

XML Web Services

1 Guest Editorial; Do Van Thanh

3 What is an XML Web Service?; Erik Vanem, Do Van Thanh

16 Distributed Processing Platforms: Tansparencies; Jan A. Audestad

27 Web Services – An Evolution of the Distributed Computing Model;
Tron Syversen

30 Web Service Development Explained;
Anne Marie Hartvigsen, Luis Arturo Flores, Do Van Thanh

37 Major Web Service Products and Relations to Mobile Telco Services;
Erik Lillevold, Do Van Thanh

47 Security in Web Services; Erik Parr, Erik Berg, Sune Jakobsson

58 Evolving Service Creation; New Developments in Network Intelligence;
John-Luc Bakker, David Tweedie, Musa R. Unmehopa

69 Real World XML Web Service Scenarios for Telcos;
Erik Vanem, George Bilchev, Edward Buckley, Thomas Hoppe

80 XML in Electronic Commerce and Electronic Business;
Svein Tore Johnsen, Bernard Quarre

97 Electronic Gateways – Forging the Links in Communications Services Value
Chains; Derrick Evans, Dave Milham, Elayne O’Sullivan, Martin Roberts

105 Next Generation Infrastructure for Electronic Collaboration; Øyvind Aassve

110 The Self-Service Channel – “Dine Sider”; Robert Landsem

114 Web Services in Action: The User Profile Web Service;
Anne Marie Hartvigsen, Do Van Thanh

Contents

Telektronikk

Volume 98 No. 4 – 2002

ISSN 0085-7130

Editor:

Ola Espvik

Tel: (+47) 913 14 507

email: ola.espvik@telenor.com

Status section editor:

Per Hjalmar Lehne

Tel: (+47) 916 94 909

email: per-hjalmar.lehne@telenor.com

Editorial assistant:

Gunhild Luke

Tel: (+47) 415 14 125

email: gunhild.luke@telenor.com

Editorial office:

Telenor Communication AS

Telenor R&D

NO-1331 Fornebu

Norway

Tel: (+47) 67 89 00 00

email: telektronikk@telenor.com

Editorial board:

Berit Svendsen, CTO Telenor

Ole P. Håkonsen, Professor

Oddvar Hesjedal, Director

Bjørn Løken, Director

Graphic design:

Design Consult AS, Oslo

Layout and illustrations:

Gunhild Luke and Britt Kjus,

Telenor R&D

Prepress and printing:

Optimal as, Oslo

Circulation:

3,750

1

When people say that they go on the net
they usually mean the World Wide Web.
For most people the Internet is usually asso-
ciated with the World Wide Web, which is
only one of the applications of the Internet,
although a really popular one. Just before
the current depression it was quite easy to
get a job with decent salary with only a
fair knowledge of HTML, the HyperText
Markup Language of the World Wide Web.
Everything related to the World Wide Web
became hype. The most recent phenomenon
is the XML Web service. All the vendors
and analysts are talking about them. XML
Web Services are becoming the next “new”
and big thing in the Internet. It is consid-
ered as a new vision for distributed com-
puting on the web offering an XML-based
access via transparent Internet protocols
(HTTP), relieving distributed computations
from the need to be based on specialized
middleware platforms, thus enabling the
use of services over company borders, fire-
walls, different suppliers, infrastructures
and technologies.

Nevertheless, most ironically, nobody
seems to agree about the definition. So,
what is an XML Web service? Does it
require any particular transport like HTTP
or SMTP? If so, can you use others, like
MSMQ? Does it mandate the use of XML
and SOAP or can other content types such
as MIME, JPG, MP3, or URL-encoded data
in a query string be used as well? However,
the most basic questions are: What has
XML to do with services? Is it just an
extended Markup Language? Many ques-
tions are left without answer.

Anyway, XML Web Services should have
some potential since big companies like
Microsoft, IBM, Sun, HP BEA, Oracle,
etc. have invested quite a lot of effort and
money in them. Microsoft is betting and
promoting fiercely the concept of Web Ser-
vices. After its shift to supporting the Inter-
net a few years ago, Microsoft is preaching
Web Services through its .NET initiative.
Bill Gates claimed that “The Power of the
XML Web Services model is amazing”.
In answer to Microsoft’s .NET, Sun an-

nounced the Sun ONE initiative that in-
cludes Web Services support in Sun’s Forte
for Java Tools and in iPlanet’s Web, appli-
cation and integration servers. IBM sup-
ports Web Services in its Websphere which
consists of the Websphere application
Server, the Web Services Development
environment for building and deploying
Web Services.

The XML Web Services concept is also
gaining momentum in the Telecom world.
Indeed, telecom operators started many
years ago to look for a safe and efficient
way of exposing and offering their network
capabilities to third parties through stan-
dardisation activities in Parlay/OSA. The
XML Web Services concept could be the
ideal solution since it does not let itself
stopped by firewalls or software incompati-
bility problems as distributed computing
middleware like Corba. Projects aiming at
investigating the feasibility of the XML
Web Services concept and establishing
testbeds for Web Services have been ini-
tiated by both the EU Commission and
EURESCOM, the European Institute for
Research and Strategic Studies in Telecom-
munications. In fact, some of the articles in
this Telektronikk issue result from their pro-
jects. At Telenor, a workshop “XML Web
Services: the Services of the Future” organ-
ised in June this year attended by Web Ser-
vices experts from both academia and
industry has gained a lot of attention and
participation.

The main goal of this Telektronikk issue is
to present a clear overview about XML
Web Services, what they are, how to build
and use them, what their benefits are, etc. It
is also aiming to create an opportunity for
worldwide experts to express their opinions
and experiences about XML Web Services.
The issue has some articles that cover the
fundamentals of XML Web Services and
can serve as an introduction to the concept.
Other articles are aiming to provide a gen-
eral understanding of Distributing Comput-
ing and explaining XML Web Services in
the context of Distributed Computing. The
major Web Service products and vendors

Guest Editorial
D O V A N T H A N H

Do Van Thanh

Front cover:
XML Web Services

The artist Odd Andersen sees
various providers of XML Web
Services as distinct parts of
global market areas acting
within the physical bound-
aries of bandwidth and net-
work. Today they offer partic-
ular solutions – later they may
co-operate or merge their
provision into a common
solution – here visualised by
extending particular global
areas into each other. The in-
and outgoing lines – also
crisscrossing within the web –
indicate the user’s access to
service components needed
to fulfil his/her demand.

Ola Espvik, Editor in Chief

Telektronikk 4.2002

2 Telektronikk 4.2002

are also summarized in an article, such that
a reader wishing to build Web Services can
get started easily.

No matter how wonderful is the XML Web
Services concept, it can never be a success
without security, which is also covered in
an article. How XML Web Services fit in
the evolution of the telecom service cre-
ation is also explained. The business
aspects of XML Web Services surely play
a decisive role in their success.

The XML Web service scenarios for telcos
are treated thoroughly. There are also arti-
cles that consider Electronic Commerce,

Electronic Business and Electronic Gate-
ways. This Telektronikk issue concludes
with three applications of the Web Service
concept, namely an infrastructure for elec-
tronic collaboration, a self-service channel
and a user profile Web Service. Finally, I
hope that the reader will find this issue both
pleasant and useful.

Enjoy your reading!

3

1 Introduction
Most people today are well familiar with the
World Wide Web. As the name indicates it is
a global web of servers (web servers) that are
interconnected and that offer each other access
to their files. In this way people may easily and
rapidly exchange information from anywhere in
the world. Traditionally, the WWW has mainly
contained static information or content intended
for the human user and presented to him through
a web browser. The information accessible on
the web servers has typically been contained in
HTML documents that dictate how the actual
presentation of the data will be and that contain
links to other documents contained on other web
servers. Lately however, the WWW have be-
come more dynamic with frequent information
updates and relocations. The WWW concept is
also extended to contain not only content but
also functionality; i.e. one can not only access
information available on the WWW but also get
certain functions performed. These functions can
be spread out through the whole web, and be
accessed by other applications with Internet
access. To put it simple, the web is evolving
from being basically static content available to
human users to include also functionality or
application components available to other appli-
cations.

Different solutions for distributed computing,
allowing applications to communicate with other
applications across computer boundaries, have
been around for a while already. However, they
all have a lot of shortcomings that limit their
range of use. Object frameworks such as COM
and CORBA coupled with wire protocols (IIOP,
DCOM and RMI) were introduced to allow
applications to talk to each other over a network.
However, these solutions were not interoperable
and even though there have been some efforts in
the industry to amend this, they have not been
widely successful. Being non-interoperable as
these solutions are, it basically means that both
sides of the communication link need to use the
same distributed object model. This works fine

in most cases where both sides belong to the
same LAN and are controlled by the same
organisation that can decide which systems to
use. However, with the emergence of the Inter-
net, the distributed networks became very large
and very decentralized and it is generally no
longer possible for anyone to control both ends
of the communication link. This makes applica-
tion-to-application communication and dis-
tributed computing over the Internet quite chal-
lenging with these protocols. Another difficult
issue is firewalls. When communicating over the
Internet, across company borders, one needs to
pass through firewalls that generally do not have
many open ports. Very often, the widely used
ports for HTTP and SMTP are the only ones that
are open.

So XML Web Services has emerged to remedy
this situation and allow applications to commu-
nicate with other applications in a well-defined
way. The various applications may reside on
different machines anywhere on the Internet or
within the same intranet and the communication
should be able to traverse both company borders
(firewalls) and technological borders (when the
two applications are implemented on different
platforms, with different language, etc.). One
should keep in mind, however, that the XML
Web Services proposal is not merely a substitute
to replace the existing solutions for distributed
computing. It rather supplements them with the
exposition of services on the Web. A likely Web
Services scenario will be made up of two levels.
The first level is an internal system that imple-
ments the applications based on traditional plat-
forms and communicating internally with tradi-
tional distributed computing technologies or
some proprietary solutions. These applications
can then be exposed externally using XML Web
Services so that others are able to utilize them.

2 What is XML?
XML is one of the cornerstones of XML Web
Services and the specifications associated with
XML Web Services are all based on XML. In

What is an XML Web Service?
E R I K V A N E M A N D D O V A N T H A N H

XML Web Services are considered by many as the services of the future, but what exactly are Web

Services? Is it simply services delivered via the World Wide Web? And what about XML, is it just a new

and improved version of HTML and what does it have to do with services? This article will try to give a

basic overview of XML Web Services and describe its most important features in a simple and compre-

hensible way. Before studying the concept of Web Services, the article introduces XML and describes

how XML documents are created and parsed. It then proceeds with Web Services and how they are

used. Finally before the conclusion, some more details about the standards associated with XML Web

Services are given.

Do Van Thanh (44) obtained his
MSc in Electronic and Computer
Sciences from the Norwegian
Univ. of Science and Technology
(NTNU) in 1984 and his PhD in
Informatics from the University of
Oslo in 1997. In 1991 he joined
Ericsson R&D Department in Oslo
after 7 years of R&D at Norsk
Data, a minicomputer manufac-
turer in Oslo. In 2000 he joined
Telenor R&D and is now in charge
of PANDA (Personal Area Net-
work & Data Applications) re-
search activities with a focus on
SIP, XML and next generation
mobile applications. He also
holds a professor position at the
Department of Telematics at
NTNU in Trondheim. He is
author of numerous publications
and inventer of a dozen patents.

thanh-van.do@telenor.com

Erik Vanem (30) received his
MSc in Physics from the Univer-
sity of Oslo in 1996. Before join-
ing Telenor R&D in 2000 he
worked as a geophysicist at
PGS Reservoir, as a research
assistant at the Norwegian
Defense Research Establish-
ment and as a physics teacher
at the Oslo University College.
Since 2000 he has worked with
user centric services, mobile
applications and services, Voice
over IP and mobility manage-
ment in next generation wireless
networks. Recently he has been
working with distributed com-
puting and XML Web Services
in the PANDA group (Personal
Area Networks and Data Appli-
cations) at Telenor R&D.

erik.vanem@telenor.com

Telektronikk 4.2002

4 Telektronikk 4.2002

this section the main features of XML will be
outlined and it will be indicated why XML is
a well-suited tool for Web Services. The W3C
XML recommendations are available at [1].

What is XML? Since XML can be used in a
variety of different areas of data computation
and communication, different opinions exist of
what XML is. So to keep things clear and avoid
confusion, let us first say a few things about
what XML is not.

• XML is not a programming language;
• XML is not a database;
• XML is not the next generation of HTML;
• XML is not specific to any horizontal or

vertical market segment.

XML stands for eXtensible Markup Language
and is a specialisation of SGML (Standard Gen-
eralized Markup Language), which has been an
ISO standard since 1986. It is a clearly defined,
system-independent way of representing data.
With XML, all conceivable kinds of data can be
structured, described and interchanged. An XML
document is in text format and this makes it
readable to both machines and human beings.
Human being, of course, should not have to read
the XML files, but it can be useful when there
is a need. Finally, XML is non-proprietary and
licence free so that anyone can build their own
software around it without paying anything to
anybody.

Figure 1 Web Services as the
next step in the evolution of
distributed computing

Heterogencous systems running application components and communicating
with Web Services thorugh the WWW and trough firewalls

WORLD WIDE WEB

Terminals

Mainframe
running
applications

Standalone PCs running applications

LAN

PCs running applications and
communicationg with specific
meddleware through a LAN

Terminals

ORB

5Telektronikk 4.2002

The data in an XML file is enclosed in tags,
much like HTML files. In the HTML specifica-
tions, however, it is specified what each tag and
attribute mean, and one is limited to using only
those tags that are predefined. XML on the other
hand is extensible, meaning that everyone is
allowed to write their own tags that describe the
content. Another difference from HTML is that
the tags in XML relate to the actual meaning of
the enclosed textm whereas in HTML the tags
most often define how the data will be presented
by a browser. Since XML documents contain
custom-made tags and attributes that may be
specifically defined by the author of the docu-
ment, there must be a way for others to know
their meaning and thereby know how to interpret
the enclosed text. This is done with an XML
schema language, e.g. Document Type Defini-
tion schema language or XML Schemas 1 or 2,
that define the tags in an XML document. A
simple XML example is given in Figure 2 which
shows what an XML file might look like, and
with an example DTD file that defines the tags
used in the XML document.

The example shows an XML file containing a
pricelist for cars. First in every XML document
is the XML prolog. As a minimum, every XML
document must always contain prolog with a
declaration that identifies the document as an
XML document. This is the first line in the
example document in Figure 2. In addition,
optional information can be contained in the pro-
log. For example, specifications of which tags
are valid in the document can be declared in a
DTD directly within the prolog, or a pointer to
some external specification file can be placed in
the prolog.

Following the XML prolog is the document’s
actual content or data, sometimes referred to as
the Root Element. The root element is the high-
est-level element and this can again contain

other elements in a hierarchical structure that is
defined in the DTD. In the XML file this means
that all other tags will appear between the
<rootElement> and </rootElement> tags. The
example file has <priceList> as its root element,
and according to the DTD, this element contains
one or more (indicated by the plus sign) <car>
elements. Every <car> elements must in turn
contain one <name> element and one <price>
element in that order. The <name> and <price>
elements are again the actual data to be parsed or
analysed by the XML parser – PCDATA. In this
simple example, DTD is used to illustrate how to
define the tags or elements. A significantly more
powerful, but also more complex language for
doing this is XML Schema. For more details on
XML Schemas, see [2].

With XML, the data is separated from the for-
matting instructions. To specify how documents
are presented on a screen, in print, or how they
are pronounced separate stylesheets are used.
XSL is a language for expressing such style-
sheets and consists of three parts; XSLT for
transforming XML documents (e.g. XML data
into an HTML/CSS document), Xpath to access
or refer to parts of an XML document, and XSL-
FO an XML vocabulary for specifying format-
ting semantics. For more details on XSL, see [3].

2.1 XML Data for Multiple
Applications

XML documents can contain data that are meant
for different applications that will need the data
for different purposes. An important aspect of
XML is that it is self-describing and that differ-
ent parts of the data are identified. In the exam-
ple above the parts of the data that contains the
name of the cars are easily distinguished from
the price. In this way the different parts of the
data can be used in different ways by different
applications. The applications have to agree on
the tag names, of course, but if they have the

Figure 2 A simple XML
example

DTD
(Document Type Definition)

<!ELEMENT priceList (car) +>
<!ELEMENT car (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

XML

<?xml version=”1.0”?>

<priceList>
<car>

<name>Ford</name>
<price>150 000</price>

</car>
<car>

<name>Nissan</name>
<price>145 000</price>

</car>
<car>

<name>Opel</name>
<price>140 000</price>

</car>
</priceList>

6 Telektronikk 4.2002

right DTD (or XML Schemas), they can process
the documents according to specified rules.

An XML document can also contain processing
instructions of the following format:

<?target instructions?>

These processing instructions give information
to an application that processes the XML data,
where target is the name of the application and
instructions contain the information. Because
the instructions are application specific, XML
files can have multiple processing instructions
that tell different applications to do similar
things in different ways.

XML is modular, meaning that one is allowed to
define a new document format by combining
and using other formats. When doing this, how-
ever, there is a possibility that the two formats
have elements or attributes with the same name.
For example if combining the XML example
above with a format describing customers or
drivers, it is likely that these will also contain a
<name> element. To avoid mixing two different
elements with the same name but different
meaning, XML provides a namespace mecha-
nism that is used to identify the different ele-
ments in a document. XML namespaces use pre-
fixes to the elements to achieve this and in the
above example, one can use the namespaces car
and customer to distinguish between the differ-
ent <name> elements. The qualifying name
would then contain a namespace-prefix followed
by a colon and the local name: <car:name> and
<customer:name>. However, one must make
sure that the prefixes one uses are globally
unique and not used by anybody else; i.e. that
two different namespaces never have the same
name. This is obtained by using URIs as names-
pace names. These URIs could be controlled by
an organisation so that others do not use them.
In the above example, the following names
could be globally unique:
<http://www.cardealer.com/car:name> and
<http://www.cardealer.com/customer:name>.
There will then be one XML schema bound to
each specific namespace that defines all ele-
ments and attributes belonging to that name-
space. For more about XML namespaces, see [4].

With a basic understanding of XML and how it
can be used by multiple applications in different
ways, it is about time to proceed and consider
the Web Service concept. More interesting liter-
ature can be found at [5, 6].

3 What is a Web Service?
What then, is a Web Service? Several definitions
of Web Services exist, and the following are just
some examples:

• Web Services are self-contained, modular
applications that can be described, published,
located, and invoked over a network, gener-
ally, the Web – IBM [7].

• A Web Service is a unit of application logic
providing data and services to other applica-
tions – Microsoft [8].

• A Web service is a software application iden-
tified by a URI, whose interfaces and binding
are capable of being defined, described and
discovered by XML artifacts and supports
direct interactions with other software appli-
cations using XML based messages via inter-
net-based protocols – W3C Web Services
Architecture Working Group [9].

• Web Services are modular, self-describing
applications that can be published, located
and invoked from just anywhere on the Web or
a local network [10].

• Web Services are loosely coupled, reusable
software components that semantically en-
capsulate discrete functionality and are dis-
tributed and programmatically accessible
over standard Internet protocols – The Stencil
Group [11].

Others may offer alternative definitions of Web
Services and although the various definitions are
not identical, they all share the same general
view of what Web Services are.

Web services can be said to describe any compu-
tational functionality that can be found and
invoked over any network in a component based
model. These functionalities are reusable soft-
ware components that allow other developers
than the ones that have created them, to reuse
them as building blocks of code and to assemble
them and extend them in new ways. In this way
Web Services continue the rising of object-ori-
ented design in software development, and
developers do not need to write a complete set
of instructions from start to finish.

A Web Service represents self-describing and
self-contained application meaning that it encap-
sulates discrete functionality that performs a sin-
gle task. It describes its own inputs and outputs
in such a way that other software can determine
what it does, how to invoke it and what to expect
as a result in return. Web Services are designed
to be used by other programs rather than
humans, so they do not have a graphical user
interface. However, even though they are not
designed for direct human interaction, they
might be incorporated into software designed for
human interaction. For example, a Web Service

7Telektronikk 4.2002

can be accessed by an application that generates
an HTML page to be displayed in a browser.

The different Web Services software compo-
nents are loosely coupled and do not depend
upon a tight interconnection. The Web Services
developers thus do not need to have full control
over both ends of the connection and a much
simpler level of coordination is required than
with traditional design. The fact that the compo-
nents are loosely coupled also means that more
flexible reconfiguration is allowed. Finally, Web
Services are distributed and can be accessed via
transparent widely adopted Internet protocols
like HTTP, SMTP, FTP, etc. By using these pro-
tocols, the same as traditional web content, Web
Services can communicate through most fire-
walls, and can thus be used across company
borders.

Once a Web Service is deployed, it can be found
and accessed by other applications and other
Web Services. A Web Service can be mixed
and matched with other Web Services in a value
chain allowing construction of more complex
services out of multiple simple Web Services.
This is illustrated in Figure 3.

The actual service logic of the different Web
Services in Figure 3 can be implemented on dif-
ferent platforms and with different programming
languages. They can also belong to different
organisations or domains as the invocations and
results are communicated via e.g. HTTP that can
traverse firewalls.

3.1 XML Web Services
Web Services as described above should be uni-
versally accessible programmatically, regardless
of what platform the Web Service runs on or
what programming language it uses internally.
This means that any application that is made
to interact with a certain type of Web Services
should be able to exploit any of those Web Ser-
vice that is exposed on the Internet without any
need for extra programming or adjustments. In
order to achieve this, standard protocols for Web
Services are important. XML has been most
important as a way to standardise data formats
and exchanging data and most of the standard
protocols for Web Services use XML as its foun-
dation. Having seen various definitions of Web
Services, the following can be used as a defini-
tion of XML Web Services:

XML Web Services are Web Services that use
XML as a means of standardising data for-
mats and exchanging data.

3.2 Three Distinct Roles in a Web
Services Scenario

In an XML Web Services scenario, three distinct
roles that interact with each other can be identi-
fied. These roles are the service provider, the
service requestor and the service broker. Figure
4 illustrates these roles and their interactions.

The service provider creates the service and
makes it accessible for clients over the Internet.
The service can be created in any language on
any platform as long as it supports the publish
and bind interactions. A Web Service provider
differs from an application service provider
(ASP) in that the offered Web Services are dis-
tributed components. The ASP on the other hand
delivers entire applications from a central host-
ing location, which are generally not extensible.

A service requestor is the client that uses the
Web Service. This client can also be written in
any language and on any platform as long as it is
able to find and bind to a Web Service. A Web
Service can itself take the role of a service
requestor when it takes advantage of other
Web Services as illustrated in Figure 3.

The service broker is the one that brings the ser-
vice requestor and the service provider together
by providing an interface between the publish
and find interactions.

The interactions between these roles are the fol-
lowing:

Publish: The service broker offers a publish
interface where the service provider
can tell the service broker about the

Figure 3 A value chain
of Web Services

Figure 4 The three roles
in a Web Services

scenario and their interactions

Web
Service 1

Web
Service 2

Web
Service 3

Web
Service 4

Invoke

Result

Invoke

Result

Invoke

Result

Service
Provider

Service
Broker

Service
RequestorBind

Pub
lis

h Find

8 Telektronikk 4.2002

services it provides. The published information
should include data about the service itself, its
input and output, and where it can be accessed.
In addition, an unpublish interface is offered
that lets the service provider remove advertise-
ments of published services.

Find: In addition, the service broker offers a
find interface where the service
requestor can inquire about a particular
Web Service or a category of Web Ser-
vices, where services can be searched
for by specifying a variety of search
parameters.

Bind: The bind interaction represents the
actual invocation of the Web Service.
Binding in this context can be com-
pared to a function call, where parame-
ters are passed to the function and a
return value is received as a result.

Neither the find nor the bind operations need
to be performed every time a service requestor
wants to invoke a service, however. If the ser-
vice requestor has found a suitable service once,
the results can be cached and used every time it
needs to bind to this specific service. Only in
cases where the bind operation fails, for exam-
ple when the service has been moved to a differ-
ent location or modified, will the service
requestor need to inquire the service broker
again and refresh the cached information.

3.3 Main Uses of Web Services
The three roles in Web Services scenarios identi-
fied above can all exist within the same enter-
prise domain or they can belong to different
domains within the Internet. This results in a
wide range of different areas where Web Ser-
vices can be used. Basically, the main uses of
Web Services can be divided into three cate-
gories:

• Application integration Web Services
• Business integration Web Services
• Commercial Web Services

Normally, the first type of Web Services an
enterprise would implement is application inte-
gration Web Services (Web Services will be a
suitable technology for Enterprise Application
Integration, EAI). These are Web Services used
internally within an Intranet to integrate different
business applications that run on different plat-
forms. Often, different systems like for example
Unix and Windows coexist within an enterprise,
and Web Services can enable them to communi-
cate with each other. Legacy applications can
expose part of their interfaces as Web Services
to allow integration with other business applica-
tions in a heterogeneous environment without
the need to rewrite a huge amount of code.

The next step is usually business integration
Web Services that integrate applications be-
tween company borders. A few key partners out-
side the company can be chosen and Web Ser-

Figure 5 Business
ecosystem that benefits from
different types of Web Services

Customer 2

Company B

Company A

Customer 3

Customer 1

Provider 3

Provider 2 Provider 1

9Telektronikk 4.2002

vices are used to ensure interoperability between
the partners’ applications across the public Inter-
net. Due to the lack of widely adopted specifica-
tions, however, the companies must agree upon
the technologies used to develop these interoper-
ating Web Services. This category of Web Ser-
vices is ideally suited in a B2B context, i.e. for
electronic business administration between a
buyer, a seller and possibly a third party.

As the final step, companies might want to ex-
tend their services to reach more partners and
customers in a commercial Web Service. They
could use Web Services to sell various content
or business services over the Internet to potential
customers anywhere on the web in a pay-per-use
manner or through subscriptions. Examples of
such services could be location specific weather
forecasts, currency exchange, authentication ser-
vices, etc.

These different categories of Web Services can
coexist in a system that connects internal sys-
tems together, expose services to a number of
external partners and customers as well as utiliz-
ing Web Services provided by others in a busi-
ness ecosystem as illustrated in Figure 5. In this
figure, company A and company B both use
application integration Web Services to integrate
the internal applications within their enterprise.
They use business integration Web Services to
integrate with each other’s applications as well
as with other business partners’ applications and
finally, they offer commercial Web Services to a
number of different customers.

3.4 Web Services Requirements
A number of basic requirements must be ful-
filled if such interoperable, ubiquitous Web Ser-
vices as described above are to become a reality.
As a minimum, there is a need for widely
adopted specifications that are neutral to both
platform and programming language for the
following:

• Publication of services
• Discovery of services
• Description of services
• Invocation of services

In other words, a commonly agreed mechanism
for publishing services so that others can find
them is required as well as a well-defined way to
search for services providing certain functions.
Without these mechanisms, only a very re-
stricted number of clients that are informed
directly by the service providers will be able use
the services. In addition, the published services
must be fully described so that a service request-
or can develop a client that knows how to invoke
it. Finally, a protocol that allows invocation of
the service over the Internet must be specified.

To what extent Web Services will be a success
depends on whether these basic requirements,
which basically all deal with interoperability
between different implementations, are fulfilled
or not. Assuming they can be fulfilled, the basic
Web Services architecture will look like the
illustration in Figure 6. In this figure, it should
not matter if the Web Service client and the Web
Service are implemented on different platforms,
as long as the communication between them fol-
low well specified rules. In the next section, the
different standards associated with XML Web
Services that address these requirements will be
discussed.

On top of the basic interoperability requirements
that are needed to make the Web Services archi-
tecture work in the first place come other re-
quirements such as stability, reliability and effi-
ciency, security, scalability, availability, man-
ageability, accountability, etc. A thorough dis-
cussion of these requirements is considered
beyond the scope of this article, but it should be
sufficient to mention that the degree of success
and the range of use of Web Services will
depend on how these are met as well.

4 Standards Associated with
XML Web Services

In order to meet the four basic requirements dis-
cussed in the previous section, major industry
actors have joined forces and proposed several
XML based solutions that are now more or less
commonly agreed upon. Three of these initia-
tives, UDDI, WSDL and SOAP will be dis-
cussed in more detail in this section.

4.1 Publishing and Discovering Web
Services – UDDI

In order for Web Services to work satisfactorily,
there is a need for a standard way to publish and
discover Web Services. The Universal Descrip-
tion, Discovery and Integration (UDDI) specifi-
cations [12] proposed by UDDI.org define a way
for businesses to list themselves and their ser-
vices on the Internet (or intranet) that is com-
monly accepted to be the standard XML Web

Figure 6 Basic Web Services
architectureRegistry

Web Service Web Service
Client

3. Service
Invocation

1. Publish
service
description

2. Discovery
of suitable
serveces
and how to
communicate
 with them

10 Telektronikk 4.2002

Services way of doing this. All information con-
tained in the UDDI registries is formatted in
XML.

The UDDI registries provide two groups of
APIs: Publishing APIs that allow creation and
deletion of entries in the registry, and inquiry
APIs that allow search for entries in the registry
by different search criteria. The APIs are in-
voked by sending appropriate SOAP messages
to the registries, so each UDDI registry must
have some kind of server process that receives
and responds to SOAP messages. In fact, UDDI
itself can be thought of as an XML Web Service.

A UDDI registry contains a number of entries
with each UDDI entry consisting of three parts:

• The white pages
• The yellow pages
• The green pages

In analogy with traditional telephone books, the
white pages describe the company offering the
services. It contains information such as com-

pany name, address, telephone number and other
contact information. The yellow pages include
information about the type of business and the
industry categories that the company belongs to;
i.e. it shows the services a certain business pro-
vides. The green pages contain the information
about the specific services that are offered. Here,
the service should be described in enough detail
for someone to be able to write an application
that uses or consumes the Web Service. Figure 7
shows an example UDDI entry containing white
pages, yellow pages and green pages.

A UDDI entry is an XML document with root
element <businessEntity>. This corresponds to
the white pages where the business information
is contained. This root element can contain zero
or more <businessService> elements that corre-
spond to the yellow pages and that each repre-
sents a family of technical services. The
<businessService> thus shows the services a cer-
tain business provides. Besides a description of
the services, each <businessService> contains a
number of <bindingTemplate> elements. These
elements provide references to technical infor-
mation about a service (e.g. a WSDL document),
access point for the service, etc.

As already mentioned, two groups of UDDI
APIs exist that allow publishing and searching
for services. The publishing APIs permit cre-
ation and deletion of all kinds of entries. One
can publish a whole new business entity or add
new service categories or individual services to
an existing business. Generally, a userID and
password would be required to invoke the pub-
lishing APIs. The Inquiry APIs provides ways
to find services and to get more details about
services. They allow searching for all kinds of
entries, in the white, yellow or green pages,
based on different search criteria. One can
search for businesses based on location or name,
businesses and services based on industry cate-
gories or types of services, or one can search for
specific services.

It is a goal to establish a global network of
UDDI registries resembling the Domain Name
System (DNS). All these registries should
exchange and share their information, so that
accessing one registry should provide all infor-
mation contained in all registries. Already, there
is a number of UDDI registries, and the number
of registries is expected to grow in the future and
form a hierarchical structure. The goal of a net-
work of UDDI registries is illustrated in Figure 8.

4.2 Describing Web Services – WSDL
After a service is found, one needs to know what
this particular service can do, where it is located
and how to invoke it or format messages to it.
From the service provider’s point of view, there

Figure 7 An UDDI entry
containing white pages,
yellow pages and green pages

Figure 8 The UDDI
service cloud

<businessEntity> - Business information
name, contact, description….

<businessService> - service info

<bindingTemplate>

- technical info
access point,
reference
to WSDL

Service
Provider

UDDI
Registry

A

UDDI
Registry

C

UDDI
Registry

B

Service
Requestor

UDDI
Registry

DUDDI Service Cloud

UDDI Publish UDDI Find

11Telektronikk 4.2002

is a need to be able to give information to others
about what their service can do and how to make
a client that can use it. The WSDL specifications
[13] specify how this can be done. The specifica-
tions were originally developed by IBM and
Microsoft and have now been submitted to W3C
to become a standard.

A WSDL document is an XML based descrip-
tion of services to make them programmatically
accessible to other applications. It must contain
enough information for others to be able to write
a client program that uses the services it de-
scribes. WSDL defines the data types and mes-
saging as well as the specific location of the ser-
vice. It is in itself independent of underlying
protocols, but in the real world it mostly uses
XML Schemas to define data types and SOAP
(over HTTP) for messaging. Simply put, WSDL
specifies the What?, Where? and How? of the
services it describes.

A WSDL document contains two parts: A re-
usable part, sometimes referred to as the inter-
face part, and a non-reusable part, also called the
implementation part. The reason for this is the
assumption that certain services can be standard-
ised in the future. The interfaces of these ser-
vices can then be described in a generic way
without specifying its exact location. One can
then deploy the service at multiple locations
without having to duplicate the interface descrip-
tion. An example WSDL document showing all
its elements is given in Figure 9.

The root elements of a WSDL document are
called definitions, and these again contain a
<types> element, one or more <message> ele-
ments, <portType> elements, <binding> ele-

ments and <service> elements. The non-reusable
part of the document is the part containing the
<service> elements.

At the highest level, there is a need to define the
data types used by the described Web Service
and this is done within the <types> element.
Usually, the data types are described as an XML
Schema. In the <message> element, the different
messages that are sent to and from the service
are described. Each message can again contain
zero or more <part> elements that correspond
to the parameters of the message. An operation
corresponds to a method call tying the messages
(defined in <message>) together in request-
response pairs. An <operation> element contains
<input> and <output> messages that refer to cor-
responding messages. One or more operations
build a <portType> element, which basically
represents a set of functions that the Web Ser-
vice can process. The following is an example of
what this could look like in a part of a WSDL
document:

<message name=”Request”>
<part name =”Astring” type=”xsd:string”/>
<part name=”Bstring” type=”xsd:string”/>

</message>

<message name=”Response”>
<part name=”Result” type=”xsd:float”/>

</message>

<portType name=”GettingResultService”>
<operation name=”GetResult”>

<input message=”Request”/>
<output message =”Response”/>

</operation>
</portType>

Figure 9 A WSDL document
• Reusable part

 (Interface)

• Non-reusable part
(Implementation)

<definitions>

<types>
[XML Schema describing the used datatypes]

</types>

<message>
[Description of messages]

</message>

<portType>

</portType>

<operation>
[Tying messages together in pairs]

</operation>

<binding>
[Description of network protocol for invocation]

</binding>

<service>

</service>

<port>
[Specify the service address]

</port>

</definitions>

12 Telektronikk 4.2002

In this example, the GettingResultService con-
tains an operation that takes two strings, Astring
and Bstring, as input and returns a float called
Result. In general, it should be noted that each
<portType> could contain several operations.

Next, the <binding> element describes the mes-
sage protocol with which the service can be
reached. There can be multiple different bind-
ings for the same <portType> in a WSDL, one
of which can be SOAP over HTTP.

In the non-reusable part of the WSDL document,
<service> elements are used to describe the ser-
vices. Inside the <service> elements are <port>
elements that specify the actual network end-
points of the service. A service can be made
accessible on many ports, for example it can be
available via both SOAP and plain HTTP GET.
In this case two <port> elements should be
defined, each with a different name. One port
should specify the SOAP address, i.e. the
address of the actual SOAP server handling the
request, and the other should specify the HTTP
address.

The following gives an overview of how WSDL
works: When a service is deployed, its descrip-
tion and a link to it is published in a UDDI reg-
istry. When someone finds and wants to use it,

they can query the WSDL file to find out the
location of the service, how to access it and
which function calls to use. The information in
the WSDL file is then used to generate a client
that can call the Web Service. This is illustrated
in Figure 10.

4.3 Invoking Web Services – SOAP
With well-defined ways of publishing Web Ser-
vices, finding Web Services and describing Web
Services, the one basic requirement that is miss-
ing is a standard way to invoke Web Services.
First, consider the generic Web Services archi-
tecture in Figure 11.

The Web Service is merely a layer that offers
programmatic access to a service. The server
logic itself can be implemented on traditional
platforms using other kinds of middleware and
using any kind of programming language. The
access to the service consists of a façade that
exposes the operations or methods supported by
the business logic and a listener that is unaware
of the service logic. This listener will typically
be a SOAP application as SOAP is emerging as
the most widespread way to invoke Web Ser-
vices over the Internet. One must not necessarily
use SOAP for Web Services invocation, but as it
is the choice of most vendors, its acceptance as a
standard is growing.

The SOAP specifications [14], like the WSDL
specifications, were first released as a joint effort
by IBM and Microsoft and have also been sub-
mitted to the W3C organisation to become a
standard. It defines the structure of SOAP mes-
sages, a model for exchanging SOAP messages
and how SOAP messages over HTTP can be
used for Remote Procedure Calls (RPC).

SOAP is a lightweight protocol that defines a
uniform way of passing XML encoded data. In
doing so it allows code of any kind, on any lan-
guage and on any platform to cross-communi-
cate, also between parties with no prior knowl-
edge of each other or each other’s platforms. It is
essentially a one-way messaging protocol, mean-
ing that a sent message does not necessarily lead
to a response message (unless something went
wrong while sending it), but two SOAP mes-
sages can be combined in for example an HTTP
request-response pair. Each SOAP message
contains one XML document with root element
<Envelope> and a <Header> and a <Body> ele-
ment. Figure 12 shows the structure of a SOAP
message.

The <Envelope> element serves as a container
for the other elements of the SOAP message,
and for this reason a SOAP message is often
referred to as a SOAP envelope. The <Header>
element is optional and can add different fea-

Figure 10 How WSDL works

Figure 11 Generic
Web Services access

Web
Services
requester

UDDI
registry

find

publish

publish

Web Services provider

WSDL document

2

4

3

1

Invoke Web Services

XML Request

XML Response

Li
st

en
er

S
er

vi
ce

 F
ac

ad
e

Service logic

13Telektronikk 4.2002

tures to the SOAP message without affecting the
payload. Authentication is an example of such
an extension. An authentication server can pro-
cess the header entries, independent of the
<Body> element, and remove the information it
used to validate the signature. The rest of the
message will be passed on to the SOAP server
that will process the body of the message. The
payload of a SOAP message is the <Body> ele-
ment that contains the actual application specific
data that is to be processed by the end-point.

SOAP can be used in combination with a num-
ber of other protocols. In the SOAP specifica-
tions, however, the only bindings that are de-
fined describe how SOAP can be used in combi-
nation with HTTP. It is also described how to
use SOAP messages for (RPC).

In a typical SOAP message exchange model,
there are three basic components: A SOAP
client, a SOAP server and the actual service.
The SOAP client creates an XML document, the
SOAP message, with the information needed to
remotely invoke a method over a network. This
SOAP message is then typically sent over
HTTP, allowing it to traverse almost any fire-
wall. On the server side, a SOAP server listens
for SOAP messages and acts as a distributor and
interpreter of these. It then translates the XML
structure in the SOAP message into a language
that the actual service can understand. It also
translates the response from the service into a
SOAP response that is sent back to the SOAP
client. In Figure 13, a SOAP message exchange
example is given.

The exchange of SOAP messages does not have
to follow a traditional client-server model, as
SOAP supports message chains or intermediates.
A logical entity that performs some processing
of a SOAP message is referred to as an endpoint.
An endpoint can function both as a sender and a
receiver and this allows for processing chains to
be created. These endpoints, which act as both
sender and receiver, are called intermediates and
can sit on the path a request takes from a sender
to a receiver. The endpoints can use the
<Header> elements to determine which parts, if
any, of the message is addressed to them. If the
endpoint is an intermediate, it can remove the
parts of the message addressed to it before send-
ing it through to the next endpoint.

Figure 12 The structure of a SOAP message

Figure 13 A SOAP
message exchange example

<Envelope>

<Envelope>

<Header>
Contains optional context information
</Header>

<Body>
Contains the actual message to be
processed by the end-point
</Body>

SOAP
Response

SOAP
Request

Internet

SOAP
Processor

APIApplication
Server

Action

Result
8

Java

C

Perl

Etc.

XML
Parser

H
T
T
P

H
T
T
P

XML
Parser

Java

C

Perl

Etc.

SOAP
Processor

API Application
Server

1

2
3

4
5

7

6

1

2

3

4

5

6

7

8

A command is executed that generates
a process witin the application. The result
arrives in the application interface.

The message is translated into XML format
and sent to the Web server.

The XML parser checks the coherence of
the XML document and sends the SOAP
message via HTTP.

The XML parser checks the validity of
the message using the HTTP and XML
headers and accepts or rejects it.

The message is routed to the relevant
application server and translated so that
it is meaningful to the application.

The target application executes the task
and a result is produced.

The return is done in the same way.
Translated to XML and sent by HTTP.

The result is returned. The result may
be displayed in a browser, access to a
database, some actions, and so on.

14 Telektronikk 4.2002

4.4 Web Services Process Flows
Once Web Services are commonplace on the
Internet, new services can be composed by
aggregating existing services, like illustrated in
Figure 3. Usually, the different input and output
operations must be performed in an exactly pre-
defined order or sequence, and this operation
sequence needs to be defined. To do this in a
Web Services environment would require tech-
nologies that are able to describe Web Services
compositions or workflows within newly created
applications and even between companies.
Appropriate usage pattern of a collection of Web
Services to achieve a particular business goal
should be specified, e.g. a description of the
business process. The interaction pattern of a
collection of Web Services should also be speci-
fied resulting in a description of the overall part-
ner interactions. For systems spanning enterprise
boundaries and systems made from different
technologies, an XML based process flow and
pattern description would be useful. XLANG
[15] and WSFL [16] are initiatives from
Microsoft and IBM respectively, that addresses
these issues often referred to as orchestration.

5 Conclusion
This article has introduced and explained the
Web Services concept. It has outlined the most
important technologies normally used for XML
Web Services and basically given a high level
understanding and answer to the question:
“What is an XML Web Service?”.

XML Web Services are a new brand of services
that can be expected to have a big impact on the
World Wide Web. As put by the XML Protocol
Working Group at W3 in their charter [17]:

Today, the principal use of the World Wide
Web is for interactive access to documents
and applications. In almost all cases, such
access is by human users, typically working
through Web browsers, audio players, or
other interactive front-end systems. The Web
can grow significantly in power and scope
if it is extended to support communication
between applications, from one program to
another.

The Web Services model, continuing the history
of distributed computing, is a promising way to
achieve such a universal application-to-applica-
tion communication. It can lead to better cross-
business integration, improved efficiency, cost
savings in application development (due to faster
application development) and closer customer
and vendor relationships. The three basic build-
ing blocks in the Web Service model are invoca-
tion, description and publishing/discovering of
services. A number of different technologies
can represent each of these building blocks, but

some specifications emerge as the dominant
ones and are therefore more important than the
others, simply because they are commonly
accepted as standards and agreed upon by major
actors. These dominant technologies are SOAP
for invocation of Web Services, WSDL for
describing Web Services and UDDI for publish-
ing and discovering Web Services.

All these specifications are based on XML mak-
ing XML one of the cornerstones of XML Web
Services. XML is important as it defines a stan-
dardised way to format and exchange data, and it
thus enables applications created with different
technologies, platforms and languages to com-
municate with each other. Web Services use
standard Internet protocols like HTTP and this
allows ubiquitous access from across company
borders and firewalls. Various types of devices,
from personal computers and servers to different
kinds of smart devices will be able to collaborate
seamlessly.

The utilisation of XML Web Services technol-
ogy can help bring the Internet to a new level,
taking it from the traditional information-based
Internet to the emerging service-based Internet.
In the service-based Internet, machine-to-
machine communication will be commonplace
and service-based application development will
be prevailing. New opportunities for en even
richer and more meaningful collaboration
between businesses and people will flourish and
those who take advantage of these opportunities
can benefit greatly from it.

References
1 Extensible Markup Language (XML) 1.0

(Second Edition). (26 June 2002) [online] –
URL: http://www.w3.org/TR/REC-xml

2 XML Schema Part 0: Primer. (27 June 2002)
[online] – URL:
http://www.w3.org/TR/xmlschema-0/

3 The Extensible Stylesheet Language (XSL).
(27 June 2002) [online] – URL:
http://www.w3.org/Style/XSL/

4 Namespaces in XML. (27 June 2002)
[online] – URL:
http://www.w3.org/TR/REC-xml-names/

5 Harold, E R. XML Bible. Foster City, CA,
IDG Books Worldwide, 1999. (ISBN 0-
7645-3236-7)

6 Goldfarb, C F, Prescod, P. The XML Hand-
book. Upper Saddle River, NJ, Prentice-Hall,
1998. (ISBN 0-13-081152-1)

15Telektronikk 4.2002

7 IBM developer Works: Web architecture:
Web Services architecture overview. (27
June 2002) [online] – URL: http://www-
106.ibm.com/developerworks/library/w-ovr/

8 XML Web Services. (27 June 2002) [online]
– URL: http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/
dnglobspec/html/wsspecsover.asp

9 Web Services Architecture Requirements.
(27 June 2002) [online] – URL:
http://www.w3.org/TR/wsa-reqs

10 Cauldwell, P et al. Professional XML Web
Services. Birmingham (UK), Wrox Press,
2001. (ISBN 1-861005-09-1)

11 Defining Web Services. (27 June 2002)
[online] – URL: http://www.stencilgroup.
com/ideas_scope_200106wsdefined.pdf

12 UDDI. (10 July 2002) [online] – URL:
http://www.uddi.org/specification.html

13 Web Service Definition Language (WSDL).
(10 July 2002) [online] – URL:
http://www.w3.org/TR/wsdl

14 Simple Object Access Protocol (SOAP).
(10 July 2002) [online] – URL:
http://www.w3.org/TR/SOAP/

15 XLANG. (11 July 2002) [online] – URL:
http://www.gotdotnet.com/team/
xml_wsspecs/xlang-c/default.htm

16 Web Services Flow Language (WSFL 1.0).
(11 July 2002) [Online] – URL: http://
www-3.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf

17 XML Protocol Working Group Charter.
(12 July 2002) [online] – URL:
http://www.w3.org/2000/09/
XML-Protocol-Charter

Acronyms
API Application Programming Interface
ASP Application Service Provider
B2B Business-To-Business
COM Component Object Model
CORBA Common Object Request Broker

Architecture
CSS Cascading Style Sheets
DCOM Distributed COM
DNS Domain Name Service

(Domain Name System)
DTD Document Type Definition

(Document Type Description)
EAI Enterprise Application Integration
FTP File Transfer Protocol
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IIOP Internet Inter-ORB Protocol
LAN Local Area Network
PCDATA Parsed Character Data
RMI Remote Method Invocation
RPC Remote Procedure Call
SGML Standard Generalized Markup

Language
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
UDDI Universal Description, Discovery and

Integration
URI Uniform Resource Indicator

(Universal Resource Identifier)
URL Uniform Resource Locator

(Universal Resource Locator)
WSDL Web Services Definition Language

(Web Services Description Language)
WSFL Web Services Flow Language
WWW World Wide Web
W3C World Wide Web Consortium
XML eXtensible Markup Language
Xpath XML Path Language
XSL eXtensible Stylesheet Language
XSL-FO XSL Formatting Objects
XSLT XSL Transformations

Telektronikk 4.2002

1 Why Distributed
Processing?

Distributed processing simply means that com-
puters in different locations cooperate in order to
perform common tasks. Therefore, distributed
processing is nothing new in telecommunica-
tions: in automatic telecommunications systems
distributed processing has always been required
in order to establish calls in the network. It is
not so obvious that operations of telecommuni-
cations network require even larger and more
complex interconnected computer resources in
order to obtain information for charging and
billing customers, collect performance statistics
required for evolution and maintenance of net-
works, perform remote management and surveil-
lance of switches, routers, satellite earth stations,
SDH multiplexers and other equipment, and exe-
cute a number of other complex tasks. The oper-
ations system is also one of the most hetero-
geneous systems that exist being composed of
all imaginable types of computing devices hav-
ing been manufactured during the last twenty
years. Not only is the physical topology complex
but the software functions these computers exe-
cute are written in an admixture of most mod-
elling and programming languages developed
during the last thirty years or more.

