

Feature:
Languages for Telecommunications Applications

1 Guest Editorial; Rolv Bræk

4 The ITU-T Languages in a Nutshell; Arve Meisingset and Rolv Bræk

20 SDL-2000 for New Millennium Systems; Rick Reed

36 SDL Combined with UML; Birger Møller-Pedersen

54 MSC-2000: Interacting with the Future; Øystein Haugen

62 A Tutorial Introduction to ASN.1 97; Colin Willcock

70 CHILL 2000; Jürgen F H Winkler

78 Object Definition Language; Marc Born and Joachim Fischer

85 Conformance Testing with TTCN; Ina Schieferdecker and Jens Grabowski

96 On Methodology Using the ITU-T Languages and UML; Rolv Bræk

107 Descriptive SDL; Steve Randall

113 Combined Use of SDL, ASN.1, MSC and TTCN; Anthony Wiles and Milan Zoric

120 Implementing from SDL; Richard Sanders

130 Validation and Testing; Dieter Hogrefe, Beat Koch and Helmut Neukirchen

137 Distributed Platform for Telecommunications Applications; Anastasius Gavras

146 Formal Semantics of Specification Languages; Andreas Prinz

156 Telelogic SDL and MSC Tool Families;
Philippe Leblanc, Anders Ek and Thomas Hjelm

164 Cinderella SDL – A Case Tool for Analysis and Design;
Anders Olsen and Finn Kristoffersen

172 The Evolution of SDL-2000; Rick Reed

181 Perspective on Language and Software Standardisation; Amardeo Sarma

Special

191 Quality of Service in the ETSI TIPHON Project; Magnus Krampell

196 QoS and SLA Structure in a VoIP Service Case;
Irena Grgic, Ola Espvik, Terje Jensen and Magnus Krampell

220 Some Physical Considerations Concerning Radiation of Electromagnetic
Waves; Knut N Stokke

229 Telektronikk Index 2000

Contents

Telektronikk

Volume 96 No. 4 – 2000

ISSN 0085-7130

Editor:

Ola Espvik

Tel: (+47) 63 84 88 83

email: ola.espvik@telenor.com

Status section editor:

Per Hjalmar Lehne

Tel: (+47) 63 84 88 26

email: per-hjalmar.lehne@telenor.com

Editorial assistant:

Gunhild Luke

Tel: (+47) 63 84 86 52

email: gunhild.luke@telenor.com

Editorial office:

Telenor Communication AS

Telenor R&D

PO Box 83

N-2027 Kjeller

Norway

Tel: (+47) 63 84 84 00

Fax: (+47) 63 81 00 76

email: telektronikk@telenor.com

Editorial board:

Ole P. Håkonsen,

Senior Executive Vice President.

Oddvar Hesjedal,

Vice President, R&D.

Bjørn Løken,

Director.

Graphic design:

Design Consult AS, Oslo

Layout and illustrations:

Gunhild Luke, Britt Kjus (Telenor R&D)

Prepress and printing:

Optimal as, Oslo

Circulation:

4,000

1Telektronikk 4.2000

When the CCITT, now ITU-T, initiated work on
specification and programming languages back
in 1972, it was a bold step. At that time software
engineering was in its infancy and the develop-
ment of communication software very much a
pioneering thing. Every system development
involved breaking some new technological
ground. At the same time it was clear that soft-
ware offered far more possibilities than mere
replacement of electromechanical and electronic
solutions. Entirely new functionality was possi-
ble and was therefore gradually introduced into
the systems. This is a well-known pattern from
all areas of computing. But communication sys-
tems were not allowed to trade functionality for
quality, as has been so common in other strands
of computing. Even as the complexity was grow-
ing beyond bounds, the systems had to satisfy
outstanding requirements to high-performance,
reliability and no-break operation. Therefore, it
became essential at an early stage to find ways
to master the quality in the face of growing com-
plexity.

The combination of high complexity with high
reliability forced the communication software
industry to take a pro-active approach to soft-
ware quality from the very beginning. Since
communication software always has been em-
bedded real-time software with a high degree
of concurrency, distribution and heterogeneity,
the solutions that were developed attacked these
problems from the very beginning, while they
were not yet considered important in mainstream
software engineering.

The early techniques developed for software
engineering in general, such as SADT and Struc-
tured Analysis/Structured Design, focused on
activities and data-flow. Quite deliberately they
did not deal with sequential behaviour, concur-
rency and distribution. They emphasised abstrac-
tion and human understanding more than formal-
ity. They provided no formal semantics, and
therefore it was not possible to simulate and
analyse the system behaviour before it was
implemented. Moreover, the mapping from
abstract model to concrete design was unclear,
and the value of abstract models was therefore
limited to the early phases. They had little docu-
mentation value for the final product and were
in many cases just thrown away. Apparently, the
activity-oriented approach of those techniques
did not deliver all the benefits promised, not
even outside the communication domain.

Later developments have focused more on data
modelling, and these have been considerably
more successful, especially for data-intensive
applications. In recent years, the trend has been
towards object-orientation and more formality.
The Unified Modelling Language, UML, is the
latest and most notable development in this
direction. It combines a set of graphical nota-
tions with a partial semantics that makes its
meaning more precise. It has notation for se-
quential and concurrent behaviours based on
StateCharts that enable a partial simulation of
behaviour before it is implemented, but still it
lacks a complete semantics.

The techniques developed for communication
systems on the other hand, emphasised formality
and dealt explicitly with sequential behaviour
and concurrency from the beginning. All the for-
mal description techniques (FDTs) ESTELLE,
LOTOS and SDL had state transition based
semantics that enabled simulation and analysis
to take place before implementation. SDL had
the additional benefit of a graphical notation that
supported human comprehension combined with
an underlying finite state machine semantics that
could be implemented effectively. For this rea-
son SDL has been the most successful of the
FDTs, with a good track record from numerous
industrial development projects.

SDL as a language was object-based already
when first recommended in 1976, and since
1992 it has been a full-fledged object-oriented
language. It has a semantics that supports formal
validation and enables complete simulation to
take place before implementation, and also to
generate complete and efficient implementation
code automatically. These properties enable
development organisations to move from an
implementation oriented development paradigm
to a design oriented development paradigm. In
the latter, a system is documented and main-
tained primarily using design descriptions and
not by implementation code.

Contrary to the popular belief that techniques
coming from the communication world are “old
fashioned” they are still leading edge in the areas
of object and behaviour modelling. When com-
munication systems and information systems
now merge into ICT systems, a corresponding
merge of techniques from the “I” world and the
“C” worlds is bound to take place. As the soft-
ware industry in general moves towards dis-

Rolv Bræk

Guest Editorial

2 Telektronikk 4.2000

tributed heterogeneous solutions we now see a
convergence towards a similar merge for the
software industry at large. This convergence
leads to considerable cross-fertilisation and inte-
gration of previously different disciplines such
as control systems, user interfaces and databases.

UML – now emerging as a family of languages
that is competing with the ITU-T languages – is
developing fast and attracting far more attention
than the ITU-T languages ever did. From a tech-
nical point of view, the ITU-T languages and
UML partly overlap and partly complement each
other. The overlap area has been greatly ex-
tended by introducing into SDL-2000 notation
from UML Class Diagrams and by introducing
the notion of composite states from UML State
Machines/State-Charts. It is now possible to
define associations between types and also par-
tially to define types using (parts of) the UML
Class diagram notation within SDL. On the other
hand, SDL complements UML by providing a
complete operational semantics and the possibil-
ity to precisely define the component structure
of aggregate types. MSC complements UML by
providing structuring mechanisms entirely miss-
ing in the UML sequence diagrams and collabo-
ration diagrams.

This issue of Telektronikk is about the family of
languages currently standardised by ITU-T, and
related methods, tools and middleware. The
ITU-T language family presently consists of:

• The Specification and Description Language,
SDL. The new version of SDL, called SDL-
2000, is a major revision and is presented for
the first time in a popular form in the article
by Rick Reed. Rick Reed also presents the
history of SDL in an accompanying article.

• Message Sequence Charts, MSC, which are
used to describe external behaviour properties
by means of interaction cases. MSC provide a
useful complement to SDL and is used both as
input when making SDL descriptions and as
specification when performing verification
and testing. Øystein Haugen presents the latest
developments of MSC in the article MSC-
2000: interacting with the future.

• The Abstract Syntax Notation One (ASN.1) is
used to describe data structures, especially in
connection with protocols. In combination
with encoding rules for the physical transfer
of data, ASN.1 is much used in protocol
development, and may also be combined with
SDL. Colin Willcock describes ASN.1 in his
article.

• The Tree and Tabular Combined Notation,
TTCN, which is used to describe test cases.

TTCN may be generated from SDL and MSC.
Ina Schieferdecker and Jens Grabowski de-
scribe TTCN in their article.

• CHILL – the CCITT HIgh Level (program-
ming) Language. CHILL is an advanced pro-
gramming language that supports concurrent
processes. It has been adopted by many major
telecom manufacturers and used successfully
to develop a wide range of complex systems.
CHILL is described in the article by Jürgen
Winkler.

• The Object Definition Language, ODL, which
is an extension of the Interface Definition
Language, IDL, known from CORBA. ODL
is introduced in the paper by Joachim Fischer
and Marc Born.

A mapping between SDL and UML has been
defined in the ITU-T recommendation Z.109,
SDL combined with UML, which is elaborated
in the article by Birger Møller-Pedersen. This
mapping allows developers and tools to put
leverage on the strengths of both languages by
facilitating a combined use.

The article by Rolv Bræk and Arve Meisingset
presents an overview of the language features of
SDL-2000, MSC-2000 and UML. The purpose
is to give readers that are unfamiliar with these
languages a first introduction, and also a feeling
for their main content as a background for the
more detailed articles that follow. Readers with
a basic knowledge of the languages, who are
more interested in the new features, should move
directly to the specialist articles.

One important asset of the ITU-T languages,
especially SDL, has been its formally defined
semantics. Principles for defining formal seman-
tics are presented in the paper by Andreas Prinz,
using examples from SDL and MSC as illustra-
tion.

It is a common misunderstanding that formal
language and formal method is the same thing,
but it is not. Methods are concerned with how to
use the languages to achieve better results. Sev-
eral methods have been introduced that are based
on the ITU-T languages and UML. The article
by Rolv Bræk presents some general methodol-
ogy issues for using the ITU-T languages and
UML. The article by Steve Randall presents spe-
cific guidelines for formal use of SDL in devel-
opment, e.g. of ETSI standards, and Anthony
Wiles and Milan Zoric report on their experi-
ences from the application of these guidelines
in the development of the Hiperlan standards.

One strongpoint of the ITU-T languages is that
abstraction, using concepts suitable for human

3Telektronikk 4.2000

comprehension, is combined with semantics
suitable both for extensive tool support and effi-
cient implementation. Extensive tool support for
validation and testing is one of the benefits that
result from this. The article by Dieter Hogrefe,
Beat Koch and Helmuth Neukirchen introduces
the general principles of validation and testing.
The possibility to derive efficient implementa-
tions is another benefit elaborated in the article
by Richard Sanders.

Two commercial sets of tools that support the
ITU-T languages in combination with UML are
presented in two separate articles. Anders Olsen
and Finn Kristoffersen present the Cinderella
tools, while Philippe Leblanc, Thomas Hjelm
and Anders Ek present the Telelogic tools.

Middleware is an important area where commu-
nication and general computing converge. The

article by Anastasius Gavras outlines the needs
for distributed platforms for telecommunication
applications.

Amardeo Sarma presents perspectives on future
standardisation in the areas covered by this issue
of Telektronikk in his article.

The idea behind the feature section was very
ambitious. A lot of internationally acknowledged
specialists have been involved. I would like to
express special thanks to Arve Meisingset for all
his co-editing work throughout this process. To
my knowledge, this is the first time that all the
ITU-T languages with associated topics have
been presented in one place. Enjoy!

4 Telektronikk 4.2000

1 Introduction to MSC
ITU Message Sequence Charts (MSCs) [1, 2, 3]
is a formalised graphical language to define
interaction scenarios in terms of asynchronous
messages passed between instances.

An MSC document comprises a set of graphs of
the following kinds:

• simple MSC diagram;
• high-level MSC diagram (HMSC);
• MSC document diagram.

Simple MSC Diagrams
A simple MSC diagram may contain:

• instances;
• messages passed between instances, possibly

with references to data;
• events on instances, for each message there is

a sending event and a receiving event;
• actions inside instances;
• conditions spanning one or more instances;
• calls to methods and responses;
• references to other simple MSC diagrams;
• inline expressions describing alternatives,

loops, exceptions and options;
• comments.

The ITU-T Languages in a Nutshell
R O L V B R Æ K A N D A R V E M E I S I N G S E T

This paper provides a condensed overview over MSC, SDL and UML intended both as a
quick introduction for novice users and as a quick symbol reference for the more experi-
enced. The last section provides a comparison of the ITU-T language family with UML
from the Object Management Group.

Arve Meisinset (52) is Senior
Research Scientist at Telenor
R&D. He is currently working on
information systems planning,
and has previously been en-
gaged in Case-tool development
and formal aspects of human-
computer interfaces. He has
been involved in several network
management projects, and has a
particular interest in languages
for data definitions and mathe-
matical philosophy. He is ITU-T
SG10 Vice Chairman, Working
Party Chairman for WP3/10 Dis-
tributed Object Technologies,
and the Telenor ITU-T technical
co-ordinator.

arve.meisingset@telenor.com

Rolv Bræk (56) received his
Siv.ing. degree (M.S.E.E.) in
1969 from the Norwegian Uni-
versity of Science and Technol-
ogy (NTNU) and is currently Pro-
fessor in the Department of
Telematics at NTNU. Rolv Bræk
has extensive experience from
application development using
formal methods as well as from
teaching, consulting and intro-
ducing systems engineering
methodologies to industry. He
is co-author of the book “Engi-
neering Real Time Systems –
An Object Oriented Methodology
using SDL”, and “TIMe The Inte-
grated Method” published on
CD-ROM by SINTEF. His cur-
rent research interest is rapid
service development.

Rolv.Braek@item.ntnu.no

Figure 1 Example Simple MSC

msc marriage_confirmation_ceremony

Man Woman

when At the altar

Married

Announce(´You have now`)

Priest

handshaking_procedure

QtoM(´Do you´,_)

MaP(´Yes I do`)

QtoW(´Do you´,_)

WaP(´Yes I do`)

Confirmed

The Priest leads the
couple out of the church.

Keyword msc followed by diagram name.

Three instances: Man, Priest, Woman.

A guard.

Message representing question to the Man with a

fixed and a wildcard data content.

A response message with a fixed data content.

A similar question to the Woman and the

response.

A global condition.

MSC reference to msc handshaking_procedure,

which is performed here.

Announce message sent to the environment

representing a gate definition.

A shared condition that holds for the Man and

the Woman, but not the Priest.

Comment.

End of diagram for each instance (but not end

of the instance!).

5Telektronikk 4.2000

A name and a vertical time line represent each
instance. The diagram specifies a total ordering
of events along each timeline, but not between
instances. The ordering of events between in-
stances follows from the rule that a message
must be sent by a sending event before it can
be received by a receiving event.

An example Simple MSC is shown in Figure 1.
Note that names are unique within the entity
class, which means that e.g. a simple MSC dia-
gram and an instance may have the same name.

High-level MSC
A High-level MSC (HMSC) describes how other
MSCs may be composed to represent more com-
plex cases. In an HMSC the MSCs are repre-
sented by MSC references that may be com-
posed in sequence, in parallel or as alternatives.
An HMSC does not depict instances or mes-
sages.

A High-level MSC may contain:
• start and end symbols (triangles);
• restrictive conditions;
• MSC references;

• connecting nodes (small round circles);
• connecting lines between the above; if they go

downwards, they have no arrow.

An example High-level MSC is shown in Figure 2.

