network on the Distributed
Functional Plane, the functional
descriptions have to resort to this plane.

A “functional network”, generic enough
to encompass all networks that the IN
concept is intended to be applicable to,
such as mobile or fixed, line switched or
packet switched, connectionless or
connection-oriented, etc., has yet to be

devastating in specifications. How can
we cope with ambiguity without loosing
expressive power?

One way of removing most of the
ambiguity is by increasing formality. In a
formal language we have the power to
decide exactly what each expression is to
mean, and may thus ensure that each
expression has only one well-defined
meaning. One of the benefits is that even
complex expressions have a meaning
which is defined in terms of the
meanings of its components. A simple
example is an expression like A Λ B
which has a meaning decided by the
meaning of A and B and Λ. Precision is
really all about semantics, the syntax is
merely helpful or not in the textual lay-
out. By attempting to formally define the
semantics of a language we may uncover
sources of ambiguity in the language
itself.

4 Coherence
In an incoherent description it is pro-
blematic to see how different parts relate
to each other and the description is dif-
ficult to understand. Attaining coherence
in the description of IN services is
particularly challenging, because services
necessitate several descriptions aimed at
different people and serving different
purposes that need to be related to each
other in a logical way.

Coherence requires precision. Vague
terms may be understood differently and
used with different meanings in different
parts of a description, making it difficult
to relate the parts to each other.

Terms must also be used in a manner that
is consistent with their definition throug-
hout the description. If a term is already
used in an inconsistent manner, any
attempt to make it precise will result in a
disagreement between definition and use.

Consider the term call used by CCITT in
describing a considerable set of services.
It is defined (in Rec. E.600) as:

“A generic term related to the estab-
lishment, utilization and release of a
connection. Normally, a qualifier is
required to make clear the aspect being
considered, e.g. call attempt.”

This careful formulation seems to
intentionally keep the definition vague.
The reason, presumably, is that it is dif-



simulation and laboratory testing may
look very similar and serve many of the
same purposes.

Field testing is a way of getting to know
how the final product or a prototype
behaves in the environment where it is
meant to function. This can typically be
one of the last stages in a verification
process incorporating also simulation and
laboratory testing.

Formal proof is perhaps the most contro-
versial of these methods. It consists of
actually proving by formal mathematical
techniques that a proposed product is
according to specification. This has as a
prerequisite that the specification is also
a formal specification. Formal verifi-
cation must be said to be in its infancy
with respect to industrial applications but
there is a tendency towards more use of
formal techniques in the computer related
industry and the telecommunications
industry in particular. The reasons are
among others a need for reliable and safe
systems, like the intelligent network. IN
services can be subjected to all of these
types of verification.

5.2 Formal verification 
techniques

Formal verification derives its name from
the fact that the verification consists of
deriving a formal proof of statements of
formal logic (see the box on formal
proof, Figure 2). It is inseparably
connected to formal specification and
cannot be done with respect to informal
specifications.

Hitherto formal verification has been
closely connected only to computer pro-
grams. The reason is partly that computer
programs are quite easily considered as
mathematical or formal objects amenable
to formal reasoning. This was first reali-
sed by Turing in 1936, and has since
been of vast importance to the develop-
ment of computer science and pro-
gramming. In 1969 C.A.R. Hoare in (6)
formulated a mathematical theory of pro-
gramming and program correctness
which has since been used extensively as
a basis for formal verification techniques.

Simulation, testing and field trial can at
best give us an increased probability that
our program is conforming to the specifi-
cation. We can never by use of these
methods get an unequivocal “Yes” or
“No”. The ambition of formal verifi-
cation in combination with formal speci-

- functional properties, and

- non-functional properties.

By non-functional properties are meant
properties which do not relate to the pre-
sence of functionality but to properties of
the functionality itself when present.
Examples of non-functional properties
are

- security

- reliability

- persistence of data, etc.

In the case of security we can see that a
functionality may be present and be
secure or insecure relative to a chosen
security policy. If the specification says
that “operation f(x,y,z) should be there”
with pre- and post-conditions in order
and nothing more, a verification could
proceed to give an “OK” even if the
operation was totally unacceptable
security-wise.

5.1 Methods of verification

Different methods of verification may be
appropriate for different purposes and
properties. We can name four broad
classes of such methods, these are

- simulation

- lab testing

- field testing

- formal proof.

Simulation may be appropriate when the
final system or product is so large/com-
plex or expensive to manufacture that a
verification of the final system is
impractical. Simulation will then give a
picture of the most important behavioural
features of the system, if the simulations
are themselves correctly executed. This
can seem to move the verification pro-
blem onto the simulation itself, and
simulation alone can never give a com-
pletely satisfying verification and has to
be used in conjunction with other techni-
ques.

Laboratory tests are also used in addition
to other verification techniques. Unlike
simulation (which may also take place in
a laboratory) laboratory testing is typi-
cally done on a version of the actual pro-
duct, often a prototype. Apart from this,

functional point of view a database can
be seen as one single object to which
queries are presented. A distributed view
will show several interrelated objects
which are capable of handling concurrent
accesses, maintaining consistency, etc.

These two views, functional and distri-
buted, are reconciled by encapsulating
distribution aspects within the object
representing the functional view. Using
deferred classes, i.e. partially defined
classes, one could even describe the
functional view postponing distribution
matters to the description of some
subclass of it (i.e. a class that inherits the
deferred class). The reader is invited to
compare this example with the one pre-
sented in Figure 1.

5 Verifiable services
Time consuming work on specifications
is of little use unless the specifications
obtained provide some real benefits.
Once we arrive at a product it remains to
see whether it is according to the specifi-
cation, if it has the right quality. The
actual process of checking this is called
verification.

In different contexts it is of varying
importance to be absolutely assured that
a product is according to its specification.
This will always depend on how sensi-
tive we are to an eventual failure. If the
product is your hat you have not even
thought of a “hat failure”, but if it is a
piece of software controlling the engine
in an aeroplane we have vivid imag-
inations of what results a failure could
have! These are two extremes and we
have a broad spectrum in between. The
need for verification becomes stronger as
we move towards the “engine failure”
end of the spectrum. The intelligent
network services will be distributed over
this spectrum, with a “medium” to “high”
placement as typical. The reason is that
the failure of telecommunications ser-
vices is undesireable in most cases and
can be catastrophical in some. We should
therefore strain to keep the chances of
this happening to a minimum. This is
partly achieved through good specifi-
cation and verification work. In fact it is
often stated that the most efficient use of
resources for quality control is in the
specification and verification phase.

An interesting aspect of verification is
appearing if we consider two distinct
aspects of the specification, namely the
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Every field is a ring and every ring is a group. A typical group is
the set of integers with addition, denoted (ZZ,+), whereas the set
of real numbers with addition and multiplication, denoted (RR,+,⋅),
is a field.

Groups, rings and fields are defined by sets of axioms. A
structure (G,ο) is a group if and only if
1. ο is associative, i.e. (aοb)οc=ao(bοc), for all a,b,c∈G (∈ reads
‘element in’),

2. there exists an identity element e in G, i.e., aοe=eοa=a, for all
a∈G,

3. every element has an inverse, i.e. for every a∈G there exists
an element a'∈G such that aοa'=a'οa=e.

For the definitions of rings and fields the reader is referred to any
textbook in algebra, e.g. (2).

The set of groups can be described in an object oriented langugae
(here Eiffel, see (7)) by a class GROUP.

deferred class GROUP
-- class representation of group (G,ο) with identity element e

export
add, identity, inverse

feature
add(x,y:ANY):ANY is

requires x,y∈G
deferred
ensures add(x,y)=xοy
end -- add;

identity : ANY is
deferred
ensures identity=e
end -- identity;

inverse(x : ANY) : ANY is
requires x∈G is
deferred
ensures for all x∈G : x ο inverse(x)=inverse(x)οx=e
end -- inverse;

end -- class GROUP

The features are deferred because it is not possible to further
specify these features without loosing some of the genericity of

the group concept. The features are made precise, however,
by the assertions expressed as comments and requires and
ensures clauses. On the basis of GROUP a programmer
can, e.g., write a program that checks whether a given ele-
ment a of a given group is of order 2 (i.e. a ≠ e, aοa=e), and
even prove that the program is correct!

An instance of GROUP can only be obtained by instanti-
ating a non-deferred class that inherits it. Such a class is
ZpGROUP which describes the groups (ZZp \ {0},⋅), for p a
prime number. (Note: (ZZp \ {0}={1,…,p-1})

class ZpGROUP
-- class representation of group (ZZp \ {0},⋅), where p is a
prime.
export

add, identity, inverse
inherit GROUP
feature

p : INTEGER;
Create(m : INTEGER) is

requires m is a prime.
do p :=m;
end -- Create;

add(x,y : INTEGER) : INTEGER is
requires 1 ≤ x,y < p
do Result :=(x ∗ y)mod p;
end -- add;

identity : INTEGER is 1;
inverse(x : INTEGER) : INTEGER is

requires 1 ≤ x < p
do Result := x ∗∗(p-2)mod p;
end -- inverse;

end -- class GROUP

An instance of (ZZ7 \ {0},⋅) is obtained by declaring a vari-
able z7 of type ZpGROUP and then creating it:

z7: ZpGROUP; z7.Create(7)

Since ZpGROUP inherits GROUP, z7 is also an instance of
GROUP and thereby it obeys the assertions of GROUP.

This example shows:

1. How abstract mathematical concepts can be mapped onto
classes defined in an object oriented language;

2. How mathematical descriptions complement the de-
scriptions of the classes. The assertions of GROUP refer to
the mathematical definition of a group, and would have no
meaning if the group axioms did not exist;

3. How the object oriented descriptions rely on theorems
based on the mathematical description. For instance, the
feature identity is defined as a function, relying on the fact
that there is only one identity element in a group. This is
not stated by the group axioms directly, but is a logical
consequence that can be proven. Also, the correctness of
ZpGROUP relies on the fact that (ZZp \ {0},⋅) actually is a
group when p is prime. Remove the requirement that p (and
m) must be prime and the description above is no longer
correct!

The Algebraic Analogy

Algebraic structures can be ordered according to their “genericity
level”.

Figure 1
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fication is to provide a means of
obtaining such answers. We can outline a
typical verification technique as follows.
We consider a piece of a program, P,
which is to be verified against a specifi-
cation. This specification will often be of
a form saying essentially what is
assumed to be the case before S is
executed, the “precondition” P, and then
what is guaranteed to hold after the
execution of S, the “postcondition” Q. If
S is written in a suitable formal notation
the idea is that a formal proof of Q from
P and S constitutes a verification of the
fact that as long as the precondition
holds, S will guarantee that the
postcondition is fulfilled. If the logical
system used is consistent this will be a
proof of a true statement and hence a
formal mathematical proof of the fact
that a program is doing what the specifi-
cation says it should do.

A problem with formal verification is
that as programs and specifications
become larger the complexity of doing a
formal proof explodes1). For this reason
formal verification tends to be restricted
to programs with extreme requirements
imposed on them. This can be the case
for e.g. security and safety critical
software in the intelligent network.

5.3 Formal verification and 
object orientation

It is interesting to investigate the possible
benefits of object orientation on formal
specification and verification. The most
obvious idea can be sketched as follows:
Since object orientation promotes encap-
sulation of operations related to the same
concept into objects, we could benefit
from specifying and verifying objects
and object aggregates separately. The
idea is that building larger structures
from proven substructures ought to result
in a proven structure as long as the
construction process is designed such as
to maintain the correctness at all times.
This is an interesting research challenge
to be pursued further.

To conclude we can say that verification
of intelligent network services is import-
ant for many reasons, but the most

important is perhaps that we should aim
for verifiable services. That is, to specify
and design services in such a way as to
make verification possible if requested.
This should include both formal and
informal verification techniques. If we
shall be able to do some sort of formal
verification we need to have formal
specifications.

6 Language issues
Every description needs a language. Up
to now we have argued for an object ori-
ented approach to the description of ser-
vices. Object orientation alone, however,

is not sufficient. We need to state what
the objects do, i.e. provide their
semantics, and for that a set of concepts
must be defined in a precise
“mathematical” way.

6.1 Mathematical descriptions

Mathematical texts are mostly written in
a mixture of English (or some other
natural language) and some formal
notation. The descriptions rely on
concepts with a precise mathematical
meaning, such as sets, functions, mapp-
ings, etc. Proofs are not formal (see
Figure 2), but are explications that

Formal Proofs

Formal proofs as the name implies, are proofs based on the syntactic form
of propositions (or statements), abstracting from their semantic content. A
formal proof is correct if it can be decomposed appropriately into parts, each
part matching one among a fixed set of patterns. Because syntactic form is
easily representable in a computer, whereas semantic content is not, formal
proofs are particularly well suited to be executed and verified by computers.

The following three lines is an example of a deduction, the two first lines are
the premises, the last is the conclusion.

Every man is mortal.
Socrates is a man.

∴ Socrates is mortal.

The deduction is provable in a formal proof system containing the following
rule (or pattern).

Every X is Y.
Z is an X.

∴ Z is Y.

The proof consists of matching the deduction with the rule, matching X with
‘man’, Y with ‘mortal’, and Z with ‘Socrates’. (More complex proofs are con-
structed by letting the conclusion of one proved deduction become a
premise of another.)

Note that if ‘Socrates’ in the last line were substituted by the pronoun ‘He’,
we would no longer be able to do the above matching (Z would have to be
matched with both ‘Socrates’ and ‘He’). In order to prove the new conclusion
we would need  more rules. What is formally provable depends on the set of
rules in our formal proof system.

The complexity of natural languages makes formal proving very difficult.
Therefore propositions are usually expressed in formal languages that have
very simple syntax and semantics. Below we have stated the deduction
above in a first order language.

∀x : man(x) → mortal(x)
man(socrates)

∴ mortal(socrates)

For simple formal languages with restricted expressive power there exist
complete proof systems, i.e. any valid deduction expressible in the language
is formally provable. The general rule is that the more expressive power a
language has, the more difficult it becomes to find a complete proof system
for it. First order languages represent in a way a maximum of expressive
power combined with complete proof systems and have therefore been sub-
ject to much attention.

Figure 2

_________________________________

1) The increase in complexity is more
than exponential, and generally results
in undecidability.
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oriented language. For a discussion of the
principles of object orientation the reader
is referred to a text book on the subject,
e.g. (7). Some languages, however,
encourage and facilitate working within
this paradigm better than others. (Figure
1 illustrates object orientation by a small
example written in Eiffel.) In addition to
the typical characteristics of object ori-
ented languages the following facilities
are relevant for the description of ser-
vices.

Facilities to handle concurrency and dis-
tribution
At some level the problems that arise in
connection with the fact that services
involve the participation of several pro-
cesses running in parallel and inter-
connected by a network have to be dealt
with. A language that allows a smooth
transition from higher level descriptions
where distributional and concurrency
aspects are transparent, to a lower level
where these aspects can be handled, is
preferred.

Facilities to handle real-time require-
ments
The behaviour of certain services
depends on elapsed time. “Call Forward-
ing on No Answer”, e.g., is triggered
only when a call is not answered for say
20 seconds. Such time constraints must
be expressible. One also needs to express
time constraints in order to schedule pro-
cesses running in a distributed environ-
ment.