Installations such as satellite earth stations, tele-
phone exchanges, large databases, and local area
data networks consist of clusters of several com-
puters. Power plants, oil refineries, flight ticket
booking systems, and signal systems of railways
also consist of clusters of cooperating comput-
ers. Distributed processing is required in the
production of almost all services and goods.
The common denominator of all these systems
is that they are heterogeneous.

All the above systems belong to a single organi-
sation and are usually manufactured by one
manufacturer – or if several manufacturers are
designing different parts of the system such as
in telecommunications networks, the design is in
accordance with precise interface and interopera-
tion specifications developed by the owner of
the system. This makes it easier to handle het-
erogeneity. When such systems are distributed
over many administrative domains and employ-
ing a multiplicity of technologies, we are again
facing immense problems related to heterogene-
ity. Now we are also facing the additional, and
by no means simpler problem, of agreeing to
develop a single technological standard.

The reasons to develop standards for distributed
processing were several. The owners of large
systems want to reduce the market power of the
equipment manufacturers by specifying open
software interfaces so that different manufactur-
ers can compete to deliver software and hard-
ware components for the same application. This
was the driving force behind the Information
Networking Architecture (INA) developed by
Bellcore between 1985 and 1995. Their intention
was followed up by the development of the
Telecommunications Information Networking
Architecture (TINA) by an international consor-
tium consisting of telecom operators and manu-
facturers of ICT equipment and systems. This
work took place between 1992 and 2000. While
INA should primarily offer distributed process-
ing in telecommunications systems only, the
intention of TINA was to develop a general plat-
form suitable for both operating the telecom net-
work and processing services implemented in
this network.

Some systems have become so large and so
dynamic that they need the support of platforms
shielding the application from the effects of soft-
ware and configuration errors. There are complex
global systems for passenger transfer in interna-
tional air transport, for monetary settlements
between airlines, and for rebooking of flight tick-
ets. The CORBA (Common Object Request Bro-
ker Architecture) platform was developed by the
Object Management Group (OMG) in order to
offer a possible solution to these challenges. A
slightly modified CORBA platform is the base-
line architecture of TINA. Though the CORBA
platform is commercially available from several
manufacturers, it never became the commercial
success that OMG expected.

None of the platforms developed so far have
become commercial successes. However, the
need to develop such platforms has become
more urgent. The reason is the large number of
cooperative systems now being explored. These
include platforms for peer-to-peer communica-
tions and anarchistic networks, international sys-
tems for road payment, platforms for medical
monitoring, swarms of interacting sensors, plat-
forms of wearable computers, and many more
sophisticated applications. Most of the new
applications also include mobile interfaces with
strong data-security protection requirements
making it more urgent to standardise distributed
processing platforms.

Distributed Processing Platforms:
Transparencies
J A N A A U D E S T A D

Jan A Audestad (60) is Senior
Advisor for Telenor Corporate
University. He is also Adjunct
Professor of telematics at the
Norwegian University of Science
and Technology (NTNU). He
has a Master degree in theoreti-
cal physics from NTNU in 1965.
He joined Telenor in 1971 after
four years in the electronics
industry. 1971 – 1995 he did
research primarily in satellite
systems, mobile systems, intelli-
gent networks and information
security. Since 1995 he has
worked in the area of business
strategy. He has chaired a num-
ber of international working
groups and research projects
standardising and developing
maritime satellite systems, GSM
and intelligent networks.

jan-arild.audestad@telenor.com

16

17Telektronikk 4.2002

Detailed descriptions of the different platforms
are found in the specifications developed by
standardisation organisations and industrial
groups (ITU, ETSI, ISO, OMG, TINA Consor-
tium, IEEE). The general principles for dis-
tributed processing were developed by ISO
under the heading Open Distributed Processing
(ODP). The ODP standard defines the underly-
ing principles of specifying and designing dis-
tributed platforms: it is not concerned with spec-
ifying any particular type of platform. Because
of its general nature, the ODP standard is still
the most important reference to distributed pro-
cessing.

The description of the transparencies given
below builds on the experience with ODP,
CORBA and TINA. The reason for choosing
these standards as the basis for this article is that
they are specifications of large, universal sys-
tems for distributed processing. The ideas were
developed in large groups with continuous
review of the solidity and applicability of the
ideas both from a technological and a commer-
cial viewpoint. Future platforms should build on
these experiences in order to generate new ideas
and to save time by not reinventing the wheel.

2 Baseline Principles of
Distributed Processing

One major problem concerning the design of
computer platforms for distributed processing is
the definition of the functions that the platform
should offer. These include runtime management
of the platform, storing and retrieving permanent
and temporary data, organisation of the software
modules, and management of the distributed
processing itself.

The most important principle of designing a dis-
tributed computer application is that first the
actual configuration of the system is ignored,
that is, the design is based on the assumption
that the computer system consists of one
machine and one user. This means that the appli-
cation is defined in the same way as for main-
frame computer-applications in general. After
this has been accomplished, the application is
distributed on the computers making up the sys-
tem. The purpose of platforms for distributed
processing is then to enable the system itself to
ensure interoperability of the software objects
making up the application irrespective of how
the objects are distributed over the individual
computers of the system.

In this way, the design of the application is inde-
pendent of the actual configuration of the sys-
tem: how many computers it consists of, which
computer does what task, where the computers
are located, how the computers communicate,
and how the hardware and software configura-

tion changes over time. The advantage of this
design method is, of course, that the actual com-
plexity of the system is hidden so that the de-
signer of the application software need not take
into account how the final system is configured
when writing the software.

The mechanisms for managing interoperability
of the software objects are the transparencies
described below.

Figure 1 shows what the configuration of the
distributed system looks like. It consists of the
application software interfacing the platform
software in each computer. The distribution plat-
form then interfaces the runtime system of the
computer in such a way that it looks as if the
platform is common for all the computers of
the distributed system.

The distributed processing platform connects
together all the computers in the system – or the
computing nodes as they are denoted in ODP.
The platform software is contained in each com-
puter, and it is written in accordance with the
interface towards the operating (or runtime) sys-
tem of the computer. This interface is machine
dependent so that different versions of the plat-
form software must be written for different oper-
ating systems: Microsoft windows, Linux, Unix
and so on. However, the platform ensures that
computers with different operating systems can
interoperate in order to execute the distributed
application.

The software of the distributed platform is also
called middleware since it acts as a mediator
between the application and the runtime system
of the computer.

The application software objects are written in a
standard language such as Java or C++ that can
be compiled at each computer. The Application
Programming Interface (API) ensures that all
software objects are written using a common
syntax such that objects designed by different

Figure 1 Distributed
computation

Computer 1

Application
software

Runtime
system

Platform
software

Computer 2

Application
software

Runtime
system

Platform
software

Machine
independent

API

Machine
dependent
interface

Distribution
platform

Inter-computer communication

18 Telektronikk 4.2002

manufacturers can be purchased and imple-
mented on the same platform.

The basic requirements of platforms offering
distributed applications are as follows.

• Concurrency. Many applications require pro-
cessing of concurrent (or simultaneous) pro-
cesses in a single machine, in a complex of
machines at one site, and in machines at
remote locations. In this context, concurrent
processes are independent processes sharing
the resources of the computers in some prede-
fined way. Distributed platforms for telecom-
munications applications and database appli-
cations must offer concurrency. The transac-
tion network for money transfer between
banks is a concurrent system.

• Parallel processing. Parallel processing com-
prises two algorithmically different methods:
distribution of a single algorithm on several
computers where each computer executes
parts of the problem (e.g. factoring large num-
bers, searching over large databases for ille-
gally decoding a cryptogram, or decoding the
human genome), and complex programs con-
sisting of many tasks that can be executed at
the same time but where execution of the dif-
ferent tasks must be synchronised in order to
produce the final result. Most distributed sys-
tems are concerned with problems of the latter
kind.

• Timesharing. Timesharing is quasi-parallel
processing within a single processor. This
means that each concurrent process is
assigned cyclically occurring timeslots where
it uses the resources of the computer alone.
Between each timeslot, the state of the compu-
tation; that is, the set of intermediate results, is
stored in memory. In this way, the processing
time is evenly distributed between the concur-
rent applications.

• Timesharing may sometimes be combined
with priority where the processing timeslots
allocated to each concurrent process depend
on type of process, its real-time requirement,
or other information.

• Many distributed processes require real-time
processing; that is, the processing has to be
completed within strict time limits. If it cannot
be completed within this time, the processing
has to be terminated in a controlled manner.

• Weak coupling means that only a small num-
ber of messages are exchanged between any
pair of software objects involved in a parallel
process. This implies that distributed applica-
tions should be designed in such a way that

software processes requiring heavy exchange
of information should, if possible, be con-
tained within the same object. If a process or
machine is overloaded, it is often better that
it ignores new requests and leaves it to the
requesting process to detect and act upon lack
of response. Similarly, if an acknowledgement
that a message has been received is not strictly
required, it should not be sent in order to
reduce processing load and protocol capacity.
When specifying and designing systems,
much work should be put in weakening syn-
chronisation, removing unnecessary acknowl-
edgements and defining procedures for
autonomous fault handling. This is probably
the single most important activity when
designing a system.

• Information hiding is a concept that applies to
both software objects and systems. Objects are
designed in such a way that only the knowl-
edge (syntax and semantics) of the interface
of the object is required in order to access the
services offered by the object. This is one of
the most important aspects of object-oriented
(OO) design. Systems are specified and
designed in a similar manner: the only infor-
mation ensuring cooperation between systems
is the syntax and semantics of the protocol
interconnecting them. Information hiding is
thus the most important mechanism there is
in order to handle heterogeneity. This is so
obvious that it is often overlooked.

• Weak synchronisation means that a system,
process or object has no a priori knowledge
of when it will be invoked by another process,
which process is initiating the request, or
whether the invocation is remote or local.

• Heterogeneity implies that the platform must
be such that it can be implemented in different
types of equipment ranging from microproces-
sors of mobile phones to mainframe comput-
ers, equipment of different vendors, and
equipment spanning a considerable range of
age, say ten years or more.

• Fault management. Each system, process or
object must be able to react to faults on its
own, including autonomous processes for fault
discovery, fault diagnostics, fault recovery,
isolation of faulty software and hardware,
redundancy management, and backup memory
management. Autonomous fault recovery is
complex and expensive but is one of the stan-
dard features of telecommunications systems.
The reason why this is so important for tele-
communications systems is the enormous
impact even a short outage may have on soci-
ety. Failure of several of the new applications
mentioned above will have similar severe

19Telektronikk 4.2002

impact on businesses, public management and
society as a whole.

The purpose of the transparency is to implement
these and several other objectives. However,
before describing the transparencies, let us have
a look at what telecommunications networks and
applications look like.

3 General Model of Tele-
communications Systems

Any type of terminals can be connected to the
telecommunications system as shown in Figure
2. The network consists of two parts:

• The network infrastructure offering access
connections to the user equipment, and trans-
port and routing of bits (including mobility)
between access points.

• The operations system responsible for all
management of the telecommunications sys-
tem, including recording of usage information
and statistics, performance monitoring, fault
supervision and recovery, reconfiguration
management, quality of service and security
management, and handling of subscription
profiles. The operations system is built on
complex, distributed platforms meeting most
of the requirements listed in Section 2 above.

Note that in this model the user equipment is not
part of the network.

Figure 3 shows the same configuration except
that now platforms are included. There is one
platform supporting the distributed processing
of the network infrastructure and the operations
system, and there is another platform imple-
mented on the terminals offering distributed pro-
cessing to them. The platform supporting the
network and the platform existing on the user
terminals may be the same type of platform or
be different. The functionality of the two plat-
forms is not interconnected but is serving two
independent purposes.

Figure 4 shows how the Internet is configured.
The reasoning that follows applies to all applica-
tions except telephony1) since all new applica-
tions are implemented on the Internet or a net-
work with similar functionality. (We may safely
assume that the basic principles of the Internet
will be implemented in all telecommunications
networks in the foreseeable future.)

The Internet offers IP at the interface to the user
terminal. The IP protocol does not offer service
capabilities beyond routing, mobility and a few
other capabilities; for example, predetermined
routing for support of real-time applications such
as telephony and video. This is true both for IP
version 4 and IP version 62). IP does not offer
simple integrity services such as secure delivery Figure 3 Processing platform

1) The telephone network is different because the telephone apparatus does not offer significant functionality beyond that of making telephone calls.
The network then contains all functions required for intelligent management of services. In the Internet, this management can be done in the terminals.

2) Capabilities beyond routing and simple mobility support are not really implemented in IP version 4 although several additional capabilities are
specified in the standard. This is why IP version 6 was developed.

Figure 2 Telecommunications
network

Network
infrastructure

Operations system

Network
infrastructure

Operations system
Platform

Platform

20 Telektronikk 4.2002

of information and recovery of information lost
in the network. IP offers a transparent interface
to TCP, UDP or any other transport protocol.

TCP and UDP are end-to-end protocols; that is,
they offer only interconnection of software pro-
cesses existing in terminals. TCP and UDP are
transparent vehicles for transporting information
between these software processes. The informa-
tion contained in the information field of a TCP
or UDP packet can be structured (e.g. a remote
procedure call) or unstructured as in the transfer
of a video picture or a file. There is no way in
which you can tell which type of information is
transferred by simply looking at the TCP/UDP
header. It is only the sending and receiving ter-
minals that know what type of information is
being transferred and how it is to be interpreted.
For example, in file management the transfer
may alternate between structured information
(management of file parameters) and unstruc-
tured information (transfer of file content).

The network operator may well offer access to
services that require TCP/UDP as the vehicle for
transferring information. If so, these services are
accommodated in equipment connected to the
network in the same way as any other terminal.
In other words, the network operator has no
advantage of offering services above TCP/UDP
compared to a service provider connected to the
network. Regulations even prohibit the network
operators from offering such access to them-
selves at a lower price than to other providers
offering equivalent services. Depending upon

how clever the operator is, the service offer may
be better and cheaper than that of the competi-
tors. This is not an advantage gained by owning
the network but by being cleverer in marketing
and pricing the service.

A platform supporting distributed computing is
thus offered on top of TCP/UDP. This platform
may offer distribution of processing and storing
of information, enhanced mobility such as mov-
ing sessions between terminals, transaction ser-
vices, and transparent data security services such
as access control, authentication and confiden-
tiality.

The applications are implemented on top of the
platform as explained above. In Figure 4 this is
called the socio-robotic layer; socio because it
includes communication between people, and
robotic because it includes communications
between machines. The socio-robotic layer cor-
responds to the application shown in Figure 1.

4 Transparencies

4.1 Introduction
The remainder of this paper is concerned with
the transparencies. Formally the transparencies
can be defined as the set of functions that map
the design from a mainframe description onto a
distributed configuration. The principle is illus-
trated in Figure 5. The transparencies thus for-
malise the principle stated at the beginning of
Section 2.

Figure 4 Network,
platform and applications

RouterRouter

(Disributed computer application)

Platform
(Transparencies

transport protocol (TCP/UDP)

Host (PC, server, database, sensor...)

Network

IP
(Terminal mobility, routing)

Demarcation
line between
platform and
network

Socio-robotic layer

21Telektronikk 4.2002

4.2 Access
Access transparency hides from the applications
message formats and protocol details required
for operating in the heterogeneous environment.
The application will thus see a standardised
interface to its surroundings independent of
where (e.g. remote or in the same machine) the
cooperating application is located and on which
type of computer hardware it is operating. The
transparency is the most important element in
solving the core issues of heterogeneity: differ-
ent types of computer hardware and operating
systems, different data rates and transfer proto-
cols offered at different network interfaces, and
different capabilities of the terminals. Therefore,
every distributed system must support this trans-
parency.

In Figure 5, there may be different protocols
between the different computers in the dis-
tributed environment: one protocol can be TCP
over WAP, one UDP over Bluetooth and one
TCP over IP.

The platform contains various software objects
implementing the transparency. One such set of
objects adapts the general protocol offered at
the API to the system-dependent protocol imple-
mented on the connection. The transparency also
ensures binding; that is, establishing the connec-
tion to the right peer object, retaining this rela-
tionship as long as required so that messages are
not misrouted, and removing the connection
when it is no longer needed. In some cases, it
may even be necessary to install protocol soft-
ware or set protocol parameters at the initiation
of the connection involving negotiations with the
binder object of the peer system in order to agree
on a common protocol. The application is igno-
rant of these activities taking place.

The access transparency makes it possible to
install the same software at fixed locations oper-
ating at 100 Mbps and mobile phones offering
9600 bps. The protocols at these locations will
have different characteristics but the platform
will ensure that the software object installed at
the different locations will interface the protocol
in the appropriate way.

4.3 Location
Location transparency hides the location of an
application from other applications. The trans-
parency ensures that an object can be inserted in
an arbitrary computer and still be found by any
other object wanting to communicate with it.
The location address of cooperating objects need
then not be included in the program code of the
objects: it is enough to indicate in the program
code which other type of object is needed in
order to complete the task. The transparency is
realised by two simple functions: when a new

object is registered in the system, the identity
and the location of the object (that is, in which
computer it is installed) together with other rele-
vant information such as the services it offers are
announced to one or more address directories.
When another object wants to use the services
offered by the object, it passes its request to the
binder of the access interface. The binder then
searches for the address of a suitable object
offering the service in the address directories.

The implementation of location transparency
seems simple, but it is not. It is a simple and
unproblematic task to store the address of the
object in the computer where it is located and
in computers placing remote calls to this object
regularly. It is more difficult to agree on a
worldwide structure consisting of address direc-
tories accessible to anyone. Some questions are:
who should own these databases; should it cost
anything to access the directory and to register
information in it; and who is responsible for the
correctness of the information contained in the
directory? These aspects are not technical but
legal and commercial, and are therefore much
harder to solve.

4.4 Concurrency
Concurrency transparency or transaction trans-
parency coordinates the interactions arising
when several applications interact with one
another at the same time. The transparency pre-
serves the consistency of an object being used
concurrently by several other objects. The con-
currency mechanism is built into the platform
and not included in the individual objects mak-
ing the objects simpler and more universal. The
mechanism in the platform serialises and com-

Figure 5 Mapping from
mainframe to

distributed system

Mainframe
runtime system

Application

Software
object

Distribution
transparencies

Runtime
system

Runtime
system

Runtime
system

Distribution network

Platform

22 Telektronikk 4.2002

pletes individual transactions on an object in
accordance with the ACID rules. ACID stands
for the following:

• Atomicity. A transaction is completed either
fully or not at all (partial transaction results
do not exist).

• Consistency. The action of the transaction
always leads to a result that is in agreement
with the specifications of the transaction ser-
vice.

• Isolation. A transaction in a concurrent system
is performed as if it was alone (serialisation).

• Durability. The data can only be changed by
transactions: only a new transaction can alter
the result of the previous transaction.

In addition to the ACID requirements, the plat-
form must also protect against deadlock; that is,
the platform must always be able to terminate
a transaction (for example by cancelling it) also
when the transaction fails to terminate on its
own. This task is particularly challenging if the
operation consists of a complex set of linked and
nested transactions between several objects.

The concurrency transparency also hides to an
object that several objects are concurrently using
the other object.

4.5 Migration and Relocation
Migration transparency is an extension to loca-
tion transparency making it possible for the sys-
tem to change the location of an application
without the application knowing that it is moved.
Such relocation may take place even while other
applications are interacting with the process be-
ing relocated without disrupting ongoing inter-
actions. Migration may be required in order to
reconfigure the processing load of computers,
move the computation session from one user ter-
minal to another, or do system maintenance.

When an object is migrated, the following activi-
ties may take place:

• The processing of the object is stopped, and
the processing state of the object and address-
ing information required for reconnecting the
objects to its peers are stored in a backup
memory. The processing state consists of a
pointer indicating exactly which program
statement is the next to be executed and the
temporary results of the computation stored at
that instant. This is also called checkpointing
and is used for other processing purposes also
(maintenance and fault recovery). Connec-
tions to other objects are suspended until the
object has been relocated.

• Then the data of the processing state is trans-
ferred to the other computer so that the object
can be reinitiated at the correct state in the
new computer. Either the complete program
listing of the object (compiled or uncompiled)
or a reference to the template in which the
program listing can be found is also sent
together with the data.

• The new computer installs the object and initi-
ates it with the processing-state data.

• Finally, the connections with other objects are
re-established. This is in itself a complex pro-
cess involving the binders of the access system.

Migration of objects may also make use of syn-
chronised replicated objects (see below) where a
replica of the object to be moved is first initiated
in the new location. Then the replicated object
is synchronised to the original object, and when
this has been completed, the original object is
terminated. Synchronisation makes use of check-
pointing and transfer of the checkpoint data to
the replicated object.

The location of the new object may then be
stored temporarily in databases so that the object
can be found if needed by other applications.

This capability of hiding that relocation takes
place is called relocation transparency. Migra-
tion transparency and relocation transparency are
therefore two aspects of the same mechanism:
migration transparency allows applications to be
moved while the relocation transparency hides
such events from other applications bound to the
application being moved.

4.6 Replication
Replication transparency hides the replication of
one object from the objects using it. Replication
means that two or more objects are doing the
same task and that each object is a replica of the
same object type. The replicated objects may run
in different computers. The platform takes care
of synchronisation and other processing depen-
dencies of the replicated objects.

The replicated objects may be fully synchro-
nised, that is, they do exactly the same process-
ing at the same time. The platform synchronises
the objects and ensures the integrity of the data
they contain. This type of replication is used in
order to create security groups where the objects
act as hot standbys for one another: if one object
fails, the other objects can still execute the task.
Synchronous replication is also used when the
same information is required at different places
at the same time and where it is more practical
that two objects are used instead of one, e.g. to
reduce processing load and processing delay.

23Telektronikk 4.2002

One object may interface one, several or all of
the replicated objects of a set. The platform takes
then care of how the communication is arranged
and managed.

Mobile agents may be asynchronous or syn-
chronous replicated objects sent to different com-
puters where they are executed. The process send-
ing out the mobile agents is not aware of how
many replicas exist and where they are located.
Processes in the platform manage the multiple
binding to all the agents and organise the informa-
tion exchange between home base and agent.

The replication and migration transparencies are
important tools for managing processing load.

4.7 Persistence
Persistence transparency implies that activation
or deactivation of objects is not explicitly visible
to other objects. Hence, the transparency sup-
ports evolution of the system in the sense that
new software may be added or old software
removed without having impact on other parts
of the system.

The transparency also hides from other objects
that the software of the cooperating object is
compiled and instantiated when an operation
towards it is invoked; i.e. the object is not persis-
tent but created whenever someone uses it.

The program code of the objects can be loaded
down from specification repositories possibly
subject to commercial rules. The platform must
then contain the software (the factory software)
capable of loading down the template and the
compiler that compiles the program code of the
object. The actual object compiler may then be
associated with the template and not be stored in
the computer where the object is initiated. This
allows more flexible computer configuration
since the computers need not be prepared a pri-
ori for all the compilers and languages in which
the objects are written.

4.8 Failure
Failure transparency hides failure of one object
from other objects and prevents other processes
from failing as a secondary effect. The trans-
parency also hides encapsulation of failed
objects, recovery actions taken to restore normal
operation, and any subsequent rearrangement of
the system.

The automatic restart systems of telephone
exchanges and satellite earth stations are exam-
ples of implementations of failure handling of
the type to be implemented in distributed pro-
cessing platforms.

4.9 Security
Security transparency comprises several com-
plex functions such as access control, authenti-
cation, certification, confidentiality and data
integrity, non-repudiation, notary public ser-
vices, anonymity management, and non-trace-
ability. Each of these functions can in fact be
viewed as a separate transparency because the
implementation of each of them requires its own
network functionality. The transparencies are
also difficult to implement because they require
access to specialised equipment including public
key and naming directories, key generation and
distribution systems, databases containing access
control information and access decision algo-
rithms, certification management systems, and
systems for producing and storing non-repudia-
tion information.

Examples of platforms offering automatic
authentication and encryption without involving
the call handling functions are the GSM platform
and the UMTS platform. These transparencies
are simple. However, transparent access control
and notary public services are very complex and
difficult to implement. Figure 6 shows how
security features can be built into the platform.

The example shows two communicating objects:
the client object initiating the interaction and the
target object. The security system consists of
software in the end systems, that is, the sending
and the receiving computers, and in a number of
third parties offering support to the end systems.

The end systems may contain the following
functions: Figure 6 Security

transparency

Client
object

Target
object

Third parties

Naming directory
• Public key manager
Key management
• Generation
• Distribution
Certification
Notary public
• Witnessing
• Event storage
Anonymity

Platform

Access control
• Operation
• Interface
• User
Identification
• Name
• Authenticity
• Signature
Confidentiality
• Hashing
• Encryption

Other
transparencies

Access control
• Operation
• Interface
• User
Identification
• Name
• Authenticity
• Signature
Confidentiality
• Hashing
• Encryption

Other
transparencies

Message Recovered message API

Secured message

Network

24 Telektronikk 4.2002

• Access control provided for each operation,
access control associated with each object
interface, and access control associated with
each user. The sending system will check
whether communications with the target
object is allowed, whether the parameters of
the operation is within allowed limits, and
insert access information that the receiving
system can use in its analysis. The receiving
system will analyse whether the user is
allowed to access the system (only my wife
and I have read access to our joint bank
account but we do not have write access),
whether the interface is allowed to service the
access request (the read interface cannot be
used to change the amount of money on the
account), and whether the invoked operation
is allowed (my wife and I can invoke read
operations and payment service operations).
Access control may in addition depend on
other parameters or events such as type of
authentication, certificates provided by third
parties, message confidentiality and integrity,
and the time when the operation was received.

• Identification including secure naming ser-
vices, retrieval of public keys from third par-
ties, authentication of client and target objects,
and provision of electronic signatures to be
attached to messages. The keys used for
authentication may also be secret keys gener-
ated by a third party. Retrieval of public keys
and generation of secret keys may require cer-
tification by a third party.

• Confidentiality services include encryption
and integrity protection, for example, by
hashes, timestamps or nonces. Third parties
may generate and distribute encryption keys
and nonces.

Third parties may support capabilities beyond
those just described. This may include anonym-
ity where aliases replace plaintext addresses over
unsecured connections (GSM offers this feature
over the radio connection), and notary public
services offering non-repudiation. The latter
includes witnessing that events take place and
storing data associated with the event. The data
can be retrieved later in order to settle disputes
concerning whether or not an event took place
at a certain time.

4.10 Mobility
Mobility transparency enables design of soft-
ware processes independent of whether they are
run on mobile or fixed systems. The problem
associated with mobility and transparency is
illustrated in Figure 7. The figure shows a user
running a session at a terminal connected via an
access to a network, that is, involving five ele-
ments each having its own characteristics: user
profile, session characteristics, terminal charac-
teristics, access type, and network characteris-
tics. There are three mobile interfaces: between
the user and the terminal, between the session
and the terminal, and between the terminal and
the network, the latter being managed by the net-
work. The platform implemented above TCP
must support user mobility and session mobility.
This implies also that the relationships between
user and user profile and between session and
session characteristics are retained during mobil-
ity. However, how the user profile and the ses-
sion characteristics are to be interpreted, depends
on the terminal characteristics, the access type
and the network characteristics.

User mobility implies that the user moves from
one terminal to another. The major concern here
is to retain the user profile and adjust it in accor-
dance with the new terminal characteristics, the
new access type, and the new network character-
istics associated with the new access. The user
profile is concerned with which applications the
user is allowed to initiate (files, programs, operat-
ing systems, e-mail, Internet), which access rights
are assigned to him as a user, and which security
features are required for different types of access.
This means that the capabilities available to the
user may be different if the access is inside a fire-
wall or outside the firewall. The mobility trans-
parency shall take care of these functions.

Session mobility makes use of the migration and
relocation transparency in order to move parts of
the session. In addition, session mobility re-
quires management of the session characteristics
and adjusts it in accordance with other system
characteristics similar to user mobility. When a
session is moved, for example, from one side of
a firewall to the other, this is likely to require
reestablishment of the security features.

Figure 7 Mobility

Network characteristics
Depends on access

Network

Access type
New

Terminal characteristics
New

Terminal characteristics Mobile interface

Access type

Mobile interface

User mobility

Session characteristics
Invariant

User profile
Invariant

Session mobility

Terminal mobilityMobile interface

Terminal Terminal

User User

Session Session

25Telektronikk 4.2002

4.11 Processing Dependency and
Grouping

Processing dependency and grouping trans-
parency hides how timesharing and other depen-
dencies between applications are realised. It also
hides all types of grouping of objects into pro-
cessing entities and the reason for forming such
groups (commercial packaging, load optimisa-
tion, or timing constraints). Note that the same
application may be organised differently in dif-
ferent machines and by different organisations
but that the modelling of the application should
be independent of this.

In CORBA the processing dependency trans-
parency supporting timesharing is implemented
as threads in the computing node software. Other
dependencies such as handling of internal proce-
dure calls versus remote procedure calls and
shared memory are also implemented in organis-
ing objects (groups and clusters).

4.12 Federation
Federation transparency implies that the dis-
tributed system may be modelled and designed
independently of business relationships and
ownership of applications over systems spanning
several owners. This is particularly important
when designing telecommunications systems.

A distributed system may be divided into
domains representing ownership, technology and
other aspects varying over the system. Such sub-
divisions are then not visible to the users of the
platform.

4.13 Scalability
Scalability transparency means that the system
may grow in size and incorporate new function-
ality without redesigning the system architecture
and software objects already installed. The loca-
tion transparency takes care of the flexible
addressing and identification required for
smooth scalability. The access transparency
partly solves the heterogeneity issues. The feder-
ation transparency takes care of heterogeneity
associated with ownership and administrative
responsibility so that the platform can span sev-
eral organisations and businesses. However, this
is not enough to ensure that new computers con-
taining the distribution platform can be installed
in the system without extensive management
activities involving already installed computers
and systems such as reconfiguration of the archi-
tecture and re-initiation of the platform.

The scalability transparency must support
smooth introduction of new platform capabili-
ties, facilitate easy installation of new hardware
(user terminals, databases, servers, mainframe
computers and so on), and rearrangement and
evolution of the platform topology.

The Internet is the best example of systems with
extreme agility with regard to scalability. The
most important feature there is that routers are
charged with the autonomous task of figuring
out what their environment looks like. This
includes also topological information such as
which other routers are in the environment. The
traffic handling capacity of the resulting network
is not system optimal since each router makes its
own independent decision. The advantage is, of
course, that the network does not need manage-
ment resources in order to update topological
data: the identity of the nearest neighbours,
which routers are operational and which are
faulty and taken out of service, instantaneous
maps of the traffic distribution, and tables indi-
cating how calls shall be forwarded at each
router.

However, the type of platforms considered in
this paper are platforms interfacing TCP, UDP
or another end-to-end transport protocol. There-
fore the scalability of the Internet will have no
impact on the scalability of these platforms.
Scalability must be implemented once more
in a different part of the system.

5 Conclusion
We have described twelve transparencies that
should be included in platforms for distributed
processing. The most complex platforms, includ-
ing CORBA and TINA, only offer access trans-
parency and location transparencies as manda-
tory platform elements. However, even these
transparencies do not offer full support of all
the characteristics required for flexible service
implementation.

Some of the transparencies described above are
included not as transparencies in CORBA and
TINA but as other service features of the plat-
form (persistence, processing dependencies and
grouping, and simple security services).

The reason why even these advanced platforms
do not offer more is that it is difficult and expen-
sive to implement the transparencies.

Platforms for distributed processing have existed
as commercial products for not more than six or
seven years. The specifications of some of the
platforms are still not complete and will never be
finished. It will probably take at least ten more
years before platforms with the desired charac-
teristics are available for general commercial
use. The platform software is complex and huge.
Therefore, the platform can only be accommo-
dated in future generations of microprocessors.
However, the technology must be developed
now in order to be available within the next
decade or so.

26 Telektronikk 4.2002

Several of the transparencies are much more
complex and commercially important than the
other transparencies. These are particularly con-
currency, security, mobility and scalability.
These are also the transparencies that are the
most urgent to implement. The reasons are:

• Concurrency or transaction handling is
required in large applications such as banking,
finance and e-commerce. Banking includes
diverse applications such as transfer of money
between banks, remote management of users’
accounts, electronic payment of services and
goods, and automatic payment of road toll,
parking charge and energy usage charge. Such
transactions will soon be required by comput-
ers everywhere: the PC at home, cash registers
in shops, e-money databases, the electricity
meter, the road payment chip, the parking
meter, and so on. The transparency will there-
fore be used in a number of diverse applica-
tions. To be more general: whenever informa-
tion is stored in or retrieved from any device
even remotely resembling a database, transac-
tion services are involved.

• Security is hardly being implemented in any
system yet. The transaction services described
above rely heavily on security: confidentiality,
e.g. in order not to disclose secret keys ex-
changed between payer and merchant, data-
integrity hashing and timestamping to protect
against manipulation of content, non-repudia-
tion to prove that a transaction has taken place,
authentication to establish secure identity, and
access control to protect against fraudulent
manipulation of any type of information, in-
cluding bank accounts. Security will also, for
the similar reasons as for transactions, become
a key feature in remote access to business sys-
tems, in cooperative work, and in distributed
management systems of government and busi-
nesses. The urgency of implementing security
on a grand scale is also evident from the fact
that the number of security attacks on com-
puter systems at least doubles every year. This
is the highest form of e-persecution mania!

• Mobile access both on radio and fixed lines is
ubiquitous. Presently only terminal mobility is
generally supported (radio systems and mobile
IP). This type of mobility is well handled by
the network. Personal mobility allows people
to access the same processing session at dif-
ferent terminals with different capabilities and
characteristics. Session mobility moves pro-
cessing sessions between different computers
and between different users. Personal mobility
and session mobility are still not solved in a
satisfactory way. These advanced forms of
mobility also require strict security.

• Scalability must be built into the platform
from the beginning. Platforms are too often
designed for a single application, employing a
single technology, fitted to the needs of a sin-
gle user, or installed in a single system. Road
payment platforms are designed for the single
purpose of collecting road toll, are employing
passive radio beacon technology, are specified
and used by a single road authority, and are
implemented as a system consisting of a small
number of toll stations, a financial institution
handling the administration of collected
money, and the management system of the
road authority. Such systems are certainly not
scalable in any interpretation of that word.

There are several reasons why standardised plat-
forms are not becoming the expected commer-
cial success. The platforms are complex and
expensive to build so that most of the sales price
depends on the number sold. Therefore, the
building and marketing of new platforms is a
risky business. The platform may not offer what
the users want, the reason being that the specifi-
cation is done in large groups run by organisa-
tions having diverse motives for implementing
platforms. Such platforms consist often of sets
of compromises satisfying as many compro-
mises as possible. The result is that the platform
is not attractive to anyone; it contains too much
of what is not needed and too little of what is
needed. It takes much time (ten years is rather
the rule than the exception) to finish the specifi-
cations. The platform design is then facing a
different reality when it is finished than when
it was conceived.

These problems do not imply that joint efforts to
specify platforms is a waste of time and should
be abandoned. Platforms are more needed than
earlier so that the efforts should go on; sooner or
later the process converges and platforms that
are commercially viable are a reality.

However, platforms developed by a single
organisation may not reach the market either.
The OLE platform of Microsoft is an example
of this.

If the reader is involved in designing or purchas-
ing distributed platforms, he or she is referred to
the vast amount of available literature on plat-
forms. Detailed data concerning ODP, CORBA
and TINA can be found on these Internet
addresses:

www.iso.org and search for Open Distributed
Processing

www.omg.
www.tinac.com

27

Today, the Internet’s two most popular services
are e-mail and the World Wide Web. However,
as the Internet evolves over the next few years,
we are likely to see Web services become
equally popular since they, ultimately, will
enable companies to conduct e-Business more
effectively and at less cost. Web services are the
next-generation component model for distributed
computing and a natural extension of integration
technology. The promise of Web services is the
ability to enable services to freely communicate
over the public network, as well as create a
service-oriented approach to computing.

Web services are used for deploying, providing,
and orchestrating access to business functions
over the Web. Web services are built on existing
technologies, such as XML, so they can be
implemented easily and incrementally. Yet the
efficiencies they are capable of bringing about
could dramatically change the way e-Business
is conducted.

In contemplating the adoption of Web services,
it is important to remember that whenever a
company seeks to provide services and goods
using Internet technologies, it can find itself
involved in large integration projects that lead to
business, technical, and political challenges. Not
surprisingly, when such projects fail, the conse-
quences are disastrous. Therefore, Web services
and successful integration go hand in hand.

Origins in Component
Architecture
The historical trend that has led us towards Web
services has its roots in component architecture
of the 1980s. Components were originally devel-
oped in the context of graphical user interfaces
(GUIs) and allow the re-use of existing applica-
tion code. Within this architecture, code is com-
piled into several independent units instead of
into a single entity. These units or components
communicate via an infrastructure provided by
the operating system.

But component architecture allowed developers
to do even more than simply build GUIs. Soon
its use grew from managing communication
between components on the same computer to
communicating with component infrastructures
on other computers across a network. Dis-
tributed component architectures enabled the
rapid development of complex, distributed appli-
cations. This led to the specification of CORBA

(the Common Object Request Broker Architec-
ture) in 1991 and Microsoft DCOM component
architecture, as well as the development of the
Sun J2EE distributed architecture.

Distributed component architectures have one
serious limitation: generally they can only be
used across a tightly managed network, such as
a corporate intranet. They do not play well in an
open, fragile environment, such as the public
Internet. Hence the need for Web services in an
Internet world. In the same way that component
middleware allows one piece of software to
make use of the functionality contained in
another piece of software on another computer,
Web services use the Internet’s protocols to pro-
vide a component infrastructure for the develop-
ment of distributed components that function on
the public net. Web services are modular appli-
cations that can be described, published, located,
and invoked over a network through standard-
ized XML messaging. They are defined by new
standards – like Simple Object Access Protocol
(SOAP), Web Services Description Language
(WSDL), and Universal Discovery Description
and Integration (UDDI). Web services offer a
new model for creating e-Business applications
from reusable software modules that are
accessed on the Web.

Benefits of Web Services
From a technical standpoint, Web services offer
an easier way to develop applications that need
to be accessed over the Web. It is important to
note that Web services do not solve all integra-
tion requirements, only the ability to communi-
cate with other software modules over the public
net. Additional integration technologies are still
needed to handle integration between data,
applications, and business processes. Also
needed are the enterprise-class capabilities to
surround the Web services, enabling them to
be secure and scalable.

From a business standpoint, Web services allow
a company to concentrate development efforts
on computing assets that drive revenue. Business
models and relationships are evolved as neces-
sary, the costs of integration reduced, interac-
tions with marketplaces established more effi-
ciently, and business functions delivered to a
broader set of customers and partners. Web ser-
vices technology enables the outsourcing of ser-
vices that provide no business benefit. Because
Web services decouple applications and infra-

Web Services – An Evolution of the
Distributed Computing Model
T R O N S Y V E R S E N

Tron Syversen (30) works as
sales executive and specialist
on mobile solutions for iAny-
where Solutions, a subsidiary of
Sybase Inc. His job consists of
sales, promotion and marketing
of mobile solutions. Through
iAnywhere Solutions, Sybase
offers customers and partners
a complete product portfolio of
mobile software. Tron likes to
work with tailored solutions
based on mobile databases
and synchronization technology.
He has a technical background
and has been working with intro-
ducing Sybase mobile technol-
ogy on the Nordic market for
the last three years.

Tron.Syversen@sybase.com

Telektronikk 4.2002

28 Telektronikk 4.2002

structure, a company can quickly compose and
deploy solutions based on reusable components
from the lowest-cost provider, whether internal
or external. These solutions can change the
target, and even the nature of interactions, in
response to changing business conditions. Orga-
nizations can leverage a flexible and dynamic
business model, which maximizes their reach to
customers, partners, suppliers, and marketplaces
while minimizing their costs and time to market.

Sybase’s Solution for Web
Services
Over the last 18 years, Sybase has been deliver-
ing enterprise-class infrastructure software
aimed at helping customers with their distributed
computing needs. This software, which couples
integration with distributed computing, is
Sybase’s heritage. We were the first vendor to
introduce a database for distributed computing,
the first to release replication and distributed
data access in a heterogeneous environment, the
first to handle both Java and COM components
as well as to adopt J2EE technology, and the
first to bridge mobile users with the enterprise.

Most recently, we extended the integration capa-
bilities of most of our software infrastructure to
include the developing, accessing, providing,
and orchestrating of Web services. From within
this infrastructure, customers can expose exist-
ing software components from multiple vendors’
technologies and have the unique advantage of
being able to quickly adapt to Web services.
This is accomplished in two ways. First, Sybase
Web services can expose a wide variety of exist-
ing software components, including Java, EJBs,
database stored procedures, CICS components,
and mobile wireless services.

Second, we help customers adapt to Web ser-
vices by providing a solution that lets them adapt
Web services incrementally; that is, when appro-

priate and at different times. In the evolution of
distributed computing, it will be many years be-
fore Web services are mainstream, so their full
adoption will occur in a number of steps. For
example, a company may itself adapt Web ser-
vices but its partners and suppliers – as well as
different divisions within that company – will
proceed on a different schedule. In such cases,
Sybase Web services can bridge heterogeneous
technologies at a logical level and act as a cen-
tral control above the other services. We can also
act as a hosted service, allowing customers to
connect quickly to their partners using the tech-
nology of choice and eliminating the need to
install and maintain multiple gateways and con-
nectivity software.

Sybase is providing a comprehensive portfolio
of open-integration for Web services and deliv-
ering them in four ways:

• Development of Web services – software that
supports the development and automation of
Web services

• Providing Web services – software that hosts
the Web services

• Accessing Web services – software that con-
nects to a service and delivers the value of that
service to its intended user(s)

• Orchestrating Web services – a set of software
services that are designed to help coordinate
the activities of services while they are being
used.

An example of a Sybase enabled Web services
product is our Enterprise Application Server
(EAServer) version 4.1. EAServer supports the
open standards and technologies necessary to
develop, publish, and provide Web services-
based applications, including UDDI, SOAP,
J2EE, WSDL, and the ability to interface with
a public UDDI registry.

Mobile Web Services
As a part of Sybase’s comprehensive Web ser-
vices strategy iAnywhere Solutions, a subsidiary
of Sybase INC, will enable delivery of Web ser-
vices to mobile and wireless users. This includes
an integrated software platform for extending
the reach of e-Business applications, messages,
enterprise data, and Internet content to mobile
and wireless devices, including smartphones,
PDAs and laptops. By exposing this functional-
ity as Web services, other applications and
servers can easily tap into this platform to lever-
age mobile-specific features. For example, an
application can access a Web service running on
a middleware platform to send an SMS message
to a user’s phone.

Integrate

Integrate

UDDI, WSDL, SOAP

Provide

Orchestrate

Access

Develop

Java

EJB

.NET

C++

NVO

CICS
Stored Procedures
Applications
Mobile Messaging
Services
Vertical Component
Applications (EBA)

29Telektronikk 4.2002

Conclusion
Sybase believes that the next generation of
e-Business will be “services-oriented” because
of the increasing need to decouple applications
and infrastructure for the rapid construction and
deployment of flexible solutions. Standards-
based Web services – teamed with integration
technology – open the door to more effective
and efficient e-Business. These services support
massive automation and integration of applica-
tions and business processes, allow rapid accel-
eration of the e-Business innovation-integration
cycle, and reduce infrastructure costs and com-
plexity. The underlying technology is still evolv-
ing, but through the efforts of Sybase and others,
companies will be able to adapt to Web services
quickly, achieving business value today and
being well positioned for tomorrow. To encour-
age standards that will make Web services a
more valuable part of the Internet, Sybase is now
working through two major organizations: the
Web services Interoperability (WSI) Organiza-
tion and OASIS (Organization for the Advance-
ment of Structured Information Standards).

Company profile

Sybase is a leading provider of enterprise software products and services, includ-

ing enterprise portals, vertical solutions and mobile technologies. Such products

and services enable companies to build robust e-business infrastructures for inte-

grating, managing, and delivering information anywhere it is needed. With nearly

5,350 employees and 2000 revenues of $960.5 million, Sybase is one of the

largest independent software companies in the world. Today Sybase’s end-to-end

solutions are defining the requirements for enterprise solutions, Web computing

and Mobile computing. These solutions currently focus on four principal vertical

markets: financial services, telecommunications/media, healthcare, and the

government/public sector.

Sybase’s headquarters are located in Dublin, California, and operates in over

60 countries. The company’s stock is traded on the NYSE under the symbol SY.

iAnywhere Solutions, a subsidiary of Sybase, Inc., is the market-leading provider of

mobile and wireless solutions that enable anywhere, anytime access to enterprise

information. More than 6 million users at 10,000 customers sites worldwide rely

on iAnywhere Solutions to power solutions that help to improve productivity,

streamline operations and create new revenue streams. With more than a decade

of experience, iAnywhere Solutions provides a one-stop source for organizations’

m-business needs across key markets including financial services, healthcare,

government, utilities, transportation and retail.

Telektronikk 4.2002

1 Introduction
This paper explains Web service development in
generic terms – without discussing implementa-
tion details on different platforms. The first part
focuses on the process of developing a Web
service, while the second part concerns client
development. Finally we list useful sources of in-
formation in regard to Web service development.

2 How A Web Service Is Made
This chapter tries to explain the generic process
of creating a Web service, regardless of plat-
forms and other implementation details. It
assumes the following definition of a Web
service:

A Web service is application logic that is
made available on the Internet using the
following standards: XML for data descrip-
tion, SOAP for message wrapping, WSDL for
service description and UDDI for service
discovery.

We describe two scenarios for developing Web
services: Starting from scratch or starting with
an existing service.

2.1 Developing a Web Service from
Scratch

Starting from scratch means creating all the
functionality in a service from the bottom up,
before exposing the desired functionality to
Web service clients. The process is as follows:

1 Create service functionality
2 Generate Web service interface
3 Deploy service
4 Publish service

2.1.1 Create Service Functionality
The service logic must be developed according
to the goals of providing the service. The plat-
form and internal workings of the service are

irrelevant in a Web service perspective, since
Web services depend on the model shown in
Figure 1.

In this way Web services allow for cross-plat-
form interoperability in a way that makes the
platform irrelevant. Internally the service may
connect to a database, an Enterprise Java Bean,
a COM object, a legacy application, etc., but
towards the Web service client all communica-
tion will be done using higher level, universal
protocols. This is the same principle that allows
a Web browser and a Web server to be imple-
mented with completely different technologies
but still communicate without problems using
the common, universal standards HTTP and
HTML.

Once the functionality is in place, the next step
is to expose it as one or more Web services.

2.1.2 Generate Web Service Interface
The functionality created in the first step needs
to be given a Web service interface in order to
be a Web service. The tool the programmer is
using should implement the Web service layer
automatically if the developer specifies what
functionality to expose as a Web service. But
what does it mean that the tool generates a Web
services interface? There are two steps involved
in exposing functionality as Web services:

a) Create SOAP interface
b)Create WSDL service description

2.1.2.1 Create SOAP Interface: the Web
Service Proxy

For a Web service to be called by remote clients,
a service listener and a service proxy need to be
in place, as shown in Figure 2. This will all be
taken care of by the tools/platform you choose to
build your Web services on, but it is still impor-
tant to have a general idea of what is going on.

Web Service Development Explained
A N N E M A R I E H A R T V I G S E N , L U I S A R T U R O F L O R E S
A N D D O V A N T H A N H

Luis Arturo Flores (24) obtained
the Computer Systems Engin-
eering degree with Honors dis-
tinction from the Monterrey Tech
(ITESM) in Mexico, complement-
ing his studies with university
programs in the University of
Melbourne, Australia; and the
Washington College at Mary-
land, USA, where he is a mem-
ber of the Honor Society. In
2002–2001 he participated in
Information Systems projects in
Mexico and the United States
before joining Telenor R&D in
June, 2001. At Telenor he per-
formed research focused on the
Session Initiation Protocol and
XML Web Services, together
with Dr. Prof. Do Van Thanh.

al766023@mail.mty.itesm.mx

Anne Marie Hartvigsen (25)
finalised her Master in Informa-
tion Systems at Agder Univer-
sity College in June 2002, with
the thesis “Studying Emerging
Technologies in Telenor –
Using Web Services to Provide
Universally Accessible User
Profiles”. She also holds a
Cand.Mag. in social sciences
from the Norwegian University
of Technology and Science
(NTNU). Formerly a visiting
researcher at Telenor R&D,
working in the PANDA (Per-
sonal Area Network and Data
Applications) research group,
she is now employed as a sys-
tems developer at the Telenor
spin-off Xymphonic Systems.

anne.hartvigsen@xymphonic.com

This paper explains in generic terms how Web Services and Web Service clients are developed.