MSC Document
An MSC document diagram defines the context
for simple MSC diagrams and may contain:

• instances with inherits (from) and data vari-
ables;

• messages;

• wildcards and their types;

• data signatures;

• MSC references;

• utilities, i.e. references to used MSCs to spec-
ify the defined MSCs.

An example MSC document diagram is shown
in Figure 3.

Figure 2 Example
High-level MSC

Keyword msc folllowed by diagram name.

Start symbol.

Alternatives: either proposal_with_yes or

proposal_with_no.

Stop symbol.

Restrictive conditions:

last_preparations must begin with the global

condition Wedding announcement and end with

At the altar.

Sequence: last_preparations is followed by

marriage_confirmation_ceremony.

downwards flow does not require arrows.

Stop symbol.

msc marriage_ceremony_guide

when In love

when At the altar

last_preparations

Wedding announcement

proposal_with_yes proposal_with_no

Married

marriage_confirmation_ceremony

6 Telektronikk 4.2000

Figure 3 Example
MSC document

mscdocument followed by name of document

Declaration of instances with inherits (from) and

declaration of variables (not shown).

Declaration of messages (only needed for mes-

sages with data parameters)

Declaration of a wildcard of type string

Declaration of defining MSC

Utility MSCs are listed under the dashed line.

mscdocument marriage

marriage_ceremony_guide

last_preparations

inst Man inherits Person;
inst Priest inherits Clerk;
inst Woman inherits Person;
msg QtoM;
msg MtoP;
msg QtoW;
msg WtoP;
msg announcement;
wildcard :string;

proposal_with_yes

proposal_with_no

marriage_confirmation_ceremony

handshaking_procedure

Box 1 Simple MSC

This box provides an overview of a subset of MSC-2000. Note that not all features of MSC-2000 are listed.

man

wedding
preparation

This is a comment

man
person

Instances have a name, an optional type, a vertical solid instance
axis, which depicts a timeline from a head (blank box) to the end
(black box).

Names are written over or in the head. Names can contain
numbers, capital and small letters, and underline, but not blanks.

Instances can be of unspecified or specified kind. The kind is
always written above the head. The kind can also be the SDL
kinds system, block, process and service. The instance kind
may be decomposed, and a diagram showing the internal inter-
actions of the decomposed instance can be indicated by the state-
ment “man decomposed as interactions_internal_to_man” where
“interactions_internal_to_man” is the name of an MSC.

An informal comment can be associated to any entity.

Instances may be depicted as columns and may contain actions

(wedding preparation).

Timers have starts and stops, and timers can have min and max

elapse time [min, max].

Timer is started

Timer expires

Timer is started

Timer is reset

7Telektronikk 4.2000

(0ms, 20ms)

man woman

proposal

end

organist

Mendelson

man woman

call kiss
kissing

Box 1 Simple MSC, continued

In Co-regions (dashed line) no ordering is imposed on the events.

New instances (child of the kind person) can be created from the
instance axis of an existing object (woman).

Conditions (disagreement) express states and can span one or
more object instances.

man woman

disagreement

woman

person

child

man woman

when at_the_altar

Time constraints can be specified.

Messages have a sending event and a receiving event and may
carry data. Message names are written over the arrows. Data are
referred to in parantheses (variable, ‘constant’, _(i.e. wildcard)).

A message between two instances.

A message from the environment defining a gate.

A message to the environment defining a gate.

Object instances may invoke a method call (kiss) in another
instance which may lock both instances until the end of the
operation, indicated by a dotted arrow.

8 Telektronikk 4.2000

Box 1 Simple MSC, continued

Guard: can only be first in an MSC or operand.

An MSC may contain MSC references (marriage) to other MSCs,
and the reference may span several instances.

MSCs have explicitly or implicitly named gates, e.g. stimulus
and response, for messages.

man woman

stimulus
another_proposal_with_yes

response

arrow

announce

man woman

marriage

man woman

disagreement

w

man woman

when at_the_altar

man woman

call kiss
kissing

loop<1, inf>

man woman

slap_face

exc

man woman

opt

diamond_ring

man woman

alt yes

no
In-line expression giving two alternative sequences:
the woman answers either yes or no.

Optional behaviour: giving diamond ring or giving nothing.

Exception: woman slaps man in face and the diagram (wedding)
ends, or she does not and the diagram (wedding) goes on as
normal.

A loop with one or more runs.

9Telektronikk 4.2000

2 Introduction to SDL
SDL (ITU-T Specification and Description Lan-
guage)) [4, 5, 6, 7, 8, 9] is a language for speci-
fying reactive systems. This presentation pro-
vides an introduction to a subset of SDL. Impor-
tant issues like data types, interfaces and inline
expressions are not presented.

SDL Systems consist of a structure of communi-
cating Agents. Each agent may have variables,
procedures, a state machine and a structure of
agents. An agent is characterised by the signals
it may receive from and send to other agents,
and by the procedures that it may perform upon
request.

An Agent which contains a structure of concur-
rently behaving agents is called a Block, while
an agent which contains a structure of agents
that alternate (only one active at the time) or
agents that have no internal agent structure is
called a Process.

SDL provides the following kinds of diagrams:

• Agent diagrams that describe the properties of
Agents, in terms of variables, procedures, an
Agent state machine and contained Agents;

• State diagrams that depict the behaviour of
Agents in terms of States and state Trans-
itions;

• Procedure diagrams that depict the behaviour
of Procedures;

• Package diagrams that define types that can
be Used in other diagrams.

Agent Diagrams
Agent diagrams can be of the following kinds:
• system;
• system type;
• block;
• block type;
• process;
• process type.

Agent diagrams are used to define an agent or
agent type and comprise a definition of its:
• locally defined types;
• internal structure.

Local types may be defined directly in the agent
diagram, but normally only a type reference is
placed in the agent diagram, allowing the local
type to be defined in a separate diagram. Local
types may be block types, process types, data
types and signals. Stereotyped UML class sym-
bols may be used as such type references and
also to provide partial type definitions as de-
scribed in Box 3.

The internal structure of an agent may depict:
• sets of agent instances;
• channels;
• signal lists.

Gates may be attached outside the frame symbol
of agent types.

The kind of diagram is identified by a corre-
sponding keyword in the upper left corner (inside
the frame symbol) of the Agent diagram. An
example Agent diagram is depicted in Figure 4.

[Announce][Start]

e

block
In_church

1(1)

use WedLib

Priest
[Announce][Start]

env

Witness(2, 2):
Person

Jo:WomanJack:Man

[MaP]

[QtoM]

[WaP]

[QtoW]

w

[QtoM, QtoW]

[MaP] [WaP]

Reference to Package WedLib containing type
definitions used by the block In_church. This
way, the block and process types need not be
referenced inside the block diagram itself.

Keyword block followed by block name
In_church
Page 1(of 1)

Block called Priest. It is considered as defined
here, but actually defined on a separate diagram
(called block Priest).

Two-way channel called env to the environment
Two-way gate called e

Two-way channels between block Priest and
processes Jo:Woman and Jack:Man

Signals in the direction of the arrows

Process instances called Jack of type Man and Jo

of type Woman

Process Set with 2 process instances called

Witness of type Person Figure 4 Example
Agent diagram

10 Telektronikk 4.2000

process Priest_wedding_proc 1(2)

Ready

via envannounce

ask_man

Start_
ceremony

Ready

reply

Ready

ask_woman

Ready

`yes`else

positivenegative

ask_man

DCL reply Charstring; Variable reply of type Char string is declared

process starts here when created

and enters a state called Ready.

Procedure definition refrence for procedure

ask_man

consuming input signal Start_ceremony triggers

transition,

where procedure ask_man is invoked.

Then a decision is made depending on the value

of reply (set by the procedure).

Then a composite state ask_woman containing a

similar behaviour as the procedure ask_man plus

the decision. The ask_woman state has two outlet

labels negative and postive.

Signal Announce is sent via channel env. The text

extension symbol is used to give room for more

text, here via env.

Next state is state Ready.

Figure 5 Example
process state
diagram

Procedure start.

Output signal to process instance Jack.

Output signal through channel w to all instances

connected to w.

The output signals are provided with the

parameter value ‘do you’.

Input signal with parameter value assigned to

reply.

Procedure return.

procedure ask_man

to Jack
QtoM

(´do you´)

via all w
QtoM

(´do you´)

Listen_to_
Man

MaP
(reply)

Figure 6 Example
procedure diagram

11Telektronikk 4.2000

state ask_woman

to JackQtoM
(´do you´)

via all wQtoM
(´do you´)

Listen_to_
Man

WaP
(reply)

reply

`yes`else

negative positive

positive

negative

Figure 7 Example
composite state

diagram
State entry

State exits with labels negative or positive.

package WedLib 1(1)

Association

Signal
QtoM(Charstring), QtoW(Charstring), Start,
MaP(Charstring), Wap(Charstring), Announcement;

<<block>>
Cleric

<<block>>
Priest

<<process>>
Person

<<process>>
Woman

<<process>>
Man

Reference to definition of process type Person.

Person is stereotyped (by « ») to be of Agent type

Process.

Process type Man is subtype of Person.

References to definition of process types

Man and Woman.

Association between block type Cleric and

process type Person.

Block type Priest is subtype of Cleric.

Signal declarations
Figure 8 Example
Package diagram

12 Telektronikk 4.2000

Frame symbol. All diagrams have a Frame symbol that represents
the boundary of the entity being defined by the diagram. Diagrams
have a kind and a name. The following kinds are defined: system,
system type, block, block type, process, process type,
procedure, state, state type.
Names can contain numbers, capital and small letters, and under-
line, but not blanks.
Optionally an entity may be defined by means of inheritance from
a (super) type. Types defined within a frame symbol of another
type may also be defined with a virtuality: virtual, redefined,
finalized, e.g. redefined process type Man.
Page number and number of pages are indicated in the right hand
corner.

Gate symbols. Gates represent the external connectors of types,
and can only be attached to the outside of the Frame symbols for
types. Gates may have a name, and specification of signals flow-
ing in each direction. There may be one-way and two-way gates.
Attached to the gate may be a constraint on what type of entity
may be connected.

Use symbol: Types may be defined in Packages and imported
into entity descriptions by means of a use expression inside a
text symbol placed on top of the frame symbol where the types
are imported.

An informal comment can be associated to any entity.

The text extension symbol is used to place formal text outside
a symbol.

Text symbol. All textual expressions are placed in text symbols:
signal definitions; data type definitions; notes; variable declara-
tions; timer declarations. Informal notes are placed between slash
asterixes, as follows: /* This is an informal note */.

Box 2 Basic SDL
This box provides an overview of a subset of SDL-2000.

Common Features of SDL Diagrams

This is a comment

This is a formal text

block type
Priest

use WedLib;

process type
Man
inherits Person

1(1)

process type
Woman p

[QtoM][MaP]

1(1)

Types Defined in SDL Agent Diagrams and Package Diagrams

The following symbols are used to represent references to types and partial type definitions in Agent diagrams and Package diagrams.

The scope of the type definitions is the diagram where the reference symbol is placed. The actual type definition is provided in a sepa-

rate diagram. In addition to the symbols shown here, the UML notation described in Box 3 may be usd to provide partial type definitions,

and to describe inheritance, associations and dependencies between types.

Block type reference symbol.

Block type reference symbols with partial type definition. See Box 3.
<<block>>

Man

Man

Man

<<process>>
W

Woman

13Telektronikk 4.2000

Agent Structures in SDL Agent Diagrams

The following symbols may be used to define the structure of agent (instances) contained in an Agent diagram.

Note that the Agent diagram also may contain type refrences as described in Box 3.

Package symbol. Used to represent packages defined inside
packages.

Block set reference symbol, i.e. a Block set containing one initial
instance and an unbound upper limit of priests.

Block set symbol with initial and max number of block instances.

Block set reference of a given block type.

Process set reference symbol, i.e. a Process set containing one
initial instance and an unbound upper limit of women.

Process set symbol with initial and max number of process
instances.

Process set reference of a given process type.

Channel symbols. Channels represent the connections between
objects and are attached to object symbols and/or to the frame.
When arrows are at the end, channels are non-delaying. When
in the middle, the channels are delaying. Channels may have a
name, and specification of signals flowing in each direction.
There may be one-way and two-way channels.
Channels have a name and a set of signals specified for each
direction.

Priest

Witness(2,200)

Priest:
Clerk

Woman

Witness(2,200)

Jo:
Woman

[QtoM] mtp [Map]

Box 2 Basic SDL, continued

Process type reference symbol.

Process type reference symbols with partial type definition.
See Box 3.

<<block>>
Man

Man

Man

Woman<<process>>
Woman

Woman

14 Telektronikk 4.2000

Box 2 Basic SDL, continued

Start symbol.

Stop symbol.

State symbol.

Input symbol. The parameter values (here a Charstring) are
assigned to the corresponding variables listed (in the comma
separated list) inside the parenthesis (here question).

Save symbol. The specified signals will not be consumed, but
saved until the next state is reached.

Enabling condition/continuous signal symbol.

Output symbol. The (comma separated list of) values (here the
value of reply) are assigned to the corresponding signal para-
meters.

Task symbol. Inside is a comma separated list of assignment or
a “program” in the textual action language.

Procedure call symbol. Parameters may be specified as well as
a return value.

Decision symbol. The text inside the symbol specifies an expres-
sion that has a value, and the following branches are labeled with
value ranges. Any number of branches are possible.

Connector symbol. Connector symbols can refer from one page
of a state diagram to another. The connector name provides the
proper reference.

Procedure definition reference symbol. A placeholder for a proce-
dure definition given in a separate diagram.

Create symbol. A new instance is created in the agent set
specified inside the symbol.

Ready

QtoM
(question)

QtoW

reply:=´no´

MaP(reply)

ask_man

reply
´yes`´no´

Ask_man

Witness

go1

Procedure Start symbol.

Return symbol.

Exception raise symbol.objection

objection

handle_
objection

Symbols in SDL State Diagrams

The following symbols may be used to define the behaviour of agents in terms of state machines.

15Telektronikk 4.2000

Box 2 Basic SDL, continued

Channels link two agents, or an agent and the
diagram frame representing a channel connected
to the environment. Channels can be non-delay-
ing (arrows at the ends) or delaying (arrows on
the line). Channels can support one-way or two-
way asynchronous communication.

Gates terminate channels on instances of Agent
types. Arrows outside the frame symbol of the
corresponding type indicate gates.

State Diagrams
State diagrams may depict:

• Start symbol;
• State symbols;
• Composite state symbols;
• State types;
• Transitions specifying:

– Input symbols
– Save symbols
– Enabling conditions/continuous signals
– Output symbols
– Procedure call symbols
– Task symbols with

- Timer operations
- Expressions on data

– Decision symbols
– Create symbols
– Exception raise symbols
– Connector symbols
– Stop symbol
– Next state.

An example State diagram of a process is de-
picted in Figure 5.

Procedure and Composite
State Diagrams
Procedure diagrams may have the same contents
as State diagrams, except that the Start symbol is
different, and they have no Stop symbol. Exam-
ple Procedure diagram and Composite state dia-
grams are provided in Figures 6 and 7.

Package Diagrams
Package diagrams define types outside the scope
of particular Agent diagrams so that the types
may be used in any Agent diagram. The types of
a package are made available in the definition of
an Agent by the Agent diagram having a pack-
age use clause. See Figure 4.

In addition, Agent diagrams and Package dia-
grams may contain a subset of UML for com-
bined use with SDL. See Figure 8 and the next
main section.

3 UML Notation in SDL
The ‘Unified Modeling Language’, UML [10,
11, 12] from the Object Management Group,
has grown popular to depict many aspects of
specifications. However, UML lacks a well-
defined semantics (behaviour of its contained
constructs). By combining UML with SDL and
MSC, this situation can be improved. Previous
versions of SDL had no notation to graphically
define associations between types. Since UML
class diagrams provide a convenient notation for
this, part of the UML class diagram notation has
been integrated into SDL-2000. (For more on
this, see the paper by Birger Møller-Pedersen in
this issue.) In this way, SDL-2000 can be used to
express facts that were not conveniently ex-
pressed in previous versions of SDL. Note, how-
ever, that associations are treated as graphical
comments in SDL and are not translated into
other SDL constructs.