6.3 Interface between objects
and underlying concepts

Somehow we need to relate the objects to
the concepts they rely on. Common
practice is to describe this relation as
comments in the code. For example, a
procedure used to compute the factorial
function will contain a comment stating
this (usually presupposing that natural
numbers and the factorial function are
well-known, overlooking the fact that
these too need to be defined). In Figure 1
the class GROUP is related to the
mathematical concept group by the ass-
ertions, i.e. the comments as well as the
requires and ensures clauses. The
language used in the assertions contains
elements belonging both to Eiffel (the
object oriented language) and to the first
order1) language used to define a group.
For example, the ensures clause in the
description of the add feature is an
equation whose left hand side belongs to
Eiffel and right hand side belongs to the

to discover inconsistencies in our
descriptions by proving a contradiction.
Third, theorems may help finding and
improving efficient implementations.
The way graph theory already has been
used to configure cost effective telecom-
munication networks clearly illustrates
this fact.

The general rule is that the greater the
expressive power of a language is, the
less efficient theorem proving becomes.
First order languages incorporate in a
way a maximum of expressive power
combined with completeness. Depending
on the field of application, first order
languages may be too weak in expressiv-
eness, but also too strong. They may be
too weak to define certain structures, as
pointed out above, but too strong to
allow for efficient theorem proving. The
reason is that, although complete, first
order logic is not decidable, i.e. proofs
may be extremely long, and in general
there is no way of telling whether a
deduction is provable. (This fact is
tightly related to the halting problem of
Turing machines: There is no general
way of telling whether a Turing machine
with a given input tape will halt.) In
order to obtain decidability one has to
give up some of the expressive power of
FOL. At the present time we (the authors
of this article) have not gained enough
experience to tell whether we should
base our descriptions on another logic
than FOL.

Developed methodologies, so-called
formal methods or formal description
techniques, make formal descriptions
easier to write and understand. They can
be based on FOL, HOL or others, or on
some specific theory like set theory.
Their convenience in use is, in addition
to expressive power, an important criter-
ium for an appropriate choice. Although
based on some specific logic they can
present to the user a richer language with
e.g. possibilities for modularity, that is
translatable (compilable) into a language
of the logic they are based on, thus
allowing for lucid and comprehensible
descriptions. They can also be associated
with computer applications that support
automatic syntax checking, theorem pro-
ving, program verification, etc.

6.2 Object oriented descriptions

Object orientation is a design and de-
scription that does not only and
necessarily imply the use of an object

attempt to convey an understanding of
the problems, constructions, solutions,
etc., involved. Often there is a consensus
that if someone cared to undertake the
tedious task of translating them into
formal proofs, this could be done.

Formal proofs, on the other hand, do not
rely on any understanding of concepts,
but consist of a series of string mani-
pulations in conformance with given
patterns (called rules or schemata). They
are therefore particularly well suited to
computers. A problem with mechanical
theorem provers is that the search for a
proof often leads to a “combinatorial
explosion”, i.e. the number of cases that
needs to be inspected grows to such pro-
portions that the computer has to give up.
The search for a proof must therefore be
guided by heuristics or human
interaction.

The advantages of formal proofs are as
follows: First, they allow us to disregard
human subjectivity. Second, one can look
at mechanical theorem provers as tools
that help humans in finding and verifying
proofs and making the translation from
informal to formal proofs less tedious.
The third advantage is probably the most
important for us. Programming languages
are formal languages in the sense that
they are “understood” by computers.
When we write class definitions, we are
thus using a formal language. Programs
are best related to “mathematical
concepts” if the concepts are described in
a formal way too; this is even a prere-
quisite for formal program verification
(see Section 5).

In order to provide formal descriptions, a
formal language must be chosen.
Expressive power is an important criter-
ium. An outstanding class of languages
are the first order languages used in first
order logic (FOL). A large class of
mathematical structures are definable in
FOL, e.g. groups, rings, fields; see Figure
1. FOL is however limited in expressive
power. For example, it is impossible to
define the natural numbers NN or the real
numbers RR. In order to single out NN, one
has to move to higher order logic (HOL).

Efficient theorem proving is another
important criterium. Theorems are
important for several reasons. First,
theorems supply us with explicating
facts, thus improving our understanding
of defined concepts. Second, if we are
able to prove theorems, we are also able
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language used to define a group (G, ο).
This mixed interface language is necess-
ary to express relations between entities
in the object world and entities in the
mathematical world. The first order
descriptions together with the interface
language can be viewed as a “two tiered”
specification of the object oriented
descriptions, an approach that is develo-
ped by the Larch Project, see (4).

7 Conclusion
In order to make precise descriptions of
services without going into all the imple-
mentational details, a set of concepts
must be developed. By adopting an
object oriented approach and supple-
menting object oriented descriptions with
mathematically defined concepts it is
possible to describe services on different
levels of detail. In that way the require-
ments to descriptions coming from users,
subscribers, and providers are met.

_________________________________
1) In Figure 1 we have deviated a little

from first order logic when writing the
groups axioms in order to make them
easier to read.
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Introduction

Standards in the Intelligent Network area
are motivated by the interests of telecom-
munication service providers to meet
existing and potential market needs for
services in a rapid and cost effective
manner. Another important motivating
factor for IN standardisation is that the
service providers seek to improve the
quality of their service offer  and to
reduce the cost of network operations
and management.

One of the objectives of Intelligent
Networks (IN) is to allow the inclusion
of additional capabilities to facilitate ser-
vice and network implementation inde-
pendent provisioning of services in a
multi-vendor environment. That means to
allow service providers to define their
own services independently of equipment
suppliers, and in the same way allow
network operators to install switches and
databases supplied by different manu-
facturers.

The target IN will be applicable to a wide
variety of networks including Public
Switched Telephone Networks (PSTN),
Public Land mobile Networks (PLMN),
Packet Switched Public Data Networks
(PSPDN) and Integrated Services Digital
Network (ISDN), both Narrowband
ISDN (N-ISDN) and Broadband ISDN
(B-ISDN).

Capability Set 1 (CS-1)

CS-1 is the first stage of standardisation
of the Intelligent Network as an
architectural concept for the creation and
provision of telecommunication services.
It is, however, important to stress that
CS-1 only contains a subset of IN
capabilities. CS-1 can be viewed as
follows:

- CS-1 is a subset of the target intellig-
ent network architecture

- CS-1 provides network capabilities to
support services defined by stand-
ardisation bodies. In addition CS-1
will support the introduction of ser-
vices which neither are standardised
nor part of the proposed set of targeted
services. This enables service provid-
ers to offer tailor-made services to
their customers

- CS-1 will provide a useful experience
which can influence the future evo-
lution of IN.

Traditionally, standardisation has been an
activity which implied solutions based on
existing technology. In the case of IN the
standardisation has become closer to a
research project where the results are
advancing the current technology. How-
ever, due to the project size and the large
number of participating organisations,
compromises are necessary in order to

make progress, and the standards may
therefore technically not represent the
optimal solutions for each service pro-
vider.

CCITT SG XI started work on IN in
1989. There were different opinions
concerning the time frame for which the
group wanted to achieve implementable
recommendations. Two opinions were
confronted: On the one hand, strong
market needs require implementable
specifications in a very short time frame.
It was also stressed that the market does
not have time to wait several years for
pilot trials.

On the other hand, it was argued that in
order to achieve viable solutions it would
be necessary to work on a long term
basis.

As the work progressed it became clear
that most of the participants favoured the
first approach and aim for specifications
already in 1992. (CS-1 will formally be
approved in March 1993.) In Figure 1
some milestones of the work on IN is
shown.

CCITT is a consultative committee
which produces recommendations for the
International Telecommunication Union
(ITU). CCITT is organised into study
groups, and they are open for all parties

Standardisation activities in the intelligent network area
B Y  E N D R E  S K O L T

Figure 1 Milestones in the work on IN

Abstract
This paper gives an introduction to the ongoing standardisation activity on Intelligent Networks (IN). It contains an overview of the
first available standard: Capability Set 1 (CS-1). The standard defines the service requirements for CS-1 and introduces the concept
of service independent building blocks (SIBs). It also covers call modelling and functional architectural aspects.

The paper also gives an overview of preliminary plans for the next standardisation phase of IN, Capability Set 2.
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in the telecommunication society. A
number of equipment manufacturers, ser-
vice providers, network operators and
organisations representing the customers
from all over the world have participated
in the specification of CS-1.

The large number of participants imply
that CS-1 is a compromise of many
interests. There is, however, no doubt
that Bellcore’s early IN studies have had
considerable influence on CS-1. In
addition, the equipment manufacturers
have been very active in order to prevent

the standards to impose too many
changes to current switching technology.

What is contained in
Capability Set 1?
As mentioned above, CS-1 contains only
a subset of the target IN architecture, but
will give the telecommunication players
a common platform for future evolution.
In the first stage of the work much effort
has been focused on the modelling of the
IN concept and a conceptual model for
IN has been developed to structure the
concept. The model consists of four

planes where each plane represents a
theoretical view of the services and
network functions as follows:

- Service Plane. This plane illustrates
the view of a service from a
customer’s point of view. A service is
represented by means of generic
blocks called service features.

- Global Functional Plane. This plane
illustrates a service provider’s view of
the service creation process. The ser-
vice and service features in the service
plane are mapped to service independ-
ent building blocks (SIBs) in the
global functional plane.

- Distributed Functional Plane. This
plane illustrates a network operator’s
view of the network represented as
functional entities1) and relations
between them. The SIBs in the global
functional plane will be mapped into
functional entities in the distributed
functional plane.

- Physical Plane. This plane models the
physical network with different
physical nodes and protocols.

CS-1 provides an IN platform, which is
the base for provision of services. This
platform has been developed on the basis
of a set of benchmark services and ser-
vice features. The services and service
features of CS-1 are based on a set of
Service Independent building Blocks
(SIBs). The SIBs are the service compon-
ents required for creation and composi-
tion of services.

An important accomplishment of CS-1 is
the definition of communications
protocols for the interface between the
Service Switching Function (SSF) and
the Service Control Function (SCF) (see
definitions on page 49). CS-1 also
contains other protocol standards. These
will be discussed later in this paper.

The main results of CS-1 is in the area of
service execution, that means the rules
and procedures to establish, maintain and
release a call. Service creation and ser-
vice administration have not been dealt
with in the same depth but may be a
major working area in the next stage of
IN standardisation (CS-2).

Figure 2 Parties in the telecommunication society

_________________________________

1)A functional entity is a grouping of
functions distributed in the network.
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“The CS-1 capabilities are intended to
support service and service features
that fall into the category of single
ended, single point of control  services
referred to as type A, with all other
services placed in a category called
type B.”

Single-ended service features mean that
these features only apply to one party in
a call and are independent of any other
parties that may be participating in the
call. Single point of control means that a
control relationship in a call can only
exist to one Service Control Function at
any point in time.

What will the tele-
communication society
gain from CS-1?

In this section I have summarised some
benefits the different telecommunication
parties (see Figure 2) will gain from CS-
1:

The separation of switching functions,
service logic, specialised resources and
subscriber data enables the network
operator to purchase equipment from dif-
ferent suppliers. Such equipment
includes Service Control Points (SCPs),
Service Switching Points (SSPs), Intel-
ligent Peripherals (IPs) and Service Data
Points (SDPs). In addition CS-1 will pro-
vide efficient network routing and give
savings in network and transmission
resources. However, the savings must be
paid for by an increase in signalling tra-
ffic.

Flexible provision of services and the
capability to offer services like Universal
Personal Telecommunication (UPT) and
Virtual Private Networks (VPN) across
several neworks operated by different
service providers will also be possible.
However, initially there will be several
restrictions on utilising the full capabili-
ties of these services.

One fundamental element of the IN
concept is the service independent build-
ing blocks (SIBs). By combining SIBs
the service providers and network
operators may offer a large number of
services. However, CS-1 only offers
some guidelines for the introduction and
deployment of services into the network.

End users and service subscribers will
through advanced user-network
interaction have access to a large variety
of services including customised service
profiles, flexible charging and user con-
trol.

The development cost in software and
hardware for public network systems are
considerable. Therefore, it is vital for the
equipment manufacturers to agree on
world wide standards in order to have
large markets for their products. With
CS-1 they have accomplished a global
standard.

CS-1 services
The service plane of the IN conceptual
model illustrates the service from a
user’s perspective. A service may be
composed of several service features or
service components. A list of service fea-
tures for CS-1 is shown in Table 1. See
Q.1211 for a more comprehensive
description.

The type of services which can be of-
fered in CS-1 is classified as type A ser-
vices. Services that require IN handling
but cannot be supported by CS-1 are
called type B. In CCITT recomm-
endation Q.1211 the following definition
is given:

Figure 3 Participants in a conference call connected to switches in different networks

Figure 4 An example of feature interaction



46

Figure 5 Stage 1 description of the Translate SIB
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In this case the two services will be inde-
pendently executed since the Freephone
service logic program belongs to the
called party and the CCBS service logic
program belongs to the calling user. The
interaction problem occurs because the
terminating exchange will view the
second attempt as an ordinary call (not a
Freephone call).

A conference call as a type A service will
provide the participants very limited
flexibility in the control and execution of
the call. For example, the A-party will
have to keep the control during the com-
plete lifetime of the call and the
associations of the parties physically take
place in the switches controlled by only
one Service Control Function.

For conference calls as type B the
associations of the parties may physically
take place in the switches controlled by
more than one Service Control Function.
It may also be offered that parties are
added to or dropped off and that the con-
trol of the call can be transferred from
one party to another. A conference call
example where the involved parties are
connected to switches in different
networks and where service control
interaction is necessary is shown in
Figure 3.

In complex services the SCF will need
rules to handle feature interaction2)

between parties in a call. Since this
aspect is not covered by CS-1, service
providers and network operators need to
rely on network and supplier specific
solutions. The feature interaction pro-
blem is illustrated by an example where a
Freephone service interacts with a Call
Completion on Busy Subscriber (CCBS)
service (see Figure 4). The calling user
dials the Freephone number and a busy
tone is returned. Then the calling user
activates the CDBS service. In the
network the following procedure will
take place:

When the network receives the
Freephone number, the called party’s
Freephone service logic program3) will
be invoked. The service logic program
will convert the Freephone number to
a network routing number and the
network will use this number to route
the calls to the Freephone destination.
When the Freephone user is busy the
terminating exchange will return a
busy signal. When receiving the busy

Figure 6 Call handling functional architecture

Figure 7 IN functional architecture including service management functional entities

_________________________________

2) A situation that occurs when an action
of one feature affects an action or
capability of another.

3) The service logic program is the
software which is running when a ser-
vice is executed.

signal from the terminating exchange
the calling user activates CCBS
causing the network to start monitoring
the called party’s access. When the
called party’s access becomes free, the
exchange will alert the originating
exchange and the call will automati-
cally be set up towards the called
party.
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There is a number of reasons why type B
services are not included in CS-1. Type
B services will require a complexity
which has not been possible to explore
within the time frame of CS-1. Type B
services may also involve manipulation
of abstract switching connections like
legs4) and connection points. Existing
switching equipment is not designed for
such applications.

The switching manufacturers have been
reluctant to introduce new software mod-
elling in order to support these advanced
capabilities.

On the other hand, type A services can be
implemented by relatively simple control
relationships between the switch and ser-
vice logic database. In contrast the type

B services may require sharing of
connection control and solutions based
on distributed processing with large
protocol complexity.

Service creation

The global functional plane of the IN
conceptual model is the service pro-
vider’s view of the telecommunication
network. This plane describes the service
creation process by use of SIBs. For CS-
1 fourteen SIBs have been defined, but
rules and methodology to combine the
SIBs have not been defined. A platform
for creation and execution of services
based on SIBs may be developed for CS-
2. A list of all the SIBs defined for CS-1
is provided in Table 2.