Figure 1 Web Services abstract implementation details

Application
Code

Web
Service

Service
Client

Platform and
language specific
communication

Platform and
language agnostic

communication

30

31

The service listener receives incoming SOAP
requests, which the service proxy parses and
interprets, and decodes into calls to invoke the
application code created in the first step. This
proxy must understand how to handle all things
that can occur in a SOAP request. When it re-
ceives a request from the listener it performs
three steps:

1 Deserialise the message from XML into the
native format that the application code
requires;

2 Invoke the code;

3 Serialise the response to the message back
into XML and hand it back to the listener for
delivery back to the requester.

It is the proxy and the listener that are often
referred to as SOAP wrapping, meaning that
they provide an abstract layer between the ser-
vice implementation and the calling client.
Because this is merely a standardised way of
wrapping existing functionality, it is quite
straightforward to add, and Web services tools
will do it automatically. There already exist
SOAP toolkits for all the popular programming
languages and environments (see http://www.
soaplite.com or http://www.soapware.org for
detailed product listings). The proxy component
needs to know exactly which code to invoke
when a particular message is handed to it, and
different Web service tools have different mech-
anisms for doing this.

SOAP is an infrastructure technology, and once
this interface is generated, SOAP works “behind
the scenes” to make sure the service and a client
may interoperate. Ideally the SOAP components
are completely transparent to the application
code, so that the code does not even know it is
being invoked through a Web service.

2.1.2.2 Create WSDL Service Description:
the WSDL File

Once the SOAP wrapping is in place, it is possi-
ble for clients to issue SOAP requests to the ser-
vice and receive SOAP responses back. But the
client is not able to send requests or handle the
responses if it does not know what kind of

requests the service accepts, or what kind of
responses it can expect to get back. This infor-
mation is provided in the service’s WSDL file.

The WSDL file defines the Web service in terms
of its logical and physical interface.

• A service consists of one or more ports.

• Each port is on the one hand bound to a spe-
cific URI, and on the other hand to what is
called a binding.

• A binding is a combination between an opera-
tion (method signature) that can be invoked
and a specific protocol that can be used to
invoke it (e.g. SOAP).

• Each operation is composed of messages,
which again consist of parts (data values) that
have their own names (e.g. strUserID) and
part types (e.g. string). The part types (data
types) are defined using XML Schema.

• Operations are grouped together in logical
port types.

The separation between logical elements – port
types, operations, messages – and physical ele-
ments – data types, protocols, URIs – makes it
easy to for example offer the same service on
several different protocols (e.g. SOAP, HTTP
GET, HTTP POST) and/or from several differ-
ent locations (URIs).

As with the SOAP proxy, the WSDL file is cre-
ated automatically, since it merely provides a
formal description of an already existing service.
This description is expressed in an XML docu-
ment that adheres to the WSDL protocol for
defining services. This makes it possible for
other applications to read the WSDL file pro-
grammatically, and to generate client proxies
for the Web service automatically.

2.1.3 Deploy the Web Service
The Web service must run in an environment
that allows clients to access it. Usually this
means deploying the service to a Web applica-
tion server.

Do Van Thanh (44) obtained his
MSc in Electronic and Computer
Sciences from the Norwegian
Univ. of Science and Technology
(NTNU) in 1984 and his PhD in
Informatics from the University
of Oslo in 1997. In 1991 he
joined Ericsson R&D Depart-
ment in Oslo after 7 years of
R&D at Norsk Data, a minicom-
puter manufacturer in Oslo. In
2000 he joined Telenor R&D and
is now in charge of PANDA (Per-
sonal Area Network & Data
Applications) research activities
with a focus on SIP, XML and
next generation mobile applica-
tions. He also holds a professor
position at the Department of
Telematics at NTNU in Trond-
heim. He is author of numerous
publications and inventer of a
dozen patents.

thanh-van.do@telenor.com

Application
Code

Service
Proxy

Service
Listener

Web application server

Application
Invocation

XML
Request

XML
Request

Figure 2 Generic Web Services architecture

Telektronikk 4.2002

32 Telektronikk 4.2002

Once the Web service layer is implemented and
deployed, all that remains to be done is publish-
ing the service so that clients may find it.

2.1.4 Publish the Web Service
The last step in creating a Web service is pub-
lishing it to the UDDI business registry. It is of
course possible to have Web services that are not
registered in UDDI, but that assume that suitable
clients get to know about the service in other
ways. The purpose of registering the service in
the UDDI registry is to allow potential users of
the service to find it based on its functionality.

Example: A developer is creating a Web site that
requires users to be authenticated. Instead of
programming this functionality herself, the
developer can search the UDDI registry for Web
services providing this functionality. There the
developer may find several authentication ser-
vices, e.g. Microsoft’s Passport service. Other
information also resides there, such as informa-
tion about the company offering the service, and
the terms for using the service (the service
provider can for example require that the client
pays per use, or an annual fee, or nothing at all;
there may be restrictions of how many times per
day the service can be invoked, etc.). By study-
ing the information, an appropriate service can
be chosen, and integrated in the Web site solu-
tion with the help of the service’s WSDL file. If
after some time the developer does not want to
use the selected service anymore, it should be
easy to find an equivalent service (presuming
one exists) in the UDDI registry and switch to
that instead.

UDDI is a technical specification for building a
distributed directory of businesses and Web ser-
vices. The data model is an XML Schema for
describing businesses and Web services. UDDI
also includes SOAP API details for searching
existing data and publishing new data.

The UDDI Business Registry (cloud services) is
an implementation of the specification, accessi-
ble through the different UDDI Business Reg-
istry Nodes (UBR Nodes). Businesses can regis-

ter themselves and their services at these nodes.
They each offer two interfaces. One is a Web
page, which can be accessed with a regular Web
browser. The other is UDDI’s publishing API
where different save and delete functions can be
used by SOAP messages. This can be useful if
you want to use software that automatically reg-
isters new Web services or if, e.g., you need an
automatic method for updating binding access
URLs.

As illustrated in Figure 3, there are other UDDI
implementations in addition to the UBR. These
implementations allow you to publish to your
own private registry, which can be shared within
a company or among partners.

If you are developing Web services for internal
use they should of course not be published in
the UBR. You should however register your ser-
vices somehow, in order to make efficient use of
them. One possible way is to publish them in
your own, private UDDI registry.

2.2 Developing a Web Service from
an Existing Service

Building a Web service from an existing service
means that the functionality already exists, but
there is no Web service interface to it. Except for
the first step the process is the same as for build-
ing a Web service from scratch:

1 Build interface to the service
2 Generate Web service interface
3 Deploy service
4 Publish service

2.2.1 Build Interface to the Service
Web services are most useful when they are used
to expose existing functionality. Whether Web
services are used to tie internal systems together
or to expose services to external actors, Web
services should provide a fast and easy way to
accomplish this. Using Web services also means
that once the interface is in place it can be
accessed from applications on any platform,
meaning that only one interface is needed. The
bottom line is that existing functionality rela-
tively easy can get added value, leveraging prior
investments.

If the functionality already exists on a platform
from which one wants to offer Web services,
then all that is needed is to generate the Web ser-
vice interface in the same way as for building a
service from scratch. If it is not possible or desir-
able to generate the Web service interface from
this platform, the developer must first interface
the functionality with the desired Web service
platform, and then generate the Web service
interface on that platform. The resulting archi-
tecture is shown in Figure 4.

Figure 3 UDDI specification
and implementations

UDDI Technical
Specification

Implementations

UDDI Business
Registry

UDDI Private
Registries

Specification

33Telektronikk 4.2002

There are generally two reasons why one would
want to generate the Web service interface on
another platform

• It is not possible to generate a Web service
interface directly from the existing solution/
platform;

• The current platform lacks desired functionality.

One example of the first case may be providing
Short Message Service (SMS) as a Web service.
This task first requires that a gateway be built
between the SMS centre and the desired Web
service platform (e.g. .NET or a J2EE platform).
Next the Web service interface can be generated.
Laird (2001) describes a project that developed
an SMS Web service and also explains why this
kind of functionality is particularly suitable to
offer as a Web service.

An example of the second case is when one
has an application running in Perl. By using
SOAP::Lite for Perl one can easily offer the
desired functionality as Web services, since
SOAP::Lite supports SOAP, WSDL and UDDI.
However, SOAP::Lite is a very simple tool –
aimed at solving the problem from a program-
mer’s view point. It might be that more features
are needed than what is offered by SOAP::Lite,
for example if one wants to tie together multiple
Web services – then a more complex implemen-
tation, like Apache Axis, might provide a better
platform. Or let us say one wants to expose the
service with the aim of selling it to potential
users. Then one needs to do things like keep
track of who is using one’s service so one can
charge them, and there might be other business
aspects to the Web service initiative. Maybe
there is already an e-business server running that
takes care of some business aspects and inte-
grates Web services with that – then one would
probably want to offer one’s service from that.

When building the bridge between one’s service
and the chosen Web service platform, there is no
formula for how this should be done. It depends
on the systems at hand, available tools and skills,
and the trade-off between performance versus
flexibility and development costs. Depending on
all these factors one could either build some pro-
prietary interface oneself or use technologies
like COM, CORBA, Java RMI, etc. One could
even end up using Web services to tie the two
platforms together!

2.2.2 Generate Web Service Interface,
Deploy and Publish the Service

These steps are the same whether starting with
an existing service or building the service from
scratch. See the chapter on building Web ser-
vices from scratch.

3 How A Web Service Client
is Made: Web Service
Consumption

This chapter aims to explain the generic process
of consuming an existing Web service, regard-
less of platforms and other implementation
details. The process involves four steps:

1 Find service
2 Generate client proxy
3 Invoke service

3.1.1 Discover the Web Service
There are many ways to obtain information
about a Web service that one wants to use. Typi-
cally if using Web services to tie together inter-
nal systems or to do e-business with trusted part-
ners one would be given descriptions and speci-
fications for the specific services to use. How-
ever, if looking for some functionality and want-
ing to see if there is a Web service for this, the
appropriate place to search for it, according to
Web service standards, is a UDDI registry.
Some companies may use UDDI implementa-
tions to keep private service registries. The
UDDI Business Registry (cloud services) is
another implementation of the specification,
accessible through the different UDDI Business
Registry Nodes (UBR Nodes). This is the place
to search for public services, enabling anyone to
search existing UDDI data. These data are
divided into three categories:

• White Pages – general information about com-
panies;

• Yellow Pages – general classification data for
companies and services;

• Green Pages – technical information about
Web services (using the term in its broadest
sense, including everything from Web pages
and e-mail addresses up to SOAP, CORBA,
Java RMI services, etc.).

Although some technical information about a
Web service can be found in the registry, it will
mostly also contain a link to a WSDL file and

Figure 4 Web Service
built from existing service

on another platform

Application
Code

Web
Service

Service
Client

Platform and
language specific
communication

Platform and
language agnostic

communication

Existing
Service

Platform and
language specific
communication

34 Telektronikk 4.2002

possibly other service descriptions located at the
service provider.

Searching of the UDDI registry can be done by
accessing a UBR Node. They each offer two
interfaces. One is a Web page, which can be
accessed with a regular Web browser. The other
is UDDI’s inquiry API where different find and
get functions can be requested using SOAP mes-
sages. Such requests could either be sent directly
or a UDDI tool could be used.

3.1.2 Generate a Client Proxy
Once the desired service and the WSDL file that
belongs to it have been located, your develop-
ment tool should be able to generate a client
proxy based on the WSDL file. When calling
Web service methods in one’s application, it is
actually the methods in this proxy that are being
called. The proxy then generates suitable SOAP
requests that it uses to invoke the service. Results
from the requests are received by the proxy,
which deserialises the XML and returns the
answer to the relevant application on an appro-
priate format. Conceptually this is the same as
for the server proxy, and this is shown in Figure 5.

3.1.3 Invoke Service: Sending and
Receiving SOAP Messages

To invoke the Web service all that has to be
done is make calls to the proxy class, and this
will forward the call as a SOAP request to the
Web service. The answer returned will be han-
dled by the client proxy, and handed over to the
application code in native format.

4 Summary
Recalling all that has been mentioned in this
chapter, we provided one approach that we con-
sider simple, yet effective for developing a Web
service from scratch. To do so, we suggested
going by the following process:

1 Create service functionality. This includes
writing the code of the components that will
constitute the application, including the func-
tions that will be available through the service.

2 Generate Web service interface. This step is
generally performed by the developing tools,
so one should not worry about carrying out
this step, but just to test whether the tools are
actually doing it correctly one can e.g. check
that a WSDL file has been created for the ser-
vice and that the details in the WSDL descrip-
tion seem correct.

3 Deploy service. To deploy the service means
to make it available on one’s Web server,
where service clients can access it. Depending
on the development tools and the platform
used, the deployment will be performed
according to these. But basically, a proxy
class that speaks SOAP and a WSDL file
describing the interface of this class must be
made available. This allows clients to refer-
ence the service and test if the actual service
itself is reachable by them.

4 Publish service. Finally we talked about pub-
lishing the service at the UDDI business reg-
istry. This is the registry for businesses world-
wide to list themselves and their services on
the Internet. Of course this is only necessary
if one wants the service to be available world-
wide. If the purpose of the project is to create
services for the internal use of the company, it
may not be necessary to register the service
here. But somehow the network address of the
WSDL file has to be provided to the clients, or
the interested developers of your company.
One can even have one’s own internal
“myUDDI” registry, for benefit of the com-
pany’s developers.

We also presented a brief description of what
needs to be done to create a Web service from an
existing service. This process is very similar to
the previous one, except that on the first step,
instead of building the service itself, only the
interface has to be created. That is, generate the
necessary functions or processes that can be
called and that link the entering calls with the
implemented functionality of the service. So, in
this case, the functions themselves will work as
an intermediary between the Web interface, and

Figure 5 Web Service
architecture
– server and client

Application
Code

Service
Proxy

Service
Listener

Web application server

Application
Invocation

XML
Request

XML
Request

Client
Proxy

Method
CallWeb Service Provider

Web Service
Client

Application
Code

35Telektronikk 4.2002

the existing functionality. Steps two, three, and
four are just the same as when building a service
from scratch.

Finally, we explained how to consume an exist-
ing Web service. The following steps constituted
the approach we introduced:

1 Find service. This means finding the desired
service to complement our application. We
can search the UDDI registry, or by other
means find the description of the service func-
tionality and the network address of the
WSDL file.

2 Generate client proxy. By means of the devel-
opment environment, the service found in step
one needs to be referenced. The development
tool must be able to understand the WSDL file
in order to be able to generate the necessary
invoking method to the developer. This is
called a proxy class because it is a class that
acts as an intermediary between the client
application and the Web service.

3 Invoke service. Finally, it is just a matter of
calling the service. To do so, call the proxy
class, and it will forward the call as a SOAP
request to the Web service, and obtain the
answer returned from the service.

5 Resources
In the following we list some resources that may
be useful when developing Web services and
clients.

5.1 SOAP
SOAP 1.1: http://www.w3.org/TR/SOAP/
SOAP 1.2: http://www.w3.org/TR/soap12-part1/

Implementations
Overview: http://www.soapware.org/
directory/4/implementations

Apache Axis: http://xml.apache.org/axis/

Microsoft SOAP ToolKit 3.0:
http://msdn.microsoft.com/soap

SOAP::Lite for Perl: http://soaplite.com

Glue from the Mind Electric:
http://www.themindelectric.com/glue/

5.2 WSDL
WSDL 1.1: http://www.w3.org/TR/wsdl

WSDL 1.2: http://www.w3.org/TR/2002/
WD-wsdl12-20020709/

WSDL validator: http://pocketsoap.com/wsdl/

Invocation Tools
Glue from the Mind Electric:
http://www.themindelectric.com/glue/

SOAP::Lite for Perl: http://soaplite.com

IBM Web Services Invocation Framework
/WSIF): http://www.alphaworks.ibm.com/
tech/wsif

5.3 UDDI
UDDI Business Registry Nodes (Operators)
• Microsoft: http://uddi.microsoft.com/
• IBM: http://uddi.ibm.com/
• SAP: http://uddi.sap.com/

Inquiry and Publish Interfaces
• Microsoft

- http://uddi.microsoft.com/inquire
- https://uddi.microsoft.com/publish

• IBM
- http://uddi.ibm.com/ubr/inquiryapi
- https://uddi.ibm.com/ubr/publishapi

• SAP
- http://uddi.sap.com/uddi/api/inquiry
- https://uddi.sap.com/uddi/api/publish

Tools
• UDDI4J (UDDI for Java) – a tool for using

the UDDI APIs: http://oss.software.ibm.
com/developerworks/projects/uddi4j/

• jUDDI: http://www.juddi.org/

• SOAP::Lite: http://soaplite.com/

• Microsfot UDDI Software Development Kit:
http://uddi.microsoft.com/developer/

Information
• The official UDDI site: http://www.uddi.org

• UDDI technical newsgroup:
http://groups.yahoo.com/group/uddi-technical/

• UDDI information and news:
http://uddicentral.com/

5.4 Other Information and Resources
W3C Web Services Activity:
http://www.w3.org/2002/ws/

The IBM Web Services Browser:
http://demo.alphaworks.ibm.com/browser/

36 Telektronikk 4.2002

6 Sources
The information in this paper was extracted from
the following sources:

Cauldwell, P et al. 2001. Professional XML Web
Services. Birmingham, UK, Wrox Press Ltd.

Cerami, E. 2002. Web Services Essentials. CA,
USA, O’Reilly.

Graham, S et al. 2002. Building Web Services
with Java : Making Sense of XML, SOAP,
WSDL, and UDDI. Indiana, USA, Sams Publish-
ing.

Laird, C. 2001. SMS : Case study of a Web ser-
vices deployment. “Instant gratification” pro-
gramming results. July 25, 2002 [online] – URL:
http://www-106.ibm.com/developerworks/
webservices/library/ws-sms.html

Snell, J, Tidwell, D, Kulchenko, P. 2002.
Building Web Services with SOAP. CA, USA
O’Reilly.

Vasudevan, V. 2001. A Web Services Primer.
O’Reilly XML.com. July 22, 2002 [online] –
URL: http://www.xml.com/pub/a/2001/
04/04/webservices/index.html

37

1 Introduction
This article presents an investigation of the major
XML Web Services products that are available
on the market and an overview of the Web Ser-
vice arena with the dominant players. The article
will also consider briefly the Telco services rele-
vant to be exposed as XML Web Services.

The term Web Services describes a standardized
way of integrating Web-based applications using
the XML, SOAP, WSDL and UDDI open stan-
dards over an Internet protocol backbone. XML is
used to tag the data, SOAP is used to transfer the
data, WSDL is used for describing the services
available and UDDI is used for listing what ser-
vices are available. Used primarily as a means for
businesses to communicate with each other and
with clients, Web services allow organizations to
communicate data without intimate knowledge of
each other’s IT systems behind the firewall.

When it comes to Web Service products we see
that most of the vendors either base their prod-
ucts on Java platforms or Microsoft platforms.
Due to the Web Service standardization different
products will ideally be able to interoperate
when needed.

2 Platforms
To develop and run a commercial Web Service it
is convenient to differentiate between four types
of platforms needed:

• Provider platform – the environment that does
the hosting of a Web Service, for example an
application server.

• Consumer platform – the environment where
the consumer or client connects to a Web Ser-
vice, for example a user interface that auto-
matically accesses the remote Web Service.

• Production platform – the environment where
automation of developing Web Services is
provided. Support for the Web Services stan-
dards must be provided.

• Management platform – the environment that
coordinates the usage of Web Services, for
example providing QoS, delivery guarantees,
security management, trading relationships
management, etc.

A Web Service product that covers all these plat-
forms may be regarded as complete.

The vendors have so far put a lot of emphasis
into the first three platforms, but they have not
got that far in the management platform area.

2.1 Provider/Consumer Platform
A Web Service will always consist of a provider
and a consumer platform representing corre-
spondingly the server application side and the
client application side of the service. In most
cases those two platforms are based on existing
application servers of which there are mainly
two different types, those based on Java 2 Enter-
prise Edition (J2EE) or those based on Microsoft
.NET.

2.1.1 J2EE
The J2EE platform uses a multi-tiered dis-
tributed application model. Application logic is
divided into components according to functions.
The various application components that make
up a J2EE application are installed on different
machines depending on the tier in the multi-
tiered J2EE environment to which the applica-
tion component belongs. Figure 1 shows two
multi-tiered J2EE applications divided into the
tiers described in the following list:

• Client-tier components run on the client
machine;

• Web-tier components run on the J2EE server;

• Business-tier components run on the J2EE
server;

• Enterprise information system (EIS) tier soft-
ware run on the EIS server.

Major Web Service Products and Relations
to Mobile Telco Services
E R I K L I L L E V O L D A N D D O V A N T H A N H

Do Van Thanh (44) obtained his
MSc in Electronic and Computer
Sciences from the Norwegian
Univ. of Science and Technology
(NTNU) in 1984 and his PhD in
Informatics from the University
of Oslo in 1997. In 1991 he
joined Ericsson R&D Depart-
ment in Oslo after 7 years of
R&D at Norsk Data, a minicom-
puter manufacturer in Oslo. In
2000 he joined Telenor R&D and
is now in charge of PANDA (Per-
sonal Area Network & Data
Applications) research activities
with a focus on SIP, XML and
next generation mobile applica-
tions. He also holds a professor
position at the Department of
Telematics at NTNU in Trond-
heim. He is author of numerous
publications and inventer of a
dozen patents.
thanh-van.do@telenor.com

Erik Lillevold (60) obtained his
MSc in Physics from the Norwe-
gian University of Science and
Technology (NTNU) in 1970 and
joined the Norwegian Defense
Research Institute (NDRE) in
1971. He worked there as a
research scientist until 1986
when he joined Telenor R&D.
He has most of his time worked
in the field of messaging and
application services, e.g. X.400,
Internet Mail, WWW and WAP.
In the last few years he has
devoted his work to Open Ser-
vice Platforms (Parlay, OSA,
Web Services, etc.).

erik.lillevold@telenor.com

Data-
base

Data-
base

Enterprise
Beans

Enterprise
Beans

JSP
Pages

Application
Client

Dynamic
NTML
Pages

Client
Tier

Web
Tier

Business
Tier

EIS
Tier

Client
Machine

J2EE
Server
Machine

Database
Server
Machine

J2EE
Application 1

J2EE
Application 2

Figure 1 The J2EE platform

Telektronikk 4.2002

38 Telektronikk 4.2002

J2EE components are written in the Java pro-
gramming language and are compiled in the
same way as any program in the language. The
difference between J2EE components and “stan-
dard” Java classes is that J2EE components are
assembled into a J2EE application, verified to
be well formed and in compliance with the J2EE
specification, and deployed to production, where
they are run and managed by the J2EE server.
The J2EE specification defines the following
J2EE components:

• Application clients and applets (dynamic
HTML pages) are components that run on the
client machine.

• Java Servlet and JavaServer Pages (JSP) tech-
nology components are Web components that
run on the J2EE server machine.

• Enterprise JavaBeans (EJB) components
(enterprise beans) are business components
that run on the J2EE server machine.

A J2EE client can be a Web client or an applica-
tion client. A Web client consists of two parts:
dynamic Web pages containing various types of
mark-up language (HTML, XML, and so on),
which are generated by Web components run-
ning in the Web tier, and a Web browser, which
renders the pages received from the server. A
J2EE application client runs on a client machine
and provides a way for users to handle tasks that
require a richer user interface than can be pro-
vided by a mark-up language.

A Web page received from the Web tier can
include an embedded applet. An applet is a small
client application written in the Java program-
ming language that executes in the Java virtual
machine installed in the Web browser.

The server and client tiers might also include
components based on the JavaBeans component
architecture to manage the data flow between an
application client or applet and components run-
ning on the J2EE server or between server com-
ponents and a database.

The enterprise information system tier handles
enterprise information system software and
includes enterprise infrastructure systems such
as enterprise resource planning (ERP), main-
frame transaction processing, database systems,
and other legacy information systems.

2.1.2 The .NET Platform
The .NET Framework is a new Microsoft com-
puting platform that simplifies application devel-
opment in the highly distributed environment of
the Internet.

The .NET Framework has two main compo-
nents: the common language runtime and the
.NET Framework class library. The common
language runtime is the foundation of the .NET
Framework. You can think of the runtime as an
agent that manages code at execution time, pro-
viding core services that manage memory,
threads, remote access, security and robustness.
In fact, the concept of code management is a
fundamental principle of the runtime. Code that
targets the runtime is known as managed code,
while code that does not target the runtime is
known as unmanaged code. The class library,
the other main component of the .NET Frame-
work, is a comprehensive, object-oriented col-
lection of reusable types that can be used to
develop applications ranging from traditional
command-line or graphical user interface (GUI)
applications to applications based on the latest
innovations provided by XML Web services.

Figure 2 shows the relationship of the common
language runtime and the class library to your
applications and to the overall system. The illus-
tration also shows how managed code operates
within a larger architecture.

For example, ASP.NET hosts the runtime to pro-
vide a scalable, server-side environment for
managed code. ASP.NET, including IIS (Inter-
net Information Service), is a set of technologies
in the Microsoft .NET Framework for building
Web applications and XML Web Services.
ASP.NET pages execute on the server and gen-
erate mark-up such as HTML, WML or XML
that is sent to a desktop or mobile browser.

Custom object
libraries

Unmanaged applications

Managed applications

Class
library

Run-
time

Operating system/
Hardware

Managed Web
applications

ASP.NET
(Runtime)

Internet
Information

Services

Unmanaged
applications

Figure 2 The .NET
platform architecture

39Telektronikk 4.2002

ASP.NET works directly with the runtime to
enable XML Web services for example.

The .NET Framework can be hosted by unman-
aged components that load the common lan-
guage runtime into their processes and initiate
the execution of managed code, thereby creating
a software environment that can exploit both
managed and unmanaged features. The .NET
Framework not only provides several runtime
hosts, but also supports the development of
third-party runtime hosts.

Figure 3 shows a basic .NET network with man-
aged code running in different server environ-
ments. Servers such as IIS and SQL Server can
perform standard operations while your applica-
tion logic executes through the managed code.

ASP.NET is the hosting environment that
enables developers to use the .NET Framework
to target Web-based applications. However,
ASP.NET is more than just a runtime host; it is a
complete architecture for developing Web sites
and Internet-distributed objects using managed
code. Both Web Forms and XML Web services
use IIS and ASP.NET as the publishing mecha-
nism for applications, and both have a collection
of supporting classes in the .NET Framework.

2.2 Production Platform
When developing a Web Service the developer
must start to create the service functionality
from scratch or use an existing service on the
provider platform. The application server usually
has tools that support service development.
These or any other available tools can be used to
make the necessary source code for the service
to run on the targeted provider platform.

Most of the production platforms seem to con-
tain similar functions:

• From source code as input is then the WSDL
(Web Service Description Language) file
produced. At the same time a deployment
description is made and used to deploy the
code into the actual runtime platform.

• If the WSDL file is already available, as it
often is when the client side application is
created, you could start from there instead.
An existing WSDL file may also be used to
create server-side code stubs of the Web
Service defined by it.

• WSDL is an XML file used to create more or
less automatically the Web Service interface
(server-side) that exchanges and converts
SOAP messages with XML code to invoke the
server application and respond to the client
application.

• The server-side code is deployed on the
provider platform using the deployment
description file.

• WSDL is also used to create the client appli-
cation code stubs used to exchange SOAP
messages with the server.

• The client-side code is deployed on the con-
sumer platform.

It should be noted that the client-side and the
service-side of the Web Service in theory could
be produced by production platforms from dif-
ferent vendors. In practice, however, interoper-
ability between Web Service clients and servers
from different vendors cannot be guaranteed.

3 Major Web Service Products
Some of the most prestigious Web Service prod-
ucts known today have lately been tested and
evaluated by Telenor R&D to some extent.
These are BEA WebLogic Server 7.0 with
Workshop, Apache Axis beta 3 Web Service
Engine, Microsoft .NET and IBM WebSphere.
The results of the findings are described in the
following.

3.1 BEA WebLogic Server 7.0 with
Workshop

In our context is the WebLogic Server 7.0 the
provider platform, while the Workshop is the
production platform.

3.1.1 Overview
WebLogic Server (WLS) 7.0 is a fully J2EE-
compliant application server, regarded as one
of the leaders in the application server space
because it has many Java-oriented features and
is a reliable server. Even if SOAP and WSDL
support is included in BEA WebLogic Server
6.1, they are not sufficient in this version. Com-
pared to WLS 6.1, WLS 7.0 with Workshop
extends Web service functionality and fulfils the
need to integrate the developing environment
with Web services support.

Workshop is the Web service creation and de-
ployment tool for BEA’s WLS 7.0. It provides

Client

ASP.NET hosts
Web Forms applications

ASP.NET hosts
XML Web
services
applications

Windows.NET
Enterprise
Server hosts the
runtime and
managed code

Figure 3 A basic
.NET network

40 Telektronikk 4.2002

an integrated development framework that
allows developers to build Web services that can
easily be set up to interoperate with the existing
resources and applications (EJBs, Java Message
Service destinations, Java DataBase Connectiv-
ity connections and other Web services).

While WLS 6.1 forced developers to build part
of the infrastructure, BEA Workshop provides
this functionality for developers out of the box
as part of the standard Web services infrastruc-
ture, encapsulating the complexities of the J2EE
architecture. Workshop handles all the Java
Naming and Directory Interface (JNDI) code,
API calls, resource management, and exception
handling, leaving the client with a simple inter-
face for business logic calls. This allows applica-
tion developers who are more business oriented
than programming oriented to take advantage
of Web services technology. BEA WebLogic
Workshop includes two major components:

• A visual development environment that lets
developers design and implement Web ser-
vices. It graphically illustrates the interface
with other components.

• A runtime framework that provides the Web
services infrastructure, as well as testing,
debugging and deployment environment for
Web services applications. It creates the
XML, SOAP and WSDL interface together
with necessary components to implement the
service under the J2EE WebLogic platform,

which are EJBs, JDBC connections, etc, while
the developer only worries about writing the
standard Java code

Figure 4 shows what Web services look like in
BEA’s perspective.

3.1.2 Results
WebLogic Server 7.0 with Workshop supports
large-scale development and deployment of
XML Web services. The solution is totally inte-
grated, which means that setting up and using
the platform is relatively problem free.

WLS 7.0 and Workshop support SOAP 1.2,
WSDL 1.1 and UDDI 2.0, and when it comes to
SOAP messaging styles it supports both the RPC
and document/literal styles. BEA claims Work-
shop Web services to be fully interoperable with
.NET Web services, both when using .NET as a
resource and when serving .NET clients. Our
tests indicate that Workshop indeed offers true
interoperability with both .NET and other J2EE
services.

WLS 7.0 and Workshop constitutes a reliable,
integrated platform with full support for every
J2EE standard and all Web service standards.
Combined with BEA’s heavy attention to Web
services and a nice visual development environ-
ment it is certainly a platform that should be
taken into consideration when a reliable infra-
structure for Web services is needed.

Figure 4 Web Service
Architecture in BEA WLS 7.0

UDDI
registry

Publish Web
Service (WSDL)

Download
Client Jar

Generate
Client Jar

Generate
WSDL

WebLogic services implementation
(SOAP, UDDI, WSDL)

Business layer

Client

Client JarWSDL

BEA WebLogic Server

Lookup Web Service

Invoke web
service (SOAP)

41Telektronikk 4.2002

3.2 Apache Axis beta 3
Web Service Engine

Axis will together with a J2EE compatible appli-
cation server support a provider platform, a
client platform and a production platform.

3.2.1 Overview
The open-source, freeware Web services con-
tainer offered by the Apache project is called
Axis (a complete re-architecture of Apache
SOAP), and stands for Apache Extensible Inter-
action System. The first (alpha) version was
released less than a year ago, and the current
version is 1.0 RC1 (candidate for 1.0 release).

Axis is a SOAP engine that acts as a client and
server of SOAP messages with primary focus on
HTTP. It can be viewed as a thin layer sitting
between the business logic and the network
transport. It runs as a Web application on top
of an application server. It comes with a stand-
alone server, but is most commonly used as a
Web application on top of Tomcat. In our evalu-
ation, however, we use WLS 6.1 as the underly-
ing platform.

Axis provides extensive support for WSDL, and
with Axis’ utilities one can generate WSDL
from Java classes implementing the actual ser-
vice. Starting with a WSDL an entire package of
client-side proxy and server side skeleton classes
can be built. Axis also includes a Java applica-
tion called “tcp-mon” that allows you to monitor
the SOAP messages that are being sent to and
from an Axis engine.

The Axis engine’s main job is to pass SOAP
messages through a set of handlers that examine
and/or modify a SOAP message in order to com-
plete its job. Figure 5 shows how the Axis en-
gine works on the server-side, i.e. in the provider
platform, and Figure 6 illustrates how it works
on the consumer platform when Axis is used to
run a Web service client.

3.2.2 Results
Although Axis is constantly evolving, at the time
of writing some limitations exist. First of all,
with Axis one cannot consume or generate ser-
vices that use unsigned XML schema types,
something which might raise interoperability

Figure 5 Axis Engine
Server Architecture

Request

Message
Content

Request

Response
Response

Axis Engine

Transport Global Service

SOAP Service

Request

Response

Provider
Target

Service

Transport
Listener

Return
control to
listener

Request
Request

Response
Response

Axis Engine

Transport Global Service

SOAP Service

Request

Response

Provider
Target

Service

Transport
medium

Message
Content

C
lie

nt
 A

pp
lic

at
io

n

Response
message
(optional)

Request
message

Figure 6 Axis Engine
Client Architecture

42 Telektronikk 4.2002

problems, especially when consuming .NET
Web services. The reason is the lack of unsigned
data types in Java. The next release of Axis will
certainly include support of this.

Another thing is that you cannot send arbitrary
Java objects over the wire and expect them to
be understood at the remote end. Axis will only
send objects for which there is a registered Axis
serializer. To serve up objects in general you
must build the serialization support into Axis
yourself.

Because Axis developers find the SOAP specifi-
cation to be unclear, Axis neither supports RPC
calls in SOAP headers nor multiple RPC calls in
a single SOAP message.

Axis supports WSDL 1.1, but does not support
UDDI at all.

Axis supports SOAP headers, but only with lim-
ited information so that e.g. .NET interoperabil-
ity may be compromised.

It also has preliminary support for the SOAP
with attachments specification.

Axis did well on our interoperability tests,
except that

• When publishing WSDL files which specify
port numbers (e.g. 7001), the port number is
for some reason not recognised when the
WSDL file is imported in .NET, thus the
.NET client must be edited manually to add
the correct port number.

• Axis does not support unsigned data types,
and it is thus difficult to make clients for ser-
vices that does use unsigned data types in their
services (e.g. .NET). A solution to this prob-
lem is already possible to download, and in
version 1.0 it will certainly be fixed.

Our evaluation shows that Axis is a Web service
engine with great potential because of its focus
on specifications and its development team not
belonging to one single commercial company.
However, Axis users must still reconcile them-
selves to the fact that a lot of useful functionality
is still not implemented, and that bugs will exist.
Combined with poor and erroneous documenta-
tion and no professional support organisation it
is not recommendable for anyone to use Axis for
production of Web services.

However, skilled J2EE developers may find
Axis a perfectly OK implementation that can be
used for experimenting with Web services devel-
opment on any J2EE platform, and for that pur-
pose its a powerful tool.

3.3 Microsoft .NET
.NET is a product that does support all aspects of
Web Services, i.e. provider, consumer and pro-
duction platforms as well as management.

3.3.1 Overview
.NET is Microsoft’s newest platform for devel-
oping and running applications, competing with
the J2EE standard. It contains Web services
functionality as an integrated part. Visual Studio
is a development environment for developing
applications.

.Net integrates technologies that have been
evolving during the last years, such as COM+,
ASP, XML and Web services, based on proto-
cols like SOAP, WSDL, UDDI and HTTP.

.Net’s architecture is structured as follows:

• Development Tools
- A set of languages, including C#, VB.NET,

C++.NET
- A RAD developing environment: Visual

Studio 7.0

• Specialized servers
- SQLServer 2000, Exchange Server 2000,

BizTalk Server, Commerce Server 2000,
ISA Server.

• Web Services
- Integration with internal or external services

that can be bound together through the
Internet.

• Devices
- PCs, handhelds, mobile phones, gaming

consoles.

The main limitations of .NET are the proprietary
format, which makes application portability dif-
ficult and gives interoperability problems when
communicating with non-.NET services or
clients.

The main advantage of .NET is that it promises
to provide a simple and quick service and appli-
cation development, especially web based, by
exploiting all of the experience with the previous
tools. By the “Plug&Play” deployment of the
applications, the installation and distribution will
be highly simplified. At the same time, by means
of the reusability paradigm, the productivity of
programmers will be raised.

Microsoft’s solution for implementing Web ser-
vices is a complete approach for programmers
who do not have much experience, or who are
already familiar with languages like C++, Visu-
alBasic, or any other language supported by the
platform. Introducing Microsoft’s new program-

43Telektronikk 4.2002

ming language C# (or c sharp), Microsoft is try-
ing to compete in the inter-platform market
against Sun Microsystems’ Java. Microsoft pre-
sumes its new language is as powerful as Java,
but it is still very early to even consider it true,
although it does seem to have a large potential
for gaining some terrain on the programming
languages competition.

Using the .Net platform provides a big aid for
developing Web services, but it is a release that
is still in its early stages, so many bugs, or prob-
lems such as interoperability issues, should be
expected to be discovered soon.

An additional advantage that .Net provides is a
thorough on-line documentation, which can be
used for everything from understanding the
architecture of the platform to finding class defi-
nitions and class descriptions for referencing
them. At last, .NET also includes an interface
that tries to reduce, as much as possible, the
necessity of writing low-level code.

3.4 IBM WebSphere
To facilitate building, deploying and enhancing
e-business applications IBM has made Web-
Sphere, which includes three product families
that all together support the provider, consumer,
production and management platforms for Web
Services:

• WebSphere Application Server that is a scal-
able platform to deploy dynamic e-business
applications.

• WebSphere Studio that is a set of develop-
ment tools for e-business and Web Service

applications based on one common work-
bench technology (Eclipse).

• WebSphere Host Integration that offers tools
for application and data access to legacy sys-
tems.

3.4.1 Overview
There exist different editions of the Application
Server that are adjusted to fit the right size of a
company:

• Small companies – WebSphere Application
Server, Version 4, Advanced Single Server
Edition;

• Mid-size companies – WebSphere Application
Server, Version 4, Advanced Edition;

• Large companies – WebSphere Application
Server, Version 4, Enterprise Edition.

The more advanced the edition is, the more
functions and facilities are included. However,
the functionalities mentioned below do count for
all editions. The main components are shown in
Figure 7.

IBM WebSphere Application Server is a compre-
hensive Java technology-based Web application
server providing integrated support for J2EE and
Web services. The J2EE compatibility means
that the full range of Java technology-based
APIs and protocols are supported, e.g. Enterprise
Java Beans (EJB) that is regarded as probably
the most significant contribution.

Figure 7 Components in IBM
WebSphere Application Server

Other
Application

systems

ERP
systems

Legacy
systems

Relational
data-
bases

Connection
services

Java, JCA, EJB,
transactional APIs

Connection
services

Security, directory,
Transactions, Management

Access
Services

(HTTP, IIOP)

Dynamic content
services USPs,
Web Services, HTML

Web Server

ORB

PCs Browsers Mobile/hand-held devices

E-business
applications

Others
(LDAP directories

ORBs, custom
application)

J2EE Web services
Java Servlet, EJB

WebSphere
Application server

44 Telektronikk 4.2002

Due to the Web service support it is easy to
build, customize and publish services based on
the XML, SOAP, UDDI and WSDL standards.
The extensible and open programming model
and architecture of the WebSphere Application
Server can enable J2EE applications to swiftly
interoperate with Web service applications.

The WebSphere Application Server contains the
J2EE Connector Architecture (JCA) that may be
used to create resource connectors or adapters
for accessing external enterprise systems. In
addition, the Application Server does support
Java Database Connectivity (JDBC) that enables
access to a range of database servers, such as
Microsoft SQL Server, Oracle and Sybase.

WebSphere Studio provides an industry-leading
integrated development and runtime environ-
ment for the Application Server. In addition the
Studio has a workbench based on open standards
that provide plug-and-play capability for third-
party application development tools.

IBM WebSphere Host Integration Solution can
take legacy application to the Web quite quickly.
It extends host applications to the Web and pro-
vides software for creation and deployment of
new host access e-business applications, without
requiring any changes to the existing applica-
tions themselves. Whether one needs a simple
Web page delivery, putting a new face on a
legacy application, or creating sophisticated Java
solutions, the Host Integration Solution allows
one quickly and flexibly to integrate critical
enterprise data with the Web.

Administrators are offered a so-called Web-
Sphere Administrative Console used to configure
and control a WebSphere domain. A WebSphere
domain is made up of one or more physical
machines sharing a single WebSphere adminis-
trative database, which holds information on
each of the components running on those
machines. To effectively manage a WebSphere
environment, the administrator should be famil-
iar with the concepts underlying the J2EE run-
time environment, e.g. containers, J2EE enter-
prise applications, Web modules, EJB modules,
XML deployment descriptors, etc.

3.4.2 Results
IBM provides one of the foremost platforms for
developing Web services today. With its strong
involvement in open projects such as Apache,
IBM has ensured that it uses state-of-the art
technology and follows standards strongly. Web-
Sphere has long been one of the most popular
application servers on the market, and compa-
nies that want to take advantage of Web services
technology should not be afraid to develop their
services on this platform.

4 Web Services in Mobile
Telecom Business

UMTS is the next generation of mobile systems,
including networks, terminals and services. With
UMTS the basic Internet protocol, IP, will be
fully integrated in the mobile networks. This will
open up for Internet Services in the mobile envi-
ronment that technology-wise is almost the same
as in the fixed environment, e.g. WAP and
i-Mode used by small mobile terminals. At the
same time a great interest is also foreseen in hav-
ing access to pure Telco services, such as call
control and terminal location, from Web applica-
tion to make new powerful integrated services.

4.1 Web Service Access to Mobile
Telco Services

The standardization of how third parties may
access telco services in UMTS is done mainly
within the Parlay group and 3GPP standardiza-
tion body. See http://www.parlay.org/ and
http://www.3gpp.org/. Currently APIs for the
following UMTS services are specified by
Parlay/OSA (see reference 3GPP TS 22.127
V5.2.0 (2001-12)):

• The Framework services managing the access
to the available Telco services; i.e. Trust and
Security Management (Authentication, Autho-
rization), Service Registration, Service De-
Registration, Service Discovery and Integrity
Management;

• Network services; i.e. Call Control functions
(Circuit Switched, Packet Switched), IM Ses-
sion Control, Information Transfer and
Charging;

• User data related services; i.e. User Status,
User Location, User Profile Management,
User Profile access Authentication/Authoriza-
tion, Terminal Capabilities and Functions and
Retrieval of Network Capabilities;

• Information Services;

• Presence related services.

All APIs so far have on a high level been speci-
fied in UML and mapped on Corba IDL for
more detailed specification.

The Parlay Group has recently released version 3
of the Parlay specifications, which is completely
consistent with the 3GPP OSA standard, and the
work on Parlay 4 has started. In the work pro-
gram a working group is identified, termed Par-
layX, which aims to integrate XML and Web
services in future versions of Parlay. Their cur-
rent picture of how this may be done is shown
in Figure 8.

45Telektronikk 4.2002

The Parlay X group intends to integrate XML
in the interface towards the telecom service
capabilities in two different ways:

• A UML to XML mapping for the Parlay 3
specification. This means that the third party
Web Service application sees the same com-
plex APIs as the Corba applications do, and
requires some telecom skills by application
developers. The XML transport may be quite
complex.

• A new Parlay X Gateway is introduced at a
higher abstraction level with a simpler set of
APIs. Usage of those APIs does not require
any telecom skills from the application devel-
oper at all. The XML transport is kept simple.

4.2 Mobile Terminals and
Web Services

Both Microsoft and other Web Service vendors
are very eager to develop applications on mobile
devices.

4.2.1 Microsoft
Pocket PCs (P/PCs) and Handheld PCs (H/PCs)
are Microsoft’s own classification of mobile
devices and powered with variants of Windows
(CE), respectively Handheld PC 2000 OS ver-
sion 3.0 and Pocket PC 2002 edition. The differ-
ence between these two is a bit diffuse, but we
may say that P/PCs are quite comparable with
PDAs while H/PCs are more like small laptops
or notebooks. Typically, H/PCs are equipped
with keyboards while P/PCs are not.

The developing frameworks and toolkits for
H/PC and P/PC are based on Microsoft .NET,

but compressed with respect to functionality
and size so they fit the smaller end tinny mobile
devices. Microsoft has powerful graphical tool-
kits that seem to reduce the developing time of
mobile applications quite dramatically. When
starting with a new or existing Web Services
(.NET) based application as input to the mobile
toolkits, the same application could be modified
to run on H/PCs or P/PCs with minimal effort.
Powerful terminal emulators show immediately
what the applications would look like when
deployed in the real environments.

The toolkits are available for free trial to every-
body. The Mobile Solutions Developer Toolkit
may be requisitioned from http://www.msdn.
microsoft.com/vstudio/productinfo/trial.asp for
60 days free trial. Other tools are Microsoft
.NET Framework SDK and Visual Studio.NET
Smart Device Extensions.

Microsoft also seems quite eager to cooperate
in the context of mobile services with telecom
operators all over the world.

4.2.2 The Other Vendors
Microsoft’s competitors seem to base their
mobile terminals on the Java 2, Micro Edition
(J2ME) framework, which is the client-side
counterpart of the J2EE server-side applications,
or other dedicated platforms for mobile devices,
e.g. WAP or i-Mode.

J2EE platform emphasizes reusable components
through the use of enterprise beans. Applications
may leverage these components to support mul-
tiple types of clients with little, if any, impact on
the core business logic of the application. Figure

Figure 8 XML Realizations
of Parlay APIs and

Parlay X APIs

Parlay XML
App Script
e.g. SCML

XML
Script

Java VB

Parlay X App
XML

Script
Java VB

“Web Services” App

XML Transport:
Complex XML sequences

over SOAP, CORBA,
HTTP, …

XML Transport:
Simple XML sequences
over SOAP, CORBA,

HTTP, …

createCall ()
routeReq (A)
routeReq (B)
...

routeRes (A)
routeRes (B)
...

“Connect (A, B)” “OK”

Parlay X APIs

Parlay
APIs

SIP
Server

A/IN
Element

Mobile
Switch

CORBA
IDL, Java,
XML, …

CORBA
IDL, Java,
XML, …

XML

Parlay Gateway

Parlay X Gateway

www.parlay.org

The Parlay Grou
p

46 Telektronikk 4.2002

9 shows the architecture of an application with a
J2ME client and a browser client, e.g. a WAP
client.

The MIDlet is an application that runs on a
J2ME platform and conforms to the MIDP
(Mobile Information Device Profile) standard.

5 Conclusion
Web Service products from vendors who are
regarded as leading actors, are investigated in
the previous chapters. However, there are sev-
eral other products from not so prestigious ven-
dors we have not looked into. So our conclu-
sions are based on a rather limited selection of
products.

In a quite early stage of the development of Web
Services technology our conclusion is that there
are several products mature enough for commer-
cial utilization. The .NET, WebSphere and
Workshop are all integrated platforms that pro-
vide nice graphical user interfaces and fully

automate most operations involved in the Web
service development. However, Apache Axis
Web service engine is ready to be used, at least
for testing and experimenting projects. We
believe this platform will mature more in the
coming months, and skilled J2EE developers
may find it to be an excellent tool. Using Axis
today is far from as simple as using one of the
aforementioned integrated platforms.