ITU-T Recommendation Z.109 [13, 14] provides
a two-way mapping between UML constructs
and SDL entities [4, 5, 6, 7, 8, 9]. This allows
users to go from pure UML to SDL in a well-
defined way. SDL extends UML by providing
means to express detailed behaviour with a for-
mal semantics and means to formally define the
internal structure of composite entities (using
Agent diagrams).

Exception handle symbol.

Exception handler symbol.

objection

objection

handle_
objection

16 Telektronikk 4.2000

Box 3 UML Notation in SDL

A class (in pure UML) is depicted by a rectangle and has a unique

simple name.

A class (in SDL) may have an attribute compartment and an oper-

ation compartment – in that sequence. Attributes in UML are sin-

gle-valued only. Attribute groups are not supported in UML. The

attribute visibility may be +(public to any class), –(private to its

class) or #(protected to subclasses only); visibility should not be

confused with access control.

Process type reference symbol with partial type definition.

Local variables may be represented in the attribute compartment

and procedures in the operation compartment.

Data type reference with partial type definition.

The internal structure may be shown in the attribute compartment

and operations defined for the datatype in the operations compart-

ment. Note that SDL have two kinds of datatypes: <<object>> and

<<value>>.

Subclasses may inherit properties of their superclasses by gener-

alisation. Note that the SDL version of UML allows for single inher-

itance only.

Dependencies between properties of classes can be depicted by

a dashed arrow. UML for SDL supports two stereotypes of de-

pendencies, namely <<import>> and <<create>>.

Associations between classes are treated as graphical comments

in SDL, and they define that instances of two classes are linked.

The association ends can have role names. The cardinality

options (in both ends) can be: 1 (exactly one), * (zero or more),

(0..1) (zero or one), or (m..n) (numerically specified min and max).

In the example a Woman must have one Husband, and a Man

can have zero or more Wives.

An object (of a component class) may only be part of one com-

posite object and only exist if the composite object exists. This

is in UML called composition.

An object (of a component class) may belong to zero or more

instances of aggregate classes. In the example, each Marriage

can comprise only one Woman, but a Woman can be engaged

in zero or more Marriage-s.

<<process>>
Priest_wedding_proc

reply:Charstring

ask_man

<<object>>
Person_data

 -Sex
 -#Birthday

age(Date):Age

<<process>>
Person

<<process>>
Man

<<process>>
Woman

<<process>>
Man

<<object>>
Marriage

<<process>>
Man

<<process>>
Woman

Husband
1

Wife
*

<<object>>
Marriage

<<object>>
Wife

1..*

Dependency

Association

Composition

Inheritance

<<object>>
Marriage

<<process>>
Woman

* .1

Aggregation

Class object

17Telektronikk 4.2000

Z.109 does not provide a mapping of every con-
struct in UML to SDL. Also, Z.109 maps only
specialised versions of the UML constructs,
called stereotypes, to SDL. Hence, the user is
safest to express in SDL everything expressible
in SDL. UML becomes then a notation for a sub-
set of SDL. This subset is called a profile of
UML.

SDL has been extended with UML-like notation
elements (notably class symbols and associa-
tions) to represent types and associations be-
tween types.

UML class symbols and associations can be
included in SDL Agent and Package diagrams.
They can be both partial type definitions and ref-
erences to the full type diagrams. The properties
defined as part of the class symbols must be con-
sistent with the properties defined in the corre-
sponding SDL types:

• The name compartment of the class symbols
contains the type name;

• Class symbols may have attribute compart-
ments; the attributes can have visibility (pub-
lic, protected or private) and changeability
(changeable, frozen or addOnly);

• Class symbols may additionally have an oper-
ations compartment: operations represent pro-
cedures and their signatures;

• Associations between two classes with min
and max cardinality constraints are only inter-
preted as graphical comments in SDL;

• Roles of classes involved in associations;

• Aggregation as a special kind of association
between classes which may be contained in
several aggregates are only interpreted as
graphical comments in SDL;

• Composition as a restricted form of aggrega-
tion;

• Dependency prescribing that (a property of)
the dependent class is derived from (a prop-
erty of) the argument class;

• Generalisation describing inheritance relation-
ships between classes.

Figure 8 provides an example class diagram.
Box 3 provides an overview of the SDL UML
notation.

4 Comparison of ITU-T
Languages with UML

Before embarking on comparing UML with the
ITU-T language family, some words are needed
on the terminology used in these languages. The
text does not contain an evaluation of the lan-
guages.

The term ‘modelling’ (in UML) refers to a
model of a software system. The term ‘descrip-
tion’ (in SDL) refers to description of a software
system. The terms ‘model’ and ‘description’
seems to be synonymous, but must be under-
stood in this context of modelling/describing
software only, and should not be confused with
other usages of the terms [15]. The use of the
term ‘model of’ in model theory of mathematical
logic requires that you state a ‘denotation’ map-
ping between the terms and the sets denoted by
the data, e.g. there exists exactly one x, such that
William and Bill denote the same x. Also, a sim-
ilar explicit mapping should be stated between
data and “real world” phenomena denoted by the
data. The terms ‘model’, ‘description’, ‘denota-
tion’, ‘semantics’ and ‘synonym’ are all syn-
onyms. Note that semantics in programming and
specification languages is only concerned with
making the behaviour definition unambiguous
and not to make the denotation mapping from
data to phenomena unique.

In relational mathematics a relationship (set)
between two entities (sets) ‘a’ and ‘b’ is denoted
by an ordered pair (expression) <a, b> between
‘instances’ (terms) a and b. In relational mathe-
matics a relation is a set of relationships. In
UML a relationship associates two classes, and
an association is a specialised unordered rela-
tionship. Hence, a relationship in UML corre-
sponds to a relation in relational mathematics.
In UML a link is an instance of an association
– corresponding to a relationship in relational
mathematics. Therefore, the terminologies in
relational mathematics and UML are not the
same. Note also that the relational model (for
data bases) is slightly different from relational
mathematics [16].

UML could, for example, be used as a graphical
notation to define data (structures); however,
here the creators of UML themselves give a
warning [11, page 111]: “Logical database
design is beyond the scope of this book.” UML
does not provide means to define the precise
structure (e.g. relational database) and formats
(e.g. ASN.1) of data.

Aggregation and composition are not well de-
fined in UML. We interpret composition to
mean that the name of the component instance

18 Telektronikk 4.2000

UML ITU-T languages

Use case diagram; depicts relationships between (users as) Not supported. The issue may be addressed in a new Question

actors and their use cases (as tasks or functions). on User Requirement Notation, URN.

No semantics attached

Class diagrams; depict classes and their various relationships, Agent diagrams and package diagrams can contain class

including associations and interfaces. Classes can include diagrams that partially define the types. In addition SDL agent

attributes, operations and methods diagrams define the composite object structure of agents and

Object diagrams; depict objects as instances of classes and agent types. This is not covered by UML.

links as instances of associations. Object diagrams are only UML classes are specialised (by stereotypes in UML) into

illustrations of possible situations and not definition of composite ITU-T SDL. The stereotypes are <<system>>, <<block>>,

types as in SDL. <<process>>, <<procedure>>, <<interface>>, <<object>>,

<<value>>, <<state>>. UML compositions correspond to SDL

decompositions.

Interaction diagrams; can be of the following kinds: ITU-T MSCs can depict the information in sequence diagrams.

Sequence diagrams; depict the time-ordering of messages MSC support Simple MSC diagrams, High-level MSC diagrams,

exchanged between objects. and MSC documents.

Collaboration diagrams; depict interactions between objects

in an alternative form.

Statechart diagrams; depict optional state machine behaviour SDL state diagrams specify (state machine) behaviour associated

associated with classes. with agents including creation and deletion of agent instances,

Activity diagrams; are a special kind of statechart showing data operations and timer operations.

the flow between activities only.

Component diagrams; depict organisation and dependencies ITU-T ODL defines objects with multiple interfaces for both

between implementation components. Components typically map operational and stream data.

to classes, interfaces and collaborations. See class diagrams.

Deployment diagrams; depict the configuration of processing Not supported. The issue may be addressed in a new Question

nodes and the components running in them. on Deployment and Configuration Language, DCL.

Programming languages are not supported by UML. CHILL; is an object-oriented programming language for real time

communicating systems.

Data syntax is not supported by UML. ASN.1; defines data syntax for protocol and other data. ASN.1

is typically used together with SDL.

Testing is not supported by UML. TTCN; defines test cases for protocol testing. TTCN is

conveniently used together with MSC.

Box 4 The ITU-T Languages Provide a Specialisation of and Parallel to UML

is functionally dependent on the name of the
composed instance, hence, that both names must
be given to fully specify the path name to the
component instance. This issue is unclear (‘bêtes
noir’ in [10], page 80) in UML, as UML does
not address the data formats. In UML a compo-
nent class (not instance) may belong to more
than one composite class, as we interpret as
‘alternative name binding’ (ref. the GDMO lan-
guage in Rec. X.722). Note also that from a for-
mal point of view there may be no need to dis-
tinguish aggregation from association.

In SDL packages are used for reusable specifica-
tions only, while in UML packages may serve
as subsystems.

UML is a large language, comprising a large set
of diagramming techniques. ITU-T provides a
family of languages having parallel, though most
often specialised, features compared to UML.
Box 4 parallels UML to the ITU-T languages.

Object Constraint Language; OCL defines
pre- and post-conditions to state changes by

19Telektronikk 4.2000

operations or methods, invariants over state
changes and navigation. OCL does not allow
any update of the object (instance) model and
not state changes. (It is a property language.)
ITU-T SDL Abstract Data Types (ITU-T ADT)
provides an equational logic on data types. SDL-
ADT is not comparable to OCL, and OCL is not
part of SDL-2000.

From the overview given in Box 4, only class
diagrams need to be mapped to SDL. Also, class
diagrams provide a(n informal) depiction of data
(<<objects>>) in SDL. A profile of class dia-
grams is therefore included in Recommendation
Z.100.

References
1 Haugen, Ø (ed). Draft revised Recommenda-

tion Z.120 – Message Sequence Charts.
Geneva, ITU-T SG10 11/99 TD-115.

2 Haugen, Ø. MSC-2000 Interacting with the
future. Telektronikk, 96 (4), 54–61, 2000
(this issue).

3 Rudolph, E, Graubmann, P, Grabowski, J.
Tutorial on Message Sequence Charts. Com-
puter Networks and ISDN Systems, 28 (12),
1629–1641, 1996.

4 Reed, R (ed). Revised Recommendation
Z.100: Languages for telecommunications
applications – Specification and Description
Language. Geneva, ITU-T SG10 11/99 TD-
79 Rev. 1.

5 Bræk, R. SDL Basics. Computer Networks
and ISDN Systems, 28 (12), 1585–1602,
1996.

6 Sarma, A. Introduction to SDL-92. Com-
puter Networks and ISDN Systems, 28 (12),
1603–1615, 1996.

7 Reed, R. SDL-2000 for new millennium sys-
tems. Telektronikk, 96 (4), 20–35, 2000 (this
issue).

8 Nyeng A. The CCITT Specification and
Description Language – SDL. Telektronikk,
89 (2/3), 67–70, 1993.

9 Møller-Pedersen, B. SDL-92 as an object
oriented notation. Telektronikk, 89 (2/3),
71–83, 1993.

10 Booch, G, Rumbaugh, J, Jacobsen, I. The
Unified Modelling Language User Guide.
The Addison-Wesley Object Technology
Series, 1999. (ISBN 0-201-57168-4.)

11 Fowler, M, Scott, K. UML Distilled. Addi-
son-Wesley, 1997. (ISBN 0-201-32563-2.)

12 Rational Software. Object Constraint Lan-
guage Specification. 2000, November 16
[online] – URL: http://www.software.ibm.
com/ad/ocl. ad/97-08-08

13 Møller-Pedersen, B. SDL combined with
UML explained. Telektronikk, 96 (4), 36–53,
2000 (this issue).

14 ITU-T Q6/10 Rapporteur. Revised Recom-
mendation Z.100: Languages for Telecom-
munications Applications – SDL combined
with UML. ITU-T SG10 Geneva 11/99 TD-
43 Rev. 2. Geneva, 11–19 November 1999.

15 Meisingset, A. Three Perspectives on Infor-
mation Systems Architecture. Telektronikk,
94 (1), 32–38, 1998.

16 Meisingset, A. Specification Languages and
Environments. University Studies at Kjeller
(UNIK), ver. 3.0, 1991.

20 Telektronikk 4.2000

1 Introduction to SDL
The success of SDL [1, 2] can be attributed to its
graphical presentation form. This makes it easy
to understand specifications and designs ex-
pressed using SDL. They are good for communi-
cation even to anyone that has little knowledge
of the language. Another factor is the conceptual
suitability of the basis of the language: the
notion of an extended finite state machine
(EFSM). SDL offers a practical way of specify-
ing systems with several communicating EFSM
instances. An SDL system consists of one or
more communicating agents. There is one outer-
most agent: this communicates with the environ-
ment. In agents, there is definition of behaviour
by EFSM, hierarchical structure with agents
containing agents, data variables (owned by
agents) of value or reference data types, and
communication based on asynchronous message
exchange.

When systems are specified or designed (in the
rest of this article the verb “specify” should be
taken to include design), the usual starting point
is some kind of top level picture showing the
connection between components of the system
and the environment. Such pictures usually take
the form of labelled boxes joined by labelled
lines. SDL can be used, even at this level, to
start turning sketches into a formal system
description: the names on boxes become the

names of SDL components and the names on
lines can become the names of SDL channels or
associations. Such descriptions are abstract mod-
els of real systems. Of course, as an object ori-
ented language, SDL can also be used bottom-
up, based on a set of components, or “middle-
out”.

The SDL specification for a system is a set of
diagrams. Each diagram has one or more presen-
tation “pages”, and each page has:

• a frame (often with some information attached
on the outside);

• the diagram heading giving the kind and iden-
tity of the item described by the diagram in
the top left corner;

• the page name and number of pages in the top
right corner.

1.1 Simple Structure
A very simple example is shown in Figure 1.
This system agent diagram contains two process
agents. A channel () conveys signals
between two agents or between an agent and the
environment of a diagram. The signal names are
listed in the symbol near the arrowhead,
which gives the direction. Channels can have
names, but these are omitted here, as they are

SDL-2000 for New Millennium Systems
R I C K R E E D

SDL is the premier language for specification, design and development of real time systems,
and in particular for telecommunication applications. SDL-2000 became the international
standard in force in November 1999, replacing the previous version. This paper gives an
overview of SDL-2000 and fills the gap between previously published tutorials and the cur-
rent SDL standard.

Figure 1 Example simple system model – Bit-stuffing one-way transmission. This system consists of
a send-bits transmitter and a receive-bits receiver. The transmitter inserts (“stuffs in”) bits so that

there are never n bits the same. The receiver removes the inserted bits. This technique is used in real
systems to protect against “stuck at zero or one” or (for example in Signalling System 7) to allow
flags that consist of n ones or zeros to be inserted without the risk that they are imitated by signals

Rick Reed (53) graduated in
electronics at Kent University in
1969. His deep involvement with
languages led to him being
responsible for the Coral-66 soft-
ware development facility at
GCE for System X. He founded
a Software Methods department
at GCE which led to the Future
Architectures section he was
heading when he left to form his
own consultancy company, TSE
Ltd., in 1991.1988–1993 he
technically managed the SPECS
project on software methods
within the RACE programme.
He continued into the ACTS pro-
gramme as well as consulting on
diverse applications of expertise.
Recently, all his work has been
based on his general experience
coupled with his knowledge of
SDL. (See also page 173.)

rickreed@tseng.co.uk

receive_
_bitssend_bits

system bitstuff_transmission

[0,1] [0,1] [0,1]

signal 0,1;

1(1)

21Telektronikk 4.2000

not needed. A system diagram can contain pro-
cess agents (symbol), or block agents (
symbol). The system itself is the special case of
the outermost block agent.