SIBs are abstract representations of
network capabilities that will exist in an
IN structured network. As the name of
these building blocks indicates, a SIB is
independent of user services and the
technology the services are developed
from.

CS-1 contains stage 1 description, i.e.
description of what each SIB does, and
stage 2 description, i.e. a description of
which functional entities the SIB
involves and information flows between
these functional entities. A stage 1
description of the Translate SIB is given
in Figure 5.

Functional architecture

The distributed functional plane contains
the IN functional architecture and pro-
vides a network operator’s view of the
network. The functional architecture
consists of functional entities (FE) where
each FE represents a grouping of
network functions, for example service
control logic, specialised resources, ser-
vice data, connection control, etc. The
distributed functional plane also defines
relationships between functional entities.

The following functional entities
required for call handling are defined:

Figure 8 Control relationships for the IN functional architecture

Figure 9 Network interworking relationships

_________________________________

4) A leg is a theoretical representation of
a connection path towards some
addressable entity, e.g. an end user.
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- Call Control Function (CCF). The
CCF provides call/connection process-
ing and control. It supports functions
like trigger detection mechanisms in
order to detect that a call requires IN
handling and contains functions
required to establish, manipulate and
release call/connections.

- Service Switching Function (SSF). The
SSF is closely associated with the CCF
and provides the set of functions
required for supporting interaction
between the CCF and the Service Con-
trol Function (SCF).

- Service Control Function (SCF). The
SCF contains the service logic pro-
gram and the processing capability
required to handle IN services.

- Service Data Function (SDF). The
SDF contains customer  and network
data available for real time access by
the SCF for execution of IN services.
It interfaces and interacts with the
SCF.

- Specialised Resource Function (SRF).
The SRF provides the specialised
resource such as digit receivers,
announcements, conference bridges,
etc. required for the execution of IN
services.

The functional architecture is shown in
Figure 6.

Call control
The call control aspects involve the
functional entities CCF, SSF and SCF.
Some key principles for CS-1 call control
are:

- The SSF to SCF relationship is service
independent, i.e. CCF and SSF do not
contain service logic specific to the
services offered in CS-1.

- The CCF has the control of the
connections in the switch at all times.

- In case of SCF failure the CCF/SSF
should be able to proceed to a call
completion or normal call release.

- The SSF should never have interaction
with more than one SCF at a time for a
single call.

User-network interaction

In a large number of services there will
be a need for user-network interaction in
order to provide a user-friendly access.
This interaction will be suported by a

variety of text messages (ISDN) and
voice announcements. For this purpose
the specialised resource function or an
intelligent peripheral (physical network
node) is used. An important principle in
user-network interaction is that the Ser-
vice Control Function will have the
capability to suspend and resume service
processing on behalf of the calling and
called party.

With the enhanced capabilities for user-
network interaction, user control will be
offered to the customer in order to
manage the services. Customer control
includes the functionality to interrogate,
modify and delete records in the
customer’s service profile. The customer
control procedure primarily addresses the
functional entities SSF, SCF, SDF and
SRF. A customer control procedure will
normally take place outside the context
of a call.

Service management

The CS-1 standards do not cover service
management aspects, but the entities
responsible for management have been
identified:

- Service Management Function (SMF).
The SMF may contain functions for
deployment of service software and
data to the network. Relationships with
other functional entities have not been
standardised.

- Service Creation Environment
Function (SCEF). The SCEF may
contain tools for creation and verifi-
cation of services.

- Service Management Agent Function
(SMAF). The SMAF may contain
functions for access to the Service
Management Function.

The functional architecture including the
service management related functional
entities is shown in Figure 7.

Interfaces required for
Capability Set 1

For CS-1 thirteen functional relationships
or interfaces between functional entities
have been identified. The functional
relationships are shown in figure 8. In
addition four types of control relationship
have been defined in order to distinguish
the type of physical interfaces. They are
defined as follows:

- Service control relationship. This
relationship involves the separation of
switching functions from service con-
trol logic.

- Connection control relationship. This
relationship contains capabilities to
establish, supervise and release bearer
connections (transmission paths).

- Call control relationship. This rela-
tionship contains capabilities to pro-
vide control between end-users for
non-IN based services (e.g. ISDN sup-
plementary services).

- Management related control rela-
tionship. This type of relationship is
not standardised for CS-1.

For CS-1 the protocols between the Ser-
vice Switching Function and the Service
Control Function (SSF-SCF), the Service
Control Function and the Specialised
Resource Function (SCF-SRF) and the
Service Control Function and the Service
Data Function (SCF-SDF) are stand-
ardised. These protocols are all of the
service control relationship type. With
reference to the OSI layer model, they
will be implemented as application layer
protocols.

Figure 10 Preliminary dates for the issue of new capability sets
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In addition to the work on interface
standards for IN, CCITT has defined
application layer structure for application
protocols which is applicable to the IN
protocols. For all the CS-1 specified
protocols the same underlying protocols
can be used, e.g. Transaction Capabilities
Application Part (TCAP) or application
protocols supporting remote operations.

Network interworking

CS-1 has provided recommendations to
be used within a single network in a
multi-vendor environment. Therefore, the
network operators will have to rely on
bilateral or multilateral agreements in
order to offer services across networks,
e.g. Freephone services, Universal Per-
sonal Telecommunication services and
Virtual Private Network services.

However, the interface between Service
Control Function and Service Data
Function may be implemented as an
inter-network interface. An application of
this interface is seen for the offering of
credit calling services, where the Service
Data Function may be a database which
contains authentication data, e.g. per-
sonal identification number (PIN) codes
in combination with account numbers.

The Service Control Function to Service
Switching Function relationship is not
considered as an inter-network interface.
This interface would require additional
security capabilities in order to be taken
into account. Work on Open Network
Provision (ONP) may have impact on
whether or not this interface will be
considered in future capability sets.

The interface between two Service Con-
trol Functions would violate the “single
point of control” which is a requirement
for the type of services to be offered wit-
hin the scope of CS-1, thus not stand-
ardised. In the future evolution of IN this
relationship must be considered, in
particular in order to solve the service
feature interaction problem.

The interface between two Service Data
Functions is not standardised for CS-1.
However, this relationship may be
important in mobility applications for
location handling and optimal distri-
bution of data.

Table 1 CS-1 Service Features. Service features marked can only be offered with
restrictions

Algorithm: Applies a mathematical algorithm to input data to produce a
data result.

Charge: Determine special charging treatment for the call in addition
to that normally performed by the basic call process.

Compare: Performs a comparison of an identifier against a specified
reference value.

Distribution: Allows the user to distribute calls to different logical ends of
the SIB dependent of user specified parameters.

Limit: Limit the number of calls related to a service feature even
though calls may not be causing congestion. Such limiting
will be based on user specified parameters.

Log Call Log detailed information for each call into a file. The 
Information: collected information may be used for management services,

e.g. statistics.

Queue: Provide sequencing of calls to be completed to a called
party.

Screen: Perform a comparison of an identifier against a list to 
determine whether the identifier has been found in the 
active list.

Service Data Enables the user’s specific data to be replaced, added,
Management: changed, retrieved, incremented, decremented or deleted.

Status Provide the capability to request for the status and/or status
Notification: changes of network resources, e.g. subscriber line.

Translate: Translate input data to output data, e.g. a Freephone 
number to a network routing number.

User Allows information to be exchanged between the network
Interaction: and the calling or called party.

Verify: Provide confirmation that information received is consistent
with the expected form of such information.

Basic Call For CS-1 the Basic Call Process has been defined as a 
Process: specialised SIB which provides the capabilities for basic

calls. See Q.1204 and Q.1214 for a more comprehensive
description of the Basic Call Process.

Table 2 List of service independent building blocks for Capability Set 1

Reverse Charging Attendant
Call Distribution Mass Calling
Call Gapping Split Charging
Call Limiter Premium Charging
Call Queuing Private Numbering Plan
O_Call Screening One Number
T_Call Screening Customised Ringing
Closed User Group Call Logging
Customer Profile Management Call Forwarding on BY/DA
Follow-Me Diversion Call Forwarding
Origin Dependent Routing Personal Numbering
Customised Recorded Announcement Automatic Call Back*
Time Dependent Routing Call Waiting*
Originating User Prompter Multi-Way Calling
Abbreviated Dialling Meet-Me Conference*
Authentication Call Transfer*
Authorisation Code Call Hold with Announcement*
Off Net Access Consultation Calling*
Off Net Calling



51

aspects. However, in order to accomplish
standardised solutions for international
services across several networks some
work has to be done. For CS-2 it is pro-
posed to initiate work in this area, both
network interworking between public
networks and public and private
networks.

Security

Security aspects will also have to be
studied in CS-2. Basically there are two
types which are important for IN:

- access control

- data control.

Access control contains the user identifi-
cation, user authentication and user aut-
horisation by the network, where the user
may be end-users, service providers and
network operators. Data control relates to
the control of input data, which has been
introduced by a user.
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- enhancement of service execution
aspects

- service management including service
creation

- service and feature interaction

- network interworking

- security aspects.

Modelling of the IN concept will be an
important part of the work and may in
addition to the above mentioned areas be
influenced by the ongoing activities in
broadband and mobile radio.

The following outlines some preliminary
thoughts concerning the work items for
CS-2:

Service management

The future networks may be structured
according to Intelligent Networks and
Telecommunication Management
Networks (TMN), where TMN is the
concept for support of the network
operator’s and service provider’s
management requirements. This includes
procedures for planning, provisioning,
installing, operation and administration
of telecommunication services. Since the
IN concept also incorporates manage-
ment aspects, some work has to be done
in order to align the two concepts. The
work has already started, and for CS-2
this will be a prioritised work item. Part
of the work will include modelling of
service management functional entities
illustrated in Figure 7.

Service interaction

One of the most complex areas of the
work on IN is service interaction. Service
interaction is understood as the mutual
influence services may have on each
other, and occurs when the execution of a
service modifies the behaviour of the
execution of another service. In this
paper a service interaction example has
been illustrated for a Freephone service
and Call Completion to Busy Subscriber
service, see Figure 4. In order to provide
advanced services for CS-2, service and
feature interaction must be studied in
detail.

Network interworking

The CS-1 recommendation set focuses on
network internal aspects, and is very little
concerned with network interworking

Interfaces between Service Management
Functions have not been considered as an
inter-network interface.

An illustration of the possible interfaces
for network interworking is given in
Figure 9.

Future standardisation
activity

It is a common view that it will take
many years to accomplish the target IN
which is characterised by attributes such
as efficient use of network resources,
subscriber control of service attributes
and customisation of services, modul-
arisation and reusability of network
functions, integrated service creation and
implementation, standardised manage-
ment of service logic, etc.

The way that has been chosen to reach
this goal is to define capability sets
which are to be subject of standardisation
activity. To ensure a smooth evolution
towards the target IN the recomm-
endations produced must fulfill two
important criteria:

- Backward compatibility, that means
that the next capability set must be an
evolution of CS-1

- Open-endedness towards long term
views.

At the moment there are no fixed plans
for when the future capability sets will be
ready. However, it has been proposed to
issue results from the standardisation
activity every second year. That would
imply CS-2 recommendations in 1994-
95, CS-3 recommendations in 1996-97,
etc. (see Figure 10).

CS-1 is the first stop towards the target
IN. Even though the technical work has
formally been completed there is a need
for a maintenance activity of CS-1. This
will include removal of inconsistencies in
the current version as implementation
experience is progressing. This work will
be done in parallel with the initiation of
the next capability set.

At this stage detailed planning of the next
capability set, CS-2, has not yet started,
however, it is likely that CS-2 will
include studies in a number of areas such
as:
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1 Introduction
So far the research and standardisation
on IN and B-ISDN has progressed more
or less independently. The basic IN
concept, separation of service control and
switch control, has been motivated by a
need for rapid and independent evolution
of services and technology and a need for
advanced addressing facilities. At this
point in time, IN architectures proposed
by standardisation bodies (CCITT/ETSI)
are not taking into account B-ISDN ser-
vice requirements. On the other hand,
effort has been put into the stand-
ardisation of a control architecture and
signalling for B-ISDN without taking
advantage of the results obtained from
the work on IN.

B-ISDN is likely to offer a wide range of
multimedia/multiconnection services
(point-to-point and point-to-multipoint)
needing complex call handling functions
(8, 9). There is no longer a simple one to
one relationship between a call and a
connection. A call may be associated
with a number of connections, the
number and quality of the “active
connections” varying as the call pro-
gresses. Furthermore, advanced call
negotiation capabilities will be needed
for interworking between end-users with
different terminal capabilities. An evalu-
ation of the B-ISDN service requirements
leads to a control architecture which
enables calls to be established and con-

trolled independently of associated
connections. This implies separation of
service handling and connection handling
functionality.

A strong relationship exists between the
basic IN concept and the concept of ser-
vice and connection control separation in
the B-ISDN control architecture. How-
ever, the IN architectures proposed by
standardisation bodies will need some
modifications to incorporate B-ISDN
requirements. Taking both the basic IN
concept and B-ISDN service require-
ments into account, we want to visualise
the separation between service process-
ing functionality and functionality
associated with manipulation of the com-
munication resources in the underlying
B-ISDN network. Our implementation of
the interface between service logic and
network technology is based on the
Connection Control Socket described in
the IN Connection Control Model pro-
posed by ETSI/NA6 (1). This paper
describes and discusses a possible imple-
mentation of the model in a B-ISDN
network.

2 Overview of the B-ISDN
trial network

Norwegian Telecom Research partici-
pates in a wide range of B-ISDN activi-
ties. As part of these activities, a B-ISDN
trial network is being developed. The
network will serve as a testbed for IN
supported B-ISDN connection control
functionality and ATM (asynchronous
transfer mode) traffic and performance.

2.1 What is ATM and B-ISDN?

B-ISDN is the new broadband network
currently under development and stand-
ardisation by CCITT (6, 7). It offers the
prospect of extending the range of ser-
vices offered by ISDN considerably. B-
ISDN is planned to support services with
both constant and variable bit rate for
transmission of data, voice, sound, still
and moving pictures and multi-media
applications which may combine any of
these components.

The transfer mode chosen for B-ISDN is
called asynchronous transfer mode
(ATM). The term transfer comprises
both transmission and switching aspects;
thus ATM is a technique for transmitting
and switching information in a network.

All information to be transferred in ATM
is contained in cells of a fixed size. The
cells have a 48 octet information field
and a 5 octet header. The information
field is available for the user. The header
carries information which is used by the
ATM network itself. Its main component
is a label for identification of cells.

ATM is a connection-oriented technique.
Individual connections are recognised
from the label field inside the ATM cell
header. The term asynchronous refers to
the fact that cells belonging to a
connection are sent according to the
actual need, and thus may appear in an
irregular way. This is illustrated in Figure
2.

The connections offered in an ATM
network are called virtual channel
connections. A virtual channel
connection is a concatenation of one or
more virtual channel links. A virtual
channel link typically spans a single
physical link betwen two network nodes
(switches, terminals, etc). Each virtual
channel link is assigned an identifier.
This identifier is called the virtual
channel identifier (VCI) and is part of the
cell header. The VCIs for a connection
normally remain unchanged for the
duration of the connection, although
there may be exceptions, as explained
later.

IN control of a B-ISDN trial network
B Y  K I R S T I  A  L Ø V N E S ,  F R A N K  B R U A R Ø Y ,  T O M  H A N D E G Å R D  
A N D  B E N G T  G  J E N S E N

Abstract
This paper describes and discusses the modelling of connection control functionality in a B-ISDN (Broadband ISDN) trial network
under development at Norwegian Telecom Research. The main objective of our work is to experiment with IN control of B-ISDN.
The virtual switch concept adopted from ETSI/NA6 enables a decoupling of service logic and network technology.