Even if our investigation does not point out a
winner, it shows that a developer has to choose
between two types of Web Service products, i.e.
those based on Java platforms (J2EE/J2ME) or
those based on Microsoft platforms. The tradi-
tional competition between the Java world and
the Microsoft world seems to continue in the
field of Web Services as it has in many other
fields of technology. Which type of Web Service
product a developer chooses, will probably
depend on his business policy. What is most
favourable – being compliant with the Java plat-
form or the Microsoft platform?

Figure 9 High-Level
architecture of a J2EE
application supporting
a J2ME client and
a browser client

Web
Container

LCDUI
(User

Interface)
MIDIet

Java/J2ME Client

RMS (Local Storage)

Non-Java Client
JSP

Java/J2EE Application Server

EJB

EJB

EJB

EJB

EJB

Servlet

ServletBrowser

GCF
(Networking)

EJB
Container

JDBC

Java
Connectors

Java Web
Services

JMS

JavaMail

JNDI

COBRA

(Secure)
HTTP

(Secure)
HTTP

47

Background
Web Services is a new set of technologies with
the ambitious and important goal of tying
together logic from distributed components and
applications on the World Wide Web (WWW).
Web Services, as the name indicates, are sup-
posed to run on the WWW and its well-estab-
lished protocol HTTP. The Internet has been
around for some time, and its basic technologies
are mature. Although the term Web Services has
a new ring to it, the mechanisms for ensuring
Web Service security are based upon well-estab-
lished and tested technologies.

At the core of WWW security are the mecha-
nisms to secure communications in the client-
server model. Web Servers have the possibility
of implementing authentication and encryption
mechanisms like HTTPS to keep certain parts
of client-server message exchange confidential.
The client browser usually stores all the user’s
credentials in the form of digital certificates,
which are used to access secure Web servers.

So what is actually the difference between evalu-
ating WWW and Web Services security? First
of all, WWW security is doubtlessly the most
important part of Web Services security. Mecha-
nisms and know-how with WWW security will
be applicable and reused in Web Services secu-
rity. Particularly important are the well-estab-
lished authentication and encryption mechanisms
used by Web servers. However, the way we see it
a few additional points should be taken into
account when evaluating Web Services security:

• Web Services security must address the
effects of exposing systems that earlier were
isolated;

• Web Service security must take into account
that most hackers are likely to be familiar with
weaknesses in Internet security technologies.
At least, CORBA had the advantage of staying
out of the typical hacker’s electronic back yard;

• Web Services security must set requirements
for SOAP security;

• Web Services security must define ways to
secure private intra- and inter-company ser-
vices in addition to public WWW services;

• Web Service Security must address standardi-
sation issues to promote interoperability.

Introduction
The goal of this article is to give an overview
of Web Services security, both the part that is
based on established WWW/HTTP technologies
and also the new components and protocols such
as UDDI and SOAP. Web Services represent a
new way of doing and organising business, and
we will try to identify security requirements in
some typical business scenarios. In the subse-
quent section, we identify and evaluate current
Web Service technologies, and look at their
prospects of fulfilling the identified security
requirements.

In the Standards section, we will take a look at
current Web Service standardisation efforts.

To see how the Web Service security require-
ments are met in practice, we will close our dis-
cussion by giving an overview of security mech-
anisms on the current state-of-the-art Web Ser-
vices platforms.

We conclude with identifying important success
criteria and pit-falls to avoid in order for Web
Services to evolve harmoniously, fulfil security
needs and build trust vis-à-vis end users.

Basic Web Services Glossary
• XML – eXtensible Markup Language; Univer-

sal language for defining data schemes. XML
separates content from data format. Tags are
used to separate data.

• SOAP – Simple Object Access Protocol;
SOAP is essentially a one-way messaging pro-
tocol, which defines a uniform way of passing
XML encoded data. The SOAP specification
describes how SOAP over HTTP can be used
for remote procedure calls. SOAP implements
a client-server model over a transport proto-
col, most typically HTTP but also FTP, SMTP
etc.

• UDDI – Universal Discovery Description and
Integration; A set of specifications for creating
XML-based directories of Web services offer-
ings. The UDDI is separated in white, yellow
and green pages. You can either publish() or
inquire() in the UDDI directory. When nested
in a global net, UDDI is the Web services
equivalent to the CORBA naming service.

• WSDL – Web Service Description Language;
A common framework for describing tasks

Security in Web Services
E R I K P A R R , E R I K B E R G A N D S U N E J A K O B S S O N

Erik Parr (26) received his
Siv.Ing. degree (Ingénieur
Diplômé) in Mathematical Mod-
eling from the Technical Univer-
sity INSA Toulouse in 2000,
including internships at Sintef
ECY and Elf Center for Petrol-
eum Research. Following his
military service, he has worked
in Telenor R&D in Trondheim
since October 2001. His current
research interests are in com-
puter security, middleware and
service platforms.

erik.parr@telenor.com

Erik Berg (27) received his
Siv.Ing. degree (~MSc) in
Telematics from the Norwegian
University of Science and Tech-
nology (NTNU) in January 1999.
He has worked in Telenor R&D
as Research Scientist since
February 2000 in the fields of
middleware, e-commerce and
dependable distributed sys-
tems.

erik.berg@telenor.com

Telektronikk 4.2002

48 Telektronikk 4.2002

performed by a Web service. A WSDL file
is used to generate the client proxy and thus
make a Web service programmatically acces-
sible to other applications.

• HTTP – HyperText Transfer Protocol; The
protocol used to transport data on the WWW.

• UUP – Universal User Profile; although not
yet standardized, UUP is a set of user-specific
data and preferences stored on the WWW to
perform tasks such as authentication and per-
sonalisation.

Web Services Security
Requirements

Security Policy and Web Services
Requirements
Simply put, one could say that securing Web
Services is securing the interaction between its
components according to certain criteria. These
criteria are set down in a security policy, where
the perceived threat of compromise or fraud and
the eventual cost of bad publicity are weighed
against the cost of implementing a technical
safeguard.

A good security policy can help make the Web
Service stable internally and predictable exter-
nally through the API. Therefore, a key element
to secure Web Services is to implement a simple
and consistent security policy. The policy should
address basic issues such as identification and
authentication, authorization, auditing, the need
for data integrity and confidentiality, non-repu-
diation and privacy (see Figure 2).

The content of the security policy also depends
on the business environment and the type of
Web Service we consider. As a result, the
requirements might be quite different for a fully
public and a private Web Service. In addition,
information about the end users such as the scale
of the end user group and the character of the
average end user should be taken into account
when setting security requirements.

As an example of setting requirements for Web
Services, let us consider the fully public Web
Service myService.com. In this context, public
means that everybody with a WWW connection
can subscribe to the service. The components of
a public Web Service are given in Figure 3.

Before myService.com provided by myCompany
can go ‘on the air’, three basic steps have to be

carried out. For each of them a set of security
requirements has to be met:

Step 1 – Publish():
We suppose that the Web Service provider
myCompany already has bundled the business
logic into an application and made a WSDL file
to describe the service interfaces. In order to
make its service attainable through the WWW,
it then deploys the application on a Web appli-
cation server like the one given in Figure 3.

Now, to use myService.com, the client applica-
tion has to know of its whereabouts. Publishing
a Web Service is about registering the service
with a UDDI service broker, which is the equiv-
alent of a yellow pages registry. A client (appli-
cation) can browse through this registry looking
for a service that exactly suits it needs and
obtain a reference or an address to that service1).

Now that we have described what we mean by
publishing a Web Service, we will try to identify
the security requirements for the publishing pro-
cess:

• There is a need for Identification, Authentica-
tion and Authorization. We need to make sure
that nobody but the legitimate owner – my-
Company – creates or modifies myCompany’s
UDDI record. Otherwise, an opportunistic
business opponent – myWorstOpponent –
might wilfully change the information in
the registry.

• Depending on the security level desired, one
could add mechanisms to ensure integrity, i.e.
a guarantee that the correct information about
the service is not altered between the applica-
tion server and the UDDI registry. Appropri-
ate integrity mechanisms would have a pre-
ventive effect of sophisticated man-in-the-
middle attacks, but would also have the effect
of preventing simple denial of service attacks:
If, for example, the information about where
the WSDL file is kept is altered en route, there
is no way for a client application to access the
service.

Step 2 – Find():
Find() is the process in which a client (applica-
tion) browses through the UDDI yellow pages
looking for a service that suits its needs. When
the application finds a suitable service – for
example myService.com – it obtains a reference
to the service’s WSDL file.

Sune Jakobsson (42) is Re-
search Scientist at Telenor R&D
Generic Service Platform Group.
The group is active in research
of tomorrow’s computing plat-
forms for telecom operators.
Currently he is an active partici-
pant in the EURESCOM P1209
and P1242 projects, with focus
in the area of Web Service
usage for telecom operators.
He received his Siv.Ing. degree
from the Norwegian University
of Science and Technology
(NTNU), Faculty of Electrical
Engineering and Computer Sci-
ence in 1994. He joined Telenor
in 1998 from Stentofon ASA,
where he worked as HW de-
signer at designing intercom
switches.

sune.jakobsson@telenor.com

1) This process is in many ways similar to looking for a suitable repair facility for your car, except for the fact that
there are no geographical limitations to Web Services whereas the repairman has to be situated somewhere in
your geographical neighbourhood.

49Telektronikk 4.2002

Since the integrity of the information in the
registry is part of the publishing procedure, no
particular requirements are tied to the find proce-
dure, except:

• To obtain a high security level there might be
a need for the Web Server hosting the registry
to authenticate to the client application. This
avoids a possible cloning of a UDDI registry
by a potential perpetrator. Server authentica-
tion is a standard part of the HTTP protocol,
and is often conducted transparently.

Step 3 – Bind():
Bind() is the process in which a client applica-
tion looks up a service’s WSDL file in order to
create a local interface to the service. The pro-
cess of making the remote procedure call then
is handled by ‘invisible’ Web Services middle-
ware. The interface – or stub classes2) – acts as
a proxy for remote object on the local machine,
encapsulating and hiding the communication
protocol(s) from the programmer. This way, the
programmer only sees the remote interface, not
the actual SOAP and HTTP messages. The con-
version of data and values is often referred to as
marshalling and demarshalling.

Creating stub classes from a service’s WSDL
file can be done automatically using an appropri-
ate tool, or manually.

For the public Web Service we consider in this
example, we have not identified any compulsory
security requirements for the Bind() process. For

Figure 1 XML Web Services

Figure 2 Security policy for
the public Web Service

‘myService.com’

2) In object oriented languages such an interface or proxy is most commonly implemented by so-called stub classes. A stub class is the local representative
of a remote object. When the client application wants to invoke a remote object, it does this through its stub classes.

This means the
implementation

of the function is
never seen from

the outside.

They are loosely
coupled: A change

in the implementation
of one function does
not require change

to the invoking
function.

There are publicly
available descriptions

of the function,
its behaviour input/
output parameters

(XML) and how
to bind to it.

Standard
protocols are

freely available
for anyone to
implement.

WEB SERVICE

XML Interface

Program
Code

Interface

SOAP Wrapping

Service Negotiation - Trading Partner Agreements

Discovery, Taxonomies, Registries - UDDI ebXML

Routing, Reliability & Transactions - ????

Service Description Languages - WSDL WSCL

Messaging - SOAP/XML

Transport - HTTP, FTP, SMTP

Internet - TCP/IP

The Web Services Stack

Security Policy for myService.com

1. Anyone with an Internet account may
subscribe to myService

2. Only subscribing subjects may access
myService

3. Every subject will be assigned a password
to prove his identity to the system

4. myService must be organised so that no
personal information about the customers
is leaked out to third parties

5. The system manager of myCompany must
know of all failed login attempts

6. The system manager of myCompany is
responsible for carrying out this policy

Graceland, May 2002
John Doe

50 Telektronikk 4.2002

high-level security, one could consider some
kind of integrity mechanism to avoid that the
content of the WSDL file is changed when it is
downloaded to the Client machine.

Step 4 – Invoke():
With the three previous steps the myService.com
client-server battery is finally fully operational.
The final step naturally involves the actual in-
vocation of a Web service. The service can be
invoked on the local proxy, which handles all
the necessary communications with the mySer-
vice.com Web server.

Security requirements for the invoke() operation
correspond to what we could call runtime secu-
rity requirements for myService.com. In the
security policy given in Figure 2, the following
requirements can be identified:

• Identification and authentication: #3 states
that all users will receive a password to access
myService.com. So a password-based authen-
tication scheme must be implemented.

• Authorization: According to their security policy
(#2), myCompany needs to make sure that only
subscribed users can access myService.com.

• Auditing: As a minimum, to meet #5, rejected
login attempts have to be logged.

• Privacy: #4 – No personal subscription infor-
mation must leak out. This could introduce a
need to keep certain parts of the message
exchange confidential.

• Confidentiality (#4 – see above).

Remark: Although integrity and non-repudiation
are not explicitly addressed in the myService.com

security policy, they should probably – as a gen-
eral rule – be considered in connection with
‘real’ public Web Services.

Web Services Security
Mechanisms
Now that we have identified Web Services secu-
rity requirements in a public environment, we
need to identify which technical protection
mechanisms we possess to deal with these
requirements. For a given security policy and a
list of requirements, an appropriate subset of ‘all
possible’ security mechanisms should be chosen
and deployed.

Securing Databases and Registries
Protecting databases and registries by means of
encryption and access control mechanisms is
fairly straightforward. Technologies for securing
databases can be considered well established and
mature.

However, in the introduction to this article, we
suggested that Web Services security should
address the effect of exposing systems that were
earlier isolated. Many databases and registries
either have been or at least have the basic char-
acteristics of such isolated or standalone sys-
tems. So clearly some care should be taken, in
particular with the interfaces exposing the data.

Securing Communications
However, the protection of data locally only
solves a minor part of the problem. Like we
pointed out in the previous section, the major
challenge that is introduced by the Web Service
security requirements is to secure data transport
between the different components. Combining
mechanisms at different levels of the Web Ser-
vices protocol stack can help secure data trans-
port (see Figure 4).

In the following discussion, we will take a closer
look at the two main Web Service transport pro-
tocols HTTP(S) and SOAP and see what re-
quirements can be met by a) either one, or b) by
their combination.

HTTP Security (HTTPS)
There have been several attempts at securing the
HTTP protocol to ensure secure access to the
World Wide Web. The Secure Socket Layer
(SSL) protocol is situated between HTTP and
TCP/IP in the protocol stack and was a popular
solution for transport layer security in the mid
90’s. In 1996, the Transport Layer Security
(TLS) Working Group was established by the
Internet Engineering Task Force (IETF) in an
attempt to standardize a ‘transport layer’ security
protocol. This Working Group is responsible for
developing the TLS protocol, which is intended
to replace SSL.

UDDI

registry

Client
Application

`myService.com`
Web Application

server

WSDL

file

2 - Find()

1 - Publish()
4 - Invoke()

3 - Bind()

Figure 3 Components in a
possible deployment scenario
for myService.com

51Telektronikk 4.2002

The combined protocol HTTP/TLS or SSL is
often referred to as HTTPS (see Figure 4). In the
following discussion we will mainly focus on
TLS, knowing that the evaluation of SSL would
give quite similar results.

TLS consists of two main parts: A handshake
protocol and a record protocol. The goal of the
‘handshake’ is to authenticate the server and to
negotiate the cryptographic protocols to use for
data transfer. User authentication is optional.
The ‘record’ part assures the transfer of en-
crypted data between the server and the browser
using the negotiated cryptographic techniques
combined with a shared session key to ensure
the integrity and the privacy of the message. Use
of Public Key Infrastructure (PKI) for session
key exchange during the handshake phase has
been quite successful in enabling Web com-
merce in recent years.

TLS also has some known vulnerabilities. For
instance, the Handshake protocol is open to so-
called man-in-the-middle attacks because para-
meter negotiations tend to be in the open. An-
other attack exploits the fact that TCP is a reli-
able protocol: By discarding packages it is possi-
ble to jam the TCP reliability mechanisms and
conduct a simple DOS attack.

Running HTTPS-based applications or services
requires that both the Web Server and Web
Browser support TLS (see Table 1).

To summarize, the main goal of HTTPS is to
provide privacy, integrity and authentication
mechanisms to secure web navigation and mes-
saging. It is a well-established and thoroughly
tested technology. On the downside, despite the
possibility of TCP session resumption, HTTPS
is significantly slower than HTTP run alone.

A non-exhaustive list of alternatives to HTTPS
includes IPsec, S-HTTP, SET and SASL.

SOAP security
SOAP is an XML-based protocol for sending
messages and making remote procedure calls in
a distributed environment. Besides XML, SOAP
is the cornerstone of the Web Services infra-
structure. In principle, SOAP can be used with
any kind of transport protocol including FTP
and SMTP, but at the moment the only commer-
cially available mapping is on HTTP.

The SOAP specification does not address secu-
rity issues directly, but allows for them to be
implemented as extensions. For example, the
extension SOAP-DSIG, which has been submit-
ted to the World Wide Web Consortium (W3C),
defines the syntax and processing rules for digi-
tally signing SOAP messages and validating sig-
natures. Digital signatures in SOAP messages
provides integrity and non-repudiation mecha-
nisms. This and other extensions may turn out to
be a useful supplement to the security provided
by HTTPS – see standardisation section below.

SOAP is designed to pass through firewalls as
HTTP. This is disquieting from a security point
of view. Today, the only way we can recognize
a SOAP message is by inspecting HTTP content
and parsing XML at the firewall. But since
SOAP calls are so diverse with no uniform
addressing model or reliable internal structure
even that does not solve the problem of which
calls to trust. According to [1] SOAP and WSDL

Web Servers supporting HTTPS Web Browsers supporting HTTPS

Apache-SSL (open SSL libraries) Internet explorer

Apache mod_ssl (open SSL libraries) Netscape

Stronghold Opera

Roxen Cryptozilla

INetStore

Tomcat

Table 1 A (non exhaustive)
list of Web Servers and Web

Browsers that support HTTPS

Figure 4 Web Services
protocol stack and the basic
security issues addressed by

each layer. In the pre-WS era,
HTTPS over TCP/IP was the

main mechanism to enable
World Wide Web security

Provided security features

Integrity

Non-repudiation

Privacy

Authentication

Reliability

SOAP Extensions

HTTP

SOAP

TCP/IP

SMTP FTP HTTPS

Messaging/Wire

Transport Protocols

52 Telektronikk 4.2002

make no distinction between reads and writes on
a method level, making it impossible to filter
away potentially dangerous writes. This means
that a method either needs to be fully trusted or
not trusted at all. SOAP messages are designed
to be free form, which makes log files hard to
understand and analyse in a consistent manner.

SOAP is fairly new and untested. This means
that the likelihood of problems showing up
along the way are much greater than with for
instance HTTP(S), which is well established
and tested for shortcomings.

To summarize, SOAP is a simple and com-
pletely platform- and programming language-
independent protocol. Unfortunately, simplicity
comes with a cost. SOAP deliberately dodges
firewall filtering by tunnelling over HTTP, and
since SOAP calls are so diverse, they are unprac-
tical to filter and audit. So uncritical use of
SOAP will represent a security risk, at least until
appropriate security tools have been deployed
and the information community has had a
chance to properly test the protocol.

Public Key Infrastructure (PKI)
– a Key Enabling Technology
PKI key management provides a sophisticated
framework for securely exchanging and manag-
ing keys. The two main technological features
that a PKI can provide to Web Services are:

• Encryption of messages: by using the public
key of the recipient;

• Digital signatures: by encrypting a message
with your own private key so that anyone with
your public key can decrypt it and furthermore
know for certain that you wrote it. Non-repu-
diation mechanisms provided by PKI and
defined in SOAP standards may provide Web
Service applications with legal protection
mechanisms.

Note that the features provided by PKI address
the same basic needs as those that are recognized
by the standardisation organisations as being im-
portant in a Web Services context.

In Web Services, PKI mainly intervenes at two
levels:

• At the SOAP level (non-repudiation, integrity);

• At the HTTPS level (TLS session negotiation,
eventually assuring authentication, integrity
and privacy).

PKI is a proven concept and already widely
adopted in browser-server interaction on the
WWW. PKI can thus facilitate and enable trans-

port level security in Web Services. Further-
more, because of its propitious scaling proper-
ties, PKI seems to be an indispensable com-
ponent if Web Services multiply and gain
momentum.

Web Service Security
Standards
A key element to obtaining widespread Web
Service interoperability is that implementers
have good and universally adopted standards for
Web Service security. Standardisation work is
being conducted by a number of organisations
and industry actors. In addition, there are organi-
sations like WS-I whose dedicated focus is on
interoperability issues. This seems to indicate
that there is a strong momentum in the industry
to develop Web Service standards.

Attempts to standardise WS security come in
many forms. Since SOAP security measures are
likely to play an increasingly prominant role in
ongoing development toward meeting the full
range of requirements for Web services, many
standardisation efforts revolve around defining
SOAP security headers and formats.

World Wide Web Consortium (W3C)
XML security
Work on the following key XML specifications
within the World Wide Web Consortium (W3C)
is setting the stage for SOAP security considera-
tions. These standards are seen as effectively
laying the groundwork for SOAP or other XML
based messaging security over the Web:

• XML Digital Signature (XML-SIG) specifies
the syntax and processing rules for applying
digital signatures to any XML data.

• XML Encryption group is developing a pro-
cess for encrypting/decrypting digital content
(including all or parts of XML documents)
and is creating an XML syntax to represent
encrypted content and the information for
decrypting it.

• XML Key Management Services (XKMS)
specifies protocols for distributing and regis-
tering public keys so these can be used in con-
junction with XML digital signatures and
encryption.

• SOAP Security Submissions to the W3C. The
SOAP-DSIG submission to the W3C is an
industry effort to get XML digital-signature
extensions incorporated directly into the
SOAP specification. SOAP-DSIG specifies
the syntax and processing rules for a SOAP
header entry, called the SOAP-SEC element,
to carry digital-signature information as part
of the SOAP message envelope.

53Telektronikk 4.2002

e-business XML (ebXML) Messaging
Service
• ebXML messaging is based on the SOAP 1.1

specification but defines some additional
SOAP headers to handle ebXML specific
functions such as message routing.

• The initial ebXML messaging specification
recommended XML-SIG and supported
S/MIME for attachments.

• As the SOAP specification versions move
through the standardization process, the
ebXML messaging group is likely to continue
addressing both forward and backward com-
patibility with SOAP

Organization for the Advancement
of Structured Information Standards
(OASIS)
OASIS is promoting other standards work rele-
vant to XML-based messaging security through
two current efforts:

• Extensible Access Control Markup Language
(XACML), which is standardizing security
access control using XML by defining an
XML specification (core schema and name
space) for expressing authorization rules over
the Internet.

• Security Assertion Markup Language
(SAML), which is defining a standard XML
syntax for specifying authentication and
authorization credentials that can be sent
along with SOAP messages. SAML will spec-
ify additional SOAP headers to carry asser-
tions, among many other requirements.

WS-Security
WS-Security is a joint effort by IBM, Microsoft
and VeriSign to standardise Web Service Secu-
rity. According to [2],WS-Security describes
enhancements to SOAP messaging to provide
quality of protection through message integrity,
message confidentiality, and single message
authentication. These mechanisms can be used
to accommodate a wide variety of security mod-
els and encryption technologies.

WS-Security also provides a general-purpose
mechanism for associating security tokens with
messages. No specific type of security token is
required by WS-Security. It is designed to be
extensible (e.g. support multiple security token
formats). For example, a client might provide
proof of identity and proof that they have a par-
ticular business certification.

Additionally, WS-Security describes how to
encode binary security tokens. Specifically, the
specification describes how to encode X.509 cer-

tificates and Kerberos tickets as well as how to
include opaque encrypted keys. It also includes
extensibility mechanisms that can be used to fur-
ther describe the characteristics of the creden-
tials that are included with a message.

Web Services Interoperability
Organization (WS-I)
The Web Services Interoperability Organization
is an open industry effort chartered to promote
Web Services interoperability across platforms,
applications, and programming languages. The
main purpose of WS-I is to respond to customer
needs by providing guidance, recommended
practices, and supporting resources for develop-
ing interoperable Web services.

The organisation’s deliverables are targeted at
proving resources for any Web Services devel-
oper to create interoperable Web services, and
verify that their results are compliant with both
industry standards and WS-I recommended
guidelines.

WS-I addresses these issues through the concept
of ‘profiles’. Profiles are named groups of Web
Service specifications at specific version levels,
along with conventions on how they work
together. WS-I has so far defined only one pro-
file, ‘WS-I Basic Web Services’. This profile
does not include any specific security aspects.
WS-I will hopefully provide profiles addressing
different security issues in the near future.

Existing Platforms
By studying state-of-the-art Web Services plat-
forms, we have evaluated how the Web Service
security requirements currently are met in prac-
tice.

Microsoft .NET
.NET is Microsoft’s newest platform for devel-
oping and running applications, competing with
the J2EE standard. It contains Web services
functionality as an integrated part. Visual Studio
is a development environment for developing
applications. .NET integrates technologies that
have been evolving during the last years, such as
COM+, ASP, XML and Web services, based on
protocols like SOAP, WSDL, UDDI and
HTTP(S).

The .NET architecture handles security through
Microsoft Internet Information Services (IIS)
and is leveraged by ASP.NET. ASP.NET can
take the identity information provided by IIS and
use that to know who accesses the service or to
make use of code access security for specific
operations on the Web Service. HTTP-level
security is the most common approach in mak-
ing message transmissions secure. IIS provides

54 Telektronikk 4.2002

SSL-support, which also includes the use of dig-
ital certificates.

To restrict access to the Web Services, client
authentication is needed. IIS provides some such
mechanisms, such as authentication by username
and password, certificates and windows logons.

The .NET Framework provides several mecha-
nisms for protecting resources and code from
unauthorized code and users:

• ASP.NET Web Application Security provides
a way to control access to a site by comparing
authenticated credentials to Microsoft Win-
dows NT file system permissions or to an
XML file that lists authorized users, autho-
rized roles, or authorized HTTP verbs.

• Code access security uses permissions to con-
trol the access code to protected resources and
operations.

Role-based security provides information needed
to make decisions about what a user is allowed
to do.

Microsoft is currently involved in WS-Security,
which is a joint effort by IBM, Microsoft and
VeriSign to standardise Web Service Security
(see Web Service Security Standards). A pre-
view of the WS-Security development toolkit
is available at [3].

BEA WebLogic Server 7.0 with
Workshop
WebLogic Server (WLS) 7.0 is a fully J2EE-
compliant application server, regarded as one
of the leaders in the application server space
because it has many Java-oriented features and
is a reliable server. According to the document-
ation, it supports SOAP 1.2, WSDL 1.1 and
UDDI 2.0 and integrates the developing environ-
ment with web service support.

WebLogic uses its own declarative and program-
matic security models.

The declarative security model is an implemen-
tation of the J2EE servlet security model, which
enables access restriction to any resource de-
ployed on the server (i.e. a Web application, a
Web service or a Web service method). Users
are assigned to groups, and different groups are
granted access to different Web resources.

The servlet security model also allows offering
the Web Services within a given application on
HTTP- or HTTPS-enabled ports as needed.
HTTPS should be used whenever web service
communication involves the transmission of
sensitive data.

The programmatic security model allows mak-
ing security decisions in the Web Service code
itself to change how Web services behave based
on the permissions of the user. Using this model

Figure 5 The WebLogic
Server

UDDI
registry

Publish Web
Service (WSDL)

Download
Client Jar

Generate
Client Jar

WebLogic services implementation
(SOAP, UDDI, WSDL)

Client

Client Jar

BEA WebLogic Server

Lookup Web Service

Invoke web
service (SOAP)

Generate
WSDL

WSDL

Business layer

55Telektronikk 4.2002

it is possible to authorise clients within the Web
service code and also send credentials with out-
going messages.

Apache Axis Web Service Engine
Axis is the open-source, freeware Web services
container offered by the Apache project. The
acronym stands for Apache Extensible Interac-
tion System. It is a complete reimplementation
of the architecture of the Apache SOAP project.

Axis is mainly a SOAP engine that acts as a
client and server of SOAP messages with pri-
mary focus on HTTP. It can be viewed as a thin
layer sitting between the business logic and the
network transport. It includes a stand-alone
server, but is most commonly used as a Web
application on top of a Tomcat Web Server (also
an open source, freeware implementation of the
Apache project), or it can run as a Web applica-
tion on top of an application server (like BEA).

Apache Axis has support for WDSL 1.1, limited
support for SOAP 1.1, but no documented sup-
port for UDDI. Axis is only the Web Services
engine, and as such has no need of explicitly
supporting HTTPS, which is the responsibility
of the Web server it is deployed on. When com-
bined with a Web server that supports TLS
(most typically Tomcat), one could say that
Axis has ‘implicit’ support for HTTPS.

The XML Security package is made available
under the Apache Software License and can be
downloaded from Apache. It supports the XML-
Signature Syntax and Processing recommenda-
tion. But except for this enabling of signatures
and HTTP basic authentication, there are no spe-
cific security features in Axis. SOAP messages
can be sent over HTTPS, but other than that
there are no explicit transport security mecha-
nisms. Developers have to implement the larger
part of the security on the application level if
such is desired.

Axis has defined some preliminary security ex-
tensions, which can integrate with the Servlet
2.2 security and role specification.

Conclusion
It is reassuring that Web Service security tech-
nologies are based upon well-established and
thoroughly tested WWW technologies. Web
servers can be enhanced with authentication and
encryption mechanisms like HTTPS to keep cer-
tain parts of client-server message exchange
confidential. HTTPS has been important for
enabling e-business on the WWW, and can be
counted on to provide a certain level of runtime
security. Web Services span across firewalls and
network boundaries and unlike CORBA has the
advantage of avoiding practical problems with
firewall configuration and deployment.

A Web Service security policy should address
basic issues such as identification and authenti-
cation, authorization, auditing, the need for data
integrity and confidentiality, non-repudiation
and privacy.

To meet the security requirements set out in the
security policy, a range of technologies and
products are available. It is fairly simple to pro-
tect databases and registries. Protecting commu-
nications is somewhat more challenging, and a
major industry effort is currently under way to
provide the messaging protocol SOAP with
security mechanisms to complement HTTPS.
For the time being however, SOAP is a fairly
new and untested technology that should be han-
dled with care until it features universal security
standards.

PKI is a proven concept and already widely
adopted in browser-server interaction on the
WWW. Integration of a PKI key management
system in Web Services may provide the Web
Service Providers and users with a backbone
upon which technical security mechanisms can
be built.

Request

Message
Content

Request

Response
Response

Axis Engine

Transport Global Service

SOAP Service

Request

Response

Provider
Target

Service

Transport
Listener

Return
control to
listener

Figure 6 The Apache Axis
Web Service Engine

56 Telektronikk 4.2002

Many standardisation efforts are currently under
way, but at this time no major and universal
standard is available. The main question is: Will
standardisation organisations and industry be
able to agree on one single standard for Web
Services security? In our opinion the success of
Web Services depends on such a universal stan-
dard. It is worth stressing that Web Services,
secured or not, should be able to interoperate.
Without interoperability, the success of this
emerging technology is doubtful. Thus it is
imperative that organisations such as WS-I
define guidelines and standards for interoper-
ability that also entail security.

Current Web Services platforms support some
basic security standards (HTTPS), but unfortu-
nately the lack of universal standards has pre-
vented platforms vendors from implementing
standardised security solutions. This tendency
toward using proprietary solutions may jeopar-
dize the very important criterion of Web Service
interoperability.

For the time being, the lack of standardisation
makes it hard to unconditionally endorse Web
Services security. Interoperability is the key
issue and an important success criterion for this
still emerging technology. Interoperable solu-
tions may lead the Web Services concept toward
wide acceptance in the business community. On
the other hand, the lack of interoperability may
lead Web Services toward its eventual demise.

References
1 Prescod, P. Some thoughts about SOAP ver-

sus REST on Security. November 15, 2002
[online] – URL: http://www.prescod.net/
rest/security.html

2 Houston, L. Best practices : Web security.
SOAP Security Issues. November 15, 2002
[online] – URL: http://dcb.sun.com/
practices/websecurity/overviews/
soap_security.jsp

3 Using WS-Security with the Web Services
Development Kit Technology Preview.
November 15, 2002 [online] – URL:
http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/dnwssecur/html/
wssecwithwsdk.asp

Further Reading
Van Do, T et al. XML Web Services : The ser-
vices of the future? Fornebu, Telenor workshop,
June 2002.

Van Do, T et al. Telenor Mobile XML Web
Services. Fornebu, Telenor R&D, 2002. R&D
Scientific Document N 29/2002.

Jakobsson, S et al. PIR 2.1 – State-of-the-art
XML Web Service Technologies and Standards.
Project Internal Result, EURESCOM Project
1209, 2002.

Peterson, L L, Davie, B S. Computer networks –
a systems approach. San Francisco, 2000. (ISBN
1-55860-577-0)

Hartman, B et al. Enterprise Security with EJB
and CORBA. OMG Press, USA, 2001. (ISBN
0-471-4031-5)

McKinsey Quarterly report. Risk and resilience.
Special Edition, 2002.

Kaler, C (ed.). IBM Web Services Security
(WS-Security), Version 1.0 05 April 2002.
November 15, 2002 [online] – URL:
http://www-106.ibm.com/developerworks/
library/ws-secure/

Security in a Web Services World : A Proposed
Architecture and Roadmap. (IBM white paper.)
November 15, 2002 [online] – URL:
http://www-106.ibm.com/ developerworks/
webservices/library/ ws-secmap/?l=af

Web Services Interoperability Organization
(WS-I). November 15, 2002 [online] – URL:
http://www.ws-i.org/

Microsoft Web Services. November 15, 2002
[online] – URL: http://msdn.microsoft.
com/webservices/default.asp

Apache Axis. November 15, 2002 [online] –
URL: http://xml.apache.org/axis/index.html

WebLogic Workshop Documentation. November
15, 2002 [online] – URL: http://edocs.bea.com/
workshop/docs70/index.html

57Telektronikk 4.2002

Acronyms
API Application Programming Interface
ASP Active Server Pages
BEA Basic programming Environment for

interactive-graphical Applications,
from Siemens-Nixdorf

COM Component Object Model
CORBA Common Object Request Broker

Architecture
ebXML electronic business XML
FTP File Transport Protocol
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol

Security
IETF Internet Engineering Task Force
IIS (Microsoft) Internet Information

Services
IP Internet Protocol
IPsec Internet Protocol security
J2EE Java 2 Enterprise Edition
OASIS Organization for the Advancement

of Structured Information Standards
PKI Public Key Infrastructure
SAML Security Assertion Markup

Language

SASL Simple Authentication and Security
Layer

SET Secure Electronic Transaction
S-HTTP Secure HyperText Transfer Protocol
SMTP Simple Mail Transport Protocol
SOAP Simple Object Access Protocol
SSL Secure Socket Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDDI Universal Discovery Description and

Integration
UUP Universal User Profile
W3C World Wide Web Consortium
WLS Web Logic Server
WSDL Web Service Description Language
WS-I Web Services Interoperability

Organization
WWW World Wide Web
XACML eXtensible Access
XKMS XML Key Management Service
XML eXtensible Markup Language

Control Markup Language
XML-SIG XML Digital Signature

Telektronikk 4.2002

1 Introduction
In present day communications networks, con-
nectivity and high quality voice have become
commodities. The supplementary services and
A/IN based applications are increasingly becom-
ing commonplace. We have come to realize that
it is the value added services and applications
that are the moneymakers, providing the greatest
revenue-generating potential. In the struggle to
secure a piece of application market share, all
the players have embarked on a quest for the
killer application. If history has taught us any-
thing, however, it is that one simply cannot pre-
dict what the killer application will be. Time to
market is yet another key factor in the multi-
faceted equation. Killer applications are not tan-
gible, sometimes subject to a disquieting amount
of hype or fashion. Furthermore, the days of
technology push have gone. Large service
providers and telecommunication equipment
vendors can no longer expect to introduce and
rollout expensive dedicated network equipment
and service platforms, supporting applications
that are then forced upon the consumer commu-
nity. Users of communications networks and ser-
vices are educated and mature; there is no room
for complacency. Hence, focus has shifted to
finding and defining the killer environment, or
the killer enabler, rather than the killer applica-
tion. The killer environment will allow the net-
work operator or service provider to quickly,
easily, and without much disruption to ongoing
network operations, introduce the killer applica-
tion, or killer applications, once it is found.

It has generally been noticed in the industry that
the killer enabler is provided by open access to,
and programmability of, network service capa-
bilities. There are two aspects to this killer envi-
ronment. First, there is service mediation, i.e.

providing application developers with a unified
approach and consolidated architecture for open
but secure, easy but regulated, flexible but scal-
able, access to core network service capabilities.
Second, to increase the likelihood that a killer
application will emerge, one needs to provide a
fertile greenhouse for as large a developer com-
munity as possible. This greenhouse should not
be limited to the traditional R&D labs; the larger
developer community, including the enterprise
application developers and web developers, need
to be engaged and inspired to partake in the pro-
cess of devising the successful value added ser-
vices and applications of tomorrow. This is
envisaged to be achieved by abstracting from the
sheer complexity of the application development
process, and the technologies and protocols
involved. The killer environment needs to appeal
to the large crowd of application developers, by
defining the open interfaces using technologies
and methodologies that are close and familiar to
them.

Figure 1 shows a layered architecture designed
for open access to service capabilities [3]. It con-
sists of a resources layer, a services layer and
application servers. The SCFs (Service Capabil-
ity Features) are implemented in the services
layer and provide their capabilities to the appli-
cation servers. In general, application servers
and the programmable gateway are physically
separated entities. Therefore, a distribution tech-
nology between the SCFs in the gateway and the
application server is needed. Figure 1 also indi-
cates an interface between the resources layer
and the services layer.

Several papers have addressed the issue of open
access, service programmability using third gen-
eration programming languages and its service

Evolving Service Creation; New
Developments in Network Intelligence*)

J O H N - L U C B A K K E R , D A V I D T W E E D I E A N D M U S A R . U N M E H O P A

The application and deployment concept of programmable network capabilities have been well under-

stood and embraced in the industry. To date, Parlay and JAIN have focused on unlocking existing (e.g.

IN-like) network capabilities to a Java and web-enabled developer community. More recently, additional

efforts to further appeal to both application developers and service providers have emerged. The

advanced abstraction and simplification in the programming interfaces (Parlay X), the interest in alterna-

tive transport and middleware technologies (Parlay Web Services), and the emerging field of telecom-

oriented, XML-based scripting languages are clear indications of this development. Furthermore, we see

an attempt to unify the Parlay concepts with another service mediation technology, SIP, to combine pro-

grammatic objects and data types with session control capabilities, as witnessed in the IETF SPIRITS

initiative. In this paper, the authors will give a compendious overview of these new developments in the

area of programmability, and the applicability thereof within today’s and the next generation of networks.

David Tweedie (30) has been
working as software designer
for Nortel Networks in Ottawa,
Canada since 1998. He joined
Nortel after receiving a Bachelor
of Computer Science with a
major in Information Systems
from the University of New
Brunswick in Fredericton,
Canada. While at Nortel, David
has primarily been working on
service enabling technologies.
He started out as a member of
an Advanced Intelligent Net-
works development team. After
that, he progressed to next gen-
eration third-party programma-
bility solutions which eventually
led to investigations into the
Parlay/OSA APIs.

davidtw@nortelnetworks.com

John-Luc Bakker (30) holds an
M.S. degree in programming
aspects of distributed and par-
allel computing from the Delft
University of Technology, The
Netherlands, since 1996. Prior
to his current position he worked
with Lucent Technologies on
component based service cre-
ation environments, advanced
communication architectures,
multimedia, and recent change
code generation. He has pub-
lished several papers in these
areas. Bakker joined Telcordia
in 2000 as research scientist
and project manager in the Mid-
dleware and Mobile Applica-
tions Research Group. He is
currently active in several re-
search projects including partic-
ipation in standardization fora
such as JAIN, 3GPP and Parlay.

jbakker@telcordia.com

58

*) © The contents of this paper is under the copyright rules of Telcordia.

59

mediation aspect (see e.g. [16] and [23]). The
focal point of this paper however, is the second
aspect of a successful killer environment, i.e. the
appeal to the application developer crowd. This
is achieved by simple access, using the technolo-
gies they like, such as scripting technologies, at
a higher level of abstraction. The most promis-
ing technology to fulfill these requirements, cur-
rently under development in the industry, is that
of Web Services. A Web Service is a capability
that can be invoked via standard Internet proto-
cols. As such, the prospect of an SCF (Service
Capability Features), accessible via SOAP/XML
([25] and [24]), would perfectly fit the Web Ser-
vices paradigm.

This paper will specifically address the aspect
of engaging and involving the larger developer
community. It is important to note that the work
on service creation in next generation networks
is in full progress. The approach that the authors
adhere to, for the purpose of this paper, is to
classify application programmability and next
generation service creation into three main cate-
gories. These categories are generic Application
Programming Interfaces (APIs), using many dis-
tribution technology realizations, comprehensive
access to network capabilities using scripting,
and simple and network specific interfaces
deployed as Web Services (Parlay X). It is not
the intention to provide an exhaustive survey;
rather the authors will provide a concise synop-
sis by presenting one or more compelling and
promising representative technologies out of
each category. In addition, the paper will address
the relation of Parlay with another service medi-
ation technology proving to be of immense inter-
est to the industry, i.e. the Session Initiation Pro-
tocol (SIP) [15]. The paper will conclude with a

correlation of all these technologies and initia-
tives in a comprehensive overview, identifying
how they link up into the global service archi-
tecture.

2 Programmability Through
Programming Languages
APIs

One of the first methodologies or design
paradigms adopted by the telecommunications
world from the information technology domain
is the use of APIs. An API is a programmatic
interface providing access to or programmability
of software resources, such as database applica-
tions or telecommunication protocol stacks. An
API provides application developers with pro-
grammability of software resources, by defining
these resources in terms of objects and methods,
data types and parameters that operate on those
objects. Examples of resource layer APIs in-
clude the JAIN protocol APIs, such as JAIN SIP
[17] or JAIN INAP [18]. At a higher abstraction
layer we find the service layer or network capa-
bilities APIs, for example the Parlay APIs [12]
or JAIN JCC (Java Call Control) [20] and JCAT
(JAIN Coordination and Transactions) [21]. The
service layer APIs do not focus on individual
resources, but rather provide application devel-
opers with access to service capabilities residing
in a core telecommunications network. In the
remaining we will focus on the Parlay APIs, their
UML representation and the Parlay realizations.

Parlay APIs are independent of the actual
resources; however, protocol mapping recom-
mendations exist. Actual resources may reside
either in the A/IN network, in Mobile networks,
Managed IP networks, or in Next Generation
Networks. Parlay Application is thus abstracted
from resource implementation. As a conse-
quence, the Parlay APIs expose only common
aspects and generic functionality of communica-
tion networks.

The Parlay APIs are defined using UML (Uni-
fied Modeling Language) [12]. The UML mod-
eling technology is realization technology inde-
pendent. However, as the Parlay UML was
reengineered from earlier Parlay OMG (Object
Management Group) IDL (Interface Definition
Language) [7] definitions, the Parlay UML is not
fully technology independent. Distribution tech-
nologies other than OMG’s CORBA may realize
particular distribution aspects differently. This
leads to mismatches when mapping the UML to
other realization technologies. Also, the Parlay
APIs specify supports for distribution aspects,
such as authentication, on the application level
even while they are essentially orthogonal to the
problem domain of telecommunications. A full
discussion of the Parlay UML and its deficien-
cies is not the scope of this paper.

Figure 1 General Programmable Gateway
Architecture

Musa R. Unmehopa (31) re-
ceived his M.Sc. in computer
science in 1996 from the Univer-
sity of Twente, The Netherlands,
after which he joined Lucent
Technologies, Bell Laboratories.
He is currently a senior stan-
dards consultant engineer in the
Wireless Advanced Technolo-
gies Lab within Lucent Tech-
nologies, The Netherlands. He
is actively involved in the stan-
dardization of open network
Application Programming Inter-
faces within 3GPP, 3GPP2,
ETSI, the Parlay consortium, and
more recently, the Open Mobile
Alliance (OMA). Currently, Mr.
Unmehopa holds the position of
vice-chairman of 3GPP Techni-
cal Specification Group (TSG)
Core Network Group 5 (Open
Service Access).

unmehopa@lucent.com

Programmable Gateway
(Services Layer)

Application Server

Resources Layer

Telektronikk 4.2002

60 Telektronikk 4.2002

Still, with some effort, a number of technology
specific realizations can be generated from the
Parlay UML model. Initially OMG IDL was
the only generated and published realization.
Recently, a W3C WSDL [27] realization has
been generated and published along with the
rules that were established to enable automatic
generation of future versions of the Parlay speci-
fication. In the immediate future a rulebook that
specifies the mapping between the Parlay UML
and the JAIN SPA (Service Provider APIs) will
be made available. Figure 2 shows the relation
between the Parlay UML, OMG’s IDL, W3C
WSDL, and JAIN SPA. The realization technol-
ogies will be further discussed in the remainder.

2.1 OMG IDL
The technology realization which was initially
used with Parlay APIs was the OMG IDL. OMG
IDL is used to specify the interfaces of remote
objects. OMG IDL interface implementations
(so-called remote objects) typically execute
within a different process on a different host
with respect to the implementation’s client. As
such, OMG IDL is well suited for defining the
interface of the Parlay APIs. Additionally, OMG

IDL is the definition language used to define a
set of interfaces for use with the Common
Object Request Broker Architecture (CORBA)
[13]. CORBA is a standard, defined by the
OMG, that supports distributed objects. CORBA
provides a complete set of services to remote
objects, including concurrency control, licens-
ing, life-cycle management, security manage-
ment, and persistence. Finally, another benefit of
using OMG IDL as a specification language is
that it is programming language independent; the
OMG has provided standard mappings to many
programming languages, including Java and C++.

2.2 Java
It is recognized that Java is a firmly established
programming language in the enterprise applica-
tion market, and emerging in other fields. For
that reason, many middleware systems support
language mappings to Java. The Java software
development packages come with a vast number
of libraries that implement telecom-related (i.e.
JAIN) and other standards. The JAIN SPA
working group felt that the Java communities
experience in implementing as well as certifying
conformance to standards could be beneficial to
the Parlay community. Note, however, that the
Java community does not focus on the distribu-
tion technique, but more on ease of use of the
APIs and whether they follow the patterns and
paradigms expected of good citizens of the pop-
ulation of Java API. It was felt that the OMG
IDL mapping to Java inadequately conformed to
these goals. Additionally, some CORBA ORB
vendors inadequately implemented the (latest)
OMG standards that map Java to IDL, thereby
inhibiting the portability of Java applications.

To circumvent these hurdles and increase accep-
tance of the Parlay APIs within the large com-
munity of Java developers the Parlay group is
producing a rulebook which specifies the map-
pings between the Parlay UML model and Java.
The Java realization activities underway within
the Parlay group are part of SUN’s JAIN SPA
initiative.

As indicated in Figure 3, the JAIN SPA APIs are
slightly different from the other technology real-
izations in that they specify a local API as
opposed to a distribution technology API (such
as IDL or WSDL). These JAIN SPA APIs can
reside on either the Parlay application server or
on the Parlay gateway. The JAIN SPA APIs are
independent of the distribution technology used.
It is up to the actual implementation of the JAIN
SPA APIs to determine which type of distribu-
tion mechanism it wishes to use (i.e. IIOP,
SOAP, RMI, etc). Figure 3 illustrates how the
JAIN SPA APIs can be used to provide a layered
approach to Parlay application and gateway
servers.