The essential difference between a block (or
system) agent and a process agent is that the
instances of agents within a block agent behave
concurrently and asynchronously with each
other, whereas instances within a process are
scheduled one at a time. A block agent can con-
tain process agents or block agents. A process
agent can only contain other process agents.

As well as containing other agents, agents can
contain a state machine, data variables and pro-
cedures. An agent SDL diagram is the definition
of a set of agent instances. Each agent instance
of such a set is created either when the instance
containing the set is created or by a create-action
in another agent instance. The system agent is
created when the system is initialized.

Agent diagrams act as scope units hiding inter-
nally defined items. These include the items
mentioned above, signals for communication
and locally defined types of data. Items defined
in enclosing agent diagrams are visible in inner
agents. Thus, the signals 0 and 1 are visible
inside send_bits and receive_bits. On the other
hand, items defined inside these process agents
are not visible at the system level.

The symbols containing the names (and
similarly symbols containing names) are
links (called “references” in Z.100) to other dia-
grams considered to be defined where the sym-
bol occurs (process send_bits is defined in the
system bitstuff_transmission). The defining con-
text and kind of the entity (such as block, pro-
cess, and signal) is part of entity’s identity.
Complete identities must be unique, but names
need not be unique.

1.2 Simple Behaviour
An agent diagram, such as Figure 1, has the pos-
sibility to show the interaction between the con-
tained agents, and is called an interaction dia-
gram. An agent that only contains one state
machine (typically a process) can have the be-
haviour graph in the agent diagram (otherwise,
it has to be linked to a state diagram for the state
machine graph such as Figure 4.

In Figure 2, the send_bits process contains a
finite state machine that has:

• a start (symbol) where it starts;

• states (symbols) containing state names:
initial, 0, 00, 000, 0000, 1, 11, 111 and 1111)
with associated inputs (symbols) for the
stimulus signals 0 and 1;

• transitions to the next state with outputs (
symbols) for the response signals 0 and 1.

The response of the state machine is determined
by following the flow from state to state in the
diagram. The start leads to a state, possibly via

Figure 2 The send bits process
as a finite state machine

Names and Underlines

Names consist of letters, digits and underlines;
names that only contain digits are allowed.
However, an underline character at the end of
a line is a continuation and not part of a name.

process send_bits 1(1)

0

0

0

1

0 1

0

00

0 1

0

000

0 1

0

0000

0 1

1 1,1

11

1

1

1 0

1

11

1 0

1

111

1 0

1

1111

1 0

0 0,0

00

initial

22 Telektronikk 4.2000

other symbols. Once at a state, the machine
waits until one of the signals that can be con-
sumed in the state is available. This is immedi-
ately if the first signal queued in the agent’s
input port can be consumed, otherwise the
machine will wait. Each input leads to other
states via other symbols (such as outputs) to
the next state.

An output symbol may contain more than one
signal (in the example 1, 1 meaning that two 1
signals are sent). The next state can be indicated
by a symbol with the state name (in the
example 11 after the output of 1, 1), which in
this case acts as a connector.

SDL extends the finite state machine paradigm
in two important ways:

1. Each agent has an input port that queues
received signals on a first-in-first-out basis,
so that the signals are (normally) processed
in the order they are received;

2. Data can be received in signals, stored in vari-
ables, manipulated, used in expressions, used
to decide how the agent will behave, and
passed in output signals.

The receive bits process in Figure 3 uses data,
and therefore the number of explicit states is
reduced to one and the specification allows n to
be easily changed to any value. The data declara-
tion (dcl) introduces two variables, count0 and
count1, and a synonym relation is defined be-
tween n and a constant value 4. The receive bits
process also has:

• Decisions () that can have two or more
alternatives, one of which can be else – the
path taken after a decision is the one labelled
with a value that matches the expression in the
symbol;

• Tasks () that contain one or more state-
ments – typically assignment statements, but
can include textual loops, textual procedure or
method calls, textual if, and textual decision
statements;

• Text () symbols that are used to contain
data definitions, signal definitions and other
textual definitions;

• Stops () for terminating the state machine
and in this case the process agent.

Note that the stops are unreachable in the exam-
ple if the send_bits process works correctly.

2 Basic Communication
and Timers

As seen in the example in the previous section,
signals are the primary means of communication
between state machines (see 7 for other means).
Timers provide a real time element to SDL, and
generate associated timer signals.

2.1 Signal Communication
Signals can be defined with or without para-
meters, and the paths used are shown by the
lists attached to channels and gates as shown
throughout the figures in this article. An output
using the signal name generates an instance of
the signal. When a signal instance arrives at the
destination agent, it remains in the input port
until it is consumed, at which time the instance
ceases to exist. On output, parameters of a signal
can be given the values of expressions listed in
parentheses after the signal name. On input, the

Figure 3 The receive bits pro-
cess as an extended finite state
machine

1

1

count1:=
count1+1;

wait

count0:=
0;

count1

count0

ELSE

ELSE

n+1

n

process receive_bits 1(1)

0

0

count0:=
count0+1;

wait

wait

dcl
count0 Natural:=0,
count1 Natural:=0;
synonym n Natural=4;

count1:=
0;

count0

count1

ELSE

ELSE

n+1

n

Uniqueness and Qualifiers

A name is usually sufficient to identify an entity, but the full identifier includes a
qualifier that gives the context where the entity is defined.

The qualified signal <<system bitstuff_transmission>>0 is distinct from the Integer
data item called 0 or a signal <<send_bits>>0 (that is, a signal 0 defined in
send_bits). In practice, these qualified names (<<context path>> is a “qualifier”)
need only be used when necessary, which occurs rarely.

23Telektronikk 4.2000

parameters of a signal can be assigned to vari-
ables listed in parentheses after the signal name.

When there is more than one path, communica-
tion can be directed in the output to specific des-
tinations by a processing identity (Pid) value, an
agent name or via path. If there is more than one
path, an arbitrary one is used.

These values can be stored in variables for use
later. In Figure 5, X can only take path c1, but
Y can take g1 or c1. Y via c1 ensures the signal
goes to p2. Y to sender or Y to kid directs the
signal to a specific destination but on either path.

Four Pid expressions are available to each agent
for communications:

self an agent’s own identity;

parent the agent that created the agent
– Null for initial agents;

offspring the most recent agent created by the
agent – Null initially or if creation
fails because the maximum number
of instances already exists;

sender the agent that sent the last signal
input – Null before any signal
received.

2.2 Timers
An agent can have timers defined. A timer is
created by a definition, such as

timer t4 := 10.5;

A timer can be started with a set and cancelled
with a reset. When the timer is set it becomes
active and will expire when the time specified
in the set has been past.

The expression
active (t4) tests if the timer t4 is active.

set(now+3.2, t4) – sets the timer to 3.2 from the
current time.

set(t4) – sets the timer t4 to the duration (option-
ally) given in the timer definition from the cur-
rent time, which for t4 is now+10.5, see Fig-
ure 6.

If the timer expires then a signal of the same
name (in this case t4) is put in the input port of
the agent. It is quite usual to have a reset (t4)
before the timer expires in which case it is can-
celled, or if the signal is already in the input
port, it is removed.

A typical use of a timer is shown in Figure 6.

Timer definitions are NOT allowed in state dia-
grams or procedure diagrams (outlined in Sec-
tions 6.3 and 6.4 respectively).

3 System Engineering
Although the state machines are essential to
specify behaviour (that is, what responses are
given to particular stimulus sequences), complex
systems often involve several levels of decom-
position before state machines are reached. After
producing a top-level diagram, the next step is
often to determine the various attributes and
structures of each component rather than design-
ing state machines. Some would argue that

Sig3

state 02_Cstate 1(1)

Sig2

2idle

2ready

Sig2

in1

Out1

Out1

in1

Figure 4 The state 02_Cstate

block b 1(1)

p2(1,3)
g1
[Y]

p1(1,1)
c1

[X,Y]

process p1 7(9)

X

a

b

Y via c1

c

d

Y to sender

e

f

Y to kid

j

k

g

h

kid:=offspring

Figure 5 Number of instances;
signal directions in output

24 Telektronikk 4.2000

recognising the “objects” in the system, their
attributes and the relationships between objects
should be the first step.

Rarely are engineers given such a simple case as
in Figure 1. More likely the case would be more
complex as indicated by the following informal
statement: “The message transfer part of our
system has some control transfer functions that
interface with link control functions. Link con-
trol uses data signalling links defined by the fol-
lowing standards ... Design the Link Control
Function (LCF) to support the Message Transfer
Part (MTP) with the following characteristics ...
LCF is expected to ...”.

In most cases, engineering involves domain
and requirements analysis as well as application
specification, design and implementation. For
analysis, knowledge and experience are impor-
tant factors, but natural languages have proved
inadequate to complete the task effectively and
efficiently [3]. Well-defined notations are
needed to provide common understanding of
the object and property models and to enable
the models to be checked (before too much
money is spent).

The essential models for analysis are use scenar-
ios with use sequences (these can be captured in
MSC-2000 [4, 5]) and the object model. SDL-
2000 uses the same object model notation as
UML [6] for this purpose. A feature of engineer-
ing is that the diagrams change and evolve and
there may be many different versions, even if
only one is retained at the end. The final object
model can be a traceable evolution of the initial
analysis model.

In the rest of this article, an example has been
taken from ITU Recommendation Q.703: Sig-
nalling System No. 7 – Message Transfer Part –
Signalling Link, otherwise known as level 2.
Of the several functions of level 2, the signal
unit delimitation, alignment and error detection
are considered, which interfaces with level 1, the
signalling data link. For delimitation, an eight-
bit flag 01111110 is inserted into messages after
“bit-stuffing” to ensure six ones cannot other-
wise occur. On reception, the flags are removed,
and the messages “unstuffed”.

The initial model of a system would normally be
considered a “context model” showing the main
objects and interfaces. This is usually the initial
version of the final top level specification, which
for the example is the SDL diagram in Figure 7,
the details of which will be described subse-
quently.

Analysis of the small part of Q.703 results in the
diagrams in Figures 7, 8, 9 and 10 containing:

Figure 7 The level 1 interface for Q.703, re-using the same BLOCK for both ends.
The communication carried by the channels is defined by attached interface names:
l1I-f, to_daed and from_daed

Figure 8 The level 1 interface for Q.703, with error handling

reset(t4);

set(t4);

Wait_resp

resp

process timer_example 7(9)

t4

Con2

norm

err

timer t4 = 10.5;

Figure 6 Typical timer use

lev1

1lev

1lev

lev1

DAED1:DAEDtype

block level1interface 1(1)

use DAEDpack/DAEDtype, l1i_f, to_daed, from_daed;

txc_and_rc

DAED2:DAEDtype

txc_and_rc

[l1i_f]

[l1i_f]

[to_daed]

[from_daed]

[to_daed]

[from_daed]

DAED1e:DAEDerrtype

block level1if_with_err 1(1)

use DAEDpack/DAEDerrtype, l1i_f, to_daed, from_daed; use ermpack;

txc_and_rc

lev1

1lev

DAEDe2:DAEDerrtype

txc_and_rc

1lev

lev1

[l1i_f]

[l1i_f]

[to_daed]

[from_daed]

[to_daed]

[from_daed]

erm erm

ermstart,
ermstop

[link_failure]

u1 e1 e2 u2

[link_failure]

ermstart,
ermstop

25Telektronikk 4.2000

• an interface I1i_f for transmission and recep-
tion of Bits from level 1;

• two interfaces with the rest of level 2, to_daed
and from_daed;

• two agents DAED1 and DAED2 of type
DAEDtype, each containing agents for:

1. “delimitation, alignment and error detection
(transmission)” DAEDT;

2. “delimitation, alignment and error detection
(receiving)” DAEDR;

3. if error handling is included a “signal unit
error rate monitor” SUERM, see Figure 10.

3.1 Structure and Types
The block level1interface, Figure 7, uses the
block type DAEDtype from package DAED-
pack (for packages and their use see Section
3.5). End-to-end signal unit transport has two
DAED units connected by level 1. In Figure 7,
the type DAEDtype is used twice as the basis for
DAED1 and DAED2. A diagram that contains
types is often called an “object model”. For the
example, such a diagram corresponding to the
analysis for DAEDtype is shown in Figure 14.
Note that for illustration in this article, it is
assumed that two systems for the level 1 inter-
face are defined: one without and one with error
rate monitoring. Therefore, two versions of the
DAEDR agent are provided in Figure 14. These
two different specifications could (for example)
be used as the basis for different conformance
tests.

DAED1 and DEAD2 in Figure 7 are linked by
the name DAEDtype to the diagram in Figure 9,
which is linked by the daedrtype and daedttype
in block type () or process type ()
symbols to the diagrams that define these agent
types.

The labelled arrows outside the frame in Fig-
ure 9 are gates. Channels are connected to these
inside the frame, and when the type is used,
channels are connected to the gates from outside
the relevant symbol. For example, daedttype has
a gate txc that consumes signal_unit signals and
generates transmission_request signals. Interface
names could have been used instead of signals.

For a system that consists of a single block or pro-
cess, enclosing diagrams are not essential, there-
fore in Figure 7 there are no connections to the
channels outside the frame. Normally a gate or a
channel name would have to be shown. In general
channel and gate names can be omitted from dia-
grams if there is no need to refer to the channel.
No name is needed on the channels inside the

frame, as the communication is clear from the
interface names given for each direction.

Even when names are not needed by SDL, it is
sometimes useful to put them in. In the alterna-
tive version of the system (Figure 8), the chan-
nels have been named (u1,e1,e2,u2) so that it is
possible to distinguish between the two sides.

In simple systems such as Figure 1, the object
instances are shown as SDL definitions (such as a
block or a process) that have an implied type def-
inition. If several objects have the same proper-
ties, using explicit types makes the SDL simpler.

block type DAEDtype 2(2)

[Bits /*received*/]

[Bits]

1lev

block type DAEDtype 1(2)[Bits]

[signal_unit]

[transmission_request]

txc_and_rc

SYNONYM flag Bit_String = ´01111110´B;/*flag for signal unit*/
SYNONYM flaglen Natural = Length(flag)-2;/*number of ones*/

level1

DAEDT:
daedttype

txc

daedt_
type

level1

DAEDR:
daedrtype

rc

virtual
daedr_

type

lev1[Bits /*for transmission*/]

[signal_unit]

transmission_request
signal_unit

[signal_unit]

Figure 9 The diagram for DAEDtype consisting of two “pages”

block type DAEDerrtype inherits DAEDtype; 1(1)

use ermpact/ermstart,ermstop,link_failure;

[su_in_error, correct_su]

redefined
daedrtype

DAEDR

suerm_
_type

su_erm:suerm_type<link_failure>
daedg

[ermstart,ermstop] [link_failure]

failfrom_LSC

[ermstart,ermstop]
[link_failure]

SIGNAL su_in_error,
correct_su;

erm

Figure 10 The error handling
version inherits the basic

version

26 Telektronikk 4.2000

A type definition can be re-used in several
places in the SDL specification, and its proper-
ties can be inherited to make specialisations of
the type. For example in two-way systems, it is
quite usual for the transceiver description to be
re-used at both ends. In a system with several
kinds of termination, a general type of termina-
tion can be specialised for each case.

Types have to have fewer context dependencies,
so that they can be used in different contexts,
and context independence means that types can
be used as components in different systems.

3.2 Inheritance and Virtuality
When a type simply inherits from another type,
it has the same set of properties as the original
type, but a distinct identity. More typically, addi-
tional properties are also specified at the same
time. For example, DAEDtype in Figure 9 is
inherited by the DAEDerrtype, which handles
errors in Figure 10. The extra process agent
su_erm is added, based on an extra type
suerm_type.