Figure 1 ATM cell

Figure 2 ATM principle
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Figure 3 ATM switch

Figure 4 The B-ISDN trial network
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The virtual channels are unidirectional.
All cells associated with an individual
virtual channel connection are trans-
ported along the same route through the
network. Cell sequence is preserved, but
cells may be lost. A bidirectional
connection is realised by means of two
unidirectional virtual channel
connections.

The ATM switch is capable of inter-
connecting incoming virtual channel
links with outgoing virtual channel links.
This implies two main tasks: Translation
of VCI and cell transport from ingoing to
outgoing physical links.

Point-to-point, point-to-multipoint as
well as multipoint-to-point con-
figurations are possible. Figure 3
illustrates point-to-point and point-to-
multipoint configurations. As shown,
point-to-multipoint configurations imply
copying of cells from an incoming
physical link (link2(vci11)) to two or
more outgoing physical links (link3(vci3)
and link4(vci3)). On the contrary, multi-
point-to-point configurations imply mul-
tiplexing of cells from two or more
incoming virtual channel links to one
outgoing virtual channel link.

The switch is capable of differentiating
between reserved and through-connected
connections. For a connection which is

only reserved, cell transport on the given
connection is inhibited although resour-
ces to carry out the cell transport for the
connection have been reserved.

2.2 Basic components of the 
B-ISDN trial network

Figure 4 shows an early version of the
trial network consisting of an ATM
switch, a customer premises network
(CPN), terminals, transmission system
and control units (service control units
and connection control units). The
network elements are interconnected by
ATM based optical transmission systems
with bit rates of 155 Mbit/s. Later vers-
ions of the trial network will be expanded
with more ATM network elements
(switches, CPNs, terminals, etc.). Furth-
ermore, interworking units enabling com-
munication with MANs, LANs and
ISDN will be introduced.

As seen from Figure 4, the optical links
are used for user data only (i.e. speech,
audio, video). Control information is sent
on a separate signalling network imple-
mented by standard Ethernet. The use of
Ethernet as a dedicated signalling
network enables a decoupling of signall-
ing and transport problems.

2.3 Introduction to the B-LAB
connection control imple-
mentation

2.3.1 Overall control architecture

The connection control activity is a coop-
eration between IN and broadband rese-
arch activities. The main objectives of
our work is to verify system concepts and
architecture, implement a connection
control system for the trial network and
explore the interaction between services
(existing and future) and the ATM
network. Through our modelling and
implementation work we also gain
experience with object oriented techni-
ques.

As shown in Figures 4 and 5, the control
architecture is composed of two control
domains: service control (SC) and
connection control (CC). In Figure 5 one
CC node controls its separate ATM
switch. Arrows are indicating the inter-
faces between a CC node and the SC
domain, between two CC nodes, between
a CC node and a terminal, between the
SC domain and a terminal and between a
CC node and an associated ATM switch.

In summary, the service control domain
contains the service logic necessary to
process service requests from end-users,
while the connection control domain
contains the functionality needed to
establish, modify and release the reque-
sted connections in an ATM network. A
more detailed description of the function-
ality of SC and CC follows in section 3.

2.3.2 The SC-CC interface

As our implementation of the SC-CC
interface is based on the Connection
Control Socket Model (CCSM) deve-
loped by ETSI/NA6, a brief description
of its basic objects and service primitives
will be given before going into a more
detailed discussion of our control system.

The Connection Control Socket Model is
one of the components of the Connection
Control Model (CCM) in the ETSI IN
architecture (1). The other two compon-
ents, Basic Call Model and Connection
Segment Relationship Model, are not
included in our prototype.

The Connection Control Socket Model
was chosen for our implementation as it
seems to be in line with some of the main
IN objectives:

Figure 5 Overall control architecture



- The model allows a network independ-
ent execution of services.

- The model provides the services (call
instances) with a simple consistent
view of the underlying network.

- The model is powerful in terms of pro-
viding a large variety of connection
configurations.

In this model the service instance views
the network as a virtual switch object
consisting of two types of attributes: legs
and connection points. Each virtual
switch may own several legs and
connection points.

A leg is an abstract representation of a
communication path extending from a
connection point to an addressable
network entity (e.g. a terminal). A leg
may be unidirectional or bidirectional.

A connection point (CP) represents an
interconnection allowing information to
flow between legs. The legs associated
with a connection point may be joined
(connected to the CP) or split
(disconnected from the CP). In our
implementation of the socket, a leg is
always associated with a connection
point.

Figure 6 illustrates a socket containing a
connection point and three associated
legs. Two of the legs are joined (i.e.
information flows between them), while
the third leg is split from the connection
point (i.e. no information is allowed to
flow between this leg and the other two
legs).

Below follows a short description of the
service primitives across the SC-CC
interface:

open_socket: This message is sent from
SC to CC to indicate the start of a sess-
ion.

create_cp: This message is sent from SC
to CC to request creation of a connection
point. In our implementation a
connection point must always be created
before legs are created.

create_leg: This message is sent from SC
to CC to request creation of a leg.
Create_leg implies reservation of necess-
ary communication resources in the
ATM network.

join: This message is sent from SC to CC
to request a leg to be joined to a
connection point. Join implies through-
connect of reserved communication
resources in the ATM network.

modify_leg: This message is sent from
SC to CC to request modification of QoS
for a leg.

split: This message is sent from SC to
CC to request a leg to be split from a
connection point. Split implies
disconnect of associated communication
resources.

free_leg: This message is sent from SC
to CC to request a leg and all associated
resources to be released. Free_leg
implies release of associated communi-
cation resources.

free_cp: This message is sent from SC to
CC to request a connection point and all
associated resources to be released.

close_socket: This message is sent from
SC to CC to indicate the termination of a
session.

Due to limited signal multiplexing
capability in the ATM trial network,
some restrictions are put on the possible
combinations of legs and connection
points:

- The legs associated with a connection
point must be all unidirectional or bidi-
rectional.

- For the unidirectional case, at most one
incoming leg may be joined at a time
(no restrictions on number of joined
outgoing legs), i.e. effectively sup-
porting point-to-multipoint con-
figurations.

- For the bidirectional case, at most two
legs may be joined at a time, i.e.
effectively supporting point-to-point
configurations.

3 Functionality of 
service control and 
connection control

This section gives a more detailed de-
scription of the overall control
architecture introduced in chapter 2. A
service example is used to illustrate the
role and functionality of the two control
domains.

3.1 A service example

B-ISDN is likely to extend the range of
services offered by ISDN considerably.
The ATM network provides flexible
bandwidth allocation mechanisms enabl-
ing a variety of multiconnection/mul-
tiparty services. To offer these services,
the following call handling capabilities
seem to be necessary:

- call (context) negotiation and terminal
compatibility check

- establishment of multiconnection calls

- establishment of multiparty calls (e.g.
broadcast and conference calls)

- modifications of Quality of Service for
an established connection

- dynamic modifications of number of
“active connections” in a call (i.e. the
number of established connections
may vary during the lifetime of a call)

- dynamic modification of number of
active parties in a call (i.e. the number
of communicating parties may vary
during the lifetime of a call).

Figure 6 A socket containing a connection point and three associated legs
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Below follows a service scenario includ-
ing these call handling capabilities. The
scenario involves Rosemary, her little
baby, doctor Smith (the family doctor)
and doctor Jones (a dermatologist).

Rosemary’s baby has been crying all
night, and Rosemary suspects that it has
something to do with the red spots ap-
pearing several places on her skin.
Maybe it is some kind of itchy skin
eruption? Rosemary decides to call a
doctor to hear his opinion. She carries
the baby to the videophone, and calls
doctor Smith, the family doctor. “It’s a
nice thing this videophone”, she thinks.
“It’s much easier to just show the pro-
blem to the doctor instead of trying to
explain it. Now, maybe doctor Smith can
order some treatment directly?”

Doctor Smith, however, feels uncertain.
“There are so many kinds of skin pro-
blems these days, it’s impossible for me
to keep up”, he says, “I’d better call a
specialist. Don’t hang up!” Doctor Smith
temporarily parks the call to Jane and
makes a voice call to doctor Jones. To
keep the communication costs as low as
possible, doctor Smith always tries to
avoid using picture when it is not really
necessary. After explaining the problem
to doctor Jones, doctor Smith returns to
Rosemary. “I shall connect you to doctor
Jones. He is much better skilled to take
care of your problem.”

When doctor Jones gets the picture of
Rosemary’s baby on the screen, the first
thing he does is to press a button that
gives him an improved quality video
picture. “It’s a good thing you have a
modern videophone that can supply high

quality video”, he tells Rosemary. “With
only standard quality video, it’s not
possible to tell one skin eruption from the
other.” Doctor Jones decides that Rose-
mary can treat the baby’s skin herself,
using healing ointment and bactericidal
baths. Doctor Jones calls the new
medical video database. He knows he
can get a video clip there, illustrating
how the treatment is to be done. He
identifies the video clip, and orders it to
be displayed both to himself and to Rose-
mary, giving him the opportunity to sup-
plement the illustrated treatment.

3.2 Service control

Assume doctor Smith has a UPT (uni-
versal personal telecommunication) sub-
scription. Rosemary dials his UPT
number (logical address), SC starts pro-
cessing the service request, detects the
address to be a UPT address and checks a
database to find the physical address of
doctor Smith’s present location. SC now
knows where to place the call.

Rosemary has requested a videophone
call (standard quality video and speech)
to doctor Smith. SC therefore checks if
doctor Smith has the requested terminal
capabilities at his present location and is
free to accept the call. As part of this
phase, SC negotiates the required quality
of service (QoS) between the two end-
user terminals. If the terminals are
equipped with different video codec
standards, it may be necessary for SC to
involve an interworking unit in the
network capable of handling the trans-
lation from one video codec standard to
the other. In our example we assume the
two terminals to be compatible, thus no
interworking unit is needed.

Note that number translation and Quality
of Service negotiation are performed by
SC. CC gets involved (a connection con-
trol socket is opened) first after knowing
the physical location and terminal
capabilities of doctor Smith. At this point
SC requests CC to create two connection
points for the call. Next, SC requests
creation of two sets of bidirectional
point-to-point legs; one set for speech
and one set for video. At this stage in the
call, the communication paths from
Rosemary to doctor Smith are reserved,
but not through-connected. This implies
that information is not allowed to flow
between the two end-users yet.

Figure 8 The reserved speech and video connections (Rosemary and doctor Smith)

Figure 7 Localisation of called party



The following sequence of requests are
used for reserving the speech and video
part:

open_socket

create_cp (cp1)

create_leg (cp1, leg1, speech, bidirec-
tional, Dr Smith)

create_leg (cp1, leg2, speech, bidirec-
tional, Rosemary)

create_cp (cp2)

create_leg (cp2, leg3, video, bidirection-
al, Dr Smith)

create_leg (cp2, leg4, video, bidirection-
al, Rosemary)

Rosemary receives an alerting indicating
that the phone is ringing at doctor
Smith’s. Detecting that doctor Smith
picks up the phone, SC requests each pair
of legs to be joined to their associated
connection points. The following sequ-
ence of messages is sent from SC to CC
to through-connect the speech and video
part:

join (leg1)

join (leg2)

join (leg3)

join (leg4)

This causes the call to be through-
connected and the two persons may com-
municate with each other via their vide-
ophone terminals. Figure 9 shows the
through-connected speech and video
connections.

Later, doctor Smith puts the call from
Rosemary on hold and calls the dermato-
logist, doctor Jones. As a consequence,
SC tells CC to split the speech and video
legs from Rosemary and the video leg
from doctor Smith and to set up a new
speech leg towards doctor Jones. The
following messages are sent from SC to
CC:

split (leg2)

split (leg4)

split (leg3)

create_leg (cp1, leg5, speech, bidi-
rectional, Dr Jones)

join (leg5)

Although the connections between Rose-
mary and doctor Smith are disconnected,
the call is not released and the network
resources are still reserved. Figure 10
shows the present situation.

Figure 9 The through-connected speech and video connections (Rosemary and doctor Smith)

Figure 10 Call hold (Rosemary)/call transfer (doctor Jones)

Figure 11 The through-connected speech and video connections (Rosemary and doctor Jones)
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Figure 12 Three-party configuration including video distribution

Figure 13 Example network



After having consulted doctor Jones,
doctor Smith returns to Rosemary. He
says goodbye and transfers her call to
doctor Jones. As a result, SC requests all
legs to doctor Smith to be released. The
following sequence of messages is sent
from SC:

split (leg5) #Doctor Smith returns to 
# Rosemary

join (leg2)

free_leg (leg1) #Rosemary is transferred 
# to doctor Jones

free_leg (leg3)

create_leg (cp2, leg6, video, bidirection-
al, Dr Jones)

join (leg4)

join (leg5)

join (leg6)

Doctor Jones realises that he needs a
much better picture quality to be able to
make a thorough examination of the
baby’s skin eruption. This calls for a
renegotiation of the quality of service
between the two end-users for the video
part of the communication. If both ter-
minals are capable of supporting high
quality video, the following messages are
sent from SC to CC:

modify_qos (leg4, video_high)

modify_qos (leg6, video_high)

After having identified the type of skin
eruption, doctor Jones calls the medical

video database and orders the video clip
demonstrating the treatment to be pre-
sented to Rosemary and himself. The
video part of the communication between
Rosemary and doctor Jones is now
released and a new unidirectional point-
to-multipoint communication path is set
up from the video database to Rosemary
and doctor Jones. In order to do this, the
following sequence of messages are sent
from SC to CC:

free_leg (leg4)

free_leg (leg6)

free_cp (cp2)

create_cp (cp3)

create_leg (cp3, leg7, video, upstream,
VideoDB)

Figure 14 Two-party configuration
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create_leg (cp3, leg8, video,
downstream, Rosemary)

create_leg (cp3, leg9, video,
downstream, Dr Jones)

join (leg7)

join (leg8)

join (leg9)

The speech part between Rosemary and
doctor Jones is still through-connected in
order for doctor Jones to explain the dif-
ferent steps of the treatment. Figure 12
shows the three-party configuration with
video distribution.

3.3 Connection control

The task of CC is to set up, release and
manipulate connections in the ATM
network, making as efficient use of the
network resources as possible. To show
what this implies, we will first look in
some detail at how the first speech
connection is set up, and then extend the
picture by looking at a couple of three
party configurations. We assume the
network configuration shown in Figure
13. Note that in this example, SC
interacts with the CC node running in
Rosemary’s local exchange (exchange
A).

3.3.1 Two-party configuration

The sequence of requests needed from
SC to set up the initial speech connection
was given in section 3.2 and is repeated
below.

create_cp (cp1)

create_leg (cp1, leg1, speech, bidi-
rectional, Dr Smith)

create_leg (cp1, leg2, speech, bidi-
rectional, Rosemary)

join (leg1)

join (leg2)

Figure 15 Three-party configuration



Figure 16 Three-party configuration including video distribution

Figure 17 Software structure in one CC node
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The create_cp message defines a
connection point reference.

When the first create_leg message is
received, CC-A starts allocating network
resources corresponding to this leg. Since
this is a bidirectional leg, two virtual
channel connections from exchange A to
doctor Smith’s terminal are required, one
in each direction.

Each of the CC nodes participating in the
connection establishment performs the
same procedure, in our implementation
consisting of three main steps:

- Routing

- Link resource reservation and VCI
negotiation

- Switch resource reservation.