Figure 2 Parlay Technology
Realizations

Figure 3 Realization
architecture

OMG IDL W3C WSDL JAIN SPA

Parlay UML

Programmable Gateway
(Services Layer)

Application Server

Resources Layer

JAIN SPA APIs

SPA-RMI
adaptor

SPA-WSDL
adaptor

SPA-OMG
IDL adaptor

OMG
IDL

WSDL

JAIN SPA
Application

RMI-SPA
adaptor

WSDL-SPA
adaptor

OMG IDL-
SPA

JAIN SPA APIs

JAIN protocols APIs

OMG
IDL

WSDL

61Telektronikk 4.2002

2.3 WSDL
The XML-based Web Services paradigm trans-
forms the Web into an anthology of independent
application components, each with a well-
defined and published interface, which allow
other Web applications to find them and use
them. Web Services are built on top of existing,
inexpensive and easy-to-encrypt Web protocols
such as HTTP and based on open XML stan-
dards for data encoding. Web Services merely
draw upon the omnipresent Internet infrastruc-
ture to discover and compile services into com-
pelling value added applications.

The Parlay APIs are realized in WSDL (Web
Services Description Language) [27]; WSDL is
an XML format definition language which is
used to describe the programmable interface for
a service. This usage is similar to the OMG IDL
use discussed earlier. WSDL is specified by the
W3C organization and is defined with XML
and XML Schemas [28]. The first transport sup-
ported by WSDL is SOAP [25] over HTTP.
Note that other transport bindings may be sup-
ported while retaining the WSDL interface defi-
nitions. A WSDL document is defined by a
series of XML Schema elements.

Within Parlay, a set of mapping rules from the
Parlay UML model to WSDL has been written.
These mapping rules provide a mapping from
UML constructs into WSDL elements. The
detailed mapping from UML to WSDL can be
found in the Parlay Overview specification [14].
The strength of this approach lies in the strong
association with web protocols and associated
service creation and deployment technologies.
Hence, the WSDL mapping is done to further
appeal to the developer community.

Figure 3 shows the possible interplay of all Par-
lay realization technologies. The figure illus-
trates how the various Parlay realization tech-
nologies could be utilized within a Parlay solu-
tion. As illustrated, CORBA, SOAP, or even
RMI plays a similar role as a distribution mecha-
nism within a Parlay solution. The JAIN SPA
APIs can provide a further abstraction from the
distribution layer both on the Parlay Application
Server and on the Parlay Gateway. This section
has introduced the objective of the Parlay APIs
to expose only common aspects and generic
functionality of communication networks, in
order to allow for application portability across
network technologies. To be able to deploy these
applications using this common and generic API
in the various network technologies, Parlay
defines several distribution technology realiza-
tions.

3 Simplified Programmability
Through Web Services

The Parlay APIs expose capabilities of the
telecommunications network in a network tech-
nology and programming language neutral way.
In fact, the contributors to the APIs go to great
lengths to ensure that the common aspects of
(converged) mobile, fixed, and managed packet
networks are made programmable for a large
audience of developers of carrier grade systems.
Yet, some more specific but highly valuable
capabilities remain unsupported. As an example,
the support for SMS (Short Messaging Service)
is inadequate. Additionally, the developer who
wishes to program simple applications, such as
setting up a third party call (a.k.a. click to dial),
using the Parlay APIs, needs to go through elab-
orate interactions with different components and
interfaces.

These observations motivated the need for APIs
that are predominantly simple and, consequent-
ly, restricted in their capabilities; developers that
need access to advanced means of control would
not be users of these simple APIs, but rather use
the existing Parlay APIs. Additionally, the rigid
dogma that favors exposure of common network
capabilities over specific capabilities needed to
be relaxed. Finally, the resulting APIs would
predominantly be used in a multi portal or a web
environment. The Parlay community proved to
be open to these views and approved the estab-
lishment of a group, the Parlay X group, in late
2001, which was chartered to create APIs that
incorporated the above views. It was felt that
new markets are made available through Web
Services with Parlay X application definitions.
Given a set of high level interfaces that are
oriented towards the skill levels and telecom
knowledge levels of web developers, the Parlay
X APIs open the accessibility of the network
capabilities to a much wider audience.

Figure 4 shows where the Parlay X applications
are situated with respect to the Parlay X gate-
way. Note that many of the Parlay X capabilities
will be mediated by the Parlay Gateway. Some,
however, are not supported because of Parlay’s
focus on common capabilities as opposed to net-
work specific capabilities. Such capabilities can-
not be mediated through the Parlay Gateway,
rather they need to be made available through
the resources layer.

Consider a web server that allows end users to
charge for services they consume to their pre-
paid accounts, or a customer support page that
creates, by the press of a button, a voice call
between an end user and a customer service
representative. Developers in this environment
often use web services technology to communi-
cate with different capability servers, i.e. they

62 Telektronikk 4.2002

use SOAP and WSDL. Web services provide a
set of capabilities and technologies that result in
a very compelling foundation for supporting
converged telecom/IT applications.

As with the Parlay APIs discussed in the previ-
ous section, authorization, discovery, extensibil-
ity and activation are very important features
that need to be adequately addressed. The Parlay
APIs introduce the set of Framework APIs to
address these issues on an application level.
The web services environment is different since
several mature technologies exist today or are
the industry norm and can be leveraged to
achieve the same. For example, UDDI (Univer-
sal Description, Discovery and Integration) or
WSIL (Web Services Inspection Language,
a.k.a. WS-Inspection) can be used to discover or
retrieve references to specific services. WSIL
files describe web services, possibly in a hierar-
chical manner, while UDDI serves a centralized
registration and service publication solution.
UDDI or WSIL allow for Parlay X applications
to discover published services. The UDDI or
WSIL-driven registry, finally, contains informa-
tion using which the Parlay X application can
bind and activate the Parlay X service. Note that
authorized personnel can extend the registry
with more Parlay X services.

Authentication required prior to accessing the
private registry can be achieved through acquir-
ing access using a VPN or through applying
HTTPS. Many VPN solutions exist, supporting
a variety of authentication methods. Based on
the authentication information (e.g. user handle
and password in the case of HTTPS) access to
only the subscribed services can be enforced

through dynamically generated WSIL files;
effectively authenticating access to subscribed
services only. Finally, various accounting
schemes can be employed based on the invoked
service, time of authentication, service agree-
ment established a priori, etc.

Today, Parlay X participating companies have
submitted contributions that target Parlay X
compatible definitions of web services for UI
(User Interaction), 3PCC (Third Party Call Con-
trol), Payment, TopUp, UserStatus/Presence/
Location, and Messaging (i.e. SMS). 3PCC and
UI web services are motivated by the observa-
tion that applications that interface with telecom-
munications resources often initiate and receive
voice calls. 3PCC supports initiation of voice
calls (e.g. click to dial) and recognizes user input
(i.e. voice or DTMF). The TopUp API allows
consumers to increase the value of their prepaid
accounts and the payment API allows content
providers to charge for certain types of content
such that the billing is handled by the operator.
Examples of content that can be charged for are
downloadable ring tones or downloadable voice
mail announcements. Next, the UserStatus/Pres-
ence/Location contribution focuses on present-
ing User Status or Presence (such as online,
offline, or engaged) and Location (fine grained
as longitude and latitude or as coarse as within
or not within an area). Finally, the Messaging
API is intended for sending messages (most
notably, SMSes) from web pages to devices
that can accept such messages.

It is hard to measure simplicity. Parlay X
focuses on exposing capabilities through
accepted and largely applied technologies by the
IT industry. Furthermore, the IT industry is cur-
rently furthering the Web Services architecture;
emerging standards for transactions and inte-
grated security will make the use of Web Ser-
vices as a middleware solution even more attrac-
tive and will further reduce the complexity of
creating telecommunications applications.
Already, Parlay X is exploring the applicability
of Web Services middleware in constructing a
programmable gateway. As outlined above, a
number of contributions have been suggested
and are currently being consolidated and pro-
cessed for inclusion in the first release of the
Parlay X APIs.

4 Programmability Through
Scripting

Scripting languages are lightweight, highly cus-
tomizable, and typically interpreted languages,
appropriate in the area of rapid application
development, acting as glue to provide connec-
tions among existing components. These charac-
teristics allow them to be used to code or modify
applications at runtime, and interact with run-

Figure 4 Parlay X Gateway
accessing specific network
capabilities directly

Parlay X Gateway

Programmable Gateway
(Services Layer)

Resources Layer

Parlay X Client

63Telektronikk 4.2002

ning programs. Such qualities and features make
scripting languages suitable application enabler
abstractions and highly applicable to the field of
application programmability next to APIs.

XML is commonly seen as the preferred vehicle
to create service creation languages. Aside from
its standardization and readability by both
machines and humans, XML offers several addi-
tional benefits. XML supports restrictions to its
expressiveness. Such a restriction enables easy
validation and determinability. In general, XML
schemas allow the design of languages that can
be non-expressively complete, thereby guaran-
teeing that the XML interpreter, while using a
limited amount of time and resources, can easily
execute the script. Finally, many tools and
libraries are available to create, interpret and
validate XML documents.

The next generation of scripting languages for
creating value-added services in converged net-
works will be based upon XML. Industry fora
like Parlay and JAIN have developed open stan-
dard APIs to enable service creation in today’s
and tomorrow’s networks. While services can be
developed in traditional (third generation) pro-
gramming languages (e.g. Java or C++) using
these APIs, the XML-based scripting languages
offer some attractive advantages. While not as
flexible or powerful as a programming language,
scripting languages are typically easier to learn,
and are platform independent.

Several XML-based call control markup lan-
guages have been previously proposed, includ-
ing CPML, TML, XTML, CallXML [11], CPL
([9] and [10]), the Call Control XML (CCXML)
[20], and Service Creation Markup Languages
(SCML) [17]. A comprehensive survey of these
call control markup languages proposals is not
the purpose or within the scope of this section.
Instead, we observe the SCML developed by the
Service Creation Environment Expert Group of
the JAIN industry forum, and developed accord-
ing to open processes by a number of actively
participating companies. The rigorous process
and the openness, along with SCML’s close rela-
tion to Parlay and JAIN will contribute to an
increased industry acceptance and therefore
warrant a closer look.

Languages such as SCML, CCXML and CPL
are used to create applications that make use of
the functions provided by the services layer (as
opposed to the resources layer), see Figure 5.
The figure shows a scripting interpreter either
at the application side of the programmability
architecture or at the gateway side. This means
that both the third party and the operator can
support programmability through scripting.
Scripts can be stored such that they can be

retrieved from storage indicated by a URL or
in subscriber databases like HLRs.

The remainder of this section will further discuss
SCML and its features. Note that a comparison
between CPL, CCXML and SCML was pre-
sented in [1]. Note also that CPL, CCXML and
SCML are all in the work in progress state and
could change in the course of further standard-
ization. However, we expect that the overall con-
cepts will continue to apply. Finally, the exam-
ples given in this section are for illustrative pur-
poses only.

4.1 SCML
The Service Creation Markup Language
(SCML) is a scripting language that connects
existing components such as JAIN SPA or Par-
lay APIs, enabling rapid prototyping, rapid
application development, or easy end-user cus-
tomization. We briefly discuss SCML here and
compare it to CCXML.

SCML scripts are created, edited, and validated
using regular editors or as a result of applying
transformation techniques. Next, the scripts are
deployed in a retrievable location (e.g. identified
by a URL). SCML scripts follow a pattern of
registering the static events and criteria that can
be matched by events (e.g. those emitted by
SCFs), followed by declaration of business logic
to be executed in response to such an event.
Therefore, activation initially encompasses
provisioning the events and criteria and, sub-
sequently, executing the business logic upon
occurrence of the provisioned event. A script is
deactivated through removing the provisioned
criteria. The SCML specification only specifies
the scripting language; no APIs are specified for
activation, deactivation, and other service life-
cycle events.

Figure 5 Script interpreters
either integrated with the SCF
or with the application server

Programmable Gateway
(Services Layer)

Application Server

Resources Layer

Script
interpreter

64 Telektronikk 4.2002

SCML is intentionally extendible. It consists of a
common core, defined in the scml-core package
that should be extended per JAIN SPA or Parlay
component. Currently, the core is extended with
the jccml package (JAIN Java Call Control
Markup (JCC) Language); the jccml package
assumes a JCC 1.1 API [20] implementation.
The jccml package is defined using an XML
Schema that is derived from JAIN’s JCC API.
JCC provides an API to pure call control related
capabilities and can support traditional A/IN ser-
vices as well as NGN services such as Click-to-
Dial. Finally, JCC can be mapped on top of SIP
[8], MGCP, and H.323 [8]. No public documents
showing an informative mapping from JCC to
ISUP, INAP and CAP may be available, but the
JCC call model was designed to be protocol
agnostic.

An example script in SCML is shown in Figure
6 for Call Forwarding on Busy. In this script the
activation criteria (indicated by the <discon-
nected>-element) are registered with the gate-
way. The criteria specified by the registration
element are the condition that call setup fails due
to a busy callee, that callee’s address, the fact
that it concerns the terminating portion of the
call, and an indication that the call processing
must be suspended while the script executes. If
these criteria apply, the scripts will be executed
and the call will be redirected through specifying
an alternative target address in the <routeCall>
element. In this case, after forwarding the call,
processing, which was suspended, will automati-
cally be resumed.

Note that SCML is not limited to support for the
JCC 1.1 API only. Further extensions (e.g.

adding Short Message Service (SMS) compo-
nents) are intended. In fact, Figure 7 shows a
script that exemplifies support for and usage of
the <sendSMS> element. The <sendSMS> ele-
ment causes an SMS to be sent to the RFC2806
compliant URI tel:2125556767 only if destina-
tion tel:2125551212 is busy. The differences
with Figure 6 are subtle; the example in Figure 7
validates the document against a Schema that
extends the Schema used in Figure 6 such that it
accepts the element <sendSMS>. Additionally,
processing of the call processing machinery is
not blocked (as the attribute block of the <dis-
connected> is set to false); since handling of
busy connection and sending the SMS are paral-
lel activities.

Concluding this section we state that there are
many XML-based scripting languages. We have
further discussed SCML and found that SCML
is promising as an application enabled abstrac-
tion as it makes use of the capabilities provided
by the various SCFs. SCML is from the ground
up designed to be protocol agnostic and
extendible to other sources of events.

5 Service Mediation Through
SIP

JAIN and Parlay have introduced the concept of
third party access to service capabilities residing
in the core network. Apart from Parlay, as
described in detail above, there is another popu-
lar service mediation technology that is receiv-
ing a lot of interest in the industry, i.e. SIP. This
section discusses two recent standardization
activities that incorporate the synergy of Parlay
and SIP. The two activities are SPIRITS/PINT,
taking place in the IETF, and OSA-to-ISC1),

Figure 6 Example SCML
Script: Call Forwarding
on Busy

Figure 7 Example SCML
Scripts: SMS on Busy
Subscriber

</scml>

<register>

<disconnected causeCode ="CAUSE_BUSY" destination ="sip:jdoe@home.com"

connection="terminating" block="true">

<routeCall targetAddress ="tel:2125552121"

redirectingAddress ="sip:jdoe@home.com"/>

</disconnected>

</register>

</scml>

<scml>

<register>

<disconnected causeCode="CAUSE_BUSY" destination="tel:2125551212"

connection="terminating" block="false">

<getOriginatingAddress address="orig"/>

<sendSMS to="tel:2125556767"

content="'Call attempt by '+%orig;+' on 2125551212'"/>

</disconnected>

</register>

</scml>

65Telektronikk 4.2002

taking place in 3GPP. In a nutshell, SPIRITS/
PINT take conventional A/IN/CAMEL triggers/
events from PSTN/ISDN networks and make
those available in the Internet domain. OSA-to-
ISC allows application developers to access the
emerging 3G IP Multimedia Subsystem. Hence
both activities target different underlying core
network technologies, i.e. PSTN/ISDN, and 3G
IP Multimedia. In the remainder we will elabo-
rate on these two examples.

5.1 SPIRITS and PINT
Within the Internet Engineering Task Force
(IETF) efforts have been ongoing for a while to
define interworking between the traditional tele-
phony networks and the Internet. PINT (PSTN/
Internet Interworking Protocol) [5] addresses the
requirement to invoke telephony services from
the Internet, whereas SPIRITS [6] focuses on
carrying A/IN triggers and events from the tele-
phony network to the Internet. Combined, PINT
and SPIRITS allow for A/IN-type service logic
to be executed on IP hosts and to be delivered to
traditional telephony subscribers. The remainder
of this section will focus on SPIRITS.

The approach in SPIRITS has been to select
those A/IN parameters of specific interest to
application developers. The selection of relevant
A/IN parameters has been based on the Parlay
specifications. Various considerations on auto-
matically generating these XML parameters and
the use of XML Schema can be found on [6].
Summarized, a process collocated on the A/IN
SCP (called the SPIRITS Client) monitors for
A/IN triggers and events of interest from the
telephony network. Once received, the SPIRITS
Client extracts the relevant A/IN parameters,
according to the Parlay definitions, and parses
them into XML. The XML-encoded parameters
and data types are then placed in the payload of
a SIP message. This message is transported to
the SPIRITS Gateway in the Internet domain.
The SPIRITS Gateway either passes this mes-
sage on to the SPIRITS Server, located on an IP
host, which terminates the telephony request and
is responsible for executing the A/IN-type ser-
vice logic. Or, as depicted in Figure 8, the SPIR-
ITS Gateway parses the XML-encoded parame-
ters and hands them to the appropriate SCF. The
SCF would then use one of the Parlay realization
technologies to contact the application server.
For a more detailed description of the SPIRITS
architecture the reader is also referred to [6].
This architecture and protocol definition allows
the SPIRITS Server to execute a Parlay applica-

tion, based on the XML encoded Parlay repre-
sentation of the relevant A/IN parameters.

The SPIRITS protocol, between the SPIRITS
Client and the SPIRITS Gateway, uses the SIP
SUBSCRIBE and NOTIFY messages, as these
are specifically suited for trigger and event
reporting type functionality. The work on the
SPIRITS protocol is currently in progress.
Figure 9 depicts an example where the A/IN
“Answer” event is represented in terms of Parlay
parameters, and carried as an XML encoded
body inside a SIP NOTIFY message. The SIP
header portion of this message is simplified for
the sake of brevity; again, the reader is referred
to [6] for more detail.

5.2 OSA to ISC mapping
SIP has been adopted by 3GPP [1] as the control
protocol for the wireless next generation core
network. This core network is referred to as the
IP Multimedia Core Network Subsystem (IM
CN). In a nutshell, session setup, control, and
teardown functionality are performed by SIP
servers, referred to as CSCF (Call Session Con-
trol Functions). The CSCFs do not perform any
service logic execution. Instead, these tasks are
performed by application servers. One such
application server, acting as a SIP application
server, is the Parlay Gateway. The protocol
defined between the CSCF and the application
servers is the IM CN Service Control protocol
(ISC). With the CSCF and application servers
being SIP servers, the ISC protocol is in fact the
SIP protocol. The IM CN and its functional enti-

1) In this paper, OSA (Open Services Access) and Parlay are used interchangeably. Technically this is not correct, as the set of Parlay APIs is slightly
larger than the set of OSA APIs. However, for the purpose of this paper this distinction is not essential.

Programmable Gateway
(Services Layer)

Application Server

Resources Layer

SPIRITS
Server

SPIRITS
Gateway

SPIRITS
Client

Figure 8 SPIRITS
architecture in conjunction

with programmability
architecture

66 Telektronikk 4.2002

ties, as well as the ISC protocol, are being speci-
fied by 3GPP [4].

As part of their specification set, 3GPP publishes
API to protocol mapping recommendations for
various underlying network protocols. For OSA
to be deployable in IM CN networks, the 3GPP
specification in [1] recommends mappings of
OSA to the ISC protocol. The OSA-to-ISC map-
pings cover the entire scope of the SIP protocol
(i.e. beyond just SUBSCRIBE/NOTIFY) and its
supported headers in order to provide support for
the full breadth and depth of the Parlay Call
Control APIs.

Figure 10 and Figure 11 show an example of
how an OSA API method maps to an ISC inter-
face operation. The first part of the figure shows
the IDL definition of the createAndRouteCall-
Leg method, which is used by an application to
request the creation and routing of a new call
leg. The second part of the figure shows the SIP
INVITE message onto which the createAnd-
RouteCallLeg method is mapped. In bold font
it is indicated how the individual OSA method
parameters and data types map onto the SIP
headers and their contents. The appInfo OSA
parameter is defined as a union data type
(TpCallAppInfoSet) of which the alerting
mechanism (CallAppAlertingMechanism) is
one of the possible fields. In this example, the
alerting mechanism is mapped onto the Alert-
Info header. For the benefit of simplicity, in this
example the application does not request for the
arming of triggers with the routing of this call
leg.

The bold font indicates how the OSA parameters
are mapped onto their counterparts in the ISC
operation.

When comparing SPIRITS with OSA to ISC, the
different approaches are quite apparent. In the
SPIRITS approach the Parlay data is carried as
an XML body inside a SIP message, whereas in
the OSA-to-ISC approach the Parlay data is
mapped onto the SIP equivalent data (headers).

Concluding, SIP is an Internet protocol that
operates well with Internet related technologies
like HTTP and MIME. So the combination of
Parlay with SIP allows third party telecom appli-
cation development at Internet speed, tapping
into Internet creativity.

6 Conclusion
In this paper the authors emphasize the thesis
that the key success factor of a thriving killer
environment consists of the potency to appeal to
a large application developer community
through the flexible programmability of service
capabilities. The authors present an extensive
survey of established and emerging service pro-
grammability technologies. Three main cate-
gories are put forward, i.e. programmability
through the use of Application Programming
Interfaces, programmability through Web Ser-
vices, and programmability through scripting.
Subsequently, the authors impart their view on
the relationship of Parlay with another service
mediation technology, SIP, by showing they are
complementary, and synergy can be achieved.
A recurring element throughout all these discus-
sions is the use of XML. The authors then make
an effort to compile and amass all the concepts
and discussions and provide an all-encompass-

Figure 10 OSA API method

Figure 11 Corresponding ISC
interface operation

TpCallLegIdentifier createAndRouteCallLegReq (

in TpSessionID callSessionID,

in TpCallEventRequestSet eventsRequested,

in TpAddress targetAddress,

in TpAddress originatingAddress,

in TpCallAppInfoSet appInfo,

in IpAppCallLeg appLegInterface

)

INVITE sip:targetAddress SIP/2.0

To: Bob <sip:targetAddress>

From: Alice <sip:originatingAddress>

Call-ID: callSessionID

CSeq: . . .

Alert-Info: <http://www.example.com/appInfo.CallAppAlerting-

Mechanism.wav>

Figure 9 Example SPIRITS NOTIFY message for the Answer event

NOTIFY sip:jones@iphost.home.com SIP/2.0

From: <sip:directory_nr@ptt.com>;tag=SPIRITS-ER_RES-direc-

tory_nr

To: <sip:jones@home.com>

Via: SIP/2.0/UDP gateway.ptt.com

...

<spirits-event>

<DP Parlay=ER_RES/>

<EVENT_REPORT_RESULT ver=1.0>

<CALL_EVENT_TYPE>

<P_CALL_EVENT_ANSWER />

</CALL_EVENT_TYPE>

<CALL_MONITOR_MODE>

<P_CALL_MONITOR_MODE_NOTIFY />

</CALL_MONITOR_MODE>

<CALL_EVENT_TIME>

1998-12-04 10:30

</CALL_EVENT_TIME>

</spirits-event>

67Telektronikk 4.2002

ing helicopter view of all concepts and technolo-
gies and hence show the correlations and associ-
ations.

Figure 12 shows all initiatives aimed at the fur-
ther evolution of service creation in next genera-
tion networks together. In the figure references
to the original figures are made. The overall pro-
grammable architecture discussed in Figure 1 is
at the center of Figure 12. The referenced Figure
3 discusses the Parlay APIs and their technology
specific realization: WSDL, OMG IDL, and
JAIN SPA. These realizations concern the
services layer and application server. Figure 4
shows the Parlay X architecture in which func-
tionality is mainly delegated to the Parlay APIs
discussed in Figure 3. However, as Parlay X
exposes specific network capabilities as opposed
to the common capabilities exposed by the
Parlay APIs, some Parlay X APIs can only
be implemented through interaction with the
resources layer. Therefore, the magnifying glass
concerns the services layer, application server,
and the resources layer. Figure 5 focuses on an
alternative programming means: scripting lan-
guages. Scripting interpreters can be found in
the services layer as well as in the application
server. Finally, Figure 8 shows that program-
mability of network intelligence can also be
achieved through designing protocols that inter-
act with the resources layer.

References
1 3rd Generation Partnership Project; Techni-

cal Specification Group Core Network;
Open Service Access (OSA); Application
Programming Interface (API) Mapping for
Open Service Access; Part 4: Call Control
Service Mapping; Subpart 4: Multiparty
Call Control ISC (Release 5). 3G TR
29.998-04-4 v5.0.0. December 3, 2002
[online] – URL:
http://www.3gpp.org/ftp/Specs/latest/
Rel-5/29_series/29998-04-4-500.zip

2 Bakker, J-L, Jain, R. Next Generation Ser-
vice Creation Using XML Scripting Lan-
guages. ICC 2002, New York, NY (USA),
April 28 – May 2, 2002.

3 Bakker, J-L et al. Rapid Development and
Delivery of Converged Services Using APIs.
Bell Labs Technical Journal, 5 (3), 12–29,
2000.

4 Grech, M, Torabi, M, Unmehopa, M R. Ser-
vice Control Architecture in the UMTS IP
Multimedia Core Network Subsystem. IEE
3G2002 Mobile Communications Technolo-
gies, London, UK, 8–10 May 2002.

5 IETF. PSTN and Internet Internetworking
(pint) Charter. October 18, 2000 [online] –

Figure 12 Overview of
programmability efforts

Programmable Gateway
(Services Layer)

Application Server

Resources

68 Telektronikk 4.2002

URL: http://www.ietf.org/html.charters/
pint-charter.html

6 IETF. Service in the PSTN/IN Requesting
InTernet Service (spirits) Charter. October
18, 2000 [online] – URL: http://www.ietf.org/
html.charters/spirits-charter.html

7 ISO. Interface Definition Language (IDL).
March 1999. (ISO 14750)

8 Jain, R, Bakker, J-L, Anjum, F. Java Call
Control (JCC) and Session Initiation Proto-
col (SIP). Invited Paper. IEICE Trans. Com-
munications, E84-B (12), 3096–3103, 2001.

9 Lennox, J, Schulzrinne, H. Call Processing
Language Framework and Requirements.
May 2000. (URL: http://www.ietf.org/
rfc/rfc2824.txt)

10 Lennox, J, Schulzrinne, H. CPL: A Lan-
guage for User Control of Internet Tele-
phony Services. (Work in progress.) January
2002. (URL: http://www.ietf.org/internet-
drafts/draft-ietf-iptel-cpl-06.txt)

11 OASIS (Organization for the Advancement
of Structured Information Standards). The
XML cover pages. October 18, 2002 [online]
– URL: http://www.oasis-open.org/cover

12 OMG. Unified Modeling Language (UML).
Version 1.4, September 2001. October 18,
2002 [online] – URL: http://www.omg.org/
technology/documents/formal/uml.htm

13 OMG. Common Object Request Broker
Architecture (CORBA). Version 2.6, Dec 1,
2001. October 18, 2002 [online] – URL:
http://www.omg.org/technology/documents/
formal/corba_iiop.htm

14 Parlay Group. Parlay APIs Overview. Octo-
ber 18, 2002 [online] – URL:
http://www.parlay.org/docs/
Spec3_es_20191501v010101m.pdf

15 Rosenberg, J et al. SIP: Session Initiation
Protocol. June 2002. October 18, 2002
[online] – URL: http://www.ietf.org/
rfc/rfc3261.txt

16 Stretch, R M. The OSA API and other
related issues. BT Technical Journal, 19 (1),
80–87, 2001.

17 Sun Microsystems. JAIN SIP Specification
1.0, Java Specification Request (JSR) 32.
October 18, 2002 [online] – URL:
http://jcp.org/aboutJava/communityprocess/
final/jsr032/

18 Sun Microsystems. JAIN INAP API Specifi-
cation 1.0, Java Specification Request (JSR)
35. October 18, 2002 [online] – URL:
http://jcp.org/aboutJava/communityprocess/
final/jsr035/

19 Sun Microsystems. JAIN Service Creation
Environment (SCE) API Java Specification
Request (JSR) 100. October 18, 2002
[online] – URL: http://jcp.org/jsr/
detail/100.jsp

20 Sun Microsystems. JAIN Java Call Control
(JCC) API Java Specification Request (JSR)
21. October 18, 2002 [online] – URL:
http://www.jcp.org/jsr/detail/21.jsp

21 Sun Microsystems. JAIN Coordination and
Transactions (JCAT) API Java Specification
Request (JSR) 122. October 18, 2002
[online] – URL: http://jcp.org/jsr/
detail/122.jsp

22 Sun Microsystems. The JAIN APIs. October
18, 2002 [online] – URL:
http://java.sun.com/products/jain/

23 Unmehopa, M R et al. The Support of
Mobile Internet Applications in UMTS Net-
works Through the Open Service Access.
Bell Labs Tech. Journal, 6 (2), 47–64, 2002.

24 W3C. Extensible Markup Language (XML).
October 18, 2002 [online] – URL:
http://www.w3.org/XML/

25 W3C. Simple Object Access Protocol SOAP
1.1. W3C NOTE, 8 May 2002. October 18,
2002 [online] – URL: http://www.w3.org/
TR/2000/NOTE-SOAP-20000508/

26 W3C. Voice Browser Call Control: CCXML
Version 1.0. W3C Working Draft, 21 Febru-
ary 2002. October 18, 2002 [online] – URL:
http://www.w3.org/TR/ccxml/

27 W3C. Web Services Description Language
(WSDL) 1.1. W3C Note 15 March 2001.
October 18, 2002 [online] – URL:
http://www.w3.org/TR/2001/
NOTE-wsdl-20010315

28 W3C. XML Schema. October 18, 2002
[online] – URL: http://www.w3.org/
XML/Schema

69Telektronikk 4.2002

1 Introduction
As XML Web Services are rapidly becoming
widespread and straightforwardly used by more
and more actors in the global marketplace, it is
important from a Telco’s point of view to iden-
tify the possible areas where it can benefit from
these emerging technologies. In what kind of
scenarios can a Telco play an important role and
how can they best exploit the new opportunities
that arise with this new approach to service pro-
vision?

This article tries to identify various real world
scenarios that are relevant to Telcos with the
emergence of XML Web Services. First, in sec-
tion 2, a general overview with some different
visions about what XML Web Services can be is
given. The rest of the article considers different
scenarios where Telcos can benefit from XML
Web Services. Most of the scenarios are realis-
able as of today, but also some visions about
future Web Services scenarios are mentioned.
Finally, a conclusion sums up the article.

2 Overview
“Web Services” is the buzzword of today in the
software industry. A lot of hype is made about
them and this is not very surprising. From a cer-
tain perspective Web Services can be considered
“as being for applications, what the WWW is for
humans”. The same way HTML links insert doc-
uments into a huge hypertext, the SOAP calls of
Web Services can be perceived as interconnect-
ing applications and eventually forming huge
applications out of discrete distributed func-
tionality. From this interpretation it is easy to
develop the vision that Web Services can repeat
the success the WWW has had for humans once
more, this time for applications.

On the other hand, there are critical voices that
say that there is nothing new in Web Services,
since the underlying concepts already exist (in
e.g. CORBA, DCOM, RPC) and since some of
the underlying standards are relatively old and
mature (e.g. HTTP, XML). This argument goes
even further: Web Services do not introduce new
functionality, thus they will not introduce new
business opportunities.

Real World XML Web Service
Scenarios for Telcos
E R I K V A N E M , G E O R G E B I L C H E V , E D W A R D B U C K L E Y
A N D T H O M A S H O P P E

Erik Vanem (30) received his
MSc in Physics from the Univer-
sity of Oslo in 1996. Before join-
ing Telenor R&D in 2000 he
worked as a geophysicist at
PGS Reservoir, as a research
assistant at the Norwegian
Defense Research Establish-
ment and as a physics teacher
at the Oslo University College.
Since 2000 he has worked with
user centric services, mobile
applications and services, Voice
over IP and mobility manage-
ment in next generation wireless
networks. Recently he has been
working with distributed com-
puting and XML Web Services
in the PANDA group (Personal
Area Networks and Data Appli-
cations) at Telenor R&D.

erik.vanem@telenor.com

Dr. George Bilchev (32) joined
BT in 1996. He holds a Ph.D. in
engineering design from the
University of Plymouth and an
MSc in Artificial Intelligence
from New Bulgarian University.
While in BT, George has been
working on m-commerce appli-
cations, personalisation, ser-
vice-oriented architectures and
complex systems research.

george.bilchev@bt.com

EURESCOM Project P1209

The P1209 project is run by EURESCOM with partners from Telenor, British Telecom and Deutsche
Telekom. It started up in May 2002 and will run until March 2003. Regarding Telenor’s contribution,
this is a joint effort from different research programmes at Fornebu and Trondheim – Future Wire-
less World, Internet Network Architecture and Service Platforms are all participating in this project.

The focus of P1209 is on XML Web Services and its opportunities for Telcos, which are in a great
position to benefit from the development of this progressive technology. The development of XML
Web Services will alow them to become an application service provider and will allow third party
content and application providers to rapidly deploy applications that will utilise Telcos’ networks.
Telcos are thus in a pole position to either offer an infrastructure for Web services or to supply Web
services on their own. However, Web services require different standards that are still evolving.
These standards are implemented by competing companies and are based on different implementa-
tion technologies. It can therefore be expected that the development of an interoperable solution is
not as straightforward as one would like to believe.

The main objectives of the P1209 project are the following:

• Evaluate key XML Web Services technologies

• Produce a technology overview

• Investigate relevant standards bodies’ activities

• Understand key XML Web Services standards and future trends

• Analyse XML Web Services pertinent to the Telco environment

• Investigate new XML Web Services business models

• Experiment in a multi-party, multi-technology environment on issues such as interoperability,
scalability, robustness, etc.

• Gain hands-on experience on available XML Web Services technologies

• Build a body of knowledge related to the design of XML Web Services

Telektronikk 4.2002

However, the vision is a reasonable one due to
the combination of these concepts and standards
and because of an implicit commitment of nearly
the entire software industry to support the stan-
dardization efforts around Web Services. Fur-
thermore Web Services are designed having
application on the Internet in mind. The vision
that there will be introduced a secure, stable,
interoperable, standardized and platform-inde-
pendent interface to function calls over the Inter-
net in some future is thus realistic. This, in con-
junction with the joint effort of the industry
(which surely sees some business opportunities
in their effort), gives reason to develop different
visions about Web Services. Web Services can
be perceived as:

• Interoperable Internet middleware. Even
though currently available middleware like
CORBA, DCOM, RMI etc. has found its mar-
ket in intranets, utilisation of this technology
over the Internet between partners from differ-
ent domains that operate different infrastruc-
tures is limited and thus poses a great chal-
lenge for the integration of different partners’
systems. Web Services can be considered as
middleware, which establishes interoperability
between different infrastructure platforms
over the Internet.

• Extensions of applications onto the Internet.
This vision refers to Web Services as the
means for applications to obtain remote func-
tionality from services running somewhere on
the Internet. For Example, some spreadsheet
program could contain some generic func-
tions, which receive information about up-to-
date currency conversion rates directly from
providers on the Internet.

• Means for the commercial exploitation of data
and services on a “pay-per-use” basis. This
vision refers to Web Services as a means that
could be used to sell data (like the above up-
to-date currency conversion rates) or services
(such as the transformation of different XML-
based business formats) over the Internet.

• Enabler for an open service market on the
Internet. Under this vision Web Services are
regarded as the means for advertising, broker-
ing and accessing of data and services on a
dynamic basis. Service providers can an-
nounce their services in a UDDI registry. Ser-
vice requesters can then find services appro-
priate for fulfilling their needs in these reg-
istries and Web Service technology provides
the means for accessing these functions.

• Means for automatic, dynamic e-business. As
an extension to the previous vision, this can be
identified as the ultimate goal of web services.

In this vision, e-business via Web services is
realised as some kind of highly dynamic, peer-
to-peer like business transactions, which are
based on on-the-fly negotiated contacts to and
contracts with Web Service providers. Obvi-
ously, this vision is still far from being ful-
filled.

Whatever vision one has in mind, the purpose
of the entire development is of course the real-
ization of business. The goal would be either
to make future developments less expensive
or more effective, or to develop new business
opportunities. This quest for the business cases
of Web Services is currently ongoing.

Even if there is little new with Web Services, the
things that are new will have some impact on
current businesses, and it will also allow the
establishment of some new businesses. First of
all the software industry will profit (either by
developing and selling software platforms, tools
and servers, or by realising integration projects).
Secondly, providers of information and services
might profit (the first examples to be mentioned
here are Google [1] and Amazon [2]). Suppliers
of infrastructure services might profit (examples
of such companies are Primordial [3], Grand
Central [4], Flamenco [5] or TalkingBlocks [6]),
which provide the infrastructure for Web Service
Networks) and finally the operators of registries
might profit from the development of Web Ser-
vices.

For Telcos, important questions arise: Will they
find some business opportunities in Web Ser-
vices or not? What will those business opportu-
nities look like and which business opportunities
should they pursue? As a starting point for such
an investigation, this article describes some
generic scenarios that on the one hand can have
some business impact for Telcos and on the
other hand could be of direct interest to Telcos’
business units.

3 Enterprise Application
Integration

EAI (enterprise application integration) is a busi-
ness computing term for the plans, methods, and
tools aimed at modernising, consolidating, and
coordinating the computer applications within an
enterprise. Typically, an enterprise has existing
legacy applications and databases and wants to
continue to use them while adding or migrating
to a new set of applications that exploit the Inter-
net, e-commerce, extranet, and other new tech-
nologies. EAI may involve developing a new
total view of an enterprise’s business and its
applications, seeing how existing applications
fit into the new view, and then devising ways
to efficiently reuse what already exists while
adding new applications and data.

After receiving a BSc in
Computer Science from the
University of Bradford, Edward
Buckley (23) has worked for
BTexact Technologies since
2001. He has worked on design-
ing mobile commerce services
and website design and imple-
mentation. Currently he is work-
ing in the area of XML Web
Services, and technology to
support the use of the Semantic
Web in eBusiness and Knowl-
edge Management.

edward.buckley@bt.com

Thomas Hoppe (42) completed
his study of computer science
at the Technical University (TU)
Berlin in 1986. After working
with a German automative com-
pany and a stay abroad he went
back to TU Berlin and worked
on two knowledge representa-
tion projects. He received his
doctor’s degree in logic pro-
gramming in 1995 from the Uni.
of Dortmund and joined Deutsche
Telecom Berkom GmbH in 1996.
Since then he has worked in the
field of search engines, where
he holds two patents, and more
recently business models in the
area of B2B e-commerce. He is
currently Project Manager in the
T-Systems Nova GmbH, a busi-
ness unit of Deutsche Telecom AG.

thomas.hoppe@t-systems.com

70

71Telektronikk 4.2002

EAI encompasses methodologies such as object-
oriented programming, distributed, cross-plat-
form program communication using message
brokers with Common Object Request Broker
Architecture and COM+, the modification of
enterprise resource planning (ERP) to fit new
objectives, enterprise-wide content and data dis-
tribution using common databases and data stan-
dards implemented with the Extensible Markup
Language (XML), middleware, message queu-
ing, and other approaches.

EAI exploiting Web Services technologies can
be beneficial to Telcos in the same way it would
be to any other types of enterprises in integrating
their own different internal legacy systems.
Apart from that, business units in Telcos with
expertise in EAI can find a business opportunity
in acting as integrator for other enterprises that
need help from external experts in order to run
internal projects on EAI within their systems.

4 B2B Integration
B2B integration is another area where Web
Services technologies can be exploited. The fol-
lowing describes a scenario of B2B integration
relevant to Telcos.

In the outlined scenario a wholesaler wants to
establish business relationship with a retailer.
The main steps in such scenarios are:

• Preoperational B2B
- Establishment of B2B Capabilities
- Establishment of B2B Contract

• Operational B2B
- Running of B2B collaborations

We assume that the wholesaler does not have
B2B implemented, but that the retailer has com-
plete B2B:

The wholesaler needs to establish Collaboration
Protocol Profile (CPP) and search for CPP for
a possible Retailer in a Repository. The whole-
saler needs to work with two different third par-
ties, a System Integrator to establish CPP capa-
bilities and a Registrar to be registered in the
Repository.

The UML use case diagram in Figure 1 provides
an overview of such a generic scenario.

The relationships between actors and their
respective roles are shown in Table 1. It should
be noted that a Telco could take all of these roles
in different B2B scenarios. It can be the Whole-
saler that wants to establish contact with Retail-
ers to sell its services to the end customers. It
could also be a Retailer that resells services on
behalf of others and integrate other’s services in

their products. Finally it could act as the Service
Integrator that help its customers to implements
B2B capabilities.

The first step for the wholesaler is to establish
B2B capabilities, and this is illustrated in Figure 2.

The Wholesaler would first browse a repository
(ebXML/UDDI) manually to find a suitable Sys-
tem Integrator. The Wholesaler would then run
manual negotiations with the System Integrator
before signing a TPA (Trading Partner Agree-
ment). These transactions are not based on B2B
standards other than knowledge about B2B
issues by at least one of the business partners.
The B2B issues should be stated in the contract.

The next step is for the System Integrator to
implement the TPA requirements for the Whole-
saler. This step does not include any specific
B2B transactions and the implementation is
controlled by the contract.

Figure 1 Actors in a generic B2B integration scenario

Figure 2 Implementation
of B2B for Wholesaler

Actor Name Role Description Role Type

Wholesaler Wants to establish contacts with retailers
to sell its products to the market (Requestor) Organisation

Retailer Sells products on behalf of wholesaler Organisation

Service Integrator Implements technical B2B capabilities Organisation

Registrar Defines and register CPP/CPA in Repository Functional

Table 1 Actors and roles in
a B2B scenario

System integrator

Responder Registrar

RetailerWholesale

Res
pon

der

ResponderRequestor
B2B Integration

System
Integrator

Wholesale

ResponderRequestor Establish
Contact

Implement
B2B

ResponderRequestor

72 Telektronikk 4.2002

Then, the Wholesaler should use a Registrar to
establish a CPP (Collaboration Protocol Profile)
and put it into a Repository as illustrated in Fig-
ure 3. Regarding the transactions, the Whole-
saler will have B2B capabilities installed, but the
communication with the Registrar can also be by
other means. The Registrar can be a software
package installed at the Wholesaler site, but it
must interface the B2B Repository and satisfy
certain requirements.

Having completed these steps, the Wholesaler
is now ready to negotiate a CPA (Collaboration
Protocol Agreement) with the Retailer as illus-
trated in Figure 4.

The Wholesaler does a B2B search in a Reposi-
tory for a Retailer Partner, starts negotiating
CPA with a desired Retailer before they both
sign the CPA agreed upon. The transactions
involved in this job will depend on the tool
installed at the Wholesaler site, which must
comply with the specifications.

With a CPA signed, one is now ready to run
B2B operational collaboration in accordance
with the CPA (Figure 5).

The transactions to be run will depend on the
Business, but they will all have to be stated in
the CPA. For certain businesses it will be possi-
ble to use already developed transactions, which
will be visible in the B2B Repository. It will also
be possible to use existing payloads like EDI

(Electronic Data Interchange) if required. For
new transactions, they must comply with rele-
vant standards.

5 Web Service Provision
There are different instances of scenarios that
can be summarised under the scenario class
“Web Service Provision”. In general, Web Ser-
vice Provision means to offer Web Services to
customers, either in order to distribute content
or to make content services available.

5.1 Telco as a Web Service Provider
In this scenario class a Telco takes on the role of
a Web Service Provider. It provides information
or services commercially via Web Service inter-
faces for applications belonging to its customers.

The information and services which could be
provided by a Telco range from information it
already owns (like e.g. phone numbers, address
information, yellow pages, telephone bills, per-
sonalisation and localisation information), and
their corresponding services (e.g. phonebook
lookup, configuration of telephones and Internet
accounts, product search and comparison, bonus
programs), to information which they redis-
tribute or resell (e.g. stock quotes, news, audio,
videos, multimedia presentations), and services
which they offer for third parties (e.g. access to
legacy systems, shopping carts).

The customers could be private consumers (e.g.
if the Web Service allows customised access to
streaming content), or they could be business
users (e.g. if functionality of remote office pack-
ets is made available via Web Services). Addi-
tionally the customers could be application
development companies, which either hard-code
calls to Telco Web Services (like the afore men-
tioned phone book lookup) or pre-configure
them into their applications.

Usually the access to these Telco Web Services
will be via some application, either by a web
page or integrated into some desktop or server
application.

Web Services provided by a Telco in this way
could either be free (for example during the mar-
ket entry, as a marketing instrument or for
advertisement purposes) or they could be avail-
able for a fee, either as a subscription fee, in
pre- or post-paid mode. Different accounting
schemes could be used here either pay-per-use
(-per-volume, -per-time), monthly with limit, etc.

5.2 Players and their Roles

Telco
As mentioned already the Telco plays the role of
a Web Service provider, which makes informa-

Figure 5 Running B2B
collaboration

Figure 3 Collaboration negotiation and CPP registration

Figure 4 CPA negotiation

RegistrarWholesale

ResponderRequestor Negotiate and
Register CPP

RetailerWholesale

ResponderRequestor
Negotiate CPA

RegistrarWholesale

Run B2B
Collaboration

73Telektronikk 4.2002

tion and services via Web Services available in
this scenario. Provision in this context means
that the Telco owns and operates the systems
which deliver functionality and which are made
accessible via Web Services.

The information and services might be free (in
that case they function only as a marketing or
service instrument) or they are commercially
available at some fee.

Especially in the case of commercially available
Web Services, it is reasonable, that the Web Ser-
vice provider makes use of some infrastructure
services, e.g. for secure messaging, billing,
authentication, authorisation etc. These services
can either be provided by the Web Service
provider itself or they can be obtained from
some external provider of Web Service Infra-
structure Services.

The Web Service Provider can own the informa-
tion and services provided or this information
can be obtained from some external provider.
Thus different constellations can be identified:

• In the case of a Telco acting as Web Service
provider, which provides its own information
and services, it is clear that this information
and services will originate from the telecom-
munication domain, i.e. that they are either
related to phone, mobile, Internet or networks
(Figure 6).

• In the case of a Telco acting as a Web Service
provider, which provides external information
and services, the Telco may either redistribute
or resell the information, or it augments it
with own functionality. In both cases the
Telco may get some margin (Figure 7).

• In the case where a Telco combines or aggre-
gates different information or services, it actu-
ally combines them to some value added
information that could be charged on its own
(Figure 8).

External Provider
External Providers in this scenario are all parties
from which a Telco obtains external informa-
tion, external services or infrastructure services.

Customer
Customers in this scenario are those parties that
make use of the Web Services provided by the
Telco. More precisely customers are those
instances whose applications make use of the
provided Web Services. They include private
end users, business users and application devel-
opers, but also other Web Service providers.

5.3 Relationships
The primary relationship between these different
roles is of course the usual customer-supplier
relationship. The Telco takes on either the role
of a customer or the role of a supplier. However,
the Web Service itself introduces a major depen-
dency, whether it is a commercial or a free ser-
vice. While trading partner agreements suffice in
the latter case, the former case needs to go fur-
ther by establishing a solid contractual basis for
the relationships.

Telco – External Provider
Usually the relationship between the Telco and
some external provider will be of some commer-
cial nature. In this relationship the Telco takes
on the role of a customer, while the external
provider takes on the role of a supplier.

Even so it is conceivable that in some near
future, relationships to suppliers will be estab-
lished dynamically and automatically, requiring
of course that all issues of trust and automatic
contracting are solved. In most cases it will be in
the interest of the customer to establish a longer
lasting relationship to its suppliers. Otherwise he
could hardly warrant an operational Web Service
to his own customers.

Figure 6 WS providing its own information or services

Figure 7 WS provider providing
external information or services

Figure 8 WS provider
combining external

information or services

WS Customer

Telco
WS

WS Customer

Telco
WS

WS Provider

WS Customer

Telco
WS

WS Provider I

WS Provider II

74 Telektronikk 4.2002

The information and services a Telco uses from
some external provider are the prime relation-
ship between them. However a solid business
relationship needs to be established in order to
agree on technical details of the usage and on
the business issues. Trading partner agreements
alone are not sufficient here, and contracts need
to be established.