Inheritance is a general mechanism that applies
to interaction diagrams, to behaviour diagrams
and to data types. In behaviour diagrams new
transitions can be added leading to new states.
In data types, new operations can be added.

However, it is not always sufficient to add new
properties to a type: it may be necessary to rede-
fine some existing properties. For example, in
Figure 10 the additional signals needed are gen-
erated by DAEDR based on the redefined
daedrtype.

SDL clearly distinguishes those parts that are
virtual and can be redefined. All other parts are
inherited unchanged and cannot be changed:
these are “finalized”. The fact that the properties
defined by the unchanged parts can be relied
upon in sub-classes, is a major advantage over
languages where any property of a super-class
can be changed in a sub-class. A redefined item
is virtual, and can be redefined again if the sub-
class (here DAEDerrtype) is inherited again. On
the other hand, a virtual or redefined item does
not have to be redefined in a sub-class, in which
case the definition from the super-class is used.
When redefinition is given, an item can also be
made finalized, so that it then cannot be changed
in sub-classes.

The agent type daedrprocess, defined in Fig-
ure 11 is redefined to generate the extra signals
(see Figure 12), but otherwise the structure and
behaviour of the rest is the same as in the origi-
nal daedrtype in DAEDtype. Symbols with
dashed lines indicate the use of existing items
defined in a super type. The examples here are

virtual block type
daedrtype

1(1)
[Bits]

bits_rxr rx_bits: bits_rxr

bit_in

from_LSC

signal
Bits_Received(Bitstring);

[Bits]

virtual
daedr_
process

DAEDRx:
daedrprocess

in_bit

rc

Bits_
_Received

[signal_unit]

[signal_unit]

Figure 11 The virtual block
type daedrtype

redefined block type daedrtype 1(1)

DAEDx
to_erm

finalized
daedr_
process

[su_in_error,correct_su]

[su_in_error,correct_su]

Figure 12 The redefined
block type

failure

process type suerm_type <signal failure> 1(1)

00_idle ermstop

01_in_
_service

dcl C, N
synonym T Natural=10;

ermstart

C:=0;
N:=0

su_in_
_error

C:=C+1

N:=N+1C=T

C=0

correct_
_su

01_in_
_service

N=256

C:=C-1;
N:=0

00_idle

su_in_error,
correct_su

daedg [ermstart,erstop]from_LSC [failure]fail

daedrtype

True False

TrueFalse

True False

Figure 13 The Q.703 signal unit error rate monitor, adapted with a context parameter

27Telektronikk 4.2000

the existing process () in Figure 12 and
existing block () in Figure 10.

3.3 Context Parameters
Specialisation of types can also be done using
context parameters, for which actual parameters
must be given before a type is used. As an exam-
ple, suerm_type has been defined (Figure 13) to
have a signal parameter for the failure signal, so
that the actual signal output can be changed. The
actual parameter, link_failure, is given after the
use of suerm_type in Figure 10.

Formal context parameters are given in a type
definition after the name of the type and en-
closed in < and >. The actual parameters are
given after the use of the type name enclosed
in < and >.

As well as being a signal, a context parameter
can be a block, a process, a data variable, a
synonym, a gate, an interface, a procedure,
an exception or timer; or a type for a block or
process or data.

3.4 Constraints
Context parameters, virtual types and gates can
have constraints. A constraint limits the actual
parameters, type redefinition and gate connec-
tions (respectively). By default, a virtual type
is constrained to be a sub-class of the base type
(the one with virtual). For example, any redefi-
nition of daedrtype in Figure 11 must by default
be a sub-class of daedrtype. However, it is per-
mitted to specify that the constraint is at least
some other type, in which case a redefinition
can use inherits to explicitly inherit another
type.

There are no defaults for context parameters,
but these can also be constrained by an at least.
Similarly, gates can normally be connected to
any channel that conveys the appropriate signals,
but a constraint restricts connections. In Fig-
ure 13, gate daedg must be connected to a block
based on daedrtype.

3.5 Packages
A package groups several type definitions
together and allows them to be used in several
systems. Packages can also be used within other
packages, and it is quite usual to have a hierar-
chy of dependencies between packages, which
can be shown diagrammatically (not illustrated
here for reasons of space).

Figure 14 supports both the systems defined in
Figure 7 and Figure 8. Each interface contains
the definition of the relevant signals, or links to
signal definitions by use (see from_daed). Inter-
faces can also include definitions or uses of two
other ways of communicating between pro-

cesses: remote procedures and remote variables
(see 7.1 and 7.2).

The three compartment class () symbols are
linked to type definitions. The top compartment
contains the kind, here block type () or
process type (), and identity of the type,
such as DAEDtype. Where the types are actually
defined elsewhere, a qualifier is put before the
name: deadt_type is defined in <<DAEDtype>>.
The specialization relation (symbol) indi-
cates that DAEDerrtype inherits DAEDtype so
that it includes the properties of daedt_type. The
block type daedr_type is also inherited, but is
redefined, which is possible because the origi-
nal is virtual. The process type suerm is added.

The lower two compartments of a class symbol
optionally give a definition of some properties of
the linked type, so that a reader does not have to
refer to another diagram for them. The middle
compartment can contain attribute properties,
such as the variables if the linked type is an
agent type. The lower compartment can contain
behaviour properties such as a procedure name
and its parameter sorts or a signal used in the
inputs of the linked object. In Figure 14, this
use of the class symbol is illustrated only for
daedt_type, which has a variable attribute prop-
erty, su_bits and a procedure behaviour property,
insert_zeros. During engineering, it would be

package DAEDpack 1(1)

interface l1i_f {signal Bits(BitString);}
interface to_daed {signal signal_unit(BitString);}
interface from_daed {signal transmission_request;use signal_unit;}

<<DAEDtype>>daedt_type

su_bits Bitstring;

indert_zeros(Bitstring,Natural);

virtual
<<DAEDtype>>daedr_type

redefined
<<DAEDerrtype>>daedr_type

<<DAEDerrtype>>suerm_type

DAEDerrtype

DAEDtype

Figure 14 An object model of
part of ITU Recommendation

Q.703, as an SDL package

28 Telektronikk 4.2000

quite normal to fill in some properties in the
compartments first, and elaborate the linked type
later. The real property definition is in the linked
type, but tools can assist in copying or checking
consistency.

An association () is a form of annotation –
it makes no difference to the SDL meaning if it
is removed. However, associations are intended
to have meaning in UML, and it is expected that
tools will do some checks between associations
and the SDL. Associations can be given mean-
ingful names and have attributes at each end
(role name, multiplicity range, ordered, private
or restricted or public visibility). The line can be
plain, or with or at one end indicating
“composition” or “aggregation”. A at either
end shows that the end is “bound”. The terms
“composition”, “aggregation” and “bound” are
not further defined by SDL.

If no properties are included, the class symbols
can be “iconized”: that is replaced by the iden-
tity inside the type symbol, (such as for a
block type). For examples see daedttype and
daedrtype, used in Figure 9 for the process and
block DAEDT and DAEDR respectively.

The text box at the top of Figure 10 makes use
of the signals ermstart, ermstop and link_failure,
all defined in a package, ermpack. Also the
whole object model is enclosed in a package
called DAEDpack in Figure 14.

One package named Predefined, is an integral
part of the language. It defines the data types:
Boolean, Character, String, Charstring, Integer,
Natural, Real, Array, Vector, Powerset, Dura-
tion, Time, Bag, Bit, Bitstring, Octet and Octet-
string. Some of these have context parameters
that need to have actual parameters to create new
data types before they can be used to declare
variables (some examples follow).

4 Data
SDL data is strongly typed. A data type can be a
value type that represents a set of values, or can
be an object type that represents object refer-
ences. Each sort of data is distinct. An element
of one value type cannot be assigned where
another value type is required. An element
of one object type cannot be assigned where
another object type is required that is not a sub-
type of the first. A value type element can be
assigned to an object type if they are based on
the same sort of data: an Integer value can be
assigned to an object Integer.

value type astring inherits String <Natural>;

defines astring as a data type that is a string of
Natural elements.

value type chlookup inherits Array <Character,

Integer>;

defines a data type that is mapping for Character
values to Integer values.

value type c_array10 inherits vector <mystruct, 10>;

defines c_array10 as a data type indexed with an
Integer in the range 1:10 that gives mystruct val-
ues (where mystruct is a defined data type).

package Predefined is implicitly part of every
SDL model. The example uses Bitstring, which
is a string of Bits. Note that Bitstring is indexed
from zero to be compatible with ASN.1: all
other strings in SDL (including Octetstring) are
indexed from 1. Bit values are 0 and 1. Bitstring
values can be '0'B, '1'B, '00'B, '01'B etc. or (for
example) 'B3'H meaning the same as '10010011'B.
The bit '...'B and hexadecimal '...'H notations are
also valid for Integer.

The Pid (processing identity) and Any data types
are considered as defined in package Prede-
fined. Pid has a special role in the language for
referencing agents or interfaces to agents, and
therefore has a Null to indicate no reference. An
Any variable can be assigned a value or refer-
ence of any other data type, and is therefore fully
polymorphic.

Each of the data types defined in Predefined has
a set of operations. Some of these provide the
normal infix notations for Boolean, Integer and
Real (such as and, or, +, –, *, /). Other Prede-
fined operations (such as mkstring) are operators
that use functional prefix notation.

String, Vector and Array based types can be
indexed to give an element.

dcl a1,a2 c_array10, i Integer;

/*allows assignments*/

a2:=a1; /*the whole array*/

a1[3]:=a2[i+1]; /*an element*/

4.1 User Data Types
For data types beyond simple types such as Inte-
ger, user-named types are defined either using
Predefined types with parameters (see astring,
chlookup, and c_array10 above), or by con-
structing new data types. Constructed data
types are enumerated with a list of literals, or
a structure, or choice type.

An example of an enumerated list is:

value type rbg {literals blue, red=0, green}

and has operators <, <=, >, >=, first, last, succ,
pred and num. Each literal must have a unique

29Telektronikk 4.2000

number. Literals without numbers are given (left
to right) the lowest available Natural number, so
blue=1 and green=2.

A structure has any number of fields, each of
which can be any named type including other
structures, strings, vectors or arrays.

value type S { struct

a Integer;

b Charstring optional;

c Character default ‘d’;}

dcl s1 S, I Integer, X Character;

s1:=(.3,’21’,’e’.); /*structure value*/

s1.b:=mkstring(s1.c); /*field access*/

The presence of the optional field b can be
tested by s1.bPresent, which gives a Boolean
value. A field that has not been assigned a value
is undefined unless it has a default value.

A choice is similar to a structure, but can only
contain one field at any one time, and assigning
one of the choices makes all other choices unde-
fined.

value type C { choice

hue rgb;

bs Bitstring;}

A named data type can be defined that inherits
the properties of another data type, and proper-
ties can be added including operations. An oper-
ation can be either an operator or a method. An
operator has a list of parameters and produces a
result. A method acts on a variable of the data
type (and may change it), and optionally takes a
list of arguments, and may produce a result. An
operator uses functional prefix notation: f(a,b),
whereas a method uses dot notation: var.method-
name(c,d). The body of an operation can be
defined using a textual algorithm (for example
see Figure 15) or by a linked diagram.

A synonym type (syntype) can be defined for
any data type that is assignment compatible with
the parent type. Though this could be used just
to give the type another name, this is usually
combined with some limitation of the values of
the parent type. Values of a syntype can be
assigned to the parent type, but only those values
defined by the syntype can be assigned to a syn-
type variable or parameter. A common use is to
limit the range of Integer.

syntype Int16 = Integer constants 0:65535;

For types that have a Length operator (such as
strings), a syntype can include a size constraint.
For example size(0,10) means the length must be
zero or 10.

4.2 Support for ASN.1
Several of the predefined data types have a
direct equivalence in ASN.1 [7]. SDL adds oper-
ators to ASN.1 data types, so that the values can
be manipulated in expressions. Bit, Bitstring,
Octet, and Octetstring were added to specifically
support ASN.1.

Other mappings from ASN.1 to SDL are defined
in Z.105 [8]. This allows an ASN.1 module to be
used with SDL, so that the data types defined in
ASN.1 are equivalent to data types defined in
SDL.

A value assignment in ASN.1 is mapped to a
synonym.

myvalue INTEGER ::= 100;

is mapped to

synonym myvalue Integer = 100;

A constrained type in ASN.1 is mapped to a syn-
type, so that

T ::= INTEGER(1..10)

is mapped to

syntype T = Integer constants 1:10;

An ASN.1 SEQUENCE (or SET – these are
treated the same) is mapped to a structure type
in SDL, which allows a variable to have a num-
ber of fields. For example, the ASN.1

S ::= SEQUENCE {

a INTEGER,

b CHARSTRING OPTIONAL,

c CHARACTER DEFAULT ‘d’ }

is mapped to S as defined in 4.1 above, and simi-
larly CHOICE is mapped to the SDL choice.
The corresponding mapping for SEQUENCE
values is to omit the field names and convert the
value to a structure value.

Figure 15 An object type for
a linked list of S elements

object type Slist {struct
elem S;

operators marke(S)->Slist;
methods add(S)
operator make(s S)

{return (. s, Null.);}
method add(s S) {

dcl last S;
for (last:=this,

last.next/=Null,
last.next);

last.next:=make(s);
} }

30 Telektronikk 4.2000

seqval S ::= { a 22, b ‘pqr’, c ‘x’ }

is mapped to

synonym seqval S = (. 22, ‘pqr’, ‘x’ .);

SEQUENCE OF, and SET OF, are mapped
to the String and Bag data types respectively.
ENUMERATED types are mapped to types with
literals. In addition, Z.105 gives mappings for
ASN.1 parameterized types, object classes,
objects and object sets.

5 Agent Creation
In most systems, there are multiple instances
of various agents, and some agents are created
dynamically, particularly when these are realised
as software rather than hardware or firmware.
The definition of an agent therefore includes
how many initial instances of the agent there
will be, and the maximum number of instances.
The default is one initial instance and no limit on
the maximum, and applies if explicit numbers
are not given by parentheses after the name. In
Figure 5 (also used in 2), process p1 is defined
to have 1 initial instance and a maximum of 1
instance, and block b2 is defined to have a maxi-
mum of 3 instances.

Agents can be created by other agents in a create
request (symbol) as part of a transition.
One instance of the agent definition identified in
the request is created each time the request is
interpreted. Values can be passed to the agent
in parameter variables. A create request can also
be used with an agent type, in which case an
instance is created as a member of an agent set
(implicitly created if one does not exist) of the
agent type in the scope surrounding the creator.
Creation can be indicated by create line (
symbol) originating from the creator and with
its arrowhead at the created agent.

In Figure 17 the state machine of block half1if
creates (multiple) instances of DAEDm and
Figure 16 shows the create request in the state
machine. Note that the state machine of the
block is represented by a single state symbol,
linked to the state diagram in Figure 16.

6 State Machine Diagrams
The state machine diagrams determine the be-
haviour of Agents. They define what happens
in each state and the transitions between states.
States are defined by both the symbol and
the attached symbols such as describing the
handling of stimuli in the state. Transitions are
defined by the symbols between the symbols for
states, and the next state symbol. Input is part of
a state, not part of a transition, though the signal
mentioned triggers one.

6.1 Stimulus Handling
Other symbols that can be attached to a state

symbol to describe stimulus handling are:

• save symbol that contains the names of
signals that are not consumed in that state;

• continuous signal symbol that contains a
Boolean expression – if there is no signal that
can be consumed and the expression is true,
the attached transition is triggered;

• immediately followed by contain-
ing a Boolean expression making a signal with
an enabling condition – the signal named in

is consumed and the attached transition
entered, only if the expression is true (the ex-
pression cannot depend on the signal para-
meters);

• containing the keyword none indicating
a spontaneous event – the attached transition
can be entered at any time while waiting in the
state.