Algorithms for routing and resource allo-
cation in an ATM network is currently
being developed in international organ-
isations and research laboratories, includ-
ing NTR (2, 3).

Routing:
In our current implementation we have
chosen a very simple routing method.
Routing implies identifying the next
physical link to be used for the
connection, the identified link leading
directly to the destination terminal or to
another exchange.

The two needed virtual channel
connections are created in parallel with
identical routes.

The set of possible links is found by
looking up in a static routing table. Only
links with available bandwidth are
considered. The links are ranked accord-
ing to number of hops to the destination
address. This number is found in the
routing table. A link is selected according
to the following rules:

1 The link with the lowest number of
hops is preferred.

2 If several links have equal number of
hops, one of them is arbitrarily chosen.

If, as in this case, two virtual channel
connections are needed, they are always
created in parallel, with identical routes.
This constraint only complicates the
described routing algorithm slightly. The
motivation for this decision is explained
below.

Link resource reservation and VCI
negotiation:
Once the physical links have been
chosen, the internal data structures of the
CC node is updated, to reflect that the
required bandwidth on the links have
been reserved.

VCI negotiation implies that the CC node
exchanges messages with the neighbour-
ing CC node or terminal to reach an agre-
ement on the VCI values to be used on
the selected physical links.

Switch resource reservation:
As explained in section 2.1, the main
function of the switch is to interconnect
incoming virtual channel links with out-
going virtual channel links. When the
VCI negotiation is completed and the
virtual channel links are successfully
established, the CC node completes its
task by setting up the connections
through the switch. The connections are
only reserved through the switch, not
through-connected. User information is
not allowed to flow on the connections
until the appropriate join messages are
issued by SC.

Note that CC-A is not able to set up
connections through its switch when the
first leg is created, since the switch at this
point in time is an end-point for the
connections.

Eventually, the connections will reach
doctor Smith’s terminal, completing the
actions resulting from the first create_leg
message.

The second create_leg message from SC
makes CC set up virtual channel
connections to Rosemary’s terminal.

To summarise, the result of the first four
messages is reservation of all network
resources necessary for the communi-
cation to take place between doctor
Smith and Rosemary (i.e. a point-to-point
bidirectional connection).

Through-connect:
The effect of the join messages is
through-connect of the connections in the
switches. This will open for the flow of
user information on the connections.
When the first join message is received,
CC-A only stores the join request. Since,
in general, more than two legs may be
allocated to the connection point, CC
does not have enough information to per-

form through-connect until it has two
end-points, i.e. two joined legs. Thus,
when the second join message is
received, the virtual channel connections
will be through-connected in all
switches. The CC nodes will act on
response of a connect message, which is
created by CC-A, and travels through all
CC nodes along the route.

The resulting configuration is illustrated
in Figure 14. Voice communication can
now take place. The video connections
are established in a similar way (not
shown).

3.3.2 Three-party configuration

To illustrate how CC supports con-
figurations with more than two legs allo-
cated to a connection point, we turn to
what happens as doctor Smith tempor-
arily puts the connection to Rosemary on
hold in order to consult doctor Jones.

This example shows how the constraint
that only two bidirectional legs may be
joined to a connection point is used by
CC to reduce the number of virtual
channel links allocated. The idea is that
several legs may share the same virtual
channel links. The point-to-multipoint
and multipoint-to-point capabilities of
the switch, as well as the capability of
differentiating between reserved and
through-connected connections are also
necessary ingredients in this solution.

The following sequence of messages are
sent from SC to CC (again, only showing
the speech part):

split (leg2)

create_leg (cp1, leg3, speech, bidi-
rectional, Dr Jones)

join (leg3)

The split message triggers the reverse
operation of the previous join, i.e. the
virtual channel connections are
disconnected (i.e. returned to the
reserved state) in all the switches. User
information (speech) can no longer flow
between Rosemary and doctor Smith. All
network resources remain reserved, how-
ever.

The procedure for connection establish-
ment was described above. When the
create_leg message for leg3 is received,
this procedure is performed again. This



- create_sp - connect_leg
- setup_vc - disconnect_leg
- release_vc - modify_leg_bitr
- setup_leg - release_leg

Router: Router represents a manager of all external links
associated with a switch, and performs the routing of
connections not to be terminated in this switch. Based on
destination address and bandwidth/Quality of Service require-
ments, Router is capable of identifying the next switching node
and selecting a link to this node. One CC node will contain
only one Router instance.
The most important message sent from Switching Point to
Router is:

- select_route (dest_addr, conn_type, peak_bitr)

Link: This object represents a link connected to the switch.
Link is responsible of administrating the resources (bandwidth
and VPI/VCI values) associated with the link.
Messages sent from Virtual Channel to Link are:

- reserve_bitr - release_vci
- modify_bitr - release_bitr
- assign_vci

Virtual Channel: This object represents a single virtual
channel on one of the links going into or out of the switching
node. Virtual Channel is responsible of storing information
characterising the virtual channel. Several Virtual Channel
instances will be associated with a Switching Point instance.
The most important messages sent from Switching Point to
Virtual Channel are:

- create_vc - modify_bitr
- set_vci - release

Switch: This object represents an interface between a CC node
and an ATM switch. Switch Agent provides CC with a set of
hardware independent switching services to control the inter-
connection of virtual channels. One Switch Agent instance will
be associated with one CC node.
Messages needed for reservation, modification and through-
connect of switching resources for an ATM connection are:

- reserve - disconnect
- connect - release
- modify

Signalling Transport: This object represents a generic sender
and receiver of asynchronous/external messages. Sending
messages to external collaborators implies packing the
messages into network datagram packets and interacting with
the communication system to send the packets. Receiving
messages from remote collaborators implies fetching the pack-
ets from the communication system, identifying the receiving
objects, unpacking the messages and sending them to the
identified objects.
Messages defined are:

- send
- receive

Socket: This object represents an interface between a
connection control node and the SC domain. Socket coor-
dinates operations from SC and forwards them to objects
capable of performing the requested services. This object resid-
es within a CC node. Service Control will initialise a Socket
instance for every session with the CC node. The messages
sent to Socket from Service Control are identical to the service
primitives listed in section 2.3.2 (“The SC-CC Interface”).

Leg: This object represents a communication path from a
connection point towards an addressable entity in the network
(e.g. an end-user terminal). A Leg is always associated with a
Connection Point. Leg is responsible of storing the information
characterising a leg. Socket may create and control several Leg
instances.
The most important messages forwarded from Socket to Leg
are:

- create - modify
- join - free
- split

Connection Point: This object plays several roles. As seen
from Socket and Leg, Connection Point represents an inter-
connection or logical bridge allowing information to flow
between legs. Furthermore, this object is responsible for inter-
preting (in terms of ATM parameters) the virtual switch picture
and manage the ATM connections through the switching node.
As seen from Figure 17 the Socket may control several
Connection Point instances and several Leg instances will be
associated with one Connection Point object.
The most important operations forwarded from Socket to
Connection Point are:

- create_cp
- free_cp

Notifications sent from Leg to Connection Point are:

- create_leg - modify_leg
- join_leg - free_leg
- split_leg

Resource Analyzer: On requests from Connection Point,
Resource Analyzer performs a mapping of user oriented
(technology independent) description of network resources into
ATM specific parameters. One CC node will contain one
instance of Resource Analyser.
The following operation is defined on Resource Analyser:

- get_bitr

Switching Point: This object represents a switching point of a
single ATM connection. The connection may be unidirectional
or bidirectional. A connection through several switches will
have one Switching Point in each CC node. Switching Point
objects are cooperating to set up virtual channels between the
switches. One Switching Point may create and control several
Switching Points in neighbouring CC nodes.
The following messages are sent from Connection Point to
Switching Point:

- create_sp - disconnect
- setup_leg - release_leg
- connect
Messages sent between Switching Points in different CC nodes
are:

Figure 18 Object descriptions
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Figure 19 A message flow scenario (creation of a connection point and the bidirectional audio connection towards doctor Smith)

1 Service Control requests initialisation of a Socket
(open_socket)

2 Service Control requests creation of a connection point
(create_cp(cp1))

3 Socket creates and initialises a Connection Point
(create_cp(cp1))

4 When successfully initialised, Connection Point returns an
acknowledgement to Socket (cp_response)

5 Socket forwards the acknowledgement to Service Control
(cp_event)

6 Service Control requests creation of a leg (create_leg(cp1,
leg1, speech, bidirectional, Dr.Smith))

7 Socket creates and initialises a Leg (create (cp1, leg1, spe-
ech, bidirectional, Dr.Smith))

8 Leg requests creation of a communication path to the indi-
cated destination address (create_leg(leg1...))

9 Connection Point requests a translation from user oriented
network parameters into ATM specific parameters (get_bit
r(speech))

10 Connection Point creates and initialises a Switching Point
(initialise_sp)

11 Connection Point requests reservation of network resour-
ces for the leg (setup_conn)

12 Switching Point identifies the route/link to neighbour
switching node (selec_route) for the leg

13 Switching Point reserves a virtual channel (bandwidth and
VCI/VPI values) on the selected link. (create_vc,
assign_vci) for leg 1.

14 Switching Point (initiating) initialises a corresponding
Switching Point(responding) in neighbour switching node
(create_sp)

15 Initiating Switching Point requests reservation of com-
munication resources towards the destination address
(setup_leg)

16 Initiating Switching Point requests reservation of a virtual
channel between the two switching nodes (setup_vc)

17 Responding Switching Point confirms the reservation of
communication resources on the link (vc_respons)

18 Responding Switching Point confirms the reservation of
communication resources towards the destination address
(leg_resp)

19 Initiating Switching Point forwards the acknowledgement
to Connection Point (setup_resp)

20 Connection Point acknowledges the create_leg request
(response)

21 Leg acknowledges the create_leg request (leg_resp)

22 Socket indicates a successful creation of the leg
(leg_event)



time, however, some additional points
can be made. The result of the routing
step in CC-A, makes it clear that B is the
most suitable next node, i.e. a virtual
channel link from A to B is needed.
There is, however, already allocated a
virtual channel link from A to B, for
leg1. As pointed out above, there is no
reason to allocate a second one. If a
second link was allocated, the constraint
of maximum two joined legs (i.e. point-
to-point communication) implies that at
any point in time, at most one of them
would be used.

The resulting configuration is shown in
Figure 15. Only one link is allocated
between switches A and B. Note that
through switch B, each of the three
incoming virtual channel links are
connected with two outgoing links. Thus,
both point-to-multipoint, and multipoint-
to-point relations are found. Note that
this rather complex situation is only
reserved, not through-connected. The
point is that sufficient network resources
have now been reserved for any pair of
partners to communicate.

As mentioned above, the two virtual
channel connections allocated to realise a
bidirectional leg are always routed the
same way (in parallel). The reason is
seen from the example. If the two
connections between Rosemary and
doctor Smith had been routed separate
ways when the first two legs were
created, the idea of different legs sharing
links would be considerably more dif-
ficult to realise.

The last join message implies that user
information should be enabled between
the doctors Smith and Jones. The
connections are thus through-connected
in the switches C and E, as well as the
appropriate parts of the complex
connections in switch B, as shown in
Figure 15.

Finally, to illustrate how the video distri-
bution configuration is realised in terms
of ATM virtual channel connections; we
move to the point in the call where
doctor Jones decides to use the video
database. SC requests the bidirectional
video connection point and associated
legs to be deleted (using free_leg and
free_cp messages), and requests a unidi-
rectional connection point with associ-
ated legs to be created. The message
sequence is as follows:

create_cp (cp3)

create_leg (cp3, leg7, video, upstream,
VideoDB)

create_leg (cp3, leg8, video,
downstream, Rosemary)

create_leg (cp3, leg9, video,
downstream, Dr Jones)

join (leg7)

join (leg8)

join (leg9)

The actions performed by CC as the
messages are received, follow the
scheme explained above, and will not be
repeated here. The resulting con-
figuration is shown in Figure 16.

4 Internal structure of a
CC node

In the trial network, one CC node is con-
trolling one ATM switch. The CC node
interfaces other CC nodes, SC nodes and
control software in CPNs and end-user
terminals. The signalling network inter-
connecting different control nodes is
implemented by standard Ethernet, while
the CC nodes are implemented in Sun
workstations. Figure 5 shows the
physical configuration of the control sys-
tem.

This section gives a more detailed de-
scription of the software in one CC node.
A flexible and simple structure, picturing
the underlying switching system, is
obtained by applying object oriented
principles. In our implementation, OOR-
ASS (5), an object oriented modelling
method is combined with the programm-
ing language Eiffel. (4)

Figure 17 shows the basic object types in
a CC node and their interconnection,
Figure 18 contains supplementary object
descriptions and Figure 19 shows a
message flow scenario. The message
flow scenario shows the object
interaction needed to reserve the speech
leg towards doctor Smith (leg1 in our
service example). To simplify the
message flow scenario, objects handling
communication across external interfaces
are not included. In the figures the term
message is used in the object-oriented
sense, i.e. to “send a message to an
object” means the same as “request a ser-
vice” or “invoke an operation” on it.

As seen from Figures 17 and 18, trans-
port problems are encapsulated in the
Signalling Transport and Switch objects.
To avoid looking at B-ISDN signalling
protocols in our first prototype, the Eth-
ernet is used for signalling transport. An
integration of signalling traffic in the
ATM network requires updated function-
ality in the Signalling Transport and
Switch objects, but has no impact on the
overall object model. Thus, our CC
model is independent of the signalling
network chosen.

5 Conclusion

The B-ISDN connection control system
at Norwegian Telecom Research offers
powerful and flexible handling of various
connection configurations needed to sup-
port B-ISDN services. The use of IN
concepts and object oriented principles
have made this possible.

By adopting the virtual switch concept in
the Connection Control Socket Model
developed by ETSI/NA6, our control
system fulfills some of the main IN
objectives:

- The control system allows a network
independent execution of services.

- The control system provides the ser-
vices (call instances) with a simple
consistent view of the underlying
network.

- The control system is powerful in
terms of providing a large variety of
connection configurations. However,
due to limited signalling multiplexing
capabilities in the ATM switches,
some restrictions are put on the
possible combinations of legs and
connection points.

As described, the CC domain performs
the mapping from legs and connection
points to ATM connections and physical
switching points. An efficient use of
network resources seems to be obtained
by

- allowing legs associated with the same
connection point to share communi-
cation resources (virtual channel links)
in the ATM network

- mapping a connection point to a distri-
buted set of switching points.
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To focus on the functionality of the
connection control system and avoid
looking into B-ISDN signalling
protocols, standard Ethernet has been
used as a dedicated signalling network.
However, our CC model decouples com-
pletely signalling and transport aspects,
and an integration of the signalling traffic
in the ATM network will have no impact
on the software structure in a CC node.



1 Introduction

Intelligent networks will offer advanced
information processing and networking
of computers directly to the general
public. The terminal equipment in our
homes will probably consist of “work-
station-like” multi-purpose machines. As
increasingly advanced services pervade
our daily work we will need to have
assurance of their security properties.
That is, we must feel assured that
information we want to keep private
stays private, and that information we
trust and depend on to be correct, stays
correct, etc. Put in terms of what is to be
discussed in this paper the intelligent
network must be able to enforce a very
wide variety of security policies, ranging
from rather simple to quite restrictive.

The intelligent network and its services
must provide a sufficient variety of
security functionality to satisfy every
user. This is so because the intelligent
network is not just a part of the future
telecommunications network but it is the
future telecommunications network.