Caused by the establishment of contracts be-
tween both partners it becomes obvious that the
Telco and the external provider need to speak
the same language. This means that they must
agree on the interpretation and on the under-
standing of the terms they use in their contracts
and in their communication.

Telco – Customer
The relationship between a Telco and its cus-
tomer resembles the previous relationship, but
with opposite roles. Now the Telco plays the
role of the supplier.

The relationships to the different customers need
to be differentiated depending on the type of the
customer, i.e. whether it is some private end user,
some business user or an application developer:

• In the case of a private end user the relation-
ship is not guaranteed to be long lasting.

• A business user as a customer is probably
more interested in some longer lasting rela-
tionship, but there exists no guarantee for a
longer lasting relationship in this case either.

• Application developers, however, who inte-
grate the usage of the Telco’s services into
their own applications establish a long lasting
relationship.

All other aspects – trading partner agreements,
contracts and usage of the same vocabulary
between the Telco and its customers – will be
the same as described in the previous section.

6 Web Services Broker
Technically speaking, a Web services broker is
an intermediary positioned anywhere within a
Web Service message path that performs a
value-added function. This very broad definition
includes entities ranging from all sorts of soft-
ware components and network appliances that
function as part of the messaging infrastructure
through third party Web Services networks and
carriers. However, in this section we will focus
on the role of a third party intermediary organi-
sation that hosts Web Service interfaces and bro-
kers communications between requesters and
providers (as depicted in the “Discovery” layer
of Figure 9).

Web Services brokering provides the opportu-
nity of an organisation to become an indirect
supplier channel. The main role of the Web Ser-
vices broker is to connect (for a fee) users with
service providers. It is believed that suppliers
of commodity Web Services (like reservations,
shipping and content) will deliver more than 70
percent of them through a Web Services broker
within a few years.

This section presents a scenario where Telcos
play the role of a broker who gets requests from
Web Service developers or applications and who
directs them to selected/found destination Web
Service provider. To better understand how this
scenario fits the Web Services architecture stack
and ecosystem, the reader is referred to Figure 9.

Figure 9 describes a generic Web Services stack
where layers are grouped into three groups: the
Web Services platform, the Web Services broker
and the Web Services network. The role of the
Web Services broker is to provide as a minimum
a registry for publication of Web Services and
means of searching for Web Services. However,
a broker might also provide categorisation,
mediation and validation of Web Services. Bro-
kers do not create services, nor do they manage
or host services. Their main focus is to build a
large supplier network and to exploit that net-
work to generate incremental revenue. To
achieve that, Web Services brokers will have to
add value to the minimum requirements of reg-
istry provisioning and searching. Value-added
broker services might include aggregating an
appropriate set of services and cataloguing those
services as a portfolio of offering, building verti-
cal catalogues of Web Service components,
exploiting their brand name to offer those ser-
vices through the registry, etc.Figure 9 Web Services

Architecture Stack

Web
Services
Network

Web
Services
Broker

Web
Services
Platform

• Partner
Enablement

• Manageability
• Reliability
• Trust

• Registry
Provision (UDDI)

• Matchmaking

• WSDL Generation
• SOAP Generation

Agreements

Orchestration

QoS

Security

Routing

Discovery

Service

Packaging

Transport

75Telektronikk 4.2002

Figure 10 describes the place of the Web Ser-
vices broker in the Web Services ecosystem. The
broker is linked to the Web Services network
,and it is quite often the case that a Web Services
network will provide a broker as part of their
solution. Also recalling the broader definition
of a Web Services broker, the tighter coupling
between the Web Services network and the
broker would allow brokerage to occur at other
levels of the Web Services stack. For example,
solutions exist (mainly from Web Services net-
work vendors/providers) where horizontal value-
added brokerage occurs to provide encryption,
authorisation, access control, monitoring, meter-
ing, logging, auditing, provisioning, billing,
non-repudiation, etc. It is worth noting that the
above-mentioned horizontal brokerage services
will become commoditised (especially when the
standards mature and the big vendors incorpo-
rate them in their platforms). Ultimately, such
commoditisation will drive prices down and trim
profit margins. Therefore, the selected scenario
in this section will focus on providing vertically
oriented brokerage services on behalf of an in-
dustry specific community (the Telecom sector).

6.1 Example Scenario
Consider the following scenario for a Telco as a
Web Services Broker: A large Telco is looking
for new opportunities to leverage its expertise in
the Communications market and its network of
suppliers, so a decision is made to become a ver-
tical Web Services broker for the Communica-
tions sector. The broker will run a UDDI registry
where suppliers will be able to register Web Ser-
vices. A taxonomy/categorisation will be pro-
vided to facilitate search. As an added value to
that, the broker will provide packaged offers
where one supplier is used for more than one
Web Service or discounts where the Telco has
already agreed volume deals with given suppli-
ers (thus aggregating volume and leveraging
existing relationship with suppliers).

To leverage its knowledge of the supplier net-
work, the broker will provide ratings of the par-
ticipating suppliers and it can further provide
ratings for individual web services based on
either a testing programme or customer feedback
or popularity. Other value-added services such
as payment brokerage, availability and QoS
could be offered if the broker is part of a Web
services network solution.

The Telco plans to use its established brand to
attract customers to search for solutions through
its registry. To aid that, the broker is providing
value-added solutions consultancy and integra-
tion services. The solution consultancy will
address the problem of solution composition and
workflow at least until the Web Service orches-
tration standards mature. The integration will

mainly involve those missing components of the
overall solution, which are not yet Web Services
enabled.

Another value-added service the broker will pro-
vide is translation of Web Services calls. The
translation (or mapping) will be required in real
life because two different suppliers of say an
SMS Web Service could provide two different
SOAP interfaces for sending SMS. All SMS
suppliers will be listed at the same level of the
taxonomy, but without real time translation/map-
ping a customer’s application will not be able to
dynamically select a provider. The translation
could happen at design time at the customer’s
end, but the value of a translation service run by
the broker is that when new providers are added
only the broker would implement the translation
and not all the customers.

The Telco is charging customers either per use
of the registry or a subscription to use the reg-
istry. Any consultancy and integration services
will be charged extra at current consultancy or
integration rates.

7 Web Services Infrastructure
Services

As with all distributed applications, some main
concerns related to Web Services are:

• Trust. This is intertwined with security, due to
the validation of origin being an authentica-
tion issue.

• Security, such as Data confidentiality, authen-
tication and validation of data origin, data
integrity and non-repudiation, and authorisa-
tion of user access.

• Reliability and failover. As well as being reli-
able, distributed services need to be “aware”
of their environment and handle failures (and
timeouts) gracefully.

Web
Services

Requester

Web
Services
Broker

Web
Services
Network

Internet
Plumbing

Web
Services
Provider

Figure 10 Web Services Ecosystem

76 Telektronikk 4.2002

• Scalability. Can a service handle many con-
current requests without major degradation of
performance and reliability?

Even though Web Services in themselves are
simple to create, an infrastructure needs to be
applied as with any other business application,
and Web Services can be used as the actual inte-
gration infrastructure.

Infrastructure Services will allow application
developers to design and develop without need-
ing to worry a great deal about how the services
will be managed. Essentially this is a combina-
tion of value-added network services.

The Web Services Infrastructure Services sce-
nario takes the Telco as a provider of basic infra-
structure services offered to Web Services
Providers, such as:

• Secure messaging – the ability to communi-
cate reliably and securely over an insecure
medium (e.g. the Internet).

• Authentication – being able to identify who
is being communicated with (trust between
partners).

• Authorisation – only allowing certain users
(who have been authenticated) access to cer-
tain parts of a system; this includes e.g. con-
figurable usage policies.

• Billing – a standard method for payment to
occur.

• Payment – including factors such as non-repu-
diation (being able to confirm that correct
billing has occurred).

The rationale behind this is that Providers cannot
implement the infrastructure needed for business
collaborations in Web Services on their own, for
example due to lack of resources and the ex-
pense involved. The Web Service Providers
would be charged for this instead of the End
Users and players will be able to communicate
with each other in a more easy and trustworthy
manner.

Additional infrastructure services can be summa-
rized here, e.g.

• Auditing & logging – monitoring the access
and usage of Web Services.

• Metering & accounting – metering Web Ser-
vice resource consumption in terms of number
of calls, required time or transported data vol-
ume and condensing these figures.

• Monitoring & filtering – ensuring the healthi-
ness of Web Services by alarming their
providers about problem situations or by
ensuring system availability in the case of
denial-of-service attacks.

These infrastructure services can therefore be
described as a management platform. The actual
Web Services implemented will make use of the
“basic” infrastructure services in order to
remove all the complexity of management.
Within the Web services ecosystem, the Infra-
structure Services provider fits into the Web
Services Network paradigm, allowing requesters
and brokers to communicate with the Providers.

7.1 Players and their Roles

Telco
In the described scenario, a Telco could take the
role of an infrastructure provider, allowing Web
Service Providers to make use of management
services. These services will be generic – not
specific to an actual Web Service – such as mes-
saging. Implementation issues, however, mean
that minor customisations may be required when
communicating with specific Web Service
Providers. The Telco will handle the basic
infrastructure services as described above.

Web Services Providers
These are the providers of the actual Web Ser-
vices that are accessible to other providers, users
(which in this model are mainly other Web Ser-
vice Providers), etc. In effect, they will “sit on
top” of the Telco, since their services will make
use of the infrastructure provided by the Telco.
Once Services begin using the infrastructure,
they will be dependent on the Telco. Therefore
a comprehensive trading agreement is required
between the Telco and the Web Service
Providers.

Certificate Authority
For the authentication and authorisation services,
two solutions can be applied:

• The Telco acts as its own Certificate
Authority.

• A separate Certificate Authority, a third party,
is used. This is the recommended solution, as
the trust will be greater – the Telco will not
control the certificates and instead pass the
control to an independent organisation.

This also applies to the secure messaging pro-
vided by the Telco, where certificates will be
applied to messages sent between Players.

77Telektronikk 4.2002

7.2 Relationships
Sun proposes an overview of the relationships in
[7] where smart = context aware. The majority
of the relationships in this model will require
TPAs (Trading Partner Agreements) between the
Players involved in a relationship or interaction.
It would be beneficial to be able to define these
in a pragmatic and consistent way, and ebXML
is ideally suited for this.

Telco – Web Services Provider
The communication between Telco and Web
Service Providers will depend on the architec-
ture model used, of which there are two main
ones, centralised and de-centralised.

In the centralised approach, the Telco acts as
a Hub for connecting Web Service Providers
and Web Service Consumers (Figure 11). This
means that all communication passes through the
Telco. For ease of management and coordination
this is a good solution, however the scalability
of this model is questionable – the reliability
and performance of the hub will depend on the
amount of traffic passing through the hub, which
would cause increasing investments into the
operational infrastructure. In addition, complex-
ity is added to RPC (Remote Procedure Call)
or synchronous style Web Services, where the
Services communicate directly with each other;
overheads and potential failure points are added
to the development and deployment.

The other model is a de-centralised approach,
where there is centralised management but with
the communication being de-centralised as illus-
trated in Figure 12.

The idea is that the communication between
Web Service Providers is peer-to-peer. The main
advantages to this model are that the Providers
are not as tied into the Telco as with the cen-
tralised model, and that the bottlenecks associ-
ated with the Hub approach will not exist.

For the Telco to be able to manage the services
provided by the Web Service Providers, a proxy
is required at all ends of a Web Service-based
communication at each Web Service Provider.
This is a remote piece of software associated
with the Infrastructure Management, which all
Web Services traffic from the relevant Provider
passes through. Because the proxy exists at both
ends, the communication can be securely sent
and other infrastructure services can be hooked
into the proxy. The communication between
Telco and Web Service Provider in this model
will not be constant, but sent only when needed
(e.g. authentication), for reporting purposes or
for upgrades of the proxy.

This model is more in line with the distributed
loosely coupled concept of Web Services, but it
does have its disadvantages:

• More complicated coordination. The Web
Services are not in direct communication with
the Infrastructure Provider, but communicate
through the proxies. The complicated task of
managing numerous, exposed proxies could
cause deployment and usage problems.

• Due to the proxies being de-centralised and
exposed, they will be much more susceptible
to attack, which in turn puts the centralised
management at risk.

There is also the possibility that the de-cen-
tralised approach can be taken, but without the
central management. In this case the Infrastruc-
ture Provider provides the management services
as a packaged solution to Web Service Pro-
viders. This would mean the Telco renounce
control over the infrastructure. They would
therefore only benefit from licensing, and the
real task lies in finding licensing models that
will turn every use of the packaged solution into
profit. Other benefits such as secure messaging
and reporting are also much harder to provide
with this approach.

Figure 11 Centralised model of a WS Infrastructure Provider

Figure 12 De-centralised
model of a WS

Infrastructure Provider

WS Provider/
Customer I

Telco
WS

WS Provider/
Customer II

WS Provider/
Customer III

WS Provider

Telco

WS Provider

WS Provider

78 Telektronikk 4.2002

The communication between Telco and Web
Service Provider will not just be for the running
and usage of provided Services; other factors
such as Service development and integration into
the infrastructure services will be part of the
agreement between the two Players.

The architectural model chosen depends on what
particular Web Service Providers require, i.e. the
types of services being offered and what type of
management is required. Generally, if perform-
ance were important then the de-centralized
approach would apply, and if security were a
high priority then the centralized hub approach
would be the preferable of the two.

Web Services Provider – Web Services
Provider
As Telcos have two alternative architectures, the
communication between Web Service Providers
can be in two different ways. Either they com-
municate “directly” (peer-to-peer, but communi-
cating through each other’s proxy), or indirectly
through an infrastructure hub.

Telco – Certificate Authority
This communication will be relatively simple,
since each Player knows which Services at either
end will be used. Security is an obvious require-
ment, which is an integral part of the infrastruc-
ture anyway, due to the level of trust that will be
placed on the certificates by every Player. The
agreement between Telco and CA is probably
the most important trust link in the infrastruc-
ture.

8 Telcos as Provider for
Mobile Web Services

Concerning the general characteristics this sce-
nario class follows the scenario class above.
However in the mobile case, it has to account
for the characteristics of the mobile context, i.e.
mobile users, mobile devices and applications in
a mobile environment.

In the scenarios covered by this class it is more
reasonable that the Web Services are provided
and hosted on some server system, while the
mobile devices just issue the calls to them. This
gives reason to conclude that the prime cus-
tomers covered by this scenario class are private
end users or business users.

Mobile users might range from users using
laptops connected via some wireless network
(WLAN, Bluetooth) to an Intra- or Internet, to
users of PDAs and cell phones (utilising GSM,
GPRS, UMTS) and combinations thereof.

Depending on the used mobile devices the used
Web Services need to account for small memory

footprints. Additionally the exchanged amounts
of information and SOAP messages cannot be
too large, because of limited communication
speeds.

As a further consequence of the limited memory
footprints, it is conceivable that applications on
the mobile devices will be pre-determined in
advance and not via some UDDI registry dy-
namically, since the latter would require dynam-
ical binding and hence additional application
code on the mobile device.

Further dependencies originate from the mobile
context, such as connections that are temporarily
lost due to “radio holes”, situations where the
mobile net is too crowded (at “hot spots” such
as airports, etc.) or where no access network is
accessible.

9 Other Scenarios
In this article several general scenarios have
been described, which can be of interest to
Telcos in general. These scenarios are either
already realisable today or will be in the near
future. In addition to these, there are also a num-
ber of other possible scenarios, which will only
be mentioned briefly in this section.

Web Services Hub
A Web Services Hub can be considered as a
kind of “Web Services marketplace”, where
Web Service Providers offer their Web Services
via a marketplace model. More precisely the
Web Services Hub could be a combination of
Web Services Broker and Web Services Infra-
structure Services for closed customer/supplier
groups, forming an important intermediate step
on the road to “dynamic business webs”. A Web
Services Hub will most likely evolve from usual
marketplaces, by extending them with Web Ser-
vice functionality. An important factor for such
an evolution will be the customer and supplier
base of existing marketplaces.

Web Services Trust Center
On the road to establishing automatic e-Business
via Web Services several major obstacles need
to be overcome. While the technical obstacles
can be overcome quite easily, the discussion of
solutions to other obstacles (e.g. automatic con-
tracting and establishing trust) has not yet
started. An interesting scenario might arise if
the Web Services Broker extends its registry by
value added services, which are used to “moni-
tor”, “measure” and “judge” the QoS of Web
Services. This information is an important step
on the way to the establishment of trust in the
form of service level certificates between two
(as yet) unknown business partners, which can
be sold and used for marketing purposes as well.

79Telektronikk 4.2002

DBW (Dynamic Business Webs)
Infrastructure Provider
Even though the ultimate vision for Web Ser-
vices, i.e. Dynamic Business Webs, has not yet
become a reality, it contains the scenario of a
“DBW Infrastructure Provider”. This will pro-
vide the required infrastructure for DBWs,
where brokerage and infrastructure services are
available for anybody and any application to
perform dynamic business. Appropriate Web
Services are searched for in a registry when
needed and new business contacts are formed
dynamically. Contracts are negotiated com-
pletely automatically, and Web Services are
used to handle business transactions on a “pay-
per-use” basis. Although this scenario is still
quite unattainable, it seems to comprise the sce-
narios of Web Services Provider, Web Services
Broker, Web Services Infrastructure Services,
Web Services Hub and Web Services Trust
Center, where a Telco would act as a full service
provider or “one stop shop” for the DBW envi-
ronment.

10 Conclusion
As has been shown in this article, a number of
Web Services scenarios will be relevant to
Telcos in the near future. They can use these
technologies in order to integrate enterprise
solutions and legacy systems internally or they
can take on various roles in a B2B context. They
can also get involved in Web Services provision
either as a Web Service Wholesaler, Retailer or
Broker or offer added value services to other
Web Services actors, for example by offering
Web Services Infrastructure Services. Either
way, there are great opportunities related to the
emergence of Web Services, and Telcos should
consider carefully how to best take advantage of
these opportunities.

References
1 Google. November 13, 2002 [online] – URL:

http://www.google.com

2 Amazon.com. November 13, 2002 [online]
– URL: http://www.amazon.com

3 Primordial – WSBANG. November 13, 2002
[online] – URL: http://www.primordial.com

4 Grand Central Communications. November
13, 2002 [online] – URL:
http://www.grandcentral.com

5 Flamenco Networks. November 13, 2002
[online] – URL:
http://flamenconetworks.com

6 Talking Blocks. November 13, 2002 [online]
– URL: http://www.talkingblocks.com

7 A Reference Architecture for smart Web Ser-
vices. November 13, 2002 [online] – URL:
http://dcb.sun.com/practices/devnotebook/
webserv_refarch.jsp

Telektronikk 4.2002

1 Introduction

1.1 Business to Business (B2B) and
Business to Consumer (B2C)

Electronic Business has existed for some time
where the best known standard is the UN/EDI-
FACT standard, which today is used by many
big businesses. The UN/EDIFACT standard has
not been a great success, mostly due to the high
cost related to implementation and the limited
reach for interoperability. The introduction of
the Internet has opened for world-wide inter-
operability at a low cost, and has therefore again
put the focus on electronic business and elec-
tronic commerce.

In B2B the market has been dominated by costly
proprietary technology, and in B2C the view has
been that electronic commerce is just buying
from a catalogue over a web interface.

The trend today is that B2B is being standard-
ised and that the content is coded into XML
messages that can be interpreted by both humans
and machines.

If this turns out to be a success all kinds of busi-
nesses (big or small) can do electronic com-
merce world-wide over the Internet at low cost.
The Internet and XML are therefore key factors
to make this happen.

For electronic commerce we usually talk about
B2C and B2B where B2C means commerce
between an end consumer and an enterprise while
B2B means commerce between different enter-
prises. Both B2C and B2B are therefore part of
what we call Electronic Commerce, and enter-
prises that want to do B2C or B2B must satisfy
certain requirements for Electronic Business. The
enterprises operate in different business areas,
where the telecom business is one area.

The information to be exchanged between enter-
prises can be very special to one business area
(vertical) or common to many business areas
(horizontal).

For enterprises to be able to do B2C and B2B
they must turn into electronic businesses. Enter-
prises today are run with a combination of man-
ual and automated processes seen as processes
inside an enterprise, between different enter-
prises, and between an enterprise and an end-
consumer. A trend in electronic commerce is to
make the business more cost effective and suited
for electronic commerce by automating many of
the required processes, both internally in an
enterprise (EAI) and between different enter-
prises (B2B), ref. Figure 1. This procedure has
today started in many big businesse areas, also
among telecom operators like Telenor.

1.2 B2B
Third Parties are companies specialized in func-
tions required by the seller or buyer to complete
the trades, e.g. Security or Financial services,
ref. Figure 2. In a B2B context both Buyer, Seller
and Third Party are companies using internal
processes to run the trade. In a telco context one
such internal process can be the Billing System.

This again means that the B2B collaboration has
to be integrated with the companies’ internal
processes. It is a very big issue in electronic
business how to integrate B2B collaboration
with back-end processes (internal systems).

Today the focus is as follows:
1 B2B Standards

Forums like RosettaNet, ebXML and OASIS
are making common standards for B2B col-
laboration.

2 Modeling Internal Processes
The internal processes should be modeled
such that they can be connected to B2B inter-
faces.

Forums like TeleManagementForum is doing a
big job with their eTOM/ngOSS approach, and
there exist different kinds of vendors delivering
EAI technologies.

Web Services will be an excellent technology
for EAI, but also in a B2B context.

XML in Electronic Commerce and
Electronic Business
S V E I N T O R E J O H N S E N A N D B E R N A R D Q U A R R E

Svein Tore Johnsen (60) gradu-
ated from NKI Technical College
with Electronics and Cybernet-
ics in 1969 and from Herriot
Watt University, Edinburgh with
Computer Science in 1975, and
is currently Senior Research
Engineer at Telenor R&D. He
worked as consultant and pro-
ject manager in different indus-
try segments and joined Telenor
in 1984 where he has been
working with TMN for many
years both in internal projects
and in EU and EURESCOM pro-
jects. He has been Telenor pro-
ject responsible for EURESCOM
project P1106 and is at present
working in EURESCOM project
P1209 (XML Web Services).

svein-tore.johnsen@telenor.com

Figure 1 From automated processes to electronic commerce

Bernard Quarre (61) graduated
from Paris Technical College in
1965 with aeronautical engi-
neering and obtained his M.Sc.
from the University of Sher-
brokke, Canada in 1966 in
automation theory, and is cur-
rently Senior Research Engineer
at Telenor R&D. Quarre has
worked as chartered engineer
in Peugeot, Paris and in Com-
putas Simulation tools. He
started working with Telenor in
1984, where he has been work-
ing on management aspects
related to ATM-based broad-
band networks. He has been
involved in several European
projects and his research inter-
ests include both lower and
upper level of the TMN (NEM-
BM) model.
bernard.quarre@telenor.com

Automated
Processes

Runs
Electronic
Business

Runs
Electronic
Commerce

80

81Telektronikk 4.2002

1.3 Structure of the Document
After having listed out the different initiatives
for enabling B2B Integration, the most complete
of them, ebXML will be described.

2 eCommerce Standardization
Initiatives

For organizations that conduct electronic busi-
nesses with partner organizations, it is important
to see how Web Services would blend into pro-
viding support for XML vocabularies like
ebXML, RosettaNet, cXML, etc. For Web Ser-
vices to be used effectively for enabling B2B
Integration, the Web Services platforms need
to address common XML dialects, translate
between dialects via XSL, security, compliance
to contracts, etc.

2.1 ebXML
ebXML is an open e-business initiative started
by UN/CEFACT and OASIS. Its aim is to make
it easier for companies of all sizes and locations
to conduct business on the Internet. The group is
currently focusing on the specific needs of busi-
ness-to-business (B2B) and Internet security as
it relates to XML.

The specifications include a way to register and
discover companies, business processes and
related messages and content (registry and
repository), a way to form trading partner agree-
ments (collaborative partner agreement), and a
messaging specification (ebXML Messaging
Service).

ebXML may seem as an alternative to Web ser-
vices, but it is more accurate to say that ebXML
provides a necessary context or framework
within which Web service technologies can be
applied.

After the intellectual property rights to the
SOAP specification were released in May 2001,
ebXML Messaging Service was merged with
SOAP to create a messaging protocol that uses
the SOAP envelope but also adds ebXML speci-
fications that cover areas left out in the SOAP

specification. The CPP provides the same infor-
mation as WSDL and more, such as the role of
an organization in the context of a particular ser-
vice, error-handling and failure scenarios. Like-
wise, information published on the ebXML Reg-
istry Service covers the same as that published
on the UDDI registry, but more. Both systems
can be used complementary, with the UDDI
entry referring to Web services in the ebXML
Registry.

The ebXML framework is designed in such a
way that it is possible to exchange non-ebXML
payloads within the framework. This because in
the real world today there are different kinds of
payloads in use. As part of the ebXML standards
development process, a parallel stream known as
the Proof of Concept team was established to
implement ebXML specifications as they were
emerging. It is therefore not only legitimate to ex-
change non-ebXML payloads within the ebXML
framework, it is encouraged, ref. Figure 3.

The ebXML framework will incorporate the
SOAP and SOAP Messaging with Attachment
specifications into its upcoming releases. Build-
ing the messaging infrastructure of ebXML on
top of SOAP will give SOAP another sign of
industry-wide acceptance.

2.2 RosettaNet
RosettaNet is a vertical e-business framework
for IT hardware and software vendors. The orga-
nization is set up by leading IT companies to
define and implement a common set of standards
for e-business. RosettaNet defines a common
parts dictionary so that different companies can
define the same product the same way. It also
defines up to 100 e-business transaction pro-
cesses and standardizes them. Because Rosetta-
Net is supported by all or most of the major
companies in the IT industry, its standards are
expected to be widely adopted.

RosettaNet has developed a structured four-part
approach for creating what it calls Partner Inter-
face Processes (PIPs).

Figure 2 A simple figure showing B2B and B2C in a commerce context

Actor
Wholeseller

Network
Provider

B2B
collaboration

Actor
3.part

B2B
collaboration

Actor
End-client

Broker

Actor
retailer

Network
Provider

Organisation A

Organisation C

Organisation BOrganisation A

Seller Seller Seller +Buyer

+interm ediary

82 Telektronikk 4.2002

1 Business Process Modeling examines com-
mon business procedures and defines the com-
ponents of the processes.

2 Business Process Analysis analyzes the pro-
cesses and defines a target list of desirable
changes to the processes.

3 PIP Development establishes guidelines and
documentation for the changes.

Dictionaries consist of two data dictionaries: a
technical properties dictionary and a business
properties dictionary. Along with the RosettaNet
Implementation Framework (which defines an
exchange protocol for PIP implementation), the
dictionaries form the basis for PIP development.

RosettaNet’s more than 40 members include
Microsoft, Netscape, 3Com, Toshiba America,
Compaq, CompUSA, Hewlett-Packard, IBM,
and Intel. Its name refers to the Rosetta Stone, a
stone on which Egyptian hieroglyphics were also
written in other languages, making it possible to
decipher the hieroglyphics. Rosetta stone has the
more general meaning of “something that pro-
vides a key to understanding”. The organiza-
tion’s slogan is “lingua franca for eBusiness”.
A lingua franca is a common second language,
such as English for countries in the industrial-
ized world whose first language is not English.

2.3 cXML
cXML is an open, versatile language designed
for B2B e-commerce, to be used in e-business
applications.

cXML transactions consist of documents which
are simple text files containing values enclosed
by predefined tags. Most types of cXML docu-
ments are analogous to hardcopy documents tra-
ditionally used in business. The most commonly
used types of cXML documents are catalogs,
punch outs and purchase orders.

From the start in February 1999, the cXML stan-
dard has been available for all to use. It lever-
ages XML, and is supposedly extendable in
itself. It is not yet compatible with the SOAP
protocol.

2.4 xCBL and UBL
The XML Common Business Library is an XML
component library for business-to-business
e-commerce. It contains a collection of schemas
defining common business processes such as:
purchase orders, invoices, product descriptions,
and shipping schedules.

xCBL, previously CBL, began as a research pro-
ject at Veo Systems in 1997. CBL was devel-

oped to test the limits of XML for e-commerce
and to identify requirements for XML design,
development, and transaction tools and plat-
forms. The first object-oriented XML schema
language – SOX, the Schema for Object-Ori-
ented XML – was a result of the lessons learned
in the first version of CBL.

On October 17, 2001, OASIS announced the
forming of the UBL technical committee. It was
also stated that xCBL would be the starting point
for the work. Specifically the UBL Charter states
that the UBL Technical Committee will ...
“Begin with xCBL 3.0 as the starting point ... to
develop the standard UBL library by mutually
agreed-upon changes to xCBL 3.0 based on
industry experience with other XML business
libraries and with similar technologies such as
Electronic Data Interchange”. In many ways,
the results of UBL are likely to be similar to
xCBL but based on the input of many more indi-
viduals.

As UBL is starting with xCBL, it is likely to
have many similarities with xCBL. This means
that mappings from xCBL to UBL will probably
be easier than from any other document stan-
dard.

3 The ebXML Framework
The ebXML initiative was an 18-month project,
concluded in May 2001, to develop a set of spec-
ifications for electronic business interoperability.
It is one of the most ambitious and important
specification development efforts in its field in
recent times.

Several hundreds of people have been actively
involved in ebXML as contributors to the dis-
tributed multinational development teams that
worked on the specifications, and several thou-
sands of people were subscribed to one or more
of the mailing lists through which the teams
communicated and obtained feedback on their
drafts.

Further work on ebXML is now taken over by
OASIS and UN/CEFACT where OASIS is a not
for profit member based organisation that identi-
fies, builds and maintains industry-standard
specifications for interoperability and UN/
CEFACT is the United Nations Center for Trade
Facilitations and Electronic Business.

The ebXML framework can be considered as
evolutionary rather than revolutionary. It repre-
sents the state-of-art in e-business architecture,
addresses the issue of integration at a high level,
namely the level of public process interface, and
supports the public process management appli-
cation pattern.

83Telektronikk 4.2002

The ebXML specifications are not a functional
description of en e-business integration product.
They are specifications that enable interoperabil-
ity of software products (especially at the mes-
saging level) and provide high-level systems
configuration information (especially the proto-
col agreement and business process layer). This
means that developers can use a variety of mid-
dleware products to implement an ebXML-com-
pliant system.

3.1 ebXML Main Requirements.
The most important requirements ebXML
framework tries to satisfy are:

• Globalisation; facilitating international trade,
towards a single “global electronic market”;

• Interoperability;

• Security; confidentiality, authenticity,
integrity, non-repudiation.

For interoperability purposes, the introduction of
the ebXML framework can be done gradually,
because it makes possible the coexistence with
other standards. It is of special importance to
keep the payload interchanged between compa-
nies independent of the way the information is
controlled. In other words, the ebXML frame-
work does not mandate the use of ebXML mes-
saging service for its payloads. The use of a flex-
ible enveloping technique allows ebXML com-
pliant messages to contain payload specified by
legacy e-business systems employing traditional
syntaxes like EDI FACT and SWIFT [1].

The sequence diagram in Figure 3 shows a sce-
nario where several trading partners are engaged
in a procurement process. All partners support
an ebXML compliant infrastructure, but for bi-
lateral collaboration, two partners use different
types of message content.

Figure 3 Partners involved
in an ebXML compliant

infrastructure exchanging
non ebXML payload

Seller : Seller Net Market :
Net Market

Buyer : Buyer Payment Authority :
Payment Authority

Buyer Bank :
Buyer Bank

Seller Bank :
Seller Bank

OAG

Web form

Purchase Order

PO Ack

Invoice

ASN

Invoice Response

X12

PaymentAuthorization

Bill

Financial Settlement

Place Order

Catalog Download

Catalog Update

SWIFT

Financial Settlement

Financial Settlement

ebXML

AIAG XML XML

RosettaNet

84 Telektronikk 4.2002

3.2 ebXML Overall Architecture
The ebXML framework consists of seven main
components:

1 Architecture
The ebXML archtecture can be used also for non
ebXML payload.

2 Business Process specification Schema (BPSS)
BPSS is an XML based specification language
that formally defines “public” business pro-
cesses. The BPSS is strongly influenced by
UMM, a modelling methodology developed
by UN/CEFACT [2].

3 Core Components
Provides business information encoded in busi-
ness documents that are exchanged between
trading partners [4].

4 Registry/Repository
Specifies a general-purpose registry/repository
for registration/storing company Business Pro-
files, and collaboration details to be used in elec-
tronic contracts and business transactions [5].

5 Collaboration Protocol Profiles and Agreement
XML documents that encode a party’s e-busi-
ness capabilities (CPP) or two partners’ e-busi-
ness agreements (CPA). They are closely related
to BPSS [7].

6 Messaging Services (ebMS)
Provides an elegant general-purpose message
mechanism using SOAP with attachment [8].

7 Security
Topic that is pervasive to all components and is
critical for a production e-business system.

Figure 4 illustrates a scenario showing schemati-
cally how the ebXML architecture enables e-
business between two parties: Company B is
supposed to have already implemented the
e-business according to ebXML architecture.
Company A wants to do such kind of implemen-
tation to be able to conduct e-business with other
companies like Company B.

3.3 Relationship Between the
Different Components

The different components listed above are rele-
vant in the different steps. Figure 5 shows the
relationship between them.

• Step 1: Global information: Definition, speci-
fication, design, registration of the common
model for business process and the common
semantic for the data to be exchanged.

• Step 2: Each party: design, specification,
registration of own business.

• Step 3: Agreement between two partners:
discover each other, make agreement, prepare
collaboration, configuration of e-business
system.

• Step 4: Engage bilateral collaboration between
partners.

Figure 4 High level overview
of the interaction of two
companies conducting
e-business using ebXML

Agree on Business Arra
ngement

Download Scenarios and Profiles

5

Business Profiles
Business Scenarios

ebXML
Registry

COMPANY B
DO BUSINESS TRANSACTIONS

ebXML compliant
system

6

Query about COM
PANY A Profile

4

Register Implementation Details
Register COMPANY A Profile

3

Request Business Details

1
XML

COMPANY A

Build Local System
Implementation

2

85Telektronikk 4.2002

3.4 The ebXML Business Process
Specification Schema (BPSS)

The BPSS is one of the most innovative sections
of ebXML Specifications [2]. At a high level, a
BPSS instance specifies all the business mes-
sages that are exchanged between two business
partner roles, their content, and their precise
sequence and timing. As such it is the direct link
between the business analysts or subject matter
experts that define the business processes, and
the implementers that use these specifications
either to configure their ebXML infrastructure,
or write the appropriate code to enforce all
aspects of the business process.

The relationship between the UMM metamodel
and the ebXML BusinessProcess Specification
Schema is shown in Figure 6.

Using the UMM methodology, and drawing on
content from the UMM Business Library a user
may create complete Business Process and Infor-
mation Model conforming to the UMM meta-
model. Since the ebXML Business Process
Specification Schema is a semantic subset of the
UMM metamodel, the user may then in an auto-

mated fashion extract from the Business Process
and Information Model the required set of ele-
ments and relationships, and transform them into
an ebXML Business Process Specification con-
forming to the ebXML Business Process Specifi-
cation Schema.

The architecture of the ebXML Business Process
Specification Schema consists of the following
functional components:

• UML version of the Business Process Specifi-
cation Schema;

• XML version of the Business Process Specifi-
cation Schema;

• Production Rules defining the mapping from
the UML version of the Business Process
Specification Schema to the XML version;

• Business Signal Definitions.

Together these components allow you to fully
specify all the run time aspects of a business
process model.

Figure 5 The different ebXML
components involved in the

different steps

Business Process
Specification

(BPSS)

Core
Component

Registry Repository

register
retrieval

register
retrieval

Business and information model
Described according to metamodel

retrieval and model
and profiles

Business Service
Interface

Interm Business
Application

Messaging
service

Packaging
Routing

Transport

Business Service
Interface

Interm Business
Application

Messaging
service

Packaging
Routing

Transport

Payload

configure configure

Transactions

Registry
Interface

Registry
Interface

Implementers

Collaboration
Protocol Profile

CPP

Collaboration
Protocol Profile

CPP

govern

Global

Party A Party B

Step 1:
Define/register/find
suitable business
processes

Step 2:
Each party
implements & registers
its own properties

Step 3:
Both parties negotiate
agreement, ready to be
engaged in a collaboration

Step 4:
Conduct ebXML business

Collaboration
Protocol Agreement

CPA

SOAP Envelope

86 Telektronikk 4.2002

The BPSS metamodel allows the description of
business processes as distributed processing
between loosely coupled systems. Figure 7 illus-
trates the relationship between the different com-
ponents of the metamodel as a solution to inte-
grate business partners. The BPSS allows the
description of the collaboration between two
partners in a generic way: the binary collabora-
tion consists of:

• Activities involved include:
- Transaction activity (T activity): conducting

a Business Transaction (BT)

- Collaboration activity (C activity) (re-using
of activities: recursive property)

• Business Transactions (BT) between roles
defining the exchange of document (doc)

• Roles: initiating role, responder role

• Collaboration activity: choreography of activ-
itities. It defines a “public” business process
which has to be mapped with private pro-
cesses of the corresponding partners.

It should be noted that the concept of multiparty
collaboration is covered by ebXML, but it is
defined as a synthesis of binary collaborations.

The ebXML Business Process Specification
Schema provides a standard framework for busi-
ness process specification. As such, it works
with the ebXML Collaboration Protocol Profile
(CPP) and Collaboration Protocol Agreement
(CPA) specifications to bridge the gap between
Business Process Modeling and the configura-
tion of ebXML compliant e-commerce software,
e.g. an ebXML Business Service Interface, as
depicted in Figure 5.

3.5 Core Components
ebXML defines a core component as a “building
block that contains pieces of business informa-
tion, which go together because they are about
a single concept” [4]. Core components are
reusable pieces of business information, hori-
zontal to many business processes. Examples of
core components could be things like “Business
Party Details” or “Data of Purchase Order”.

The reusability is achieve by taking in account
two main issues:

Figure 6 Relationship between
UMM Metamodel and ebXML
Business Processes/
Core Components

UMM

Business Process &
Information Model

Methodology Business Process
& Information

Modeling

Metamodel

ebXML

Business Signal Definitions

W3C

Specification Schema
(XML)

Business Process (BP) Specification metamodel

BP
specification

Document
specification

CPACPP

Business Process Information

DTD
Specification Schema

(UML)
Production

Rules

Core Component (CC)
Document
Metamodel

Core
Components

Business
Document
Definitions

87Telektronikk 4.2002

• The context: CC is context free: A core com-
ponent can be used across several business
sectors.

• The domain: CC is domain related: a core
component can be re-used by another industry
area if it is found to be appropriate for their
use.

The context gives the relationship between Core
Components (CC) and Business Information
Entities (BIE). The context is related to / derived
from the Business Process.

Figure 8 illustrates schematically how core com-
ponents can be built into business documents.

A Core Component (CC) is a building block for
the creation of a semantically correct and mean-
ingful business information exchange ‘parcel’,
containing the information pieces needed to
describe a specific concept. There are three cate-
gories of Core Components:

• Basic Core Component
• Core Component Type
• Aggregate Core Component

A Business Information Entity (BIE) is a piece
of business data or a group of pieces of business
data with a unique business semantic definition.
A Business Information Entity can be either a
Basic Business Information Entity (BBIE) or an
Aggregate Business Information Entity (ABIE).
A Basic Business Information Entity is based on
a Basic Core Component (BCC). An Aggregate
Business Information Entity is a re-use of an
Aggregate Core Component (ACC) in a speci-
fied business context.

Figure 9 describes the Business Information
Entity types and shows relationships to the Core
Component counterparts.

A Naming Convention is necessary to gain con-
sistency in the naming and defining of all Core
Components and Business Information Entities.
The resulting consistency facilitates comparison
during the discovery and analysis process, and
precludes ambiguity, such as the creation of
multiple Core Components with different names
that have the same semantic meaning.

C activity

T activity

T activity(q)

End

Initiating role Responder role

ch
or

eo
gr

ap
hy

StartCollaboration activity

Initiating role Responder role
End

Start Collaboration activity

ch
or

eo
gr

ap
hy

C activity

T activity(r)

T activity

Partner A Partner B

binary Collaboration (recursivity)

binary Collaboration (bC)

Business Transaction (BT)

Business Transaction (BT)

doc

doc

doc

Figure 7 BPSS describing
Business processes

Business document
in a particular
context

Document
part in a
particular
context

Context
Aggregate

Component 1
Component 2

Figure 8 Business document structure

88 Telektronikk 4.2002

Common Normative Normative EDIFACT X.12 Rossetta- C11 OAG BOD
business category sub-category Net PIP
process

Manage Procurement Procurement ORDCHG, 860, 852, PIP3A4 0410, 0411 004_Acknowledge_PO_005
Purchase Order Management ORDERS, 850, 865, 056_Add_PO_005
(Create/Change/ ORDRSP 875, 876 058_Cancel_PO_005
Cancel and 057_Change_PO_004
Accept PO) 010_Get_PO_005

054_Getlist_PO_004
055_List_PO_004

Table 1 Example of CBP
cross reference table

Catalog of Core Components and Common
Business Processes
The catalog of Common Business Processes
(CBP) [3] is useful for discovery and analysis of
core components that will be used as the build-
ing blocks for deriving business documents
within a given context. This can be done by
checking all sources of documents listed and
cross-referenced on the Common Business Pro-
cess Catalog to identify a document that may
have the information needed.

Table 1 shows an example of how Common
Business Process “Manage Purchase Order” is
shown in the Catalogue and its relation to other
standards.

The Common Business Process is structured as
a cross reference table with the following com-
ponents:

Core
Component

Type

Message /
Document

Aggregate
Core

Component

Basic
Core Component

Basic Business
Information Entity

CORE BUSINESS

is of type

is defined in
context as

contained in

Aggregate Business
Information Entity

is defined in
context as

contained in

contained in

contains / is
contained in

Core Component Library

Figure 9 Relationships
between Core Components and
Business Information Entities

89Telektronikk 4.2002

Common Business Processes
A business process describes in detail how trad-
ing partners take on roles, relationships and
responsibilities to facilitate exchange of infor-
mation. Common Business processes are identi-
fied as commonly used across various organiza-
tions, industries or other business entities.

Normative Category
Built from components of a Porter Value Chain,
see Figure 10.

Normative Sub-Category
Decomposition of the Porter Component into
logical sub groups.

EDIFACT/X12/CII/OAG BOD/xCBL
Common industry standards used as a cross-ref-
erence, by identifying their specific equivalent
business documents commonly used today.

RosettaNet PIP
Common business processes cross-referenced to
business transactions as specified by RosettaNet
Partner Interface Processes™ (PIPs™) which
define business processes between trading part-
ners.

3.6 Registry/Repository
The ebXML spefication’s goals are that of creat-
ing a platform independent open registry/reposi-
tory for housing the description and facilitating
the exchange of business artifacts, and discover-
ing business via collaboration profiles. The reg-
istry contains the descriptions of these business
artifacts (like the index of a book), and the
repository actually stores them (like the book’s
actual content).

The Registry Information Model (ebRIM) pro-
vides information on the type of metadata that is
stored in the Registry as well as the relationships
among metadata. The relationships are industry
ontologies providing a structured coded vocabu-
lary, making a significant enhancement to cur-
rent glossary-based mechanisms.

3.6.1 Registry Information Model (RIM)
The ebXML Registry provides a key to new
functionality using the RIM information tree,
which can be navigated based on business
domains and required business functions. Note
that the information model is not modeling
actual Repository items [6].

A short meaning of the main classes is given in
Table 2.

Figure 11 summarizes the structure of the Reg-
istry and the relationship with the Repository.

3.6.2 Registry Architecture
The ebXML Registry architecture consists of an
ebXML Registry and ebXML Registry Clients
[5]. The Registry Client interfaces may be local
to the registry or local to the user. Figure 12
shows the relationship between the different
interfaces.

There are several possible topologies supported
by the registry architecture with respect to the
Registry and the Registry Client as shown in
Figure 13.

Figure 10 Graphical
representation of the
Porter Value Chain

procurement transportation

human
resources

manufacturing

customer service

financing

marketing
& sales

procurement

$$ $$

$$

raw materials

labor

labor labor

de
liv

er
ed

 ra
w

m
at

er
ia

ls

m
an

uf
ac

tu
re

d
go

od
s

de
liv

er
ed

m
an

uf
ac

tu
re

d
go

od
s

product

services

facilities, services
& technology

labor

RegistryObject Top Class

User

AuditableEvent log all event (client initiated request) as instance

RegistryEntry Provide an access to all instance in the registry

ExtrinsicObject Describes content whose type is not known to Registry

IntrinsicObject Describes content whose type is known to Registry

Package Gouping in logical entities

Organization Info about submitting organisation

Classification Define tre structure

ExternalLink Define all what is not content in the registry

Table 2 Main classes
in the RIM

90 Telektronikk 4.2002

Figure 11 Overview over exXML
Registry/Repository

Figure 12 ebXML Registry Interfaces

Figure 13 Different topologies supported

Registry Entry
UID
Common Name
Submitting
Organisation
Description
Object Type
Version
Status
........

Classifications
NAICS/UNSPSC
Country
Goverment agency
Sport category

Associations
UID validates to UID
Contains
Supercedes
Users
....

Alternatives
Name
Description

Repository

CPP

Instances

packages

Schemas

graphics

UML...

External links

<<Interface>>
ObjectManager

<<Interface>>
ObjectQueryManager

<<Interface>>
RegistryService

<<Interface>>
RegistryClient

Object Create,
Update. Delete

Object query

and retrie
vel

Repository

ebXML
Registry

Registry Interfaces

Registry Client Interfaces

Internet

The Registry
provides the Client
interfaces to all
Users via a web based
user interface

User accessing the Registry
using common web browser

Repository

ebXML
Registry

The Client interfaces
are provided by the
client and not the
registry. The client
may be a Registry
Browser application

User accessing the Registry
using a Registry browser that
contains the Client interfaces

Internet

Registry Client Interfaces

Registry Interfaces

91Telektronikk 4.2002

Conformance as an ebXML Registry
An implementation conforms to this specifica-
tion as an ebXML registry if it meets the follow-
ing conditions:

1 Conforms to the ebXML Registry Information
Model [ebRIM].

2 Supports the syntax and semantics of the
Registry Interfaces and Security Model.

3 Supports the defined ebXML Registry DTD.

4 Optionally supports the syntax and semantics
of Section 8.3, SQL Query Support.

Conformance as an ebXML Registry Client
An implementation conforms to this specifica-
tion as an ebXML Registry Client if it meets the
following conditions:

1 Supports the ebXML CPA and bootstrapping
process.

2 Supports the syntax and the semantics of the
Registry Client Interfaces.

3 Supports the defined ebXML Error Message
DTD.

4 Supports the defined ebXML Registry DTD.

3.7 Collaboration Protocol Profiles
and Agreement

The Collaboration Protocol Profiles/Collabora-
tion Protocol Agreement (CPP/CPA) specifica-
tion [7] is the implementation of trading partner
agreements in the ebXML framework. The term
trading partner agreement (TPA) is a general
term that can cover both technical and business
related agreements, or a combination of boths.
The ebXML, collaboration protocol agreements
(CPA), are the machine interpretable versions of
such TPAs. One can think of such a CPA as the
bridge between the transport (messaging) layer
and the business layer.

Figure 14 illustrates schematically how the Col-
laboration-Protocol Profiles (CPP) are built.

The scenario in Figure 15 gives an overview of
the Collaboration Protocol Agreements (CPA)
and how they are built from CPPs.

What Business
capabilities
it can perform
when conducting
a Business
Collaboration with
other parties

Party´s information
- Party´s name
- Contact info
Transport Protocol
Transport Security Protocol
Messaging Protocol
Link to Process-
Specification document
Time out/Retry
- etc.

BuildParty A

CPP

Describe

CPA ID
Party’s information
- Party A
- Party B
Transport Protocol
Transport Security
DocExchange Protocol
Link to Process-
Specification Doc.
Retry
- etc.