The save is particularly important, because
the channels leading to the state machine deter-
mine signals that are valid for all states in the
machine. If a signal is not mentioned in any of

〈 〉

〈 〉

wait

state half1if 2(3)

wait

make(n) n:=n-1;

n

[ids]

[make]

else

ids(n,
offspring)

DAEDm

0

Figure 16 Description of a
state machine in a block that
creates instances

half1if

block half1if 1(2)

DAEDm(0,):DAEDtype

[ids]

[make]

txc_and_rc

use daedpack;

signallist su=signal_unit;
signallist surx=(su),transmission_request;

[Bits]

[Bits]

[su]
[(suix)]

lev1

1lev

page 2 (not shown) contains

Figure 17 State machine in
block that creates instances of
an inner block

31Telektronikk 4.2000

the for the state, it is implied that it can be
consumed and there is an empty transition back
to the state. Defining a signal as saved in that
state by using prevents this from happen-
ing.

Whether a signal is saved or consumed is
defined for each state independently. If the
machine enters a state and a signal is saved in
that state, all instances of that signal remain in
the input port and are not consumed as long as
the machine remains in that state. The next tran-
sition is triggered by the first signal instance in
the input port that can be consumed (that is, not
saved and not inhibited by an enabling condition
being false). If the triggered transition goes to a
new next state, this next state defines the sets of
consumed and saved signals.

6.2 Transitions
The components of a transition, such as output
(), task () and decision () seen in
1.2, are called actions. Other actions and sym-
bols that can occur within a transition are:

• procedure call – see 6.4;

• return symbol – see 6.4;

• create request – see 5;

• raise exception – see 6.6;

• connector – this contains a label.

When a transition ends in a next state that
does have any stimulus handling attached, this
symbol acts as a connector to the symbol
that defines the state. Although this means that
it is possible to avoid connectors, they are some-
times necessary. Out connectors have arrows
pointing to them at the end of the flow lines
leading to the connectors. An in connector can
only have one flow line leading from it. Logi-
cally, connectors are a continuation of flow.
Figure 18 has an example of a connector and
procedure calls.

Two other symbols are also introduced in
Figure 18, though they can be used generally:

• text extension symbol – this can be att-
ached to any symbol and allows continuation
of the text inside the symbol. So the task con-
taining the comment /*generate flags*/ also
logically contains su_bits:=flag//su_bits//flag;

• comment symbol – contains comment
text and can be attached to any symbol, such
as the initial transmission_request output with
the comment DAEDT -> TXC For first su.

6.3 Composite States
In all the above examples, there has been either
no explicit state machine or just one. If no
explicit state machine is given for the agent, an
implicit one exists. If the agent contains other
agents, the explicit state machine must be given
as in Figure 17 and Figure 16. There can be
channels connecting the symbol with the
other agents and the environment. The
links to a composite state description that can
be either a state aggregation diagram, or a state
machine diagram.

The state aggregation (see Figure 19) is similar
to an agent diagram containing a number of
agents, except that it contains links to com-
posite states instead of agents and no channels
are allowed. The linked composite state can be
considered as a partitioning of the state machine
of the agent into state machines that are inter-
preted in an interleaving manner: only one
machine can be in a transition at any one time.
When that transition reaches a state node, one
of the state machines that can enter a transition
is scheduled. If no machine is ready, the agent
waits for a stimulus. Each of the aggregated state
machines must handle a different set of inputs.
An aggregate state only terminates when all the
contained states terminate.

su_bits:=
flag//su_bits//flag

[Bits]level1

transmission_
_request

process type daed
/*Delimitation alignment, error detection (transmission)*/

1(1)

01_
_in_service

signal_unit
(su_bits)

generate_
_check_bits

generate_
_check_bits insert_zeros

insert_zeros
(su_bits,
flaglen-1)

con

DAEDT -> TXC
For first su

following
each five
consecutive
one´s

transmission_
_request

01_
_in_service

/*generate
flags*/

con

for transmission
Level2 to Level1

transmission_
_request

DAEDT -> TXC

DCL
su_bits Bitstring;

[signal_unit][transmission_request] txc

Figure 18 daedttype with
connectors and procedure

call

32 Telektronikk 4.2000

A state machine diagram, which is linked from
an agent diagram containing other agents, has
the same form as an agent state machine dia-
gram. This is the case in Figure 16, and another
example (state ATM) is given in [9].

A state machine diagram can also specify com-
posite sub-states of a state in another diagram.
Figure 20 and Figure 4 show a simple example.
When 02_Cstate is entered, the process remains
in this composite state until either one of the
returns is reached, or a Sig1 is received, which
forces the sub-state to terminate. Return via the
unlabelled return () takes the unlabelled tran-
sition from the 02_Cstate in composites. Return
via the labelled return () Out1 leads to the
transition to 03_state. If 02_Cstate is entered via
in1 the start symbol containing in1 is used.

As well as state diagrams, state types can also
be defined, which allows composite states to be
reused many places, like procedures.

6.4 Procedures
Figure 21 shows a procedure diagram. It is simi-
lar to a state machine diagram except that it
starts with a procedure start () and ends
with a return (). The procedure link ()

containing the procedure name shows where it
is defined.

A procedure is part of a state machine diagram
that is separated out and encapsulated, providing
a level of abstraction and a component for re-
use. Procedures can have dynamic parameters.
A procedure can return a result, and such a pro-
cedure can be used in an expression. Procedures
can contain states and can be recursive.

A procedure is a type. The calls of the procedure
are instances of the type. As well as dynamic
parameters for variables, procedures can also
have context parameters, for example for sig-
nals. A procedure definition can inherit from
another definition or can be virtual and rede-
fined in sub-types of the enclosing type.

6.5 Textual Algorithms
A task () contains one or more statements
separated by semicolons. These statements are
not limited to assignments, and can include:

• compound statement;
• if or decision statement;
• for statement;
• break and labelled statements;
• procedure call (see 6.4);
• set or reset action (see 2.2);
• raise statement (see 6.6);
• export action (see 7.2).

There are some occasions when graphical de-
scription of an algorithm is not the most appro-
priate form, though this is clearly a matter of
opinion. A long and complex procedure without
any states might be better written textually. A
statement list can be used in a task symbol, as
the body of a compound statement, or as the
body of a textual procedure or operation in a
text symbol. The last three cases all have the list
enclosed in curly brackets {}. The make and add
in Figure 15 are defined in this way.

A compound statement (and textual body of a
procedure or operation) can have local variables
only used in the statement.

An if statement takes the form
if (<Boolean expression>)

<consequence statement>

else <alternative statement>;

where the else part is optional.

A decision has the form
decision (<expression>){

(<range>): <statement>

(<range>): <statement>

...

}

state aggregation Cs 1(1)

Service1entry1 Egressentera Exit1

Service2

enterb Exit2

Figure 19 The specification of
a machine that is partitioned
into two interleaved machines.
Cs can be entered without giv-
ing an entry point or giving
entry1. If no entry point is
given both Service1 and Ser-
vice2 are entered via the start
transitions without names. If
entered via entry1, Service1 is
entered via entera, Service2
via enterb. If Service1 termi-
nates at Exit1 and Service2
terminates at Exit2, Cs will
exit via Egress. There can be
more than one exit, and if the
terminations are inconsistent,
an arbitrary one is used.
Named entry and exit point are
only meaningful if Cs is a com-
posite state in a state machine
diagram with named entries
and exits. entry and
exit connection points are
optional

process composites 2(3)

01_state

Sig1

02_Cstate

01_state

Sig2

02_Cstate
via in1

03_state

Sig1

01_state

Out1

Figure 20 The state 02_Cstate
is a composite state that can be
entered via in1 and has an exit
Out1

33Telektronikk 4.2000

where <range> specifies the constants for the
statement to be interpreted. It is exactly equiva-
lent to a graphical decision and there can be one
else.

The for statement does not have one equivalent
graphical construct, and therefore is one benefit
of using textual algorithms. The general form is
for (<loop variable assignment>,

<loop test>,

<loop variable step>)

<controlled statement>

though, for simplicity, options and some alterna-
tives have been omitted here.

If a statement is preceded by a label, the state-
ment can contain a

break label

statement, which goes to the label. Note that it is
not possible to jump into a statement.

6.6 Exceptions
Some checks can only be made dynamically on
SDL models. This causes language defined
exceptions to occur:

• OutOfRange, when a value is out of the range
for a syntype;

• InvalidReference, when there is an attempt to
use Null to reference an object or a Pid is used
in an output to identify a destination process
that cannot receive the signal;

• NoMatchingAnswer, when no answer matches
a decision value;

• UndefinedVariable, when trying to get the
contents of a variable before it has been
assigned a value;

• UndefinedField, when trying to get the con-
tents of a field that is undefined;

• InvalidIndex, when an index is out of range;

• DivisionByZero – division by zero;

• Empty – trying to take an element from a set
(created using a type derived from Powerset)
that has no elements.

Handlers can be provided for these exceptions
and for user defined exceptions. If the exception
occurs and is not handled locally in a procedure,
operation or compound statement that item is
terminated, and the exception can be passed to
the point of invocation in the caller.

An exception handler can be defined in an agent,
agent type, procedure or operation. The excep-
tion handler () symbol contains the name,

and handles one or more exceptions whose
names are in handle () symbols attached to
an exception handler symbol by lines.

An on exception () has its arrowhead con-
nected to a symbol containing a name. Like
a next state symbol, this symbol may be a
connector to the actual definition of the handler,
or may be the head of the handler. The other end
of the on exception () is either not con-
nected, in which case the handler applies to the
whole diagram, or is connected to a specific
symbol (such as a start, or state or input) in
which case it applies until the end of the transi-
tion. An exception attached to an action applies
just to that action.

exception e1, e2;

in a text symbol defines user exceptions e1 and e2.

An exception can be explicitly raised by a raise
() containing the exception name. This ter-
minates a transition, and no symbol can follow it.

Figure 22 gives an example. check_bits_correct
has the heading

procedure check_bits_correct -> Boolean;raise

su_error;

bits:=if n<len
then Substring(bits,1,n+m) // ´0´B
 //Substring(bits,n+m+1,len-n)
else bits //´0`B fi:
m:=m+1;

procedure insert_zeros
(in/out bits Bitstring, in max1 Natural)

1(1)

1

count1:=0;

dcl
count1, n, m, len Natural:=0;

true

false

len:=length
(bits)

count1:=0;

n:=n+1

bits
(n+m)

count1:=
count1+1;

count1
=max1

n=len

0

true false

Figure 21 The procedure
definition for zero_bits

34 Telektronikk 4.2000

7 Communications
Communication between agents takes place by
signals (see 2.1), remote procedures and vari-
ables.

7.1 Communication Using
Remote Procedures

One agent can communicate with another agent
by a remote procedure mechanism, so that the
calling agent waits for a response from the called
agent. The agent that offers the communication
defines the procedure in the normal way, but
with exported in the heading, such as

exported procedure rp (in x xsort)->rsort;

There are some restrictions on the parameters
and return values of remote procedures. In a
scope or interface common to both the called
and calling agents, a definition is given

remote procedure rp (in xsort)->rsort;

The procedure call can be written in the caller in
a similar way as any other procedure, but with
the added possibility to specify the destination
of the call and a timer on the response.

myx:= rp (myx) to parent timer trp;

7.2 Communication Using Variables
One agent in a block cannot access the variables
of another agent in the same block or any other
block. However, there is a notation for exporting
the value of a variable from one process to
another. If the owning process defines the vari-
able as exported (by dcl exported x xsort;), it
can have an export action that copies the vari-
able value. In a scope or interface common to
both the exporter and importer, a definition is
given (remote x xsort;). The importer can in-
voke import expression to the exporter (myx:=
import (x);) and obtain the copied value. In this
way, the value is safely under the control of the
exporter.

A variable of an enclosing agent that has its dcl
definition directly visible to an enclosed agent,
can be read or written by either agent without
the need to define a remote variable.

Where the enclosing agent is a process, no spe-
cial mechanisms are needed to access the vari-
able. This is because the scheduling of state
machines within the process is alternating at
the transition level, no two state machines can
be accessing the variable at the same time.

Where the enclosing agent is a block, the
scheduling of state machines within the block
can be interleaved at the action level. To ensure
safe access to the shared variables of the block,
these are accessed by implicit remote procedures
of the state machine of the block.

8 Learning More
The SDL-2000 Recommendation is 200 pages
of concise information and is probably only suit-
able as a reference document. Obviously, a short
article such as this one cannot be comprehen-
sive. At the time of writing no tools have been
released and no books have been published, and
as far as the author knows this is the first tutorial
style article to be published.

However, beyond the year 2000 the author ex-
pects the situation to change, and the best way
of getting up-to-date information on SDL is to
access http://www.sdl-forum.org.

correct_su

or
((len mod 8)/=0
or not
(call check_
_bits_correct)

finalized process type daedrprocess 2(3)

len:=length
(su_bits)

check_bits_
_correct

su_
_error

exception su_error;

false

len=0

su_in_
_error

reoprt_
_error

su_
_recover

01_
_in_service

redefined
Bits_Recieived

(su_bits)

Invalit_
Index

su_
_error

Serv_err Serv_err

01_
_in_service

(len
<=40)

OctetCounting
:=False

delete_
check_bits

signal_unit
(su_bits),

true

01_
_in_service

Octet_
Counting

falsetrue

[su_in_error,correct_su]to_erm

Figure 22 Finalized
daedrprocess with
exception handling

35Telektronikk 4.2000

References
1 ITU-T. Specification and Description Lan-

guage (SDL). Geneva, 2000. (Z.100
(11/99).)

2 ITU-T. CCITT Specification and Description
Language (SDL). Geneva, 1994. (Z.100
(03/93).)

3 Bræk, R et al. TIMe – The Integrated
Method version 4.0 – TIMe at a glance.
Trondheim, SINTEF, 1997.

4 ITU-T. Message Sequence Chart (MSC).
Geneva, 1999. (Z.120 (11/99).)

5 Haugen, Ø. MSC-2000 : interacting with the
future. Telektronikk, 96 (4), 54–61 (this
issue.)

6 ITU-T. SDL combined with UML. Geneva,
2000. (Z.109 (11/99).)

7 Willcock, C. A Tutorial Introduction to
ASN.1 97. Telektronikk, 96 (4), 62–69 (this
issue.)

8 ITU-T. SDL Combined with ASN.1
(SDL/ASN.1). Geneva, 1995. (Z.105
(03/95).)

9 Møller-Pedersen, B. SDL Combined with
UML. Telektronikk, 96 (4), 36–53 (this
issue.)

Telektronikk 4.2000

1 Introduction
This is a presentation of the ITU-T Recommen-
dation Z.109, “SDL combined with UML” [1],
in a form that is assumed to be somewhat more
readable than the Recommendation itself.

Z.109 defines a specialisation of a subset of
UML [2] that has a one-to-one mapping to a
subset of SDL. The semantics of this specialisa-
tion is given by the semantics of the correspond-
ing SDL. This is also the case with the CORBA/
IDL profile and any other language specific
UML profile. The intention with Z.109 is how-
ever not to use the specialised UML instead of
SDL, but to use SDL combined with UML.
This means that even though Z.109 is based
upon SDL for the semantics, not every concept
in SDL has a mapping to UML. As they will be
used in combination, there is no reason to make
an artificial and complex mapping for concepts
that are better supported by SDL and for which
UML is not the right notation. For example,
SDL has support for detailed specification of the
object structure of systems and for detailed spec-
ification of behaviour, while UML is not meant
to have this kind of support.