As indicated above, the security problem
is essentially the problem of enforcing a
security policy. Many texts dealing with
security aspects of computer systems
tend to give the impression that security
is mainly about encryption and secrecy
(confidentiality), security levels,
authentication protocols, etc., or that
absolute standards and references exist,
which is not true. Security is a truly rela-
tivistic subject, and the frame of refer-
ence is always given by, and only by a
security policy. Note that “national
security” provides no absolute reference,
it is just another (time dependent) policy,
although for many cases it is used as
some sort of “default” policy or baseline.

Throughout the paper we assume some
familiarity with the intelligent network
concepts and refrain from any ela-
boration on these unless necessary for the
clarity of exposition.

2 Intelligent network 
= distributed system

One of the basic ideas of the intelligent
network is the separation of service logic
from switching logic. An effective abs-
traction of this is to view the intelligent
network as consisting of two logically
separate “domains”, the service domain
(S) and the switching domain (X). Ser-
vices reside in S while connections and
other communications specific facilities
are placed in X. A well-defined interface
between S and X takes care of the
interactions between the two domains.

A close analogy is an application on a
workstation with network communi-
cations functions. The application is
running on your computer, supported by
the operating system and communi-
cations software and hardware. It may, or
it may not communicate with other appli-
cations without the user being explicitly
aware of this. Most important is that you
do not worry about how this happens, as
long as it works satisfactorily.

This view reduces the switches and
network to a basic communications “en-
gine” acting as a provider of connectivity.
The services need only know that this
connectivity is there when they need it
and they can ask for communication

whenever they want to. Still the com-
munications can be seen as an “add-on”
to most services (though some would
look silly without, e.g. Plain Old Telep-
hone Service, which basically is only
communication).

The services can in general be viewed as
distributed applications on this network
(5). (A service which is centralised can
be viewed as trivially distributed on one
node.) In general, there will be different
situations where distribution is natural or
preferable for various reasons. However,
we may see that many services of the
intelligent network will be of limited
interest if they are not distributed. The
Universal Personal Telecommunications
(UPT), Universal Access Number (UAN)
and Virtual Private Network (VPN) ser-
vices are prime examples of this. This
leads us to conclude that in order to have
an unrestrained view the intelligent
network is best considered as an open
distributed system on the public switched
network.

An immediate conclusion is that security
and privacy in intelligent networks
essentially reduce to security and privacy
in distributed systems. We cannot see
technically new security problems in the
intelligent network that are not present in
a general open distributed system. The

Some issues of security and privacy in 
intelligent networks
B Y  K L A U S  G A A R D E R

Abstract
Security and privacy in intelligent networks is treated as a case of security and privacy in distributed systems. We consider the
concepts of security policies and security domains. The enforcing of security policies in intelligent networks is given special
attention, and interdomain problems are seen as one of the major challenges. Authentication, authorisation, data security and
security management are discussed in broad terms and with some examples from services like UPT and VPN. We finally consider
formal methods of description and specification combined with object orientation as possible tools. The paper aims to give an initial
analysis of some security issues in intelligent networks.

Figure 1 a) A graphical rendering of the logical separation into Service domain
and Switching domain

b) Another view of the separation
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general security issues are the same even
if the applications are to some extent dif-
ferent. The differences between a com-
pletely general open distributed system
and the intelligent network lies in the
policy structures we may see. This will
be further elaborated on below. We are
then in a position to discuss security and
privacy in intelligent networks on a firm
basis, since security in distributed sys-
tems is a well established area of rese-
arch. Henceforth we will consider results
on security in open distributed systems as
equally valid for intelligent networks
security. Whenever “security”, “security
policy”, etc. is used, it is to be under-
stood in this context unless otherwise
indicated.

3 Security policies

As indicated in the introduction the term
“secure” is a relativistic term. Questions
like “Is this secure?” or “Has there been
a security breach?” are meaningless or at
best very hard to answer unless we are
given a frame of reference, a security
policy. The following definition of
security policy is from (1):

Definition 1 (Security Policy): 
A set of rules which define and constrain
the types of security-relevant activities of
entities.

The definition captures the fact that a
security policy is a collection of state-
ments on

- what is considered security relevant,
and

- how to protect these things from
damage or compromise.

Note that in order to avoid a circular
definition the term “security” in this
definition has to be interpreted as a qual-
itative concept established by those who
are defining the security policy. What
this means is always hard to decide, and
is one of the crucial questions we have to
answer when designing a security policy.
In regular business contexts the usual
practice will often be to put some eco-
nomic measure on what you are doing
and decide what it will cost in terms of
labour and money to restore what has
been compromised or lost. In some cases
this is easy and in other cases it is almost
impossible.

The only way we can “define” security
quantitatively is by reference to some
given security policy:

Definition 2: 
An object is secure if and only if its state
is in compliance with the security policy
enforced.

Security policy is violated if an object
fails to meet one or more of the re-
quirements set by the security policy.

This definition is not very precise (the
state of an object is unclear), but it
carries the necessary message that
security is always relative to some
security policy and nothing else. There
does not exist a thing such as absolute
security, simply because there is no refer-
ence.

A nice analogy is the law of ordinary
society. What is allowed in one state may
be prohibited in another and thus “break-
ing the law” is a relative concept. This
also means that if no security policy
exists, no violations of security can exist
(no law means no lawbreakers)!

3.1 Security domains

The concept of a security domain has
turned out to be very useful in structuring
complex security scenarios. A security
administration as defined by (1) is

Definition 3:
A human authority which establishes a
security policy and identifies the entities
to which the policy applies.

The security domain is then associated
with security administrations in the
following definition of a security domain
(1):

Definition 4: 
A security domain is a set of entities
(objects) that is subject to a single
security policy and a single security
administration.

Security domains are the domains of jur-
isdiction of a security administration.
The way they are defined, security
domains may form hierarchies. They will
either be disjoint or one completely
included in the other (since it seems rea-
sonable that no object may be partially
under purview of one policy and partially
another, since nothing guarantees that
these two policies are consistent with one
another). The world, seen from a security
point of view, may now be partitioned
into a patchwork of security domains,

each defined by its security policy. To
decide which security requirements apply
to an object, decide which domain it
belongs to and check the security policy
for that domain.

3.2 Interdomain problems

Problems occur when objects move from
one security domain to another. If the
two domains are part of the same hier-
archy there is usually some pre-defined
procedure to take care of this. If the two
domains are disjoint then we may have
what we call an interdomain problem.
The two policies may be incompatible in
some respects or even incomparable in
others. Traditionally such problems are
solved by negotiation in each case or
each class of cases. However, in our days
of increasingly fast electronic business
this is not always possible or desirable,
so the problem will have to be solved by
other means.

The reason why interdomain problems
are so hard to deal with is due to several
factors among which the lack of possible
standardisation is one. We believe it is
impossible, maybe even meaningless to
standardise security policies. The only
possible subject of standardisation is on
the implementation side. Some of the
mechanisms for implementing and
enforcing security policies may be given
standard forms. The ECMA Privilege
Attribute Certificate (PAC) and Control
Attribute Package (CAP) are attempts at
this for open distributed systems, hence
also applicable to intelligent networks.
We refer the reader to (2) and (1) for
details.

We believe interdomain problems will be
one of the most challenging security
issues in intelligent networks in
particular and distributed systems in gen-
eral. This is due to the fact that inter-
domain activities is not an exception but
a rule in doing business.

4 Security in the 
intelligent network

In this section we consider security in the
explicit context of the intelligent
network. First we discuss general
security policy issues. Then we move on
to discuss authentication, authorisation,
data security and security management in
broad terms, with some examples from
e.g. UPT and VPN.



4.1 Policies in the intelligent
network

For the remaining part of this paper it
will be assumed that for any situation, we
are under the jurisdiction of some
security policy, and every object will be
assumed to belong to some security
domain. This is just to ensure that talking
about security will always be meaning-
ful.

There will be security domains for the
different actors on the scene, like service
provider, subscriber, user and network
operators, etc. Certain relations between
these domains (or policies) will be given
by some unavoidable physical facts of
the network. The network operators will
typically require their policies to be
enforced with regard to the security of
the network operations, we could call this
the “network policy”. Hence, as all ser-
vices use this network, they will have to
comply with this network policy in
addition to whatever policy they have of
their own. Network policy may be seen
as a bottom (or top) level of a policy
hierarchy in the sense that all services
must comply with it, their own policies
considered a “refinement” of it.

The exact relations between the different
policies will be important for the way we
handle security in intelligent networks.
Among other things this will decide the
extent of interdomain problems we will
encounter. Consider the following policy
structure, where Pi ⊆ Pj means the first
policy is included in the second, i.e. all
rules of Pi are in Pj .

P1.1P1 ⊆ {
P1.2

P0 ⊆ { P2

P3.1P3 ⊆ {
P3.2

Here we may have well defined relations
between P0 and all other policies, since
they are all including P0 . The more
refined (with respect to P0 ) policies P1.2
and P3.2 may have to go to P0 to find a
common ground to resolve interdomain
activities. A possible solution in this case
could be to define a separate interdomain
policy, dictating rules for interaction with
other domains. (A simple such policy is
“If Px is a sub-policy of this policy it’s

OK, else NO INTERACTION”.) In the
absence of such simple general rules, an
interdomain policy could be quite
involved and maintenance will be a
major problem.

We believe that the policy structures of
the intelligent network will be signifi-
cantly more complex than the example
above. It should be a prime task to
investigate how we can best accom-
modate these various structures.

4.2 Authentication

The authentication problem is the pro-
blem of verifying the identity of entities.
Or as (1) defines it

Definition 5 (Authentication):
The process by which the identity of an
entity is established.

Authentication can be done in a
multitude of ways, some of which are
simple (e.g. simple passwords, PIN
codes) and some which are rather com-
plicated (e.g. zero-knowledge protocols
or interactive proof systems). In recent
research on security, authentication has
been receiving growing attention. This is
due to the increasing importance of open
and distributed systems. In such systems
you cannot know at all times who will try
to access the system. The other extreme
is a system which is only accessible from
a single physical location with strongly
restricted access. In the intelligent
network we must ensure that we can
authenticate several kinds of entities,
ranging from human users via physical
terminal equipment to processes. The
requirements for authentication in each
case will be stated in an authentication
policy to be enforced. The main pro-
blems for services providers will be to
accommodate all the different varieties of
authentication procedures which may be
required at all times and all locations.
Some standards have been proposed, like
the X.509 Authentication Framework
protocols. However, formal analysis of
these protocols have revealed weakness
(e.g. (9, 6)).

Nevertheless, the X.500 recomm-
endations probably give the best starting
point for a standard distributed directory
service containing public key
information and certificates for authenti-
cation.

Authentication in UPT

The UPT service will present a typical
authentication problem. In a fully develo-
ped UPT service it is vital to know who
exactly is using the service. A primary
reason is billing. It should be exceedingly
difficult for a user Alice to masquerade
as another user Bob, using his UPT ser-
vice and making him pay the bill.

The authentication issues in UPT have
been recognised by ETSI. It is reasonable
to assume that the experiences with the
authentication issues in the GSM system
will have an important effect on the work
with authentication in UPT.

As a UPT user moves around she will
pass through differing network segments
and thus possibly differing security
policies will be in effect in these seg-
ments. She may also choose to act either
as a professional or as a private person,
thus filling different roles with different
security policies, possibly requiring dif-
ferent authentication schemes.

UAN

One particular problem which may be
associated with UAN in particular is the
authentication of the service. That is, if
Alice calls a UAN she might be intere-
sted in being assured that this is in fact
the real UAN she wanted, not some fake.
Depending on the underlying business of
the UAN subscriber this can become a
real issue.

VPN

There is no reason to regard a virtual
network as much different from “real”
networks with their requirements for
access control. Security may be split
between the security in the actual
physical network and the VPN service.
The enforcement of a VPN security
policy may present a significant chall-
enge. VPN is typically a service which in
our opinion will be impossible to bring to
market without advanced security fea-
tures present from day 1.

Who authenticates who?

As authentication is a two-party process,
there is always possibly a need for
authentication for every combination of
pairs. If we assume that in the intelligent
network we have n generic entities we
can at worst risk n2 possible authenti-
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cation situations requiring differing treat-
ments. However, we believe the
following ones to be among the most
probable and common (User is a service
user agent or a human user in the sense
of end user):

User - Service (a user authenticating to a
service)

Service - User (a service authenticating
to a user)

User - Network (a user authenticating to
a network, real or virtual)

Network - User (a network authenticating
towards a user)

Subscriber - Provider

Provider - Subscriber

Note the asymmetries arising from
possible differences in policy, i.e. the fact
that “User - Service” may be different
from “Service - User” authentication.
Differing policies and requirements will
dictate how each of these authentications
are to be performed. Another issue which
will have to be resolved is the definition
of these entities, i.e. what is a “user”,
“service provider”, “service subscriber”,
etc.

4.3 Authorisation

Authorisation is often confused with
authentication, because in many
situations which we normally encounter
there is apparently no difference. Let us
quote the following definition from
ECMA Standard 138 (1):

Definition 6 (Authorisation):
The process by which an access control
decision is made and enforced.

If we follow this definition then aut-
horisation is quite different from
authentication, and also from ordinary
use of the word. Authorisation is the very
process of granting or denying access to
resources. That is, an entity is not “aut-
horised” until it is actually granted
access. Authorisation is of course tightly
coupled to authentication. Some security
policies grant access based solely on
authentication, while others require furt-
her requirements to be fulfilled (like
being in possession of certain credenti-
als).

Authorisation policy and authentication
policy together form the core of what is
called an access control policy. The
access control policy decides who can
access resources and how (e.g. read,
write, execute, etc.). In the intelligent

network we will need access control
policies for all resources which should
have some limitations on their accessi-
bility. Exactly how these are imple-
mented may vary, but we suggest using
the privilege attribute and control attri-
butes concepts from the ECMA STD 138
(1). These are general constructs
designed for use in open distributed sys-
tems, and hence should be suitable also
for intelligent networks.

Particular services

It is hard to point to any particular ser-
vice on this issue. Any service which
may be used to access resources in ways
that can be considered harmful will need
access control of some sort, which will
be decided by the security administration
of the domain to which the resources
belong. Subscriber and service profiles
will be typical entities in need of access
control, as will the basic network entities.

Authorisation is often based on owners-
hip to information. Thus, to decide who
owns any particular piece of information
can become an important issue. Owners-
hip is not always obvious. If we create
documents in our business these will typ-
ically be regarded as owned by
whichever company we work for, or even
a customer of this company. Internally in
the company ownership may be more
refined, relating to smaller units all the
way down to persons. Internally the per-
son producing the document may be
considered the owner.

The important issue in the intelligent
network is to be able to accommodate
any such variety of authorisation policy,
not to decide which should exist and
which should not!

4.4 Data security

Data security in general involves two
aspects: confidentiality and integrity.

Confidentiality

To keep certain things from being known
to unauthorised persons is a fact of daily
life with smart cards, credit cards, etc.,
passwords and PIN codes of all sorts. (2)
defines confidentiality as

Definition 7 (Confidentiality):
A security property of an object that pre-
vents its existence being known and/or its
contents being known. This property is

relative to some subject population and
to some degree of security.

Confidentiality is the classical security
problem and thousands of work-years
have been spent to find methods of pro-
tecting information from unauthorised
disclosure. This is the encryption or
cryptography business. Equally hard
efforts have been put in to break through
other people’s protection, this is crypt-
analysis.