CPA

1

CPP
For

Party A

negotiate

Agreed
CPA

Agree-
ment on
CPA has
arrived

3

2

CPP
For

Party B

negotiate

Agreed
CPA

Agree-
ment on
CPA has
arrived

3

4 Start Business activities with each other
Figure 15 Overview of

building of CPA

Figure 14 Overview
of the CPP

92 Telektronikk 4.2002

Business Process and run the associated elec-
tronic exchanges.

The document-exchange layer accepts a Busi-
ness document from the Process Specification
layer at one Party and passes it to the transport
layer for transmission to the other Party. It per-
forms the inverse steps for received Messages.

The TRP gives the specification to the Messag-
ing Service which comprises:

1 Message Service interface defines the opera-
tions that local object needs to perform.

2 Message Service Handler (MSH) for interpre-
tation of the ebXML messages.

3 Transport service interface for Adaptation/
mapping to the transport layer.

4 The error handling for the report of errors
occurring during the processing of a message.

Figure 16 shows the ebMS functionality in more
detail.

Against the “application layer”: This is done by
using SOAP (Simple Object Access Protocol)
which allows access to services, objects, and
servers in a platform-independent manner and
facilitates interoperability by bridging competing
technologies in a standard way.

Against the “transport layer”: A transport inter-
face allows the use of different protocols like
HTTP, SMTP, IIOP.

The ebXML message exchanged between part-
ners is considered as an attached “SOAP enve-
lope”. The way of attachment depends on the
communication protocol chosen. Figure 17 illus-
trates how the SOAP envelopes the ebXML
message.

3.9 Security
When working with B2B frameworks such as
ebXML [1], we could agree that there is a funda-
mental conflict between achieving the level of
openness required to deal with a (potentially
large) number of parties, and achieving the
appropriate level of security. A characteristic
of B2B initiative is that they try to use Internet –
a global communication infrastructure – as a
global trading infrastructure. While this is defi-
nitely a very challenging endevor in terms of
size, scope and nature, history has shown that it
is possible to successfully open up new trade
routes and find acceptable ways to deal with the
associated risks. ebXML will prove itself to be
instrumental in opening up these new digital
trade routes; but in doing so, it is necessary to

ebXML Application

Message Service Interface

E
rr

or
 H

an
dl

in
g

Transport Interface

SOAP Processing

Header Processing

Header Parsing

Message Packaging

Reliable Messaging Services

Security
Services

HTTP FTP SMTP IIOP ...

Figure 16 The ebMS
functionality

MIME Part(s)

SOAP with Attachments MIME Envelope

MIME Part

SOAP-ENV:Envelope

Payload(s)

eb:Manifest

eb:Etc...

other:Etc...

eb:MessageHeader

eb:TraceHeaderList

eb:Etc...

other:Etc...

SOAP-ENV:Header

SOAP-ENV:Body

Communications Protocol Envelope
(HTTP, SMTP, etc.)

Message
Package

Header
Container

Payload
Container(s)

Figure 17
Layout of
the ebXML
message

The CPPs and CPA together with Process Speci-
fication are registred in the ebXML registry.

3.8 Messaging Services (ebMS)
ebMS, specified by ebXML OASIS, is a stan-
dardized Messaging Service which enables an
interoperable, secure and reliable exchange of
messages between two parties [8].

ebXML compliant software can be used to
implement eBusiness scenarios where two or
more partners are engaged in binary/multi-Party

93Telektronikk 4.2002

implement a robust security strategy to protect
the business involved.

In an ebXML environment it is not just an indi-
vidual element that needs to be secured; the
whole business process defines the security
needs and the first step in solving security prob-
lems is to analyze the risks; from this analysis, it
is possible to determine what to secure and what
not to secure. This characterises the approach to
security taken in ebXML. There is no attemp to
secure the whole business process 100 % – that
simply is not feasible; instead security is based
on mutual understanding and agreements, com-
ing up with an acceptable risk and adjusting the
security measures accordingly.

As shown in Figure 18 the Collaboration Proto-
col Profile (CPP) contains the representation of
agreed security policy. It is created as a result
of mapping security policies and collaboration
parameters onto the business process definition.

Thus the CPP contains the set of possible and
required security measures from the own com-
pany’s point of view, after mapping to the busi-
ness process. It is the first step towards a full
policy-based security system

A key role in implementing security within the
framework is the use of Trusted Third Parties
(TTP). Security is often necessarily fully inte-
grated into internal processes to be most effec-
tive, however in the B2B realm, a clearer inter-
section domain of shared governance is needed
to enable security agreements to be reached
between trading partners. This issue is often
ignored because of the way security agreements

between trading partners have been developed
historically, with confidentiality between parties.
These agreements may often be reached on an
ad hoc basis and sometimes dictated by domi-
nant market players. TTPs need to be imple-
mented to overcome the poor definition of secu-
rity generally in the B2B eCommerce environ-
ment and will be essential for fully automating
supply chains.

The following TTPs is seen as the primary secu-
rity service providers for the near future:

• Identity Management
• PKI Trust Service Providers
• Trusted Time Stamp and Repository
• Trading Community Registry and Repository
• Outsourced OSS Component SLA manager
• Third Party Security Audit
• Fraud Management Services
• Aggregated Trust Service Providers (for effi-

ciently combining security services)

4 Differences Between ebXML
and WS

4.1 The Web Services stack
In order to describe how Web Service standards
relate to the above features it is useful to begin
by looking at a representative Web Services
architecture.

Web Services architecture [9] is built from lay-
ers of technology and standards on which ser-
vices can be implemented and deployed. Each
layer on this Web Services stack depends on the
layers below it. There are many variations of
this architecture, but each variation generally

Security
Policies Business

Process
Definition

Collaboration
Parameters

Security
Environment
Parameters

Business
Processes

Business
Service

Interfaces

Business
Messages

Trading
Partner

Definition
EbXML

Repository

Business Process and
Information Meta Model

Collaboration
Partner Profile (CPP)

Figure 18 Security in CPP

94 Telektronikk 4.2002

includes the features described in the previous
section above the basic messaging and service
description foundation layers.

The diagram in Figure 19 illustrates a generic
Web Services architecture and how it maps to
specific architectures from prominent organiza-
tions or companies.

Figure 20 is an attempt at illustrating the simili-
tude and the difference between WS reference
and ebXML. EbXML is broadening the tradi-
tional Web Service view and can be regarded as
the Web Services for Electronic Business.

5 Towards an e2-OSS
Framework for the
Telecom Industry

The EURESCOM project P1106 [10] has tried
to identify the impact the emerging Internet stan-
dards like ebXML have on the way to do busi-
ness in the telecom industries.

The main purpose of the e2-OSS Framework
was to define an “e-enabled” B2B context spe-
cific for telecommunications industry. This
should cover at least Business, Functional, Tech-
nology, Security aspects/dimensions and would
allow for a B2B supply chain integration.

Agreements

Orchestration

Quality of Service

Service

Packaging/
Transport

Generic Stack

CPA

BPSS

MSH
(over SOAP)

ebXML

TPA

WSFL

WSEL

WSDL

SOAP
D-SIG

HTTP-R

IBM

???

XLANG

???

WSDL

SOAP
WS-Routing
WS-Security

Microsoft

BPML

BPMI

CPPCPP

CPA

Registry using
UDDI

EbXML
Reg/Rep

Repository

Registry
using UDDI

Register
Store
Find

Register
Store
Find

using using

using using using using

PUBLISHFIND

SOAP SOAP

agreed

WSDL
(WSCI)

WSDL
(WSCI)

BPSS BPSS

MS MSUSE
Server PartyA PartyBClient

USE

Figure 19 The different
layers and the
corresponding standards

Figure 20 Similitude
and differences
between ebXML
and XML-based WS

95Telektronikk 4.2002

During the project it has become clear that the
general B2B standards framework as outlined by
Derek Coleman of RosettaNet is appropriate for
e-Business Integration standards for communica-
tions suppliers. The notions of where B2B inte-
grations relate to Enterprise integrations from a
requirements perspective was also clear.

However, two major issues hampered a more
rigorous analysis of how B2B and Enterprise
Integration could be aligned for the e2-OSS
framework.

• Lack of content standards for the telecoms
vertical document and process B2B standards
with which to work.

• Lack of understanding of appropriate patterns
for integration within the Functional Service
View of any implementation.

The project has identified where guidelines are
needed for the further development of content
for the e2-OSS framework and several learning
points have been gained about the style and
approach to design B2B collaborations using
the transaction patterns outlined in UMM.

Many of the defined PIPs available in Rosetta-
Net form a useful basis for B2B patterns for
transactions to support telco processes for fulfil-
ment and billing. However, RosettaNet’s rigid
definition of content standards defined for the
computing and components industry renders
them inappropriate for direct use. The alternative
is to re-use the PIP blueprints with alternative
content standards within an ebXML BPSS Col-
laboration.

It is clear that additional transactions are
required for communications supply chain inte-
grations and a full Business Operations Map is
required as a framework within which this
should done.

The project had the intention of developing a
communications service provider value chain
operations map that is complementary to the
TMF eTOM. Early attempts at this have yet to
reveal what the structure for such a map should
be and this work remains to be done.

A large part of the project focussed on process
modelling and the relationship of processes to
components. This activity covered business pro-
cesses, description languages, the use of a mes-
saging service for B2B and the use of compo-
nent services to achieve backend integration to
OSS. However, a significant part of the frame-
work relates to content and document standards.

An assumption throughout the project is that
B2B integration will be achieved by the ex-
change of XML documents. Most likely these
documents would be defined using the W3C
schema definition language XSD. The issue
however is the source of Business Document
Definitions and Business and Technical Dictio-
naries.

Names for selected business documents have
been suggested as a consequence of identifying
Business Transactions (e.g. Trouble Ticket).
However no attempt has been made to define
their content.

There are potentially several sources and app-
roaches to the creation of B2B business docu-
ments standards. The two major questions are:

1 Use statically defined business document defi-
nitions or assemble B2B document instances
from components;

2 Purposely build B2B standards or re-use and
extend Enterprise standards.

Table 3 outlines four possible sources of stan-
dards, which typify the approach.

The ebXML group has not yet clearly defined
what it regards as an appropriate strategy for
defining vertical technical content. Currently it
is suggested that B2B Business Documents be
based on components derived from a global tag
library as proposed to the ITU in the tML initia-
tive. Furthermore, these documents should be
derived from the same components as used for
Enterprise Business Documents.

This would suggest the need for a set of OSS-J
Enterprise Business Document Components
using the tags defined within the proposed tML
tag library structure.

Statically Defined Documents Dynamically Assembled

Public Standards RosettaNet DTDs ebTWG Core Components

Extension of Private Standards OAGIS BODS encapsulated in OSS-J XML value type API
B2B document envelope encapsulated in B2B document

envelope
Table 3 Content Standards

96 Telektronikk 4.2002

In the short term (pending agreement of a tele-
com specific library of business document com-
ponents) the only practicable route forward for
communications service providers is to use and
extend published “horizontal” standards such as
xCBL or OAGIS.

6 References
1 Professional ebXML Foundations. Wros

Press, 2001.

2 UN/CEFACT & OASIS. EbXML Business
Process Specification Schema v.1.0.
(Technical report) December 4, 2002
[online] – URL: http://www.ebxml.org/
specs/ebBPSS.pdf

3 UN/CEFACT & OASIS. Catalog of Com-
mon Business Processes v.1.0. (Technical
report) December 4, 2002 [online] – URL:
http://www.ebxml.org/specs/bpPROC.pdf

4 UN/CEFACT. Core Component Technical
Specification v.1.7. 21 Oct 2001.

5 UN/CEFACT & OASIS. Registry Service
Specification v.1.0. (Project team Technical
report) December 4, 2002 [online] – URL:
http://www.ebxml.org/specs/ebRS.pdf

6 UN/CEFACT & OASIS. ebXML Registry
Information Model v.1.0. (Technical report)
December 4, 2002 [online] – URL:
http://www.ebxml.org/specs/ebRIM.pdf

7 UN/CEFACT & OASIS. Collaboration Pro-
tocol Profile and Agreement Specification
v.1.0. (Technical report) December 4, 2002
[online] – URL: http://www.ebxml.org/
specs/ebCPP.pdf

8 UN/CEFACT & OASIS. Messaging Service
Specification v.1.0. (Technical report)
December 4, 2002 [online] – URL:
http://www.ebxml.org/specs/ebMS.pdf

9 O’Riordan, D. Business Process Standards
for Web Services. Tect.

10 EURESCOM project P1106 Deliverable 3.
Aug & Sep 2002. (EDIN 0328-1106 &
EDIN 0329-1106.)

97Telektronikk 4.2002

Background
Traditionally, telcos have been vertically inte-
grated companies selling their applications via
their own retail divisions on their own wholly
owned transport.

Where wholesale organisations existed they
were principally departments created to dis-
charge regulatory requirements for intercon-
nection.

However, globalisation, regulation and the emer-
gence of new Internet and multimedia service
propositions have led to the emergence of many
external businesses with the need for wholesale
communications services (Figure 1). To meet
these commercial and regulatory demands, many
large telcos have introduced unbundling of their
wholesale services which have become major
businesses in their own right (Figure 2).

These new business relationships between
wholesale providers and their partners are
reflected in the TeleManagement Forum’s
revised Telecoms Operations Map (TOM –
now known as eTOM) which has been updated

to reflect the emerging e-business relationships
between service providers and their partners
in emerging communications service provider
value chains (Figure 3).

The difficulty for wholesale carriers is how to
work within this new commercial model of fed-
erated businesses of external partners and cus-

Electronic Gateways – Forging the Links in
Communications Services Value Chains*)

D E R R I C K E V A N S , D A V E M I L H A M ,
E L A Y N E O ’ S U L L I V A N A N D M A R T I N R O B E R T S

A growing business trend is Internet-based business-to-business (B2B) integration of trading partners in

the creation of end-to-end value chains.

The architectural approach to such integration is typified by industry initiatives such as RosettaNet (1)

and ebXML (2).

For wholesale communications service providers, such architectures provide the opportunity to integrate

a wide range of fulfilment, assurance and billing systems and processes such as those described in the

TeleManagement Forum’s eTOM (4) with those of their third-party operator, service provider and retailer

customers, partners and suppliers.

Dave Milham (54) is a graduate
of Electrical Engineering from
Imperial College of Science and
Technology and in telecommu-
nications from Essex University.
He works on technical strategy
in the BTexact technologies
OSS engineering unit and is
responsible for the coordination
of BT’s contributions to the OSS
activities of the TeleManagement
Forum, ITU-T, EURESCOM, and
the IETF. He is chair for the TMF
Value Chain Market Centre con-
cerned with Telecomm B2B and
manages EURESCOM Project
P1106 studying Telecomm B2B.
He has been awarded the cov-
eted TeleManagement Forum
Fellowship in recognition of his
contribution to the industry over
the last decade.
dave.milham@bt.com

Derrick Evans (42) graduated in
Physics from Imperial College
of Science and Technology in
1981. He joined BT Laboratories
that year and has since worked
on a variety of OSS software
development and solutions inte-
grations projects. Currently he
is leading a team of consultants
specialising in OSS solutions
design and delivery including
consulting on business-to-busi-
ness interface specification for
telecommunications services
management.

Derrick.Evans@bt.com

Broadband
Access Provider

Sales and
Marketing

End Users

Sales and
Marketing

Sales and
Marketing

Portals

Content, Data, Internet
Support Services

Broadband
Infrastructure

ISPs, ASPs
E-commerce

Providers

End-
Users

Wholesale
Operator

Management Service
Providers

Other
Operators

Resellers
Sales and Branding

Content and Application

Network Services

Figure 1 Emerging wholesale customers (Source (5))

Figure 2 Commercial separation of wholesale
service (Source (5))

*) This paper has previously been published in The Journal of The Communications Network, Vol 1, Part 1,
April–June 2002

Telektronikk 4.2002

tomers, while still retaining the efficiency and
effectiveness benefits of the process and systems
integration they had enjoyed in the past as part
of a larger self-contained and integrated business.

Over recent years, integrated carriers had
worked to improve customer service and contain
costs through greater process efficiency and
effectiveness. This had entailed the improvement
of business processes through re-engineering &
the realignment of processes along customer
value chains through business transformation.
Such processes were further enhanced with the
support of integrated OSS applications such as
CSS (BT’s Customer Service System), Switch
Manager, and Work Manager (WMS).

The benefits of such integrated system and pro-
cess support have been to provide customer ori-
ented end-to-end visibility of service delivery
and assurance and varying degrees of flow-
through automation for the less complex mass
market products.

The challenge is now to continue to provide such
visibility and flow-through with wholesale trad-
ing partners who do not and cannot share direct
access to such systems and have systems and
processes of their own anyway.

In terms of process integration the eTOM (Fig-
ure 4) suggests the additional processes required
to manage the launch of new service proposi-
tions and operate them in conjunction with trad-
ing partners through integration of processes
in the ‘Marketing and Offer Management’ and
‘Supply Chain Development and Management’

layers for new product development and the
‘Customer Relationship Management’ and
‘Supplier/Partner Relationship Management’
layers for operations.

However, the eTOM process map does not add-
ress the systems support for such integration.

Figure 5 shows a number of approaches typi-
cally deployed within BT to enable management
of the customer interface with the organisation’s
OSS stack.

One approach is to create web-based eCRM
(electronic customer relationship management)
portals that provide partners with mediated web
access to restricted views of customer and ser-
vice information. This approach is typified by
BT’s eCO CRM application for BT Wholesale’s
customers. While this approach provides visibil-
ity via a rich graphical user interface, trading
partners are still left with the problem of integra-
tion of such information with their own informa-
tion systems.

An alternative approach is to use B2Bi XML
messaging gateways to exchange business infor-
mation as electronic documents between part-
ners’ systems across the Internet.

The remainder of this article focuses on these
B2B integration technologies and architectures
that may be used to loosely integrate partners’
support systems and processes to achieve some
level of end-to-end process visibility and flow-
through.

Martin Roberts (40) graduated
from University of Wales,
Aberystwyth, having studied
Computer Science. On leaving
university he worked on real-
time systems in the chemical
and manufacturing industries
before joining BT. Since joining
BT, Martin has worked on cus-
tomer facing applications from
the early days of CMIP inter-
faces and currently is the archi-
tect for the XML interfaces in
use within BT Wholesale. He is
editor of one of the UN/CEFACT
ebtwg projects and is a key
contributor to the ITU tML
initiative.

martin.me.roberts@bt.com

Elayne O’Sullivan (25) gradu-
ated from Cork (UCC) with a
degree in Music prior to gaining
an M.Sc. in Information Systems
from Cardiff. Elayne now works
on OSS solution design within
BT specialising in the design
and implementation of B2B XML
interfaces for BT Wholesale.
Elayne is also researching the
application of ebXML developed
modelling techniques to the
telecommunications industry.

elayne.osullivan@bt.com

Third-Party
Service
Provider

Function or
Process
Supplier

Hardware,
Software,

Solution, etc.
Vendors

Intermediary

Customer

Service Provider

Comple-
mentary
Provider

Figure 3 Service provider relationships
(Source TeleManagement Forum 2001)

98

99Telektronikk 4.2002

B2B Integration Concepts and
Architectures
There are a variety of approaches to the integra-
tion of systems that can be categorised as follows:

• document exchange;
• exposed application;
• exposed business services;
• managed public process (PIP/transaction); and
• managed public and private process.

Each of these approaches reflects a stage of
development in the evolution of e-commerce
and each has its merits and applications (7).
They are defined below:

Document Exchange
This is the classical approach adopted by elec-
tronic data interchange (EDI) applications in-

Customer

Strategy, Infrastructure and Products

Strategy and
Commit

Operations

Infrastructure
Lifecycle

Management

Product
Lifecycle

Management

Operations
Support and
Readiness

Fulfillment Assurance Billing

Marketing and Offer Management

Service Development and Management

Resource Development and Management
(Application, Computing and Network)

Supplier Chain Development
and Management

Customer Relationship Management

Service Management and Operations

Resource Management and Operations
(Application, Computing and Network)

Supplier/Partner Relationship Management

Strategic and
Enterprise
Planning

Enterprise

Management Brand Management,
Market Research
and Advertising

Stakeholder and
External Relations

Management

Disaster Recovery,
Security and Fraud

Management

Financial and
Asset

Management

Human
Resources

Management

Research and
Development,

Technology Acquisition

Enterprise Quality
Management, Process and

IT Planning and Architecture

Figure 4 Telemanagement Forum’s eTOM v2.5
(©TeleManagement Forum, October 2001)

CRM eCRM
Portal

B2Bi
Gateway

Integrated
CSS

CMR
• Support CSC agents
• Sales and service care
• Contact management

B2C
• Customer self-service
• Web-based presence
• Extend range of contact

B2B
• Integrating businesses
• Document based
• Trading partners

Figure 5 Access to
integrated OSS applications

100 Telektronikk 4.2002

volving the asynchronous exchange of structured
and standardised files representing documents
such as purchase orders and quotes (Figure 6).

In ‘traditional’ applications this exchange is
secured through the use of EDI value added net-
work services (VANS) closed user group based
networks (although initiatives such as OBI had
moved such EDI architectures to the Internet (6)).

The execution of the business logic to produce
and exchange the documents through some form
of agreed public process is often executed direct-
ly by the target applications.

While this approach provides some decoupling
of applications, increasingly this approach is
seen as expensive to implement and inflexible
to change.

Exposed Application
With the advent of customisable software appli-
cations and the use of distributed applications,
more and more applications have published
application programming interfaces (APIs) that
can be used by one application to invoke another
(Figure 7).

When this style of integration is employed
between business partners it is often secured
through the use of virtual private networks. Also
to deal with system availability issues, messag-
ing middleware is often employed to decouple
the two applications.

While this approach can provide a very rich and
functional integration between two parties, the
direct integration of applications in this manner
makes it very susceptible to changes in the app-
lications of one party or another. Also one is
reliant on trading partners using similar operat-
ing systems and applications technology.

Exposed Business Service
The exposed business service approach provides
additional flexibility over direct API integration
by presenting simplified and abstracted versions
of APIs via small discrete units of code that han-
dle specific limited functionality.

The interaction is secured over the public Inter-
net using encryption and strong authentication
via the use of digital certificates (Figure 8).

Also the differences in technology between trad-
ing partners is dealt with by using an application
neutral implementation of XML messaging over
the Internet http protocol in the form of a mecha-
nism know as SOAP (Simple Object Access Pro-
tocol) (8).

This approach is being widely promoted under
the name of web services and by Microsoft as
part of its .NET initiative (9).

While this approach is likely to achieve great
benefits for business-to-business integration
there are still issues to be dealt with in using
such technology widely.

The principal issues are ones of standardisation
in two areas:

• security and reliability (including receipted
acknowledgement of transactions and how
to handle timeouts and failures); and

• vertical standards for content and business
process enacted for particular industry seg-
ments.

It is possible that the first of these two may be
addressed in enhanced forms of web services
standards in the future. However, stricter defini-
tion of industry standard services would still be
required.

Managed Public Processes
This form of integration builds on the notion of
web services (although RosettaNet, as an early
example of such integration, pre-dates SOAP).

Where this differs from the exposed business
service approach is the industry standardisation
of process and content for a defined set of busi-
ness activities, such as the exchange of a pur-
chase order request (Figure 9).

Application Application

Document

Figure 6 Document exchange
based inegration of applications

Application Application
Application API

Application ApplicationInternet

B
us

in
es

s
S

er
vi

ce
s

B
us

in
es

s
S

er
vi

ce
s

Figure 8 Exposed business service integration

Figure 7 Exposed API integration of applications

101Telektronikk 4.2002

Such business activities conform to a set of stan-
dard patterns and involve not just the exchange
of business documents but also standard signals
to indicate the successful (or otherwise) execu-
tion of a transaction to assure a reliable and
secure exchange.

The combination of a web services approach
together with standardised content provides a
very strong basis for the integration of trading
partner processes on a transaction-by-transaction
basis over the Internet.

However, for some interactions there is also an
end-to-end process or choreography of such
transactions to be standardised and managed.
A typical example would be the UK industry
agreed unbundled local loop (LLU) provisioning
process that involves a multi-step approach to
the provision of a metallic path.

Managed Public and Private Process
The managed public and private process form of
integration is a further enhancement to Internet-
based integration and deals with the need for
selected B2B processes to be an end-to-end
choreography of transactions (Figure 10).

This approach allows one to define a second
layer of process that links individual public
processes (RosettaNet PIPs or ebXML transac-
tions). This layer can also be used to manage
the end-to-end process across multiple internal
applications.

Such a process is typically implemented using
enterprise workflow applications with integra-
tion into applications via enterprise integration
middleware. Such an EAI integration of multiple
applications is becoming common practice
amongst telcos (10), which adds further appeal
to this form of integration.

In the same manner that public processes need to
be defined and agreed with trading partners, the
‘public face’ of such choreographies need to be
published.

ebXML, amongst other things, provides a stan-
dard for exchanging a description of such a
choreography in the form of a collaboration
which can be decomposed into low level activi-
ties implemented by individual business transac-
tions to exchange business documents between
partner roles (the Business Process Specification
Schema (3)) as an XML based model.

With the addition of this process modelling tech-
nique, the ebXML collection of standards forms
the basis for future evolution of web services
based integration of trading partners’ processes
and systems.

ebXML
The stated mission of ebXML is:

“To provide an open XML-based infrastruc-
ture enabling the global use of electronic
business information in an interoperable,
secure and consistent manner by all parties.”

ebXML is sponsored by UN/CEFACT and
OASIS, and is a suite of specifications designed
to enable enterprises of any size and in any geo-
graphical location to conduct e-business over the
Internet. As such, the emphasis has been on a
modular implementation of the specifications
on a variety of platforms and scales to fit all
pockets.

The key specifications of ebXML were pub-
lished in May 2001 and are:

• EbXML Requirements Specification v1.06;

• ebXML Technical Architecture Specification
v1.04 (the overall ebXML conceptual archi-
tecture);

• Business Process Specification Schema v1.01
(the schema for the exchange of B2B process
designs);

• Registry Information Model v2.0 (the general
repository for recording B2B processes and
agreements);

• Registry Services Specification v2.0 (the API
definition for access to the registry);

• Collaboration-Protocol Profile and Agreement
Specification v1.0 (the format for the ex-
change of trading partner profiles including
the B2B services supported and the means of
forming B2B agreements); and

• Message Service Specification v1.0 (the mes-
saging protocol for the exchange of ebXML
business documents).

Application ApplicationInternet

P
ub

lic
 P

ro
ce

ss
A

pp
lic

at
io

n

P
ub

lic
 P

ro
ce

ss
A

pp
lic

at
io

n

Figure 9 Managed public
process integration

Internet

P
ub

lic
P

ro
ce

ss

P
ub

lic
 P

ro
ce

ss

P
ub

lic
P

ro
ce

ss

P
ub

lic
P

ro
ce

ss

P
ub

lic
 P

ro
ce

ss

P
ub

lic
P

ro
ce

ss

Figure 10 Managed private
and public process

102 Telektronikk 4.2002

Of these specifications, the most commonly
implemented one is the message service for
which there are now version 1.0 implementa-
tions from most B2B gateway vendors.

RosettaNet has also stated that the messaging
service for ebXML is a likely candidate for the
next generation of the implementation frame-
work (RNIF V3).

Figure 11 describes the ebXML concept of mes-
saging-based integration.

Each trading partner fulfils a role and executes
their respective business processes on their sys-
tems and the activities of each partner are syn-
chronised by execution of shared business trans-
actions involving the exchange of business doc-
uments (typically in the form of XML files) such
as purchase order requests and confirmations.

In addition to the exchange of business docu-
ments, other messages are exchanged as signals
of successful execution of phases of a transaction.

The end-to-end sequencing of such transactions
and the conditional paths between each step are
described as collaboration within the business
process specification schema that may be visu-
alised in a number of ways. A typical approach
is to use an activity graph as shown in Figure 12.

Using a combination of standard business trans-
actions and documents within such collabora-
tions forms the basis for a wide variety of B2B
processes to be created in support for complex
multiparty supply chains not just for procure-
ment but also for assurance and other telco pro-
cesses.

Challenges Ahead

The Challenges
While the path set by the eTOM and ebXML is
clear, there are many hurdles to be overcome
before such architectures are widely adopted.

Apart from the messaging service the implemen-
tations of the other ebXML standards are not
widely available. The ebXML messaging service
is now undergoing (as of October 2002) its sec-
ond phase of interoperability testing with 12
vendors from around the world (13).

For selected ebXML standards (such as BPSS)
there are competing alternative standards. Also,
the wide promotion of web services and .net as
the answer to ebusiness is likely to confuse the
general marketplace as to the need for ebXML-
based solutions. This will undermine confidence
in investment in such standards and delay adop-
tion until the market position is clearer.

Despite the efforts of ebXML, RosettaNet and
others to produce cost-effective architectures for
e-business integration there is still significant
cost in realising solutions based on technologies.
In particular, the integration to legacy applica-
tions and the understanding of how to translate
between the published B2B document and pro-
cess standards and individual partners’ own
internal arrangements add significantly to cost.

Requesting
Activity

Responding Role

Requesting
Activity

Responding Role

Success Failure
Notification of Business Failure

Request Document

Receipt Acknowledgement Signal

Acceptance Acknowledgement Signal

Response Document

Receipt Acknowledgement Signal

Figure 11 Exchange of
business documents and
signals in executing a
transaction between
partner roles
(Taken from (3))

Order BTA

Order Status BTA

Change Order BTA

Cancel Order BTA

Buyer Seller

Figure 12 Example list of
business transactions between
two trading partners that form
a business collaboration

103Telektronikk 4.2002

As can be seen from Figure 13, while ebXML
and others provide ready standards for the mes-
saging and process integration of enterprises, a
major component of any B2B framework is ver-
tical, business specific content.

RosettaNet has dealt with this for the electronics
and IT industry by publishing standard transac-
tions (PIPs) with defined names, patterns and
XML content.

Other industries, including telecommunications
companies, have made similar efforts on
selected initiatives (such as number portability)
on older EDI standards but have yet to come up
with comprehensive vertical process and data
standards for all potential telco B2B integrations
on newer Internet-based e-commerce platforms.

Without such industry-defined content, trading
partners are left with the expense of defining
their own proprietary bilateral implementations.

Strategies for Meeting the Challenges
As stated earlier, work has already commenced
in implementing the various ebXML standards
and proving their interoperability.

Through adopting a modular approach, ebXML
has further left the path clear for the market to
decide which of the standards are most appropri-
ate, and only time will tell what the final popu-
lated framework will look like in terms of prod-
ucts and standards.

The increased use of standard commercial appli-
cations and their integration via EAI middleware

will also help open up the legacy environment to
B2B integration, and reduce cost of integration.

As a further cost-reduction aid, some B2B ven-
dors provide ‘lightweight’ pre-configured ver-
sions of their gateway products that larger com-
panies can distribute to their smaller partners
with pre-implemented integrations and simple
file-based APIs.

In terms of further kick-starting the adoption
of B2B integration by smaller trading partners,
the leading operators may well need to provide
assistance and support in the development and
implementation of e-business standards suitable
for telcos.

This support should also include ‘partner enable-
ment resources’ comprising specifications, and
testing environments for development of e-busi-
ness integrations prior to live operation.

In terms of the wider telecommunications indus-
try in the UK, BT and other operators have al-
ready formed The Telecommunications Industry
B2B Forum (formerly known as the TelcoAPI
Forum) (12). The intent of this group is to
develop and promote telco specific B2B process
and data standards and promote them through
the ITU.

The approach of the group has been to adopt
XML business documents from adjacent indus-
tries (such as purchase orders) and extend them
to cover the particular requirements of service
orders for telecommunications services. It is the
intention of the group to promote these standards

Business
Conceptual
Model
(Definition,
format,
structure and
choreography)

Technical
Conceptual
Model
(Standards,
protocols
and tools)

Universal Business
Dictionary Content

Vertical Technical
Dictionary Content

Business Dictionary
Structure

Technical Dictionary
Structure

Business Document Definition

Core XML Format Standards

Messaging

Service-Oriented Architecture

Back-end Integration

Universal Business
Processes

Process Description Language

Process Coordination Framework

Directory Service

T
ra

di
ng

 P
ar

tn
er

 A
gr

ee
m

en
t

(T
P

A
)

S
ec

ur
ity

Vertical
(Supply Chain)

Business Processes

Business Model-
Specific Processes

Figure 13 B2B standards
conceptual framework (11)

104 Telektronikk 4.2002

more widely, develop standards for other pro-
cesses as well as develop procedures for the
configuration management of these interfaces.

Applications Within BT
Overall, BT Wholeale’s vision is to deploy B2B
technologies as an enhancement to its eCO ser-
vices, as part of a wider transformation of its
OSS infrastructure, and support as wide a range
of customer and supplier facing processes as is
practicable using such technology.

Within BT Wholesale efforts to employ these
eBusiness architectures have already been under-
way for over two years.

Currently the BT Wholesale eCO application
supports XML-based ordering interfaces using
a proprietary Access Framework mechanism
developed to allow trading partners to exchange
business documents using http post and get com-
mands to a public hosted web server secured
with digital certificates.

The framework has been reused for XML inter-
faces for LLU and ADSL provisioning and there
are currently efforts underway to look at support
for trouble ticketing.

With the emergence of early implementations of
the ebXML messaging service, BT is also look-
ing to enhance these early implementations with
phased replacement of the Access Framework
with an ebXML messaging gateway as a more
standards based and functional approach.

BT Retail is also active in the use of B2B tech-
nologies with its suppliers (in particular Cisco)
via use of RosettaNet standards and moreover,
BT Wholesale is looking to reengineer and
streamline its network plan and build processes
with major network equipment vendors using
B2B gateways and standards.

Conclusions
Emerging e-business standards such as Roset-
taNet and ebXML have been prompted by the
emergence of the Internet as a platform for e-
commerce.

As wholesale providers develop a wide range of
trading relationships with partners, suppliers and
customers the opportunity presents itself to
engage in a much wider series of collaborative
commerce activities than just the buying and
selling of goods and services.

The TeleManagement Forum’s eTOM begins to
suggest just how wide the scope of these activi-
ties could be and the opportunities for OSS inte-
gration via B2B technologies.

However, there are significant standardisation,
cost and maturity issues to be overcome prior to
wider spread adoption of these applications.

Nevertheless, the links are coming hot out of the
forge: time to start building the chain.

References
1 RosettaNet. August 16, 2002 [online] –

URL: http://www.RosettaNet.org

2 ebXML. August 16, 2002 [online] – URL:
http://www.ebxml.org

3 Business Process Project Team. ebXML
Business Process Specification Schema,
Version 1.01, 11 May 2001. URL:
http://www.ebxml.org

4 Telemanagement Forum. eTOM The Busi-
ness Process Framework for the Information
and Communication Services Industry –
GB921 v2.5. URL: http://www.tmforum.org

5 Uglow, S, Gambhir, A. Wholesale: New
Markets for Communications Carriers and
Service Providers. OVUM, Oct. 2000.

6 Open Buying on the Internet. August 16, 2002
[online] – URL: http://www.openbuy.org/

7 Chappell, D et al. Professional ebXML
Foundations. Worx Press Ltd., 2001.
(ISBN 1-861005-90-3)

8 Simple Object Access Protocol (SOAP) 1.1.
W3C Note 08 May 2000. URL:
http://www.w3.org/TR/SOAP/

9 XML Web Services. August 16, 2002
[online] – URL: http://www.microsoft.com/
net/defined/xmlservices.asp

10 Gerrese, J. iCE: The ‘Cool’ Operation Sup-
port System and Interactive Customer
Empowerment Engine. The Journal of the
Institution of British Telecommunications
Engineers, 2 (3), 2001.

11 Coleman, D. B2B Standards. RosettaNet
Presentation.

12 The Telecommunication Industry B2B
Forum. December 4, 2002 [online] – URL:
http://www.telcoB2B.org.uk/.

13 The Drummond Group. October 1, 2002
[online] – URL: http://www.drummondgroup.
com/html-v2/pr_10-01-02.html

105Telektronikk 4.2002

Background
There is an acknowledged and universal need
today for organizations to be able to collaborate
electronically, preferably throughout the supply
chain. This requires an open infrastructure of
collaborating applications that can be imple-
mented by all participants in the supply chain
without long and complex implementation pro-
jects. The business world is dynamic, and an
electronic infrastructure is required to support
easy and cost efficient change of business part-
ners as well as business protocols.

With this in mind the Norsk EDIPRO Infrastruc-
ture project embarked on a journey to establish
a sound infrastructure – the goals being the en-
abling of full application integration on a seman-
tic level, resource effective and manageable
enough to be adapted by small and medium
sized enterprises. By “full application integra-
tion” we mean in this context the enabling of
two or more collaborating business applications
to produce, interpret and process the contents of
exchanged message data on the basis of the
semantics of a common reference model con-
taining all information relevant for business col-
laborations within the domain in question. The
applications to be integrated would typically be
end-user applications like ERP systems, logistics
systems and financial systems – in other words
the critical production systems of a company or
an organization.

In order to succeed with electronic collaboration
there is a set of process and information models
that need to be aligned. The infrastructure needs
to ensure that not only the users in the different
organizations are interoperable, but also systems
and applications. For this a set of semantic defi-
nitions need to exist that can make Organization
A’s proprietary e-commerce systems communi-
cate with Organization B’s proprietary e-com-
merce system. To enable a flexible and easily
extensible collaboration, it is necessary to align
different descriptions. First of all the collabora-
tion should be built on a domain model. A
domain model is typically developed by industry
organizations and attempts to standardize pro-
cesses and information across an industry to
facilitate electronic collaborations. Further, each
company’s description of their internal business
processes will constitute the business process
model. Organizations in a given industry will
typically have different internal process models
for a given function, but they should be related

to the same domain model. Then at the final
level two or more organizations, belonging to
the same or different domains, can go together to
specify how the specific collaboration processes
should be implemented between them in a col-
laboration model.

The Proposed Architecture
A central issue in defining an architecture is to
embrace the rapid changes we see in technology
and business environments today. A natural
choice would therefore be to use the model-
driven approach for our architecture. With a
model-driven architecture we decouple design
and realization so that our fundamental business
process design can be realized in the technology
of choice, earlier that might have been EDI/EDI-
FACT or CORBA, today it could possibly be
XML Web Services or electronic business XML
(ebXML). This also allows you to describe your
collaboration process in the same manner
regardless of which platform you want to base
the realization on. The central issue is to keep
the design in a platform independent version in
order to be able to easily migrate to an alterna-
tive realization as business needs change and
technology evolves.

Figure 1 shows the complete architecture model.
An important requirement for our work has been
that the Platform Independent Model (PIM) must

Next Generation Infrastructure for
Electronic Collaboration
Ø Y V I N D A A S S V E

Øyvind Aassve (36) is an IT
architect at Telenor Networks,
where his main focus is IT archi-
tecture and business-to-busi-
ness issues. He holds an MSc
in Information Systems (2001)
from the University of Texas at
Arlington. Before joining Telenor
Networks he worked as a pro-
grammer at eTech Solutioncorp,
and has previously also worked
extensively with enterprise soft-
ware as a business analyst and
project coordinator at Scandina-
vian PC Systems Group (now
Visma Software). Mr. Aassve
has participated in Norsk
Edipro’s Infrastructure project
where he led the working group
“Description of collaboration
models in an open infrastruc-
ture” and participated in two
other groups.

oyvind.aassve@telenor.com

The Infrastructure Project
The Infrastructure project was initiated by

Norsk EDIPRO to facilitate the adoption of

electronic collaboration especially among

small and medium sized Norwegian enter-

prises by providing an open infrastructure

for collaborating applications and enterprises.

The vision is to achieve flexible and seamless

integration between applications of enter-

prises throughout the supply chain, and to

manage this in an easy, cost efficient and

universal way.

This article provides an overview of the

results of the Infrastructure project’s May

deliveries from the two working groups

“Description of collaboration models in an

open infrastructure” led by Øyvind Aassve,

Telenor Networks, and “Application Readable

Models in an open infrastructure” led by Arild

Nybakk, Scandinavian Transport Systems.

106 Telektronikk 4.2002

be available in two forms, one “for people” ver-
sion (the left box of the Platform Independent
Model) that can be read and understood by
humans – preferably including non-IT profes-
sionals; and one “for application” version (the
right box of the Platform Independent Model)
which is optimised to be read and processed
by applications. The “for people” version is
described using a set of UML diagrams, while
for the “for application” version these diagrams
are implemented using a lighter version of the
OMG standard XML Metadata Interchange
(XMI). This “XMI Light” version was devel-
oped by SINTEF for the project, because full-
length XMI was found to be too verbose.

An extension of the Resource Description
Framework (RDF) – DARPA Agent Markup
Language (DAML/RDF) was also evaluated for
the “for application” version. RDF is central to
W3C’s efforts to create the semantic web.
DAML/RDF does not however handle activity
diagrams, mainly due to lack of attention to
describing business and collaboration processes.

With a collaboration process now modelled in
UML and then converted into XMI Light, the
next step is to select a set of transformation rules
that can transform the PIM into a Platform Spe-
cific Realization (PSR). The idea here is that
there will be one set of transformation rules for
each realization, and all you need to do is select
the rule set for the realization of your choice.

Central to the model is also the Business Service
Interface whose purpose is to map the domain
semantics of the platform independent model

with the semantics of the internal application
model. This results in a significant improvement
from the former field-to-field mappings in EDI,
because it enables us to communicate message
contents as specified by specific realization doc-
uments (XSD schemas, BPSSs, etc.) and inter-
pret these contents based on the underlying com-
mon semantic domain model. Telecommunica-
tion Markup Language (tML) is a possible
domain model for the telecom industry.

Description Techniques
Most of the processes to be implemented in the
architecture described above will be stored in
public or private repositories. To achieve suc-
cessful interoperability it is crucial that the pro-
cesses are described in the same manner by all
the participating business partners.

Figure 2 shows the three different submodels/
UML diagrams that have been selected to cap-
ture the complete business collaboration.

• The activity model (UML Activity diagram)
shows what activities/processes to be per-
formed by each role in a collaboration. This
flow of operations and information is often
referred to as choreography or orchestration.
The realization will be based on BPSS for
ebXML and WSFL for XML Web Services.

• The interaction model (UML Component dia-
gram) illustrates which roles collaborate over
the different interfaces. Realizations will be
based on the BPSS for ebXML and WSDL for
XML Web Services.

Figure 1 The architecture
model

Internal modelR/R R/R

R/R

UN/CEFACT
OASIS CC

Platform independent model

Activity model

Interaction model

Information model

Activity model

Interaction model

Information model

“For people” description-UML “For applications” description-XML

Transformation
rules

Mapping to
semantic definitions

Application

Business Service Interface

R/R

Map to PIM model

Verify message

Instance of model

Map from model
to application

Message instance

Activity specifications
(eb:BPSS, ws:WSFL)

Interaction specifications
(eb:BPSS bus, transaction, ws:WSDL service)

Information specifications
(eb:XSD, ws:WSDL/XSD)

Platform specific realization
(eb:XML, Web Services)

107Telektronikk 4.2002

• The information model (UML Class diagram)
depicts the information included in the collab-
oration in the form of classes, attributes and
relationships. The information model is also
the basis for expressing the information con-
tained in the flow-objects in the Activity
Model. Realizations will typically be based
on XML Schema and in some instances on
WSDL for XML Web Services.

The three complementary submodels contain
attributes that together represent necessary
aspects of a collaboration. A minimum is to
describe the activity and information model to
define the collaboration process.

The models can be presented in either a concep-
tual or a more detailed version. The activity
model in the figure above is detailed in the sense
that it contains flow objects, while a conceptual
model would only depict the process flow. Flow
objects are objects that represent the information
that flows between the participating roles in the
processes, and they contain the contents and
structure of the messages that are sent between
the collaborating parties.

An issue regarding the activity model is also the
representation of state in the system. Interna-
tional initiatives like ebXML has introduced
Business Entity Types (Business Object Types)
to help record the state of a collaboration as it
progresses. As the sub-processes are completed
the “state” of the collaboration reaches new
levels. State then becomes a function of the
progress of the collaboration and can be useful
for the collaborating partners to synchronize.
This can be achieved through a business entity
(business object) whose purpose it is to update
the collaboration status at all times. Change of
status happens when one party completes an
activity that is being synchronized through an
information flow.

The Semantic Connection
The relationship to semantics and semantic
information is critical to enable the collaborating
partners to have the same understanding of the
content in the platform independent model.

The word semantic means “science of the mean-
ing of words”. In our work a semantic definition
is a precise and unambiguous explanation of the
meaning associated with an element in a collab-
oration model.

Any application is built upon a “semantic uni-
verse” expressible through an activity and infor-
mation model – the meaning content of the
application is carried by the model. The part of
this universe which – directly or indirectly – is
involved when an application participates in an

electronic collaboration, must be – or be made
into – a part of the semantic universe of the other
application(s) taking part in the collaboration.

This is the purpose of the Business Service
Interface (BSI). The BSI downloads external
schemas (ex. a potential partner’s process real-
ization document) from different Registries/
Repositories (R/R) and makes the semantics of
these available for the internal applications of
the owner of the BSI. The BSI is basically
responsible for two mapping jobs. The first one
is the alignment of the semantics of an organiza-
tion’s internal applications to the semantics of
the platform independent model. The other one
is the mapping from the realization document
specifications to the platform independent model
semantics – this is partly done during set-up,
partly on-the-fly as necessitated by changes or
extensions in the realization documents. For the
latter mapping from Platform Specific Realiza-
tions to Platform Independent Model an applica-

Figure 2 UML diagrams are
used to describe the submodels
in the architecture. In the “for

application” model these
diagrams will be described

through XMI

Activity model

Interaction model

Information model

UML Activity diagram

UML Package/Component diagram
(UML 2.0 inspired

UML Class diagram

HPL

TRA

LHH

LTB

ICustomer ISeller

IWareHouse

IProdOwn

ITransportServ

Purchase
Process2

Proceed
Purchase2

Handle
invoice2

OrderInfo
OrderInfo

confInfo

invoiceInfo

Order
Process2

Delivery
Process2

Customer2Customer Seller2Seller

<<entity>>

PurchaseOrder

- poNr : int

- date : Date

<<entity>>

CustomerEntity

- name : String

- address : String

- phonenr : String

<<entity>>

Order

+ orderNr : Int

+ date : Date

<<entity>>

Invoice

- date : Date

- amount : Currency

<<entity>>

Product

+ prodNr : Int

+ description : String
<<entity>>

OrderLine

+ nrOfProd : Int
<<entity>>

Shipment

+ ndelivAddress : Address

<<entity>>

SellerEntity

- name : String

108 Telektronikk 4.2002

tion of the W3C standard Resource Description
Framework (RDF) is chosen, containing either
Xpointer expressions or Universal Unique Iden-
tifiers (UUIDs) as the concrete mapping mecha-
nism.

Applications participating in a collaboration
will have to map the semantics of any operation,
information item or other business entity to be
used in collaborations within the domain in
question. We consider the semantics of such a
business entity to be encapsulated in what we
have labelled a semantic carrier. A semantic
carrier can be thought of as a location or refer-
ence point uniquely identifying the semantics of
the business entity. It is important to note, how-
ever, that the carrier is located in the context of a
model for the business domain in question, mak-
ing it more than just an object with a given iden-
tifier – the semantics of the carrier is the combi-
nation of the semantics of the component as such
and the semantics of the model context in which
it appears. This means that we need to contextu-
ally identify the different elements carrying
semantic information in the model. The details
will not be presented in this article, but as an
example, in order to represent the information
model semantically it may be necessary to
semantically locate information on class,
attribute, association and code list identifier
level.