This presentation introduces a UML model of
the most important concepts from the SDL sub-
set. This model is not used to define the mapping
in Z.109, but it may form the basis for the defini-
tion of a profile solely based upon the concepts
of SDL, i.e. without requiring the language SDL
as such. This UML model of SDL is intended for
readers familiar with UML and plays the same
role as the meta (UML) model that forms the
basis for the definition of UML. Readers famil-
iar with SDL may read this model as an alterna-
tive to the abstract syntax of SDL, but knowl-
edge about the abstract syntax of SDL is not
needed in order to read the rest of the document.

With the understanding of SDL in terms of the
UML model, it should be possible for designers
to make UML models without knowing the de-
tailed mapping and the detailed semantics of
SDL, and still use the UML in a way that lends
itself to a mapping to SDL for detailed design.

2 Overview

UML/SDL Coverage
The main difference between SDL and UML is
not that UML is especially well suited for analy-
sis and SDL especially well suited for design.
With support for associations, SDL may be used
for making analysis object models in terms of
classes and associations, as well as for design.

The main differences between UML and SDL
are that

• UML is a collection of concepts and notations
for several views of the same system: e.g.
Object-, State Machine-, Use Case-, Collabo-
ration and Interaction views;

• SDL is a language (with concepts, abstract
grammar and graphical/textual grammars)
focussing on the Object- and State Machine
views of a system. For these views, SDL is
however a complete language with static and
dynamic semantics and with concrete syntax
(graphical/textual) for the specification of
actions. Users of SDL rely on other languages
like MSC for specification of interactions
between instances;

• UML has a weak semantics with many varia-
tion points, while SDL has a complete seman-
tics, including execution semantics for state
machines.

These differences are the reasons for Z.109.
They are illustrated in Figure 1, which also
introduces the following terms:

• UMLSDL: the specialised subset of UML with
a mapping to SDL according to Z.109;

• SDLUML: the corresponding subset of SDL.

With the mapping defined in Z.109 it is possible
for SDL users to use not only MSC for interac-
tion modelling, but also to use UML for Use
Case and Collaboration modelling. SDL users
may also use the Object and Statemachine mod-

SDL Combined with UML
B I R G E R M Ø L L E R - P E D E R S E N

The ITU-T Recommendation Z.109, “SDL combined with UML”, defines a one-to-one
mapping between a subset of SDL and a specialised subset of UML. With this mapping it is
possible to use UML for what UML is good at (multiple views of the same system, informal
object models, and property model views) and SDL for what SDL is good at (detailed and
formalised object models, especially with respect to execution semantics).

Birger Møller-Pedersen (51)
joined Ericsson in 1997. He has
been working with the standardi-
sation of SDL-2000 within ITU,
and is now responsible for the
Ericsson engagement in UML
2.0 within OMG. Before joining
Ericsson he worked at Telenor
R&D with Java and network
management. While working at
the Norwegian Computing Cen-
ter, Birger Møller-Pedersen was
one of the four designers of the
BETA programming language.
He was one of the key persons
in extending the ITU formal
specification language SDL to
support object orientation in
1992. His background in object
orientation dates back to imple-
mentations of Simula, espcially
via an intermediate code (S-
code) in the spirit of Java byte-
code, but long before internet
was a reality. Møller-Pedersen
is co-author of two books.

Birger.Moller-Pedersen
@eto.ercisson.no

36

37Telektronikk 4.2000

elling of UML at stages where the detailed sem-
antics is not determined, and then turn to SDL
when detailed specification is needed. With
Z.109 it is also possible for UML users to use
SDL for more precise models, including the
specification of actions.

Z.109 implies no sequence in the use of UML
and SDL. As indicated in Figure 1 a tool sup-
porting Z.109 should be able to provide both the
SDL- and the UML view of the subsets covered
by Z.109.

Z.109 provides a mapping between the UML
meta-model and the (abstract) grammar of SDL.
For the notation in UMLSDL, the notation de-
fined in SDL (Z.100) can be used, where this
is appropriate. Otherwise the UML Notation
Guide applies. One example of a difference be-
tween the notation defined by SDL and the UML
Notation Guide is the notation for tagged values.
While UML, and thereby UMLSDL, have tagged
values enclosed by {}, SDL uses keywords pre-
ceding the type names.

Presentation Structure
The rest of this presentation is a description of
the main concepts of SDL and their representa-
tion in UML according to Z.109. It is based
upon an example, an Automatic Teller Machine
(ATM), in order to illustrate the use of Z.109 for
the combined use of SDL and UML. The exam-
ple is only intended to give an idea on how the
mapping between UML and SDL may work and
does not claim to cover all details of the mapping.

The presentation requires a detailed knowledge
of UML – on the other hand there is no reason
to use Z.109 without a fairly good knowledge
of UML. The whole idea of Z.109 is to enable
users of SDL or users of UML to take advantage
of the combined use of UML and SDL.

For each of the main SDL concepts the follow-
ing is described:

• A short textual description that describes the
SDL concept;

Figure 1 Integrated tool
provides both views

Figure 2 Analysis object
model in UML – Class

Diagram

UML
UML SDL

SDL

SDL UML
Use Cases

Collaborations

Interactions

Activity

Object/Class

State Machine

Deployment

Action
 Language

Instance/Type

State Machine

User Panel Validator CentralUnit

CashDispenser

ATM

1 1

1

38 Telektronikk 4.2000

• Conceptual UML model: the SDL concept in
terms of UML, like a meta-model for SDL;

• UML Mapping: a specification of how the
various semantic elements of the SDL concept
are mapped to the UML meta-model. UML
meta-model elements are written in Italics,
while the SDL terms are capitalized.

- Base class: the name of the class from the
UML meta-model to which the SDL con-

cept is mapped, with stereotype or without
stereotype;

- Tags: the set of tagged values that every
model element bearing the stereotype must
have.

• Constraints: the additional constraints (rela-
tive to the base class) that apply.

The example does not cover the whole mapping
of Z.109, nor does it cover a typical full-fledged
use of Z.109: the use of the parts of UML that
are not mapped. A typical use would be to make
Use Case models and overall Collaboration
models in UML, and turn to SDL when it comes
to (detailed) Object and Statemachine models. It
would also be natural to use UML Deployment
models during implementation design. The use
of Sequence Diagrams or MSC is not covered
either.

3 Agents and Agent Types
An (analysis) object model of an ATM will typi-
cally include a class diagram with classes and
associations and one or more collaboration dia-
grams showing the interaction between the in-
volved objects for selected scenarios. In Figure
2 we have identified that an ATM consists of
objects that model the panel, the validator and
the cash dispenser, and we have specified the
associations between the classes. The object
model includes associations between ATM and
User and between ATM and CentralUnit be-
cause this is the only way to specify that they
do not only have associations to parts of the
ATM, but also to the ATM as such.

For the purpose of this presentation, we have
only included one collaboration diagram and just
used the structural part of the collaboration to
specify which instances will be linked (Figure
3). A full collaboration diagram may include the
specification of the interactions between the ob-
jects. Note that the ATM instance is not present
in the collaboration diagram. It could be, but it
would just be an object similar to the other ob-
jects; it is not possible to specify as part of the
collaboration diagram that the ATM object is
composed of the Panel-, Validator-, and Cash-
Dispenser objects.

Given the UML Object model in Figures 2 and
3, there is no unique SDL specification. As soon
as the UML is elaborated to conform to
UMLSDL, the UML model is a partial specifica-
tion of a potentially more detailed SDL specifi-
cation. In order to elaborate the UML model, we
have to know what the concepts of UMLSDL are
and how they are expressed in the specialised
UML.

UML Profile: The Mechanisms for Defining
a Specialisation of UML

The notion of a UML profile is not yet well defined within OMG, but the following is

taken from the RFP (Request For Proposal) requiring a definition of a profile:

“Definition of a profile:

• In general, a UML profile is a mutually consistent set of predefined specifications

that collectively customize UML for a specific domain or purpose (e.g. a “unified

process” profile). The specifications in a profile typically consist of UML stereo-

types, tagged values, constraints, notational elements (icons, diagrams, etc.),

and other possible specifications. By definition, a profile does not extend UML

by adding any new basic concepts and fully conforms to the semantics of the

general UML standard.

• More precisely, a UML profile is defined as a specification that does one or more

of the following:

- Identifies a subset of the UML meta-model (which may be the entire UML

meta-model);

- Specifies “well-formedness rules” beyond those specified by the identified sub-

set of the UML meta-model. “Well-formedness rule” is a term used in the nor-

mative UML meta-model specification (ad/97-08-04) to describe a set of con-

straints written in UML’s Object Constraint Language (OCL) that contributes

to the definition of a meta-model element;

- Specifies “standard elements” beyond those specified by the identified subset

of the UML meta-model. “Standard element” is a term used in the UML meta-

model specification to describe a standard instance of a UML stereotype,

tagged value or constraint;

- Specifies semantics, expressed in natural language or in any appropriate

language, beyond those specified by the identified subset of the UML meta-

model;

- Specifies common model elements (i.e. instances of UML constructs),

expressed in terms of the profile.

• The above definition is taken verbatim from the UML 1.3 specification with one

important exception: the ability to extend the UML meta-model with new meta-

types. The latter capability may be included in a more comprehensive future defi-

nition of a profile, but is out of the scope of the current profile.”

Z.109 follows this definition, with the exception of the definition of the semantics.

This is not described as part of the text, but obtained by the mapping to the SDL

subset.

39Telektronikk 4.2000

SDL: Agents
An SDL System consists of Agents that are con-
nected by means of Channels. Agents may com-
municate by sending Signals or by requesting
other Agents to perform Procedures.

An Agent may have both a StateMachine and an
internal structure of Agents (a composite Agent).
The internal Agents and the StateMachine are
connected by Channels. The connection points
for Channels are Gates.

Conceptual UML Model. Figure 4 gives a UML
conceptual model of this part of SDL. An SDL
specification may specify both singular Agents
and types of Agents. Types correspond to classes
in UML. Because UML only prescribes classes
of objects (and not singular objects), Figure 4
only gives the UML model of Agent types.
UML supports the notion of object diagram,
but that is only for describing snapshots of UML
run time objects and not for the prescriptions of
object structures in the body of types.

Agents come in different kinds with different
execution semantics: Block Agents are concur-
rent Agents with possibly interleaved execution
of the transitions of the state machines, while
Process Agents are alternating Agents with run-
to-completion execution of transitions. The over-
all system is a special System Block Agent.

UML Mapping. An Agent type maps to a Class
of active Objects, with constraints as described
below. System, Block and Process agent types
are mapped to classes with stereotypes “system”,
“block” and “process”, respectively.

Part of the structural content of a composite
Agent (in terms of Agents connected by means
of Channels) is mapped to a combination of
Composition and the structural part of a Collab-
oration. The representedClassifier of the Col-
laboration is the Class representing the compos-
ite Agent type. Channels between sub-agents are
represented by AssociationRoles in the Collabo-
ration. The ClassifierRoles of the Collaboration
represent the types of the sub-agents. An even-
tual stateMachine of the composite Agent is not
(or rather cannot be) represented as part of the
Collaboration.

Types defined locally to an Agent type are
mapped to Classes in the Namespace of the
Class representing the enclosing Agent type.

Base Class for stereotypes “system”, “block”
and “process”

• Class for Agent type without internal Agents

• Class with associated Collaboration for a com-
posite Agent type.

(Stereotype) Constraints

• an agent is an active object;

• an agent can have at most one state machine;

• an agent can have operations that are public,
protected or private, i.e. no constraints;

• an agent may have attributes that are ordinary
attributes in addition to gates, channels, or
sub-agents;

• attributes may be public, protected or private,
sub-agents are private, and gates are public.

Figure 3 Structural part of a Collaboration Diagram

Figure 4 A UML conceptual
model of the basic SDL mod-
elling concepts and relation-

ships

Figure 5 Kinds of Agents

: User

P : Panel V : Validator : CentralUnit

CD : Cash
Dispenser

CompositeState

Channel Gate

Agent

0..1

subAgent stateMachine

0..*

0..* 0..* 0..*

1..*

Agent

Block

System

Process

40 Telektronikk 4.2000

With this introduction to the notion of agents in
SDL and how they are mapped to UMLSDL, we
can now elaborate the general UML model of
the ATM. We decide that all involved classes
shall be classes of block agents, because they
execute concurrently with each other. This is
reflected in Figure 6, where the classes have
been stereotyped with “block”.

A class diagram as in Figure 6 implicitly defines
a set of classes in a package (or in the name-
space of another class). This is according to the
definition of UML, and a UML tool will nor-
mally provide this information in a browser. The
corresponding SDL specification, see Figure 7,
includes the information of the enclosing pack-
age graphically. SDL has a package diagram that
contains class symbols for the types that are de-
fined in that package. As associations are sup-
ported by SDL and as class symbols represent
type definitions, there is a one-to-one mapping
between the two specifications.

Icons can be used as an alternative to stereo-
types, see Figure 8. The icons for the different
kinds of agents are defined in Z.100.

In addition to the package diagram with type ref-
erences and associations, the SDL specification
includes a type diagram for each of the types,
see Figure 9. The package diagram with the
class symbols only tells that there is a number of
types defined in the scope of the package, while
the detailed specifications of the types are given
in the separate type diagrams.

As demonstrated so far, UML can be used in
situations where the object kinds have not been
decided yet. Figure 2 only specifies that some
kind of ATM objects will be composed of
objects of other classes, but not whether these
are concurrent objects or not.

As illustrated in Figure 7 and Figure 8, a class
symbol represents a type. If the name of the
class has no qualifier, then the class symbol
specifies that a type is defined in the scope
defined by the enclosing diagram, and that the
complete type definition is given in a (refer-
enced) separate, complete type diagram, as those
found in Figure 9. If the name contains a quali-
fier (a path expression denoting some other
scope), then the class symbol just represents an
application of a type. The type is then defined in
the scope unit denoted by the qualifier.

A class symbol is, however, not just an indica-
tion that there is a type being defined (in a sepa-
rate diagram), but also a partial type specifica-
tion. Specification of an attribute in a class sym-
bol, see Figure 10, implies a corresponding spec-

Figure 6 Analysis model in UMLSDL

Figure 7 Type references in an SDL package diagram

Figure 8 Alternative type references with icons

1 1

<<block>>
ATM

<<block>>
User

<<block>>
Panel

<<block>>
Validator

<<block>>
CentralUnit

<<block>>
CashDispenser

1

1 1

<<block>>
ATM

<<block>>
User

<<block>>
Panel

<<block>>
Validator

<<block>>
CentralUnit

<<block>>
CashDispenser

1

package ATManalysisModel

1 1

ATM

User Panel Validator CentralUnit

CashDispenser

1

package ATManalysisModel

41Telektronikk 4.2000

ification of a variable in the corresponding SDL
type diagram as in Figure 11.

4 Associations
The example includes both ordinary associations
and compositions. This presentation does not
make any effort to convey the details on the use
of the many properties that associations can
have.

SDL – Associations
Types can be associated. Associations are de-
fined at the level of the types being involved.
Associations are properties of the enclosing
entity. Associations have no implied semantics
for the types involved.

UML Mapping. The notion of associations in
SDL is a strict subset of associations in UML,
so the mapping between SDL and UML is
straightforward. As we shall see below, associa-
tions are also used to represent two special con-
cepts of SDL:

• Internal structure of Agents, represented by a
combination of Composition and Collabora-
tion in UMLSDL;

• Gate with endpoint constraint, i.e. a gate that
can only be connected with instances of a cer-
tain type, represented by a stereotyped Associ-
ation.

5 Internal Structure of Agents
Assume that the next step is to model the details
of block type ATM. In Figure 2, Figure 6 and
Figure 7 it is only specified that instances of
classes may be linked (as the classes are associ-
ated), and it is specified that ATM instances will
contain instances of Panel, CashDispenser and
Validator (by composition). Figure 3 says that
the instances of Panel, CashDispenser and Val-
idator collaborate, and it also tells which of these
collaborate with the user and with the central
unit.