In the intelligent network, confidentiality
will be a question of communications
security. We regard the confidentiality
problems of the customers internally as
outside our domain of discourse. Intellig-
ent network services involving transfer
and manipulation of information conside-
red security sensitive by some customer
will have to provide some sort of pro-
tection compliant with the security
policies in effect. Usually this will imply
the use of encryption under keys known
only to authorised entities. Here we run
into the more delicate sides of the
security business. Due to the importance
of cryptographic techniques in
international intelligence and military
business, heavy restrictions exist in many
states. In some states the transfer of
encrypted information in the public
network is prohibited. These issues are
not easily resolved and may put severe
limitations on some uses of encryption in
intelligent network services.

Integrity

A definition of integrity to be found in
(2) is

Definition 8 (Integrity):
A security property of an object that pre-
vents or is used to prevent its condition
of existence being changed and/or its
contents being changed. This property is
relative to some subject population and
to some degree of security.

Integrity of information or other items is
less obvious to us. Often we have
unconscious mechanisms for assessing
the integrity of things, like traces of
tampering, obvious flaws which should
not be there, etc. However, if Alice sends
Bob an electronic message, or calls Bob
on the phone, how can he be sure that her
message has not been modified on its
way or that it is actually Alice talking?
These are integrity questions. The last
issue could be solved by authenticating



Alice to Bob. The first could be solved
be means of e.g. a digital signature,
which is a cryptographic means of ensur-
ing the integrity of information.

We may find that the demands for
maintaining high integrity of information
in the intelligent network are larger than
those for confidentiality. It is often much
more important that the information you
receive is known to be uncorrupted than
that it should be kept secret. Of course,
encryption for secrecy implies uncor-
rupted information if the key has not
been compromised. However, bulk
encryption is time consuming and
expensive, while integrity can be
achieved by simpler means. Thus bulk
encryption will often be “over-kill”.

4.5 Security management

Security management concerns the actual
operational aspects of a security admin-
istration. It is one of the most critical
functions in any security system needing
to be absolutely trusted by all entities
under purview of the particular policy (at
least). We must take care not to confuse
the ones responsible for security manage-
ment with the policy makers. The
relation is much like the one between
legislators and the police. Security
management in the intelligent network
will be an awesome task.

5 Specifying security in IN

A primary reason for problems with
implementing security in computer sys-
tems is that security questions often are
considered much too late in the design
and engineering process. Introducing
security at a late stage is invariably a dif-
ficult, time consuming and expensive
task. In the intelligent network we will
have services which are depending on
necessary security services in order to be
interesting to the market. No business
customer in her right mind would sub-
scribe to a VPN service without the right
security being available. This means that
service providers must be able to supply
security from the start. This means furt-
her that security must be an integrated
part of the specification of a service. No
service can be seen separated from its
security aspects.

5.1 Security services

Based on the the ideas of security facility
and security service in (2) we find a
similar solution to be the most promising
for the intelligent network. This will also
tie the intelligent network to work on the
OSI based systems like ODP systems.

Definition 9 (Security Service):
A set of operations designed to support
some aspect of security in a distributed
system. (1)

The idea is that to implement security for
some service we have to include the
specified functionality in terms of
interaction with the relevant security ser-
vices assumed to exist in the basic con-
figuration of the intelligent network. The
main issue to be resolved is then who
supplies the security services? If these
services are to be used throughout the
intelligent network they must be trusted.
That is, any client must believe that these
services act according to some agreed
public specification, and not maliciously.
Considering the number of possible
customers (on the order of 108) this may
seem an insurmountable problem. How-
ever, these security services are to be
generic, policy independent in the sense
that a very wide variety of security policy
types may be implemented using these
services.

Example. Assuming a service S is to be
specified. This service may then be
specified to interact with e.g. an au-
thentication service X, for user authenti-
cation, an authorisation service Y for aut-
horisation:

S → X.authenticate(u); (1)

which would require the user u to au-
thenticate herself (or itself if u is a pro-
cess). Similarly if authorisation with
credentials c is required to access a
resource r:

S → Y.authorise(u, c, r); (2)

5.2 Formal definition of 
security policies

The ability to unambiguously decide if
policy is violated or not is very desirable.
This is only possible in a formal policy.
Secondly a formal policy gives the possi-
bility of consistency checks, and formal
analysis. In the latter case a policy is
more like a theory of formal logic. Well

known examples of such analysis
includes so-called “information flow”
analysis done in e.g. the Bell-LaPadula
policy (3)1).

The most far reaching reason may be the
possibilities of automatic policy enforce-
ment. That is, on-line continuous evalu-
ation of policy rules on security relevant
events (which are of course defined in
the policy) in a system. In a sense this is
of course what happens in any access
control system, but only for part of the
policy (the access control part).

Algebraic specification

Algebraic specification (see e.g. (8)) is
documented to be well suited for specify-
ing “non-functional” properties of
objects like security (12). We shall
consider the algebraic specification
language(s) called Larch described in
(10, 11), as an example. Larch specifi-
cations have theories of many-sorted
first-order logic with equality as their
models. As outlined above, security is
basically all about compliance with some
security policy. Most security policies
can be modelled as first-order theories. If
we include in a specification also a speci-
fication of a security policy to be
enforced for that service then we stand a
fair chance of having a service which
will fulfill the security requirements
expressed in the policy. If this is a formal
specification it is possible to formally
verify that an implementation is correct
with respect to the specification and
hence will be in accordance with the
security policy which is part of the speci-
fication.

We have only hinted at the possibilities
of and reasons for formal security policy
models and specifications. We refer the
interested reader to a mass of published
work, e.g. (3, 4, 7) and in general the
proceedings of the IEEE Security and
Privacy workshop for recent years.

__________________________________________

1) Let us note that the so-called Bell-La
Padula model is tied to typical military
security contexts. It is widely accepted
that caution should be exercised if the
Bell-LaPadula model is to be adapted
for civil purposes.
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6 Conclusions
We have discussed in broad terms
security issues associated with intelligent
networks, with emphasis on the relativ-
istic nature of security with respect to a
security policy. The principal point was
to consider the intelligent network as a
distributed system and use concepts from
distributed systems security. The work
on security in open distributed systems
carries nicely over to intelligent
networks. Use of the ECMA defined
security service concept is seen as a
possible way to implement security in
intelligent networks. Formal specifi-
cation methods should be used to
enhance the quality of systems and make
possible verification of security prop-
erties of services. Formal object oriented
techniques are promising and algebraic
specification techniques exist which
should be tested. Security in intelligent
network has to be taken seriously from
the start. Satisfactory interdomain
security solutions are critical to the
successful implementation of reasonable
security in intelligent networks (as it is in
all open distributed systems).

We have only scratched the surface of a
huge problem, and several important
issues have been left out, but work will
continue to solve the security problems
of intelligent networks one by one.
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1 Background

Norwegian Telecom Research considered
in an early phase of its work on intellig-
ent networks that object oriented techni-
ques should be used. Object orientation
was found to be very well suited for
modelling complex systems. This
because of the advantages given by
classification, instantiation, encap-
sulation, inheritance, dynamic binding,
etc.

A telecommunication network can be
modelled by objects with properties and
operations. Typical objects in a network
are physical entities like switches, mul-
tiplexers, trunks, subscriber lines, and
more abstract things like calls and
connections. Some properties of a switch
may be location, type, number of lines,
bandwidth, etc., while its operations may
be the functions for call handling.

Services are more fuzzy things to model.
What you can do is to tell how you want
parts of a service to work. You can for
example say: “If someone calls me on
this number, I would like to pay for the
call.” Then you add: “If someone calls
me during the office hours, the call
should be routed to my office, but if
someone calls me in the night or in the
weekend, then the call should be routed
to my home.” And you go on, describing
different situations and conditions and
the corresponding actions you want to be
taken.

This situation is very typical for many
kinds of services. Most services are built
up by a set of actions with conditions
describing when the actions shall take
place. Examples of action types are:
charging, routing, call completion, aut-
horisation, encryption, etc. Examples of
condition types are: time of day, day in
week, origin of call, type of terminal,
type of service, etc.

How should we model services allowing
you to do all these kinds of cus-

tomisation, i.e. mix all kinds of condi-
tions with all kinds of actions and action
descriptions? One way is to use heuristic
rules.

A heuristic rule consists of two parts: a
condition part and an action part. The
condition part describes when the action
part may be executed. The condition part
consists of a set of logical expressions (or
conditions), all evaluating to true or
false. If all conditions in the condition

part are true, then the actions in the
action part may be executed. A common
syntax for rules is: IF conditions THEN
actions.

The rules are normally not ordered.
Instead, a generic inference engine is
used to determine which rule is to be
fired when. When the inference engine is
started, it first tries to evaluate the
conditions of all the rules in the system.
Then it ends up with a set of rules that

Artificial intelligence in the network:
A rule based service control system prototype
B Y  H A R A L D  S E I M

Abstract
This paper describes a prototype of a service control system where object oriented techniques are combined with rule based reason-
ing. The background for this approach is that object oriented techniques are well suited for modelling the real world (by defining
objects and properties) while heuristic rules are well suited for modelling human reasoning (by describing conditions for when
actions are to be taken). In the prototype object oriented techniques are used to model the network and the subscribers, while heur-
istic rules are used to describe the services.

The service control system acts as a server for a telecommunication network, i.e. it receives requests and returns switching
instructions. The prototype contains a graphical network simulator acting as its client. This is used for simulation and testing of ser-
vices before they are introduced in the real network. The prototype may be connected to any type of network, and is today used as a
service control system for an ATM broadband network at Norwegian Telecom Research.

Figure 1 Overview of the rule based service control system

681.3:16
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may be fired. If there is more than one
rule in this set, there is a conflict. After a
conflict resolution, the inference engine
ends up with one single rule that is
executed. This cycle goes on until there
are no more rules to fire.

Using an inference engine saves the sys-
tem developer from a lot of work with
sequencing problems. New rules may be
added without thinking of where and in
what order. We get a very weak coupling
between different rules, and this is
something we can take advantage of
when the system has to be modified. This
is very important when dealing with fre-
quently changing telecommunication ser-
vices.

2 System overview
The service control system prototype is
built on the concepts of object orientation
and rule based reasoning. The main
module consists of a generic inference
engine, a set of rules describing the ser-
vices and an object oriented model of the
network and the subscribers/users. In

Figure 1, this module is called “Rule
Based Service Control System”.

The service control system interacts with
the switching network over a communi-
cation link. It receives requests for ser-
vice control and reports on events in the
network. When the requests have been
processed, switching operations in the
network are called from the service con-
trol system.

During the last year the system has been
developed from a plain stand-alone pro-
totype to an on-line real-time service
control point in an ATM broadband
network. The service control point com-
municates with a connection controller in
the ATM network by TCP/IP over an
Ethernet connection.

For testing purposes, a graphical network
simulator may be used instead of or in
addition to a real switching network.
Then the operations on the network are
simulated and the current network status
is displayed on a graphical screen.

In addition to the network, the service
control system is connected to a number
of databases containing information
about the network, the subscribers and
the services.

The network and the subscriber databases
contain the object oriented models of the
network and the subscribers. The
network model has access points repre-
senting the points where the service users
are connected, legs representing parts of
connections and connection points repre-
senting the connection of two or more
legs. All legs and connection points
concerning one call, are contained within
one socket.

The service databases are really rule
bases, containing heuristic rules and
some objects used for classification of
services, requests and events and for stor-
ing of temporary data.

The rules are used for reasoning about
the network model. Data in the network
model is used by the conditions in the
rules and modified by the actions. The

Figure 2 A part of the object hierarchy showing some of the objects used in the network model



real world is covered behind the surface
of the objects, and abstracted and simpli-
fied by the object properties and
operations. This makes the service con-
trol system independent of the underlying
network.

Connected to the service control system
is also a service creation system. This is a
development environment for both the
object oriented network model and the
rule based service logic. The service
creation system contains editors for
objects and rules, graphical displays of
the object hierarchy and the rule network,
compiler, etc.

3 Object oriented 
network model

As mentioned above, an object oriented
network model is used internally in the
service control system to abstract and
encapsulate the real network. The model
can be considered as a map of the real
world, containing only the information
necessary for the service control system,
e.g. only objects related to call handling.

The prototype system is based on the
“Connection Control Model” drafted in
“ETSI DTR/NA-6001, version 2, 14
September 1990”. This model is using
objects called socket, leg and connection
point to describe connection handling in
the switching network. Each object is
characterised by a set of properties and
operations that may be accessed by the
service control system.

Figure 2 shows a part of the object
hierarchy used in the network model.
There are circles in front of the object
classes, triangles in front of the object
instances and squares in front of the
object properties. Operations on the
objects are not shown in the figure.

The root class in the hierarchy is called
cc_socket_object. The classes leg,
conn_point, cc_socket_ind and cc_socket
are all children of this class. Because of
this, it is possible to access instances of
all these classes by referring to the root
class. A property (attribute) called
socket_id is inherited by all objects in the
hierarchy. This is used to identify object
instances belonging to the same socket.

If we take a closer look at the leg class,
we see that it has the following prop-
erties: id to distinguish between different
leg instances, conn_id to distinguish
between several legs in hold state, state
to represent the connection state of the
leg (e.g. free, unjoined, joined, etc.),
socket_id to identify the socket it belongs
to, conn_point_id to identify a possible
connection point instance to which the
leg is connected and access_point_id to
identify a possible service access point
instance in the remote end.

The possible operations on legs are:
create to create an instance of a leg
object, free to delete an instance of a leg
object, join to connect a leg to a
connection point, split to disconnect a leg
from a connection point, send_receive to
send or receive information on a leg,
modify to modify an attribute value in a
leg and poll to read an attribute value in a
leg.

When the service control system receives
a message from the switching network, it
makes an instance of either a cc_pro-
vide_instruction object or a cc_event
object, depending on the type of message
received. The properties of this object
instance are used to store the parameters
contained within the received message.

During the service execution, these prop-
erty values are used to analyse and
classify the message. Together with the
other network objects, this information is
used to make operations on the network.

4 Rule based service logic
The service logic is contained within the
rule bases connected to the system. The
rules are used for analysis of network
status, incoming requests and event
reports before actions are taken. If more
information is needed before a decision
is taken, the network is polled.

The rule bases are loaded and unloaded
depending on their use. When there are
no rules loaded into the system to handle
a particular situation, the rule bases are
searched for additional rules.

One goal with the rule based service con-
trol system is to have a service independ-
ent system, i.e. a generic system where
all kinds of services can be executed. In a
service independent service control sys-
tem there is no service specific function-
ality and no reference to any particular
service. This means that if a new service
is to be introduced, no modification of
the service control system itself should
be necessary.

This problem is very difficult to solve by
sequencial programming. Traditional
software systems have formular-driven
control, i.e. they consist of a hard coded
pre-defined sequence of statements. This
implies that a traditional program cannot
call a routine if not a reference to that
routine is hard-coded into the program
before compilation.

Figure 3 Example of how rules can be linked together via common data

75



76

Many object oriented systems have a
capability called dynamic binding. This
may partly solve the problem, since the
procedure references may be changed at
run-time. But there must still be a call to
a routine, even if the routine itself is
bound to the call at run-time.

Rule based systems have a much more
powerful way of solving this type of pro-
blem, called pattern-driven control. In a
rule based system there are no routines to
be called. Each rule is triggered by its
own conditions and independently of
other rules. The connections between dif-
ferent rules are data rather than routine
calls. The rules share a common set of
data, very often an object oriented data
model, and the program flow is continu-
ously changed as the data values change.

This last technique is utilised in the pro-
totyped system. A model of the switching
network, the subscribers and the service
requests are used as a common data set
for the rules. The rules themselves
describe how to execute services by sett-
ing conditions to the data model for when
their actions are to be executed.