Platform Specific Realizations
The project’s assumption is that XML Web Ser-
vices and ebXML will become the most popular
candidates for Platform Specific Realizations.
The specifics of XML Web Services will be bet-
ter explained in other articles of this issue of
Telektronikk, but I find it worthwhile mentioning
here that in order to implement full collabora-
tions through Web Services further capabilities
than those provided by WSDL, SOAP and
UDDI today are necessary. In order to imple-
ment Web Services as part of larger business
processes IBM has put forward the Web Ser-
vices Flow Language, which is already sup-
ported by a number of tool vendors. Microsoft
has come up with their XLANG language which
serves similar purposes. IBM and Microsoft are
currently working together to possibly combine
their efforts so that the Web Services community
only needs to relate to one orchestration stan-
dard.

ebXML was developed in a joint initiative of the
United Nations (UN/CEFACT) and the Organi-
zation for the Advancement of Structured Infor-
mation Standards (OASIS) between November
1999 and May 2001. The ambitious goal was to
create an infrastructure for a single global elec-
tronic market. ebXML is composed of the fol-
lowing four elements:

Figure 3 The ebXML
architecture

Agree on Business Arra
ngement

Download Scenarios and Profiles

5

Business Profiles
Business Scenarios

ebXML
Registry

COMPANY B
DO BUSINESS TRANSACTIONS

ebXML compliant
system

6

Query about COM
PANY A Profile

4

Register Implementation Details
Register COMPANY A Profile

3

Request Business Details

1
XML

COMPANY A

Build Local System
Implementation

2

109Telektronikk 4.2002

Business Process Specification Schema (BPSS):
The Specification Schema provides the defini-
tion of an XML document that describes how
an organization conducts its business. While
the CPP/CPA deals with the technical aspects
of how to conduct business electronically, the
Specification Schema deals with the actual busi-
ness process. It specifies such things as the over-
all business process, the roles, transactions, iden-
tification of the business documents used, docu-
ment flow, legal aspects, security aspects.

Trading Partner Information: The Collaboration
Protocol Profile (CPP) provides the definition
(DTD or XML schema) of an XML document
that specifies the details of how an organization
is able to conduct business electronically. It
specifies how to locate contact and other infor-
mation about the organization, the types of net-
work and file transport protocols it uses, network
addresses, security implementations, and how it
does business (a reference to a Business Process
Specification). The Collaboration Protocol
Agreement (CPA) specifies the details of how
two organizations have agreed to conduct busi-
ness electronically. It is formed by combining
the CPPs of the two organizations.

Messaging Service: Provides a standard protocol
neutral way to exchange business messages
between organizations. SOAP was finally
selected as the standard.

Registry: A database storing items that support
doing business electronically. Examples of items
in the registry might be XML schemas of busi-
ness documents, definitions of library compo-
nents for business process modelling and trading
partner agreements.

The process of establishing a business collabora-
tion based on ebXML will typically be as fol-
lows (Figure 3): based on a review of the infor-
mation available from an ebXML Registry Com-
pany A can build or buy an ebXML implementa-
tion suitable for its anticipated ebXML transac-
tions. After enabling their own applications for
ebXML transactions Company A creates and
registers a CPP with the Registry. Once Com-
pany A is registered other companies can look at
Company A's CPP to determine whether it is
compatible with their own CPP and require-
ments. If it is, the potential partner should be
able to negotiate a CPA automatically with
Company A. In addition there will normally be
meetings to specify the business conditions for
their collaboration.

This should have given you a taste for the possi-
bilities of business collaborations in the near
future. The full documentation of Norsk
EDIPRO’s Infrastructure project including
description and rationale behind the different
choices is available at http://www.edipro.no/
index.php?id=47796&cat=1323. “Description of
collaboration models in an open infrastructure”
is for the time being only available in Norwegian.

Telektronikk 4.2002

1 Introduction
The purpose of this document is to show how to
use Microsoft .NET to integrate with Java EJB
services using XML Web Services technology.
This document is based upon experience from
the eChannel (eKanal) project at Telenor. Using
this kind of technology is rather new and excit-
ing, and not many sites have been implementing
this kind of technology yet.

2 About the Application
The eChannel project has developed a web site
“Dine sider” (“Your pages”), which is a self-ser-
vice channel web site for our private customers
with fixed line phones. On this site authenticated
users can manage their subscription online and
order/cancel products and additional services.
For instance they can get consultation on which
type of subscription or service they should get,
copies of previous invoices and incurred cost
since last invoice. The site also provides a lot of
functionality for non-authenticated users. Orders
and cancellations of products/services are auto-
mated by utilising the appropriate services sup-
plied by our middleware platform.

“Dine sider” has approximately 70,000 visitors,
and 20,000 users logged on every week. That
makes us one of the biggest web sites with this
kind of technology in Europe. The site also has
extensive use of personalized information and
campaigns, e.g. you do not receive campaign
on broadband Internet connection if you already
have this product. All of this is made possible
with ASP.NET (C#), XML Web Services,
SOAP and Commerce Server.

3 Background
Eighteen months ago, “Dine sider” was imple-
mented using Active Server Pages, communicat-
ing with a Java middleware platform in another
business area in Telenor. For business related
reasons we had to leave their middleware. The
responsibilities of the middleware platform are
abstracting functionality and information located
in various internal production/ legacy systems.

Telenor was at that time working on a new
middleware platform. Their goal was to abstract
functionality from our legacy systems. The tech-
nology used for implementing was already
decided to be Java.

Telenor was also striving to gain an intimate
knowledge of its customers and to personalize

and up-sell its services. The previous solutions
were not focused on logging what customers
were doing when visiting the web site. We
required our new solution to better keep track
of how users were browsing and using the web
application. Another challenge we experienced
with the Active Server Pages implementation
was the time and cost implications of rapid
changes to the user interface. This because the
Active Server Pages contained both HTML and
user interface controls.

4 Technology
Several technologies for realizing our web front-
end and functionality were evaluated.

• Java
• Siebel
• Microsoft .NET

We required a solution where we could easily
make adaptations and on-line integration. Siebel
technology was not found to be the best solution
for us. Microsoft .NET was the chosen vendor
based on our previous experiences with Micro-
soft’s products and excellent support for XML
Web Services.

XML Web Services are the cornerstone of the
.NET platform. The hope for the XML Web Ser-
vices technology is that it will bring us into a
new era of programming. Rather than relying on
the assembly of platform dependent components
or objects, the XML Web Services technology is
based on the reuse of distributed, platform inde-
pendent services. These services and their corre-
sponding contracts are exposed using (UDDI)
catalogues publicly accessible.

5 Web Service Overview
A web service is a mechanism for invoking
functionality from another application or system
on any platform using standard Internet tech-
nologies.

XML Web Services exchange data using XML
and transport data using HTTP, for example.
The most common Web Services language (pro-
tocol) is currently Simple Object Access Proto-
col (SOAP). The protocol does not, however,
specify how messages are going to be built and
handled.

Important standards for Web Services are Web
Service Description Language (WSDL) and

The Self-Service Channel
– “Dine sider” (“Your pages”)
R O B E R T L A N D S E M

Robert Landsem (28) graduated
as Computer Engineer from Sør-
Trøndelag University College
(HiST) in 1997. He worked for
two years at Enitel a.s, and is
currently working as an Internet
architect in Telenor Plus.

robert.landsem@telenor.com

110

111Telektronikk 4.2002

XML Schema Definition (XSD) documents. The
WSDL documents contain the services interface
definitions: the services messages, the services
ports and the services encoding. Messages are
described as RPC names and XSD types. Ports
are described as IP and port number. Bindings
are, in our case, always SOAP RPC encoded.
The XSD documents contain the messages type
definitions, in an XML format.

The WSDL defines the interface and is used to
create an XML Web Services proxy. This proxy
is then used to interact with the Web Service.

On the service layer there is typically a Web Ser-
vices handler to process the incoming Web Ser-
vices call. The handler translates the call from
SOAP XML into the language of the services
and then executes the method on the service.
The response from the method call is then trans-
lated back to SOAP XML and returned to the
proxy. The translation from and to XML is
referred to as serialization/deserialization or,
sometimes, marshalling/unmarshalling.

The roles of the above parts are shown in Figure 1.

6 SOAP Overview
The Simple Object Access Protocol (SOAP) is
an XML syntax for exchanging messages. It is
designed to exchange structured and typed in-
formation on the Web, for example. Because it is
XML, it is both language and platform indepen-
dent. SOAP allows applications implemented in
different languages and on different platforms to
communicate. At present, SOAP has been imple-
mented in over 60 languages on over 20 plat-
forms. SOAP is a fundamental part of Microsoft
.NET and it will be important for developers
moving to Microsoft .NET to understand what
SOAP is and how it works.

Let us assume that we have a very simple corpo-
rate database that holds a table specifying cus-
tomer reference numbers, names, addresses and
telephone numbers. You now want to offer a ser-
vice that enables other systems to perform a
lookup on this data. The service should return
a name for a given telephone number.

The prototype of the service will look like this in
C#:

string getCustomer (string

customerPhoneNumber);

The SOAP developer will now encapsulate
the database request logic for the service in a
method in any kind of programming language,
and then set up a process that listens for the
request to the service. The request is in SOAP
format and contains the service name and any
additional parameters. The listener process
decodes the incoming SOAP request and trans-
forms it into an invocation of the appropriate
method. It then encodes the result of the method
call into a SOAP message (response) and sends
it back to the requester. Figure 2 shows the
arrangement.

A SOAP-encoded RPC dialogue contains both
a request message and a response message. A
demonstration of how a simple service returns
the name of the owner of a telephone number is
shown on the following page.

Figure 1 Use of WSDL/XSD
documents from the service

layer on the front end

Figure 2 Illustration of a
request from a client down to
a listener on the service layer

Application

Web Service
Proxy

Web Service
handler

Services

Front-end native language
method call

Web Service RPC
(HTTP/XML)

SERVICE native language
method call

XSD

WSDL

Front-end layer

Enterprise firewall

Service layer

Service
Methods

Data
Base

ListenerClient

Transport
Layer

SOAP
Response

SOAP
Request

Method
Response

Method
Call

Database
Response

Database
Call

112 Telektronikk 4.2002

Figure 3 Overview of
the architecture used by Telenor

1 Method Signature

2 Request

3 Response

string getCustomer (string customerPhoneNumber);

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getCustomer

xmlns:ns1="urn:MySoapServices">

<param1 xsi:type="xsd:string">22041968</param1>

</ns1:getCustomer>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope> xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:getCustomerResponse

xmlns:ns1="urn:MySoapServices"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/ encoding/">

<return xsi:type="xsd:string">Robert Landsem</return>

</ns1:getCustomerResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Web
Application

(C#)

NET Web
Service Proxy

RPC Router
(Java Servlet)

Services
(EJB)

NET method call

HTTP/XML (SOAP RPC)

EJB/RMI

XSD

WSDL

NET Platform

Internal enterprise
firewall

EJB Platform

Enterprise firewall

Web pages
(ASPX)

NET method call

Browser

HTTP/HTML

DD

113Telektronikk 4.2002

7 Our New Web Site
For this particular project we used WSDL and
XSD to describe the services provided by the
service layer. These documents were used as
input for the Microsoft .NET front-end system
in order to automatically create the Web Service
proxy. The proxy wrapped all the Web Service
details into C#, and the Web Application devel-
opers used the XML Web Services as normal
method calls within their code. The WSDL and
XSD are only used once to create the proxy at
design time. At runtime the WSDL and XSD
documents are not used.

The chosen XML Web Service handler is the
open source Apache SOAP. The access point
is a servlet, RPCRouter, which translates the
SOAP XML to Java and performs EJB lookup
and a remote invocation through reflection of
Java objects. The RPCRouter handles all the
Web Service requests. The servlet uses Deploy-
ment Descriptors (DD) to translate (serialize/
deserialize) from XML to Java and vice versa.
The DD are Apache specific translation maps
(XML to Java) described using a special XML
syntax. Our implementation includes Deploy-
ment Descriptors (DD).

8 Lessons Learned
We had some problems converting some data
types from Java to C#. Caution should be shown
with different handling of data types on different
platforms.

Another important issue is Apache SOAP’s use
of Deployment Descriptors. They introduce an
unnecessary step in the development of Web
Services. DD is a proprietary definition and
could be replaced with WSDL and XSD docu-
ments.

Within three months in October 2001, Telenor
implemented a customized web site based on
Microsoft .NET platform.

9 Conclusion
When it comes to exposing objects over the
Internet, current XML Web Service technology
is an excellent (and a lot simpler, extensible and
manageable) alternative to DCOM or CORBA.
It is also much easier to implement.

Even though XML Web Services were primarily
chosen because of difficulties integrating hetero-
geneous systems, there is no reason not to use
XML Web Services to integrate homogeneous
systems.

By implementing XML Web Services, compa-
nies can automate many business operations,
thereby creating new operating efficiencies and
more efficient ways of doing business.

And with XML Web Services standards already
incorporated into their IT systems, companies
are better prepared to take advantage of upcom-
ing opportunities to transform their business.

Web services are useful for both B2B and for
internal application integration, e.g. the develop-
ment of applications that use Web Services to
connect to trusted business partners.

10 Further Reading
Microsoft. November 12, 2002 [online] –
URL: http://msdn.microsoft.com/soap

Schjefstad, K. White paper – Implementing
Web Services in a heterogeneous environment.
MSO Norway, 4 Dec 2001.

IBM on Web Services. November 12, 2002
[online] – URL: http://www-106.ibm.com/
developerworks/webservices/

Mayo, S. Five Early Birds’ Business Case
Studies. IDC Web Services, Aug 2002.

11 Acronyms
SOAP Simple Object Access Protocol
HTML HyperText Transport Protocol
RPC Remote Procedure Call
XML eXtensible Markup Language
XSD XML Schema Datatypes
WSDL Web Service Description Language
EJB Enterprise Java Beans
RMI Remote Method Invocation
JDBC Java Database Connectivity
DAO Data Access object in the Origo project
DD Deployment Descriptor

114 Telektronikk 4.2002

Laptop

Outlook

PDA

Outlook

Cell phone

Outlook

Desktop

Outlook

Synchronise!

1 Background and Context
This section describes the motivation behind our
work on the User Profile Web Service (UPWS)
and gives an overview of related work in the
problem area.

1.1 User Mobility and the
World Wide Web

The background for this paper is two important
trends. The first trend, mobility, concerns users’
increasing ability to communicate anytime and
anywhere. The huge popularity of mobile com-
munication clearly shows how this kind of free-
dom and flexibility is rapidly becoming an
important user demand. The other trend is the
huge popularity of the World Wide Web. It has
emerged as the by far most popular application
on the Internet, and in harmony with the mobil-
ity trend can now be accessed not only trough
PCs but also using smaller, mobile devices, like
mobile phones and personal digital assistants.
Users already have access to the Web almost
anytime, anywhere and from any device, and
there is every reason to believe that this trend
will continue to evolve towards more and more
flexible user options.

Today’s users experience many different ser-
vices. It may be software application services
residing on the user’s own devices, or it may be
software application services that reside on the

Web and that the user accesses through a Web
browser. Users also utilise communication ser-
vices such as voice communication and messag-
ing – on both mobile and fixed networks.

1.2 Inhibitors of User Mobility
Today however, the user’s mobility is limited
by the fact that her data are bound to the devices
and/or services that she uses. The first of these
problems means that if a user needs to use the
same service or application on different devices
this will often require synchronisation of data
between the devices (see Figure 1). Some prod-
ucts, e.g. Outlook, offer synchronisation facili-
ties so that a user automatically can update data
after changes have been made on one device.
However this solution is still tedious, and if the
user has more than two devices, the task of keep-
ing all devices updated can be a complex one.

If the service resides on a Web server this
reduces the problem, since data will be stored
on a server and accessed from all the different
devices accessing the service. However, the sec-
ond problem still remains: Data are bound to the
service, so that different services that might use
the same data will not be able to share them (see
Figure 2). Thus the user must maintain an extra
set of data for each additional service, and all
data changes must be made once per service. A
typical example of this problem is having many

Web Services in Action:
The User Profile Web Service
A N N E M A R I E H A R T V I G S E N A N D D O V A N T H A N H

Do Van Thanh (44) obtained his
MSc in Electronic and Computer
Sciences from the Norwegian
Univ. of Science and Technology
(NTNU) in 1984 and his PhD in
Informatics from the University
of Oslo in 1997. In 1991 he
joined Ericsson R&D Depart-
ment in Oslo after 7 years of
R&D at Norsk Data, a minicom-
puter manufacturer in Oslo. In
2000 he joined Telenor R&D and
is now in charge of PANDA (Per-
sonal Area Network & Data
Applications) research activities
with a focus on SIP, XML and
next generation mobile applica-
tions. He also holds a professor
position at the Department of
Telematics at NTNU in Trond-
heim. He is author of numerous
publications and inventer of a
dozen patents.
thanh-van.do@telenor.com

Anne Marie Hartvigsen (25)
finalised her Master in Informa-
tion Systems at Agder University
College in June 2002, with the
thesis “Studying Emerging
Technologies in Telenor – Using
Web Services to Provide Univer-
sally Accessible User Profiles”.
She also holds a Cand.Mag. in
social sciences from the Norwe-
gian University of Technology
and Science (NTNU). Formerly
a visiting researcher at Telenor
R&D, working in the PANDA
(Personal Area Network and
Data Applications) research
group, she is now employed
as a systems developer at the
Telenor spin-off Xymphonic
Systems.

anne.hartvigsen@xymphonic.com

This paper describes the concept of the User Profile Web Service (UPWS) – an XML Web service that

allows users to store preferences and personal data in a central profile and at the same time as it allows

the user’s different applications and services access to it. A realisation of this service would offer great

enhancement of user mobility since it would allow for personal configuration of a user’s services

independent of time, place and device.

Figure 1 Synchronising between devices

115Telektronikk 4.2002

sets of contact information – one on the mobile
phone, one in the e-mail client, one in the chat-
ting application, etc. Some of these data are
overlapping, and allowing the different services
to share the data would simplify data mainte-
nance for the user and give the user more free-
dom and mobility.

All of this does not only count for user data, but
also for preferences and settings – either applica-
tion specific or more general (e.g. privacy pref-
erences). There are several settings that would
be convenient for the user not to have to config-
ure again for each service to be used.

Also, it is important that services can be both
application services and other, e.g. communica-
tion services, and thus this paper tries to look at
a broad area taking in all categories in a user’s
daily use of IT services.

1.3 A Unified User Profile
Instead of binding user and configuration data to
different devices and services, we propose here
that the appropriate binding is between the data
and the user. A user only needs one set of per-
sonal data, and once a user has configured an
application or service with preferences and set-
tings other services should be able to reuse as
much as possible of these preferences and set-
tings. The only way to achieve this goal is to
capture all the relevant data in a user profile and
then let the different services access this profile
– as shown in Figure 3. These data can then be
used for configuration of the service and as a rep-
ository of personal user data such as e-mail add-
resses, phone numbers, favourite bookmarks, etc.

This profile must be available as a service to the
user’s different services, and there are some cru-
cial requirements associated with this:

• The profile must have one general part and
one service specific part for each service

• The profile must be extendable so that a new
service can be added instantly at any time

• The profile must be easily accessible from any
device and service

These requirements are all crucial for the user
profile to succeed and later in this paper we will
explore how these requirements can all be ful-
filled using XML Web Services. But first we
will take a look at existing initiatives towards
solving the problems we have described here.

1.4 Existing Solutions and Initiatives
Several initiatives try to solve different problems
related to those described at the beginning of this

section, and in this section we sum up some of
the major activities that are going on.

1.4.1 Virtual Home Environment
3GPP’s Virtual Home Environment (VHE) ini-
tiative recognises the user’s need to experience
the same environment on the road that they have
in their home or corporate environment. It is a
part of the IMT-2000 and UMTS specification,
and as such the environments targeted are lim-
ited to 3G mobile networks. Still only in the
specification phase, VHE aims to let a foreign
network emulate the behaviour of a user’s home
network.

1.4.2 CC/PP
There is a lot of work going on concerning the
utilisation of user profiles to enhance services,
and particularly in the area of mobility manage-
ment for wireless and mobile networks, most
often focusing on conveying situational context
information about the environment, device and
network, and only to a lesser extent personal
preferences and needs.

The Composite Capabilities / Preferences Pro-
files (CC/PP) is an example of this perspective,
focusing primarily on the capabilities of the net-
work, devices and software and not so much on

Figure 3 Central user
profile solution

Figure 2 Keeping
redundant data Stores

Pine

Address
List

Address
List

WebMail

OperaMail

Outlook

Little or no sync!

Address
List

Address
List

Laptop

Outlook

PDA

Outlook

Cell phone

Proprietary

Desktop

Pine

Synchronise
against one place!

User Profile
Personal Data
 • Address List
 • Bookmarks
 • Etc.

Application Data
 • Settings
 • Preferences

116 Telektronikk 4.2002

user preferences. Software services on the Web
may be accessed from devices with different
capabilities – limitations in bandwidth and dis-
play may for example benefit from receiving a
lightweight version of the service, while a user
with a powerful PC and broadband would bene-
fit from receiving every feature that the service
can offer. CC/PP addresses this issue by defining
a way to specify what a user agent (defined in
terms of hardware and software platform and
user agent application such as a Web browser) is
capable of doing. Using CC/PP Web clients and
services can negotiate service content and con-
tent delivery mechanisms to best fit the capabili-
ties of the user agent. CC/PP also aims at defin-
ing user preferences, although this is not speci-
fied at this time. Thus CC/PP does not yet take
care of user preferences in a satisfactory way.

1.4.3 P3P
The Platform for Privacy Preferences (P3P)
focuses on user preferences in terms of privacy
protection levels on Web sites. The user must
install a P3P client on the device she is using to
access the Web page, and then the client and the
Web site can negotiate on the content. The ulti-
mate P3P implementation would be integrated
with the Web browser on the client side, but the
solution is still bound to the device the user
accesses a given service (Web site) with, and
also to the client (Web browser) she uses.

1.4.4 .NET myServices
.NET myServices is the only existing solution
similar to our UPWS. The aim of this service is

to offer users the ability to store personal infor-
mation in a central repository, which can be
accessed by other applications such as an XML
Web service. The concept relies heavily on .NET
Passport service for single sign-on. However,
our proposed framework goes beyond the scope
of .NET myServices, since users have no oppor-
tunity to register different services as a part of
their profile. Also, this project is still under
development, and is not offered as a commercial
service yet.

2 The User Profile Web Service
The data model in Figure 4 shows a general out-
line of the user profile, described in UML. It
shows how each user must have a general User-
Profile where user specific data such as name,
address, contacts, etc. can be stored. In addition
each user can have several UserApplicationPro-
files where application specific data are stored.
The content of ApplicationSpecific need not be
understandable to any other than the service to
which it belongs.

2.1 Realisation Alternatives
There are many possible ways in which the user
profile could be realised and made available to
the user’s services and applications (from now
on called clients).

The user could for example carry all the data
with her. This could be done with the help of a
smart card, but that would limit the solution to
devices with the ability to read smart cards. The
lack of card readers and security mechanisms

Figure 4 User Profile
Data Model

ApplicationRestriction ApplicationRoutingInfo ApplicationChargingInfo ApplicationSecurity ApplicationSpecific

UserApplicationProfile

ServiceRestriction RoutingInfo ChargingInfo SecurityInfo

UserProfile
- name
- address

UserData
- address list
- bookmarks

1 1

1

1111

1 1 1 1

0..*

11

0..1 0..1 0..1 0..1 0..1

1 1 1

117Telektronikk 4.2002

makes this an unrealistic option. Besides the
solution would depend on the user not losing
or damaging her card.

Instead we propose that the profile should be
stored in a place reachable from all devices and
services in a programmatic way. The Internet
and the World Wide Web seem like a natural
choice, due to the ubiquity of the Web. By plac-
ing the profile on a Web server it is accessible
from many fixed and wireless networks. There
are however two problems that must be over-
come. First of all the Web is more suited for
retrieving data than submitting data back –
which must be done to update the profile. It is
possible to use HTTP Post but this is not an ideal
solution. Secondly, Web access is traditionally
done through a Web browser, while in our case
we need the service to be programmatically
accessible from the different clients.

One solution to these problems could be to use
existing approaches to distributed computing,
such as COM+, CORBA, IIOP and Java RMI.
There are however some serious problems con-
nected with these approaches too, because they
put restrictions on the implementation details of
the clients. First of all the client is often forced
to use the same technology as the service – e.g.
a CORBA service cannot be accessed using
COM+. Secondly the chosen technology can
limit possible limitations because they require
the server and client to be implemented in a cer-
tain way. For example, for a client to use Java
RMI it must be implemented in Java. The conse-
quence of this is that the service will have to offer
several different interfaces, or it will automati-
cally deprive some clients of the possibility to
access it without having to write a complex, ex-
pensive and non-reusable interface to the service.

Another problem with these technologies is that
they use tight coupling, which makes the solu-
tions less flexible and less suited for using the
Web as the platform. Add to this that the tech-
nologies are quite complex and heavy to imple-
ment, plus the fact that firewalls are not handled
very elegantly, and it is no wonder that universal
services like our proposed user profile does not
exist on the Web today.

2.2 XML Web Services
In this context XML Web services (see What is
a Web Service in this issue of Telektronikk) con-
stitutes a simpler technology for offering ser-
vices on the Web. There is a couple of factors
that make Web services the most suitable tech-
nology for realising our service:

• Universal accessibility. The XML Web ser-
vices specifications offer a higher level of
abstraction than the other technologies men-

tioned here (see How to Build a Web Service
in this issue of Telektronikk). By using XML-
schema definition of data types and allowing
any language and platform to map these to its
own representation it is possible to generate
clients on any platform

• Loose coupling. This is the programming
model most suitable on the Web platform,
since services will never be 100 % reliable.
It also ensures that changes on either side do
not affect the other party’s solution, as long
as the interface is kept as it is. It also provides
flexibility, since it becomes easy for a client to
switch to a new service.

• Simplicity. There is no doubt that skilled
developers are still needed, but the amount of
development that needs to be done is smaller,
since the technology is simpler. This of course
also means reduced functionality, but the plan
is to let the standard evolve as needs arise,
instead of including everything from the
beginning. This wisdom originates from the
success of the Web, which has evolved
exactly in this way. Therefore the SOAP pro-
tocol is designed with extensibility in mind.

• Industry support. With big players like
Microsoft, IBM and BEA evangelising Web
services and implementing Web services stan-
dards in their products, there is little doubt
that the new technology is something more

Figure 5 UPWS
architectural overview

Figure 6 Use cases
User

(application)

Get Details

Set Details

System Border

Data store

Application
Interface

User

Trusted
Application

SOAP

User Profile
Web Service

118 Telektronikk 4.2002

than a fad that will be gone in a year or two.
The broad support means that most vendors
are already implementing the standards, so
that developers on many different platforms
can get readily generated interface code with-
out having to write much more than the busi-
ness logic. It also means that the goal of
100 % interoperability between different
platforms is realistically obtainable.

As a Web service the user profile is accessible to
any service that is connected to the Internet and
able to talk and understand SOAP (on HTTP or
any other transport protocol that the service
provider chooses to support). Since retrieving
and updating the profile will be quite a costly
process in terms of time and bandwidth, the
most suitable way to use the profile would be for
the client to download the relevant parts of the
profile at the beginning of a user session. If
changes occur the profile can be updated at the
end of the session or whenever a user decides
during a session.

Mechanisms must be in place to authenticate
both the user and the client of the profile service.
Authentication can be as simple as basic authen-
tication, but regarding that sensitive and per-
sonal data will be transferred it would also be
desirable to use some kind of digital certificate
and to encrypt sensitive data.

The end user can access the profile through a
service that uses the Web service interface, since
the Web service itself cannot have a user inter-
face. The resulting architecture is shown in Fig-
ure 5. Thus the different clients will provide the
user interface, and if it is necessary the user pro-
file provider itself can provide a client to allow
for easy administration of the profile.

The different clients will simply fetch user pro-
file details and write back changed details. On a
high level this results in the two use cases shown
in Figure 6.

Set Details will have two different scenarios –
one general and one for the first registration of
the service.

Both scenarios require the user and client to
authenticate, so that the UPWS can give them
access to the appropriate parts of the user profile.

3 Use Scenarios
By using the UPWS a user can

• access an updated contact list from any ser-
vice requiring names, e-mail addresses, phone
numbers, fax numbers, etc.;

• access her favourite Web links from any Web
browser on any device;

• automatically configure an application whose
settings are stored in the profile;

• automatically fill in Web forms;

• add new services to her profile on the fly.

4 Implementation
There are several issues that must be resolved
when implementing the profile:

• Storage and retrieval of user profile data;

• 3rd party application access to and modifica-
tion of user profile data;

• User access to and modification of user
profile data;

• Security;

• Providing the service;

• Consuming the service.

4.1 Storage and Retrieval of User
Profile Data

When deciding how to store and manage XML
data there are at least four alternative ways to do
it: In a file system, in a native XML database, in
a modified object database or in a relational
database. File systems and native XML data-
bases are appropriate for storing XML docu-
ments rather that XML data, the latter being
more structured. Object databases have been
identified as a natural storage for XML, but
have yet to prove their usefulness in this context.

When storing structured data, it is generally rec-
ommended to use a relational database and then
extract the information from the database to
XML when needed. Structured data will benefit
from the relational model when it comes to
retrieval, searching and aggregation of data.
While this forces a need to transform, or decom-
pose the original XML document, decomposing
an XML document to be stored to a relational
database is not all that difficult. Also, many rela-
tional database vendors are implementing thin
XML serialiser wrappers that enable them to
generate XML documents on demand from rela-
tional data. So even if data will be coming in and
going out as XML, e.g. in the form of SOAP
messages, they can and should be stored as rela-
tional data.

One obvious advantage of using relational
databases is that the technology is mature, stable

119Telektronikk 4.2002

and ubiquitous, and a whole range of tools exist
for working with relational databases.

The service will extract the relational data into
XML documents before providing applications
and users access to them. It will also have to
extract data from XML documents to update the
database. Depending on the implementation,
more or less of this functionality can reside in
the database itself. Different implementations
will have different ways of accessing data. The
.NET development, for instance, will probably
use ActiveX Data Objects for .NET (ADO.NET)
to connect to data stores, while a J2EE imple-
mentation will probably use JDBC (see Figure 7).

4.2 Third Party Application Access
to and Modification of User
Profile Data and Functions

We have already concluded that XML Web
services is the best alternative for realising the
application.

The purpose of the User Profile Web Service is
to give any other application access to the profile
data. After getting the data from the profile, an
application can configure according to the set-
tings defined in the profile. The application
should not have access to the whole profile,
merely the parts relevant for the type of terminal
and service in use, and according to user specifi-
cations. This will be specified in the Applica-
tionRestriction (see Figure 4). Based on the
information retrieved from the profile service,
the application can provide the user a person-
alised service. The application must also be
able to update the UserApplicationProfile that
belongs to the calling application.

Since the service will be provided as an XML
Web Service, the API will be a SOAP interface,
described in WSDL format. The third party
application uses the WSDL file to understand
the interface and implement a client proxy
through which it can communicate with the Web
service. Through this interface the application
can both fetch the user profile data and return
new or changed data to the user profile service
(see Figure 8).

4.3 User Access to and Modification
of User Profile Data

The most convenient way to provide the user
access to her data is through the applications that
will be using the user profile service. To ensure
data privacy and integrity it is however impor-
tant that different applications have limited read
and write access to the data, otherwise a mali-
cious application might change the user data
without the user’s knowledge and consent. That
is why restrictions are defined in the Applica-
tionRestriction class.

Figure 9 shows how the user accesses the User
Profile Web Service through the user interface
of a third party application.

Applications must be trusted by the Web service
in order to be allowed access. Depending on the
trust level, different parts of the profile might be
available to the different applications. At least
one application should be completely trusted by
the Web service, so that the user can manage all
her data through this application. The user pro-
file provider itself could offer this application,
or a trusted third party could offer it.

Third party applications could either be installed
on the user’s device, or be accessible through
Web interfaces such as HTML and WML. When
delivered to the user as a Web application, an
application could either provide one user inter-
face (e.g. only HTML interface), or several user
interfaces (e.g. both WML and HTML inter-
face). In the case of several interfaces, these
could be provided as different, static interfaces,
or as one dynamic interface, displaying differ-

Figure 8 Third party
application access to

the user profile service

Relational Database

3rd Party
Application

SOAP
(XML)

User Profile Web Service

Company Border

ADO.NET

JBDC

etc.

User
Profile
Web

Service

Company Border

SOAP
(XML)

SOAP
(XML)

SOAP
(XML)

SOAP
(XML)

3rd
Party
Appli-
cation

Fetch User´s Personal Data

Fetch Application Settings

Update User Data

Update Application Settings

Figure 7 Data storage and access

120 Telektronikk 4.2002

ently depending on the accessing device. To
achieve the last scenario the interface could be
described in XML, and XSLT style sheets could
be used for generating the most suitable inter-
face display (see Figure 10).

4.4 Security
Security is extremely important in this service.
Some of the data stored in the profile are per-
sonal, sensitive information that the user must be
able to trust will not be read or altered by anyone
else than the user herself and the applications
approved by the user and the profile provider.

In addition to password authentication, security
precautions would probably involve some use of
digital certificates to further authenticate the
client, and to encrypt sensitive data. This can be
done using a secure key exchange protocol like
Kerberos or HTTPS based on PKI key exchange.
Applications should only gain access to relevant
data, in order to protect the service from misuse.

Security is a complex issue, depending very
much on the context in which it is implemented.
Therefore it is not appropriate to specify a
detailed security design here.

4.5 Providing the User Profile Web
Service

When the data store and business logic of the
service is implemented on the provider’s plat-
form, some kind of XML Web services frame-
work is needed in order to make the service
available to others. This can be done either with
Microsoft’s .NET framework, or with a J2EE
implementation that supports XML Web service
protocols. As soon as this is done, the service is
available on the Web. The service can be in-
voked by sending the appropriate SOAP mes-
sages to the appropriate URIs, and what these
are is specified in the WSDL document, which
is also available on the Web.

Next, potential users of the Web service (third
party applications) must be aware of the service.
One way is telling partners and other chosen
actors about the service, and where they can
download the WSDL document. While a good
and secure way of testing the service to begin
with, it does not meet the requirements of global
ubiquitous accessibility from any application. To
achieve this the service must be published in a
global registry that can be searched by possible
clients. XML Web Services specifications there-
fore also include the UDDI registry for universal
registration and discovery of XML Web Ser-
vices.

Publishing the service to the UDDI registry does
not only mean that the service must be 100 %
stable and available, it also means that it must
implement security precautions ensuring that
the service will only be accessed by applications
that are authenticated and authorised to use it.
A UDDI broker might offer some security and
guarantees, but the service provider must also
consider which security mechanisms that are
necessary to implement in the service.

Users of the service can either be approved auto-
matically online (e.g. with the help of authenti-
cation and contract services provided by the bro-
ker), or contracts can be negotiated manually,
“off-line”. Which model is best suited is a mix
of security concerns, business model (e.g. are the
users supposed to pay for using the service) and
available solutions (e.g. how much is already
offered by the broker).

4.6 Consuming the User Profile Web
Service

As discussed in the previous section, a client can
discover the service through a UDDI registry or
by direct communication with the provider.
After discovering the service and obtaining the
necessary access keys (passwords, certificates
or other things that the XML Web service might
require), the client must build a proxy to com-
municate with the Web service. This is gener-

Figure 9
Application
using the
UPWS for
personalisation
of its services
to the end user

Figure 10 Dynamic user
interface using XSL

3rd Party
Application

Interface
Provider by
3rd Party

Application

?

UserFetch User
Profile Details,

Set User
Profile Details

User Profile Web Service (SOAP interface)

Data Store

HTML,
WML,
etc.

User

Trusted
Application

User Profile
Web Service

SOAP

XML

XML

121Telektronikk 4.2002

ated automatically from the information in the
WSDL file and integrated into the client’s soft-
ware project. Now the client can call the proxy
methods as if they were local methods. How
these methods should be called and how the
results should be handled is entirely up to
the client application.

If the client for instance is granted access to the
user’s bookmarks, it will probably see a method
called something like getBookmarks. By calling
this method the client would obtain the user’s
bookmarks. The client application is then free
to do with them whatever it wants, but it would
probably choose to store them in the user’s local
bookmarks folder. If the client application were
the Internet Explorer Web browser, it would
probably store them in the “Favourites” folder
belonging to the user.

4.7 UML Application Design
The Object Management Group (OMG) speci-
fies a modelling language called Unified Mod-
elling Language (UML) (Object Management
Group, 2001), which aims at enabling imple-
mentation independent design of applications.
This modelling specification has become very
popular and is implemented by a number of ven-
dors, e.g. Rational and Telelogic.

To provide an overview of the user profile ser-
vice design, three kinds of UML diagrams are
shown here. First some use cases are presented
to show how other applications will interact with
the service. Then data objects are shown in a
class diagram. Lastly the use cases are elabo-
rated in sequence diagrams, depicting how the
different data objects will interact in each use
case.

4.7.1 Use Cases and Class Diagram
The use cases show how actors may interact
with the user profile service. In use case dia-
grams the actor, or user, can be either an end
user, or another system (application) using the
service.

Figure 6 shows a simple use case diagram. It
illustrates the main use of the system, namely
reading user profile data, and saving new or
modified data.

To be more accurate it is necessary to design a
data model that shows what kind of data the user
profile service will contain.

Telecom user profiles would constitute a good
starting point for the service. But telecom user
profiles as defined have many limitations. The
user profile is intended for customisation of the
main service, namely voice communication or
telephony, and its supplementary services, e.g.

call forwarding, call answering, etc. It is also
stored within the operator’s system and is not
available to third party applications or services.
In order to allow the users access to multiple
applications and services anytime, anywhere
and on any terminal, the content of the user pro-
file needs to be extended to fulfil the following
requirements:

• For each user the user profile must be expand-
able to incorporate the preferences and set-
tings for any additional application or service
that the user requires.

• For each application the user profile must con-
tain the information necessary for the presen-
tation of the application on the terminal types
requested by the user.

• For each application the user profile must con-
tain usage restrictions.

• The user profile must incorporate personal
data such as address book, telephone list,
bookmarks, etc.

In accordance with these requirements, a data
structure for the user profile is proposed in UML
(Unified Modelling Language) in Figure 4.

The UserProfile has six components: UserData,
ServiceRestriction, RoutingInfo, ChargingInfo,
SecurityInfo and UserApplicationProfile.

UserData contains for example addressList,
bookmarks, etc.

ServiceRestriction has attributes such as:
• Roaming restriction
• Time restriction
• Credit limit
• Maximum number of terminal addresses for

group registration for incoming applications
• Incoming screening
• Outgoing screening
• List of subscribed services

RoutingInfo has attributes such as
• Forwarding activation status
• Registered terminal address for incoming

applications
• A linked-registered terminal address
• Default terminal address for incoming appli-

cations
• Routing by applications originating area
• Routing by calling party identity
• Time-dependent routing
• Routing on “busy” condition
• Routing on “no answer” condition
• Default duration (or number of calls) for

incoming applications registration

122 Telektronikk 4.2002

ChargingInfo has attributes such as
• Default charging reference location
• Charging option selected
• Temporary charging reference location
• Advice of charge activation status

SecurityInfo has attributes such as
• Authentication procedures subscribed
• Security options subscribed
• Type of authentication procedures activated
• Max number of failed authentication attempts
• Password

The UserProfile may contain zero or more User-
ApplicationProfiles. The purpose of the UserAp-
plicationProfile component is to enable customi-
sation of an application. For each application
(run in a service session), there may hence be
assigned zero or one UserApplicationProfile. The
UserApplicationProfile may contain zero or one
ApplicationRestriction, ApplicationRoutingInfo,
ApplicationChargingInfo, ApplicationSecurity-
Info and ApplicationSpecInfo. It is therefore pos-
sible to specify the restrictions, routing, charging,
and security options for each application.

The ApplicationSpecInfo is a component that
contains application specific data. Greater flexi-
bility is achieved in this way. An application is
however not required to have its own UserAppli-
cationProfile. For applications that do not have
their own profile the main UserProfile is applied
at the initiation of the application. The user
should have access to a service that permits him
to interrogate and modify some of the attributes
of his UserProfile. His access rights are linked
to and used by an access control procedure.

While all these classes are important in a work-
ing telecom user profile application, some of
them fall outside the scope of this thesis. Focus-
ing on the usage of XML Web services in order
to provide access to data, the classes most
important in this setting are UserProfile, User-
Data, UserApplicationProfile and UserApplica-
tionSpecific, since these must be accessible from
the third party application.

RoutingInfo, ChargingInfo, ApplicationRouting-
Info and ApplicationChargingInfo deal with
routing of calls and the operator’s basis for
billing the customers, and will not be discussed
further here. For the sake of simplicity these
classes are omitted in the rest of the design.

ServiceRestriction in telecom profiles is mainly
used for time- and place restrictions, and the
ApplicationRestriction can serve the same pur-
pose. However, ApplicationRestriction can also
be used for restricting the application’s privi-
leges; i.e. regarding access to the user profile data
such as bookmarks and personal data. Security
and ApplicationSecurity can be used for authenti-
cating and authorising the user and application.

Figure 11 shows a more detailed use case dia-
gram. The user of the service must be able to
fetch and alter some of the objects in Figure 4,
namely the UserProfile, UserData, UserApplica-
tionProfile and UserApplicationSpecific. The
other classes are for internal use, and will not
interact directly with the user.

In the next section, these use cases are elabo-
rated into sequence diagrams, showing what
must happen on the inside of the system once
a use case occurs.

4.7.2 Sequence Diagrams
Sequence diagrams are drawn for each of the use
cases, and often as several scenarios for each use
case. The purpose is to show how the system’s
objects must interact when an actor is using the
system.

Figure 12 and Figure 13 show the sequence dia-
grams for get and set UserProfile. After the user
is authenticated, application restrictions are
checked to prevent the application from altering
data that this particular application does not have
write access to. If the application is allowed, the
user profile object will be updated accordingly
and a confirmation is sent back to the calling
application.

Get and set UserData are similar to get and set
UserProfile, and are only shown in the appendix.

Figure 14 shows how UserApplicationProfile is
fetched. Each application should have access to

Figure 11 Detailed
use case diagram

User
(application)

Get UserProfile

System Border

Set UserProfile

Get UserData

Set UserData

Get UserApplicationProfile

Set UserApplicationProfile

Get UserApplication Specific

Set UserApplication Specific

123Telektronikk 4.2002

Figure 12 Sequence diagram: get UserProfile

Figure 13 Sequence diagram: set UserProfile

User
(application)

System Border

getUserProfile
(userID, password, appID)

(OK?)

authUser
(userID, password)

User Profile
Web Service

SecurityInfo Application
Restriction

UserProfile

(ApplicationRestriction)

getRestriction
(userID, appID)

(UserProfile)

getProfile(userID, appID
ApplicationRestriction)

(UserProfile)

User
(application)

System Border

setUserProfile
(userID, password, appID, UserProfile)

(OK?)

authUser
(userID, password)

User Profile
Web Service

SecurityInfo Application
Restriction

UserProfile

(ApplicationRestriction)

getRestriction
(userID, appID)

(OK?)

(OK?)

updateProfile(userID, appID
ApplicationRestriction, UserProfile)

all data in its specific UserApplicationProfile
object, so there is no need to check restrictions.
Otherwise get and set UserApplicationProfile is
similar to get and set UserProfile.

Get and set ApplicationSpecific are similar to
get and set UserApplicationProfile and are only
shown in the appendix.

The preceding diagrams have shown the most
common use case scenarios. Another scenario

for the use cases is when the user or application
is not yet registered in the user profile.

Figure 15 shows how a New Application sce-
nario could be handled.

The procedures for registering a new user will
not be drawn here, since it depends on how the
company offering the user profile chooses to
include new users. Telecom companies could
offer the service to existing customers, since

124 Telektronikk 4.2002

data about them would already be stored. In that
case, an activation procedure where the customer
agrees on the service terms may be all that is
needed to register the new user.

5 Business Model
An actor that can be trusted both by the user and
the service provider must host a service like this.
The user needs to be certain that her data will

Figure 14 Sequence
diagram: get User-
ApplicationProfile

Figure 15 Sequence
diagram: set User-
ApplicationProfile,
new application
scenario

User
(application)

System Border

getUserApplicationProfile
(userID, password, appID)

(OK?)

authUser
(userID, password)

User Profile
Web Service

SecurityInfo UserApplication
Profile

(UserApplicationProfile)

fetchProfile
(userID, appID)

(UserApplicationProfile)

User
(application)

System Border

setUserApplicationProfile
(userID, password, appID,

userApplicationProfile)

(OK?)

authUser
(userID, password)

User Profile
Web Service

SecurityInfo

(UserApplicationProfile)

registerProfile
(userID, appID)

(UserApplicationProfile)

User
(application)

setUserApplicationProfile
(userID, password, appID,

userApplicationProfile)

(OK?)

authUser
(userID, password)

(OK)

setProfile
(userID, appID)

(UserApplicationProfile)

UserApplication
Profile

125Telektronikk 4.2002

not get lost or accessed by unauthorised parties.
The service provider on the other hand would
also need to be sure that the service specific data
would not be altered without permission from
the service, and that the user data are correct.
Telecom providers already maintain extensive
user profiles to configure their communication
services, and the user data are validated in the
sense that correct information about real users
is ensured. As such telecom companies or other
companies with this kind of customer informa-
tion, and also government administrations have
a starting point for providing such a service. To
secure customer rights it is possible to imagine
that several such institutions would cooperate in
providing the user profile.

Several payment schemes can be imagined. First
of all it is a question of who should pay for the
service – the user, the service provider or both.
Secondly it would be possible to charge either
per use or per time unit (e.g. monthly fee). Prob-
ably a mixture of the different possibilities could
be offered, but we will propose one model here.

We assume that a telecom company chooses to
offer a user profile service to its customers.
These customers already pay a monthly sub-
scription fee, and the service could be offered as
added value to certain subscription types, or in
return of an additional monthly fee. To ensure
that the service will actually be useful to the cus-
tomers, any application can access the service
for free. Subscribing to this service then, the user
would be able to use it with any of her services
that have chosen to implement the service. Since
clients are easy to make, many service providers
may consider this a cheap way to add significant
value to the service.

6 Issues to Resolve and
Further Work

This paper has merely presented a draft of a pos-
sible Web service: The user profile Web service.
There are, however, several issues related to the
user profile that need to be resolved before a real
and commercial Web service can be offered.

6.1 Legal Considerations
Storing user data demands a permit from author-
ities, and the ability to obtain such a permit is an
important issue to consider. A provider must
also be prepared to prove that user data will not
be available to third parties without the user’s
full and cognisant consent.

6.2 Privacy Considerations and User
Acceptance

Apart from the legal considerations there is a
distinct ethical issue about storing and managing
people’s personal data. In the kind of service

provided here this issue becomes even more vis-
ible, since the scope is to include as many of the
user’s data as possible. Users are concerned
about privacy, particularly on the Internet (Cra-
nor et al. 1999). Although the goal is to provide
the user and the user’s services with a valuable
service that will make data management easier
on all parts, it is easy to see how motives can be
questioned, and users are and should be sceptical
towards putting all their data in the hands of one,
big actor. It becomes extremely important that
the provider is regarded as a fair and trusted
actor. This is yet another reason for several
actors to ally – the notion of several actors work-
ing together may increase credibility.

6.3 Technical Considerations
Our tentative data model is not complete, and
particularly there is a need to discuss which data
should be user specific and which should be
application specific. One should also consider
the use of application categories to enable shar-
ing of data between different applications in the
same application domain. There are also many
implementation specific aspects that must be dis-
cussed, such as security architecture and which
platform to use.

7 Conclusion
We have described an application called the
User Profile Web Service. This application
allows users to store preferences and personal
data in a central profile, with the purpose of
granting different services access to it. In this
way the proposed application allows the user’s
services to self-configure.

The enabling technology for the User Profile
Web Service is XML Web Services. Using XML
Web Services allows services on any platform
and device to take advantage of the user profile,
as long as they can use the Web services proto-
cols and compliant transport protocols (e.g.
HTTP or SMTP). A realisation of this service
would offer great enhancement of user mobility
since it would allow for personal configuration
of a user’s services independent of time, place
and device. However, the work is in an early
stage and there are several issues that need to be
resolved first – both on the technical level and
business considerations.

8 Further Reading
Cranor, L, Reagle, J, Ackerman, M S. (1999).
Beyond Concern : Understanding Net Users’
Attitudes About Online Privacy. AT&T Labs-
Research Technical Report TR 99.4.3. August
16, 2002 [online] – URL: http://www.research.
att.com/resources/trs/TRs/99/99.4/99.4.3/
report.htm