The composition in Figure 6 can be mapped to
the corresponding composition in SDL (Figure
7 and Figure 8), but it can also be mapped to a
partial specification of the more detailed internal
structure of agents. This is done in the SDL dia-
gram for block agent type ATM in Figure 12. It
specifies that each ATM instance will contain a
number of sub-agents that are connected by
means of channels.

This detailed SDL specification introduces two
new concepts: Interfaces and Gates. The follow-
ing defines these and provides the mapping to
UML.

SDL – Interfaces and Gates
An Agent may have a number of required and
implemented Interfaces. An Interface defines
Signals, Variables, RemoteProcedures and
Exceptions. A Signal defines the types of the
data (parameters) that will be sent with each
signal instance. A RemoteProcedure defines the
signature of procedures that may be exported
by Agents and thereby be requested by other
Agents.

Interfaces are associated with Gates. Gates are
connection points for Channels connecting
Agents. Communication between Agents takes
place via Channels.

An implemented Interface defines which Signals
and which RemoteProcedure call requests that
may be sent to an Agent. A required Interface
defines which Signals the Agent may send and
which RemoteProcedures it may request from
other Agents.

Figure 9 ... and the corresponding block type diagrams, here only partially specified

Figure 10 Partial type
specification ...

Figure 11 ... corresponding to
a textual specification in the

diagram

Figure 12 SDL specification of the ATM block type

block type ATM

... details omitted

block type user

... details omitted ... details omitted

block type Panel

... details omitted

block type Validator

... details omitted

block type
 CashDispenser

... details omitted

block type
CentralUnits

<<block>>
Validator

currentPanel : PId

block type Validator

dcl currentPanel Pid;

[inP]

[outP]

block type ATM

P: Panele

tV

e [cashOut]

[cashed]

CD:
CashDispenser c

v

d

V: Validator

tP
cd

c
[invalitdIF]

[AMTcenralIF]

c

[PanelVallf] [ValPanellf]
[CDatmIF] [atmCDIF]

42 Telektronikk 4.2000

A Gate with an EndpointConstraint can only be
connected to Agents of the same type as or to a
subtype of the Agent type of the constraint.

UML Mapping. An Interface is mapped to an
Interface. UML Interfaces can only have Opera-
tions (corresponding to procedures), so Signals,
Variables and Exceptions are mapped to stereo-
typed Operations.

It is not possible to represent the Gates of an
Agent in UML directly according to the con-
ceptual model, unless representing them as
attributes or objects. A Gate is, however, not an
instance but rather a connection point and as
such similar to an Association of UML Objects.
Therefore, Gates are mapped by means of differ-
ent kinds of Associations:

• For gates as connection points between in-
stances of two agent types the mapping is
to an association between the two types.

• For a gate of a single agent type the mapping
is to a stereotyped association. The name of
the association maps to the name of the gate.
The type at the other end of the association is
either the type of an endpoint constraint, or no
type in case there is no endpoint constraint.

Base Class for gate
• AssociationEnd for the definition of a Gate as

a possible connection point based upon associ-
ations between classes representing Agent
types;

• Association stereotyped with gate for the de-
finition of a gate (possibly with endpoint con-
straint) as part of the definition of an Agent
type.

The example in Figure 15 shows the use of
stereotype “signal” to specify that the interface
PanelValIF defines a set of signals. The corre-
sponding SDL graphical interface definition is
also given.

If we were to map Figure 12 back to UML, the
gates of the ATM block agent type are not speci-
fied as objects, even though the conceptual
model in Figure 4 defines gates as objects. The
gates of the ATM are defined by means of a
combination of interfaces and associations to
other classes. In Figure 16 one of the gates of
the ATM block type is represented by two inter-
faces, one for incoming signals and one for out-
going signals.

In Figure 17 the gates of two of the agent types
are defined by the role names of an association
between the two types. The implemented and/or
required interfaces are specified either on the

Figure 16 Block Agent Type
with Gate in UMLSDL

Figure 13 UML conceptual
model of SDL interfaces

Figure 14 UML conceptual
model of SDL gates

Figure 15 Interface in UML (left) and SDL (right)

Interface

0..*

signal

remoteProcedure

remoteVariable

exception

0..*

0..*

0..*

0..1

Gate

Agent

Interface

Interface
+EndpointConstraint

implemented

required

<<Interface>
PanelVallF

<<signal>> AcceptCard(account)()
<<signal>> Code(integer)()
<<signal>> Amount(amount)()
<<signal>> otherAmount()
<<signal>> about()

<<Interface>>
PanelVallF

signal AcceptCard(account)
signal Code(integer)
signal Amount(amount)
signal otherAmount
signal about

<<use>>

<<Interface>>
outP

<<Interface>>
inP

<<block>>
ATM

43Telektronikk 4.2000

types (as in Figure 17) by means of use and
realises dependencies, or as part of the role
names (not shown here). If more than one gate
at each agent type should be specified, then the
role name alternative must be used in order to
specify which interfaces belong to which gates.

Figure 17 illustrates that gates with two-way
interfaces are better specified in SDL. This is not
surprising, since this is one of the distinguished
features of SDL. Z.109 defines the mapping, but
in actual use it is recommended to specify the
gates as part of the SDL specification.

From the SDL specification in Figure 12, it is
possible to apply the mapping from SDLUML
to UMLSDL. This is illustrated in Figure 18 and
Figure 19. The mapping is to a combination of
a Composition with representation of the gates
of the composite class and a Collaboration with
roles representing the parts of the composite that
interacts.

The internal connections are mapped to associa-
tions between the classes (Figure 18) and to
association roles between the roles of a Collabo-
ration (Figure 19). Note that compared with the
initial collaboration (Figure 3), the collaboration
in Figure 19 does not include the User and the
CentralUnit roles.

The association roles linking P with V and V
with CD correspond to the channels of the SDL
model. For the purpose of specifying the con-
tents (in terms of objects) of a type of objects,
(here the type ATM), the SDL diagram is supe-
rior. The UML specification provides the speci-
fication at the class composition level and a sep-
arate collaboration diagram, while the SDL
specification combines these two.

6 Signals
As described above, possible interactions be-
tween Agents by means of signals is defined by
interfaces and gates. The signals themselves are
defined by signal definitions, either as part of
interface definitions or as part of packages or
agents.

SDL: Signals and Signal Types
A Signal may carry a set of values called Para-
meters.

A Signal definition defines a type of Signal
instances. An Agent sending a Signal does this
by generating a Signal instance according to a
Signal type and providing the actual Parameters.
The receiving Agent may assign the values of
the Parameters to local Variables.

Signals can be defined either in the Agent en-
closing the Agents that use the signals for com-

<<use>><<block>>
Panel

<<block>>
Validator

+tP

+tV

<<Interface>>
PanelVallF

<<Interface>>
PanelVallF

<<use>>

association between types in UML

[ValPanellf]

P: Panel

V: Validator

forming the basis for connecting
instances in SDL

tV

tP

[ValPanellf]

ValPanelIF

+tV PanelValIF

<<block>>
Panel

<<block>>
Validator

represents gates on each type in SDL

ValPanelIF

+tP PanelValIF

Figure 17 Gates by means of
Associations

<<use>>

P

<<block>>
ATM

<<block>>
Panel

<<Interface>>
inP

<<Interface>>
outP

<<block>>
Validator

<<block>>
CashDispenser

1

CD 1

V 1

Figure 18 Analysis model in
UMLSDL, with only one of the
gates of ATM represented in

UML

P : Panel V : Validator

CD : Cash
Dispenser Figure 19 Collaboration

representing ATM

44 Telektronikk 4.2000

munication, as part of an Interface, or in a sepa-
rate Package.

A Signal can be defined as a subtype of another
Signal. The subtype inherits the Parameters of
the supertype and may add Parameters. Inherited
Parameters cannot be changed.

A Signal type defined in an Agent type can be
defined to be a virtual Signal type. A virtual Sig-
nal type can be redefined/finalized by extension
in subtypes of the Agent type with the virtual
Signal type definition.

UML Mapping. Signal is in UML represented
by the standard UML subclass of Classifier
stereotyped with “signal”. The Parameters are
represented by Attributes.

Tags
• Virtual - the Signal type is a virtual type

• Redefined - the Signal type is a redefined
type, but still virtual

• Finalized - the Signal type is a finalized type,
and no longer virtual

(Stereotype) Constraints
• A Signal type Classifier can have at most one

super (Signal) type Classifier and it must be
stereotyped with “signal”;

• A virtual, redefined and finalized Signal type
Classifier must be defined in the namespace of
an Agent type Classifier;

• Visibility of attributes representing Parameters
does not apply.

A signal can in SDL be defined in a textual
form, and in a combination of graphical and

textual forms. As an example, the signal Accept-
Card introduced in Figure 15 is defined in a
Package called ATMsignals. Figure 21 provides
the SDL and the corresponding UML specifica-
tion.

7 Specialisation of (Agent)
Types, and Virtual Types

In order to illustrate the use of tagged values,
suppose that the panel of the ATM needs to be
redefined for different kinds of ATM. The dif-
ferent kinds of ATM are defined by specialisa-
tions of the general ATM class. Both SDL and
UML cover specialisation, although in a slightly
different form.

SDL: Agent Types and Subtypes
An Agent type can be the specialisation of
another Agent type. A specialisation may add
properties to those specified for the supertype,
including subAgents and Channels, and it may
redefine/finalize virtual types and/or Procedures
being defined in the supertype.

A virtual type/Procedure can be either redefined
(in which case it is still virtual) or finalized (in
which case it is no longer virtual). Redefini-
tions/finalizations must obey the constraint of
the virtual. A virtuality constraint is in terms of
a general type/procedure, and the redefinitions/
finalizations must be subtypes/subprocedures of
the constraint.

UML Mapping. Specialisation maps to General-
isation, with the constraint that there is only one
superclass and that the kind of the superclass is
the same as the kind of the subclass.

Tags
A virtual type is mapped to a class with one of
the following tagged values:

• Virtual - the agent type is a virtual type;

• Redefined - the agent type is a redefined type,
but still virtual;

• Finalized - the agent type is a finalized type,
and no longer virtual.

The virtuality constraint is mapped to the con-
straint association of the Class.

(Stereotype) Constraints
• An agent type Class can have at most one

super (agent) type Class and it must be of
the same kind as the agent type Class;

• A virtual, redefined and finalized agent type
Class must be defined in the namespace of
another agent type Class;

Signal Parameter

0..*

package ATMsignals

signal AcceptCard (Account)

... further signals omitted

package ATMsignals

<<signal>>
AcceptCard

Account

... further signals omitted

Figure 20 Signal

Figure 21 Signal definition in
SDL (textual), in SDL (graphi-
cal) and in UMLSDL

45Telektronikk 4.2000

• A Collaboration representing the structural
content of a super agent type Class is inherited
by subtype Classes.

In SDL a general ATM type is specified by hav-
ing the type of the panel (ATMpanel) defined
locally to the type ATM and by having it defined
as a virtual type, see Figure 22.

Note that the locally defined type ATMpanel is
indicated by a type symbol within the diagram of
the enclosing type. The full specification of the
type ATMpanel will be in a separate diagram,
see Figure 23. The heading of this diagram will
give additional specification of the type, e.g. that
it is constrained by the general type Panel, so
that it can only be redefined to a subtype of
Panel.

The constraint type Panel, see Figure 24, defines
the common properties of panels, including the
interfaces in terms of gates. By specifying the
Panel as the constraint of the virtual type ATM-
panel, it is enforced that all redefinitions have
this interface.

In UMLSDL, the fact that ATMpanel is defined
in the namespace of ATM is specified by the
plus encircled line, and the virtuality is specified
by the tagged value “virtual”, see Figure 25. So
far, we have only used the filled diamond type
of UML graphics for Composition. Figure 25
includes the symbol enclosing style, in order to
illustrate that a class symbol within another class
symbol is not the same as name space contain-
ment. In both variants in Figure 25 the plus
encircled line must be there in order to specify
that the class is defined locally to the ATM.

The constraint of the virtual type is not shown
in the class symbol for the virtual type.

[inP]

[outP]

block type ATM

P: ATMpanele

tV

e [cashOut]

[cashed]

CD:
CashDispenser d

v

d

V: Validator

tP
cd

c
[validIF]

[AMTcenralIF]

c

[PanelVallf] [ValPanellf] [valCDIF]

<<block>>
ATMpanel

[CDatmIF]

Figure 22 Virtual type in SDL

virtual block type ATMpanel atleast Panel

... details omitted

Figure 23 Virtual type
diagram – only heading

block type Panel

... details omitted

[inP]

[outP]

tV

e

[ValPanellf] [PanelVallf]

Figure 24 The Panel con-
straint type – only heading

and gates

<<block>>
ATM

<<block>>
ATM::ATMpanel

<<block>>
Validator

<<block>>
CashDispenser

1

1

1

<<block>>
ATMpanel

{virtual}

<<block>>
ATMpanel

{virtual}

<<block>>
ATM

P:ATMPanel
1

V:Validator
1

CD:CashDispenser
1

Figure 25 Virtual type by tagged value

46 Telektronikk 4.2000

8 State Machines
In order to illustrate state machines, the block
type ATM is changed by substituting the Valida-
tor block with a state machine. The effect would
be the same if the Validator block had its own
state machine: the ATM state machine will exe-
cute concurrently with the state machines of
Panel and CashDispenser.

The state machine of the ATM illustrates the
notion of composite state. Figure 26 is a UML
statechart diagram associated with the class
ATM. In UML, the association between the
class and statechart is part of the UML meta-
model, but there is no graphical notation for it.
In a Class Diagram there will be a class symbol
for ATM, while a separate Statechart Diagram
defines the state machine. There is nothing in the
class symbol saying that this class has an associ-
ated state machine.

Amount
(amount)

<<block>>
ATM VerifyCard

ReadAmount

VerifyTransaction

otherAmount

Release
Card

abort

abort

Out of
Service

outOfService

rejectTransaction

ok

EnterAmount

SelectAmount

Figure 26 UML Statechart
for ATM

SDL: State Machines
States may be either BasicStates or Composite-
States. The StateMachine of an Agent is a Com-
positeState. A CompositeState has a number of
States and Transitions. Transitions are triggered
by events like input of a Signal or a remote Pro-
cedure call. Composite states may be State-
Aggregations, i.e. states with a number of
StatePartitions. A StateAggregation is in one of
the states in each StatePartition, while an ordi-
nary CompositeState is in just one of its states.

UML Mapping. In the UML meta-model there
is an aggregation between ModelElement and
Statemachine, with role names context (the Mod-
elElement) and behaviour (the Statemachine).
The stateMachine of an Agent is represented by
a Statemachine with the context associating it to
the class of the Agent type.

A StateAggregation is mapped to a Composite-
State with isConcurrent=true. A StatePartition is
mapped to a State with isRegion=true, but with
a different semantics than UML (see above).
isRegion is an attribute of the UML meta-model
element CompositeState.

The SDL specification corresponding to Figure
26 has a block type diagram for ATM. This dia-
gram shows the contents of ATM objects, in-
cluding the fact that there is a state machine. The
state machine is defined in a separate diagram.

The state symbol (with the name ATM) in the
block type diagram in Figure 28 specifies that
the ATM has a state machine. The definition of
the state machine is given in a separate state dia-
gram, see Figure 29.

Note that the state machine of ATM is defined
by two state diagrams. The reason is that the
state machine of ATM contains a composite
state ReadAmount. In the state diagram ATM
this state is specified by a state symbol, and its
internal specification (in terms of states and tran-
sitions) is given in a separate ReadAmount state
diagram. Even though there is a mapping be-
tween UML and SDL state machines at the
meta-model/grammar level, the graphical syntax
for state machines is very different. While SDL-
2000 has (independently of Z.109) introduced
UML-like class symbols for types and associa-
tions in the style of UML, the state machine
notation of SDL is so different from the State-
chart notation that composite states was intro-
duced in SDL-2000 as part of the existing SDL
notation. Z.109 can be used to switch between
the SDL notation