As a result of this, the service control
system itself needs no direct references
to the service specific rules to execute
them. The only information the system
needs about these rules, is in what rule
base they are stored. For the same reason
there is no need for references between
different service specific rules in the sys-
tem. A rule has only to know about itself
and when it is to be executed.

Figure 3 shows an example of how rules
can be linked together by common data.
For example data used as condition in
one rule can be a conclusion of another
rule. The rules in the figure may be
stored in different rule bases and have no
direct reference to each other.

5 Fast service 
implementation

Heuristic rules may be used to describe
problem solutions in a quite different
way than procedures. Instead of
describing a solution from the very beg-
inning to the very end, all in the right
order, you can describe a solution by “if
... then ...” rules in an arbitrary order.
Rules may also be taken from different

sources and put together without thinking
of the connection between them.

The use of heuristic rules is very similar
to much of our own reasoning process,
and this may shorten the link between a
service idea and a service imple-
mentation. A service designer may have
an idea about how a call waiting service
should work by describing it like this:

“If someone calls a busy subscriber,
then both the calling and the called
subscriber should be notified about
this.”

“If the called subscriber quits the
current connection before the calling
subscriber hooks on, then the calling
subscriber should be notified and the
called subscriber should be able to an-
swer the new call.”

This is a very simple example of how a
service may be described by heuristic
rules. Figure 4 shows a simplified vers-
ion of how the two rules may be imple-
mented in the system.

For a more advanced service, the number
of rules may be very high, and may also
be increasing after some operational
experience. While this would have been
difficult to handle in a traditional system,

where the ordering of statements is very
important, a rule based system would
have taken the rules just as they are. The
ordering is irrelevant, since this is solved
by the inference engine.

The relatively simple way of putting
rules into a rule based system makes it
easy to prototype. With an inference eng-
ine, one can start implementing with only
the key concepts. The system will be able
to run with only a few number of rules,
and through simulation and testing the
rules may be changed and more rules
added in an iterative “learning” process.
With an object oriented data model, the
rules may also work on symbolic data
that are very self-describing and close to
the real world.

6 Customisation of 
services

Customisation very often means para-
meterisation, but many times specialisa-
tion is desired as well. Object orientation
makes it possible to specialise data by
defining sub-classes and sub-objects. A
rule based system also makes it possible
to specialise the reasoning by adding
custom specific rules. These rules do not
affect the existing rules, and the

Figure 4 Two simplified rules for handling of call waiting

RULE: Rule call_to_busy_subscriber (#1)

If

SETUP.analysed is FALSE
And <|subscriber|>.number is equal to SETUP.called_number
And <|subscriber|>.status is "Busy"
And <<|subscriber|>>.number is equal to SETUP.calling_number

Then

SETUP.analysed is set to TRUE
And Create Object busy_subscriber <|subscriber|>
And Create Object waiting_subscriber <<|subscriber|>>
And Notify (busy_subscriber, "Call waiting")
And Notify (waiting_subscriber, "Called subscriber busy")

RULE: Rule busy_subscriber_disconnected (#2)

If

DISCONNECT.analysed is FALSE
And DISCONNECT.source is equal to busy_subscriber.id

Then

DISCONNECT.analysed is set to TRUE
And Disconnect (busy_subscriber)
And Send (busy_subscriber, SETUP)
And Notify (waiting_subscriber, "SETUP sent to called subscriber")



conditions in the customised rules can
guarantee that they will only work for a
particular user or a particular group of
users.

7 Operation and 
maintenance

In an intelligent network the service
software has to change frequently to
fulfill the subscriber requirements, and
new service software has to be distri-
buted in the network continuously. The
service control systems should therefore
have the ability to load new software and
unload old software without system stop.
Many rule based systems allow new rules
and objects to be loaded and unloaded at
run-time, and some systems allow
existing rules and objects to be modified
at run-time as well. It is the modularity of
rule based systems that makes this pos-
sible. All rules are independent of each
other and only connected via a common
data model.

The prototyped system has a very flex-
ible inference engine where adding,
deleting and modification of all system
parts is possible at run-time. This may be
done by external routines or by loading
new software from the databases.

Software maintenance is very dependent
of the ease of understanding the code and
the possibility to make changes without
unpredictable side effects. Rules are
easier to maintain than traditional code.
Not only because of the syntax, but also
because a rule based system is able to
explain its own reasoning process. It is
very helpful to understand how the sys-
tem is reasoning, what conditions are
satisfied and how conclusions are
reached to maintain the software.

8 Service simulation
The prototype is offering a graphical
representation of the network situation,
so that the service designer can see the
effect of the service logic on the
switching system. Figure 5 shows a
typical screen image during a service
simulation. The largest rectangle is a dis-
play of the switching situation. It shows a
connection point connecting two legs
(between access point 2 and 10). In
addition there is a leg not connected yet
(from access point 16).

The three small displays show the status
at the three access points. They also give
the user the ability to send and receive
messages to and from the network.
Several calls can be handled simul-

taneously, and more access point dis-
plays may be opened if necessary.

It is possible to look at the network
model at any time during a service
simulation. Figure 6 shows some of the
objects created during the simulation
example shown in Figure 5. The first
object is the provide instruction request,
then follow the socket, connection point
and the three legs. The (+) in front of the
object names means that they are
dynamic objects that will be deleted
when the call is finished.

A number of telecommunication services
have been developed for the rule based
service control system. Examples of ser-
vices that are running on the system
today are:

- Call set-up / release

- Call waiting

- Call hold / retrieve

- Freephone

- Time dependent routing

- Origin dependent routing.

Common service rules are stored in the
rule bases, one for each service. Sub-
scriber specific information is stored in
the subscriber databases.

Figure 5 A typical screen image during simulation of a service on a workstation. The simulator window is displaying the switching status
during a call waiting service, while the three access point windows are displaying the current status at the access points.
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Figure 6 Some objects created in the service control system prototype during execution of a call waiting service



1 Mobility
It is convenient to distinguish between
three types of mobility forming a bottom-
up hierarchy as follows:

- terminal mobility

- terminal portability

- personal mobility.

Terminal mobility is the type of mobility
offered by land or satellite mobile sys-
tems and can be regarded as geographical
distribution of the subscriber line. The
benefit for the user is that the network
can be accessed while moving and inde-
pendently of fixed subscriber line access
points.

Terminal portability means that a user
terminal can be plugged in at an arbitrary
access point which may be at a fixed
installation or at a mobile station. The
benefit for the user is that user specific
capabilities of the terminal can be
exploited at all network access points.

Personal mobility implies that the user
can initiate and receive calls on the basis
of a single personal number at any fixed,
portable or mobile user terminal. The

three levels of mobility and their
relationships are illustrated in Figure 1.

Personal mobility thus makes use of all
levels of mobility. Personal mobility is
the core element of Universal Personal
Telecommunications (UPT). UPT will
become one of the basic service capabili-
ties of future networks and will therefore
require that all future network
architectures support aspects of personal
mobility (roaming, secure network
access, uniform access procedures, etc.).

2 UPT requirements
UPT will impose several requirements on
future networks. Each UPT user should
ideally have a single UPT number by
which he or she can be reached at any
network access point. On this number it
should also be possible with different
user roles, e.g. the user as a private per-
son or as employee. The services
available for the user may be different for
different roles. As employee the services
may not only be personal but also contain
capabilities subscribed to by the com-
pany. This implies that service profiles
can be distributed in the network depend-
ing on role. However, there may also be

cases where it is more convenient with
separate UPT numbers for each role. This
should be subject to choice by the user
and not be a restriction imposed by the
network.

The network should be capable of pro-
viding the user with accustomed or user
specific user-network access procedures
at all locations. Examples of user specific
procedures are customised alerting,
customised announcements or text and
abbreviated number/hot-line selection. It
should be possible for the user to roam
between networks owned by different
network operators. This capability should
include roaming between different LANs
and VPNs.

The UPT service should not depend on
network type, e.g. it should be possible to
roam between ISDNs, dedicated data
networks and B-ISDNs. This capability
implies that a common service control
should be defined for all network types.
Note that if a shared numbering plan
does not exist between these networks,
then the user must have one UPT number
for each network.

All of the above requirements have
impact on the architecture. It is

Universal Personal Telecommunication and 
intelligent network architecture
B Y J A N  A U D E S T A D  A N D  B Ø R G E  J A C O B S E N

Abstract
This paper presents an object oriented (OO) approach to UPT architecture allowing UPT users to roam between networks of differ-
ent type and ownership. The architecture is based on a recursive definition of objects, i.e. where objects can be attributes of objects.
This allows services to be viewed at different levels of granularity and designs where the actual software is distributed in an
arbitrary manner between the machines making up the physical architecture of the network.

Figure 1 Mobility hierarchy

621.395:621.396.931
621.39.05
681.324
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A refinement of the general architecture
valid for UPT call processing is shown in
Figure 3. The service domain has been
sub-divided into an A-party service and a
B-party service. The connection domain
has been refined as access points and
switched path. Each of the new elements
may represent a distributed process. The
manipulation of the connection domain,
i.e. the switched path, is performed by
either the A-party service, the B-party
service, or both.

This simple call processing architecture
may be mapped onto its realisation
architecture, or for that matter, another
conceptual architecture (for IN it is not
clear whether the current architecture is
conceptual or reflects realisation). An
example is shown in Figure 4 where the
A-party side is mapped onto an IN and

Figure 2 Conceptual architecture of a
telecommunications network

Figure 3 Refinement of the general architecture

Figure 4 Mapping the conceptual UPT architecture onto IN and GSM

obtained by refinement of less detailed
views in a recursive manner. (1)

A general top level conceptual
architecture of a telecommunications
network is shown in Figure 2. It consists
of three interacting domains each repre-
senting a distributed process.

Management domain responsible for ser-
vice creation, service subscription
management, service deployment and
service execution management.

Service domain responsible for execution
of the telecommunication service, includ-
ing manipulation on the switching
functions of the connection domain.

Connection domain representing trans-
mission and switching functions.

particularly evident that the architecture
should not be optimised in respect to one
network design only.

3 Principles for 
UPT architecture

A clear distinction should be made
between conceptual architecture and
physical realisation. The conceptual
architecture should be independent of
physical realisation. The requirements
listed in section 2 above showed that this
will in particular be true for UPT.

A conceptual architecture (e.g. like the
one defined formally in CCITT recomm-
endation X.407) can be used to show
aspects of the system from different ang-
les and at different level of granularity.
The different levels of granularity are



the B-party side is mapped onto the GSM
system. There are two important points in
this example. First, it is possible to define
a mapping in each case and allocate the
functions of the conceptual architecture
to functional elements in each realisation.
Second, each function of the conceptual
architecture may map onto a single
functional element or be distributed over
several elements. It should also be noted
that the functions may be realised in
independent ways in IN and GSM. The
only requirements is that the functions
A/B-party service, access point, etc.,
behave according to a common UPT
specification. The conceptual
architecture thus meets the requirements
of mappability referred to in section 2.

4 Object oriented 
approach to UPT

Object Orientation (OO) is a powerful
method for specification and imple-
mentation of complex systems. Some
important aspects of OO are: (2)

- Modularity

- Reusability

- Abstraction

- Inheritance

- Information hiding

- Encapsulation

- Dynamic binding.

The UPT service will be complex. The
distributed nature of the service adds
additional complexity. It is important to
find a suitable method for handling this.

Figure 5 shows a UPT call service mod-
elled as interacting objects. The attributes
of an object may be objects themselves,
but this structure of the service object is
hidden at the higher levels of abstraction.
The objects shown in Figure 5 are in the
service domain but since services gener-
ally imply manipulation of connections,
some of these objects must manipulate
the connection domain. At the given
level of abstraction this is hidden within
one or more of the objects.

Figure 5 shows the service execution. It
does not consider physical distribution of
the service but focuses on the service
modelling.

Figure 5 UPT service execution architecture from an object oriented view

Figure 6 Object oriented mapping of UPT service onto physical networks

The A-party service objects are invoked
to initiate the UPT service. One of its
attributes is the access handling object
(A). The access handling objects may
have other objects, e.g. identification
objects, screening objects, as attributes.

Object A invokes a security object (S), a
charging object (Ch), a connection handl-
ing object (C) and a B-party service
object (B) where C manipulates the
switches and B handles the B-party ser-
vices. The B object may be sub-divided
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further to reflect the constituents of the
B-party service. This sub-division is not
considered here.

Figure 4 showed a mapping of services
onto an IN system and a GSM system.
Figure 6 contains a corresponding mapp-
ing for the OO approach. In the example
two connection objects (C1 and C2) are
required in order to manipulate the
switches. The objects C1 and C2 have
inherited their general characteristics
from a superclass C. The adaption to the
actual networks is hidden inside the
objects so that a separate connection
object sub-class may be defined for each
type of network. In the example, C1 and
C2 may belong to different sub-classes.
In this view we can regard the subscriber
access lines to be contained in objects A
and B, and the physical switches and
transmission network to be contained in
objects C1 and C2. Thus, peculiarities
within each specific network are hidden
from the other objects which constitute
the service. The objects of type A or type
B should not see any difference between
objects of type C1 and type C2. The
same operations are performed on both
but their internal actions are performed
on different types of networks. The type
of object to be invoked must thus be
chosen at the time of invocation. In
object oriented design this is possible by
dynamic binding. Communication
between the objects will use available
protocols in the networks. Though C1
and C2 look the same for A- or B-type
objects, the protocols chosen for com-
munication between them may not be the
same. From the service point of view,
only the logical information flow is
important. The objects can be distributed
on several different nodes in the
networks which offer the service. In the
short term this distribution may be done
manually. In the long term the run-time
system should optimise the actual distri-
bution automatically. The encapsulation
and modularity offered by OO will
simplify the distribution task.

The object oriented approach yields an
architecture which is easy to decompose
into different levels of granularity. Figure
7 shows the decomposition of a service
control object into gradually finer parts.
The top level consists of the service con-
trol object only. This object is then
decomposed into types A, B, C, S, and
Ch. The next level of decomposition is

Figure 7 Object oriented decomposition of a service control object

Figure 8 Distribution of objects in physical realisation



only shown for object A which consists
of an identification object (ID) and a
security object (Sc).

In a physical realisation the objects may
be distributed in such a way that the vari-
ous attribute objects it may contain are
instantiated at different machines. This is
illustrated in Figure 8 for the decomposi-
tion in Figure 7. In this example the A-
service objects are distributed on three
machines and its contained access object
(A) is again distributed on two of them.

This capability of distributing objects is
particularly important for UPT since it
allows objects to be moved and instanti-
ated at different places as the user roams
in the network. In this way optimum use
of resources and the best possible service
performance can be planned into the ser-
vice.

The difference between model and
implementation is very distinct in this
architecture. The model contains classes
and the implementation is the actual
instantiation of these classes, i.e. the
objects. In the current IN architecture (3)
as used by ETSI and CCITT, the dis-
tinction may not be so clear.

5 Conclusion

The object oriented approach to the UPT
architecture removes unnecessary and
undesired bindings of the UPT service to
physical realisation. The decomposition
of the service into interacting objects is
independent of network design, network
ownership and network type. The decom-
position depends only on the particular
UPT service offered to each individual
user. The mapping of this decomposition
onto network resources can be done in an
optimum way maintaining all service fea-
tures independently of this mapping.

In this paper only a simple two-party call
service has been analysed. The same
approach will apply to more complex
services and to other aspects of the UPT
service such as registration and alteration
of subscriber parameters.
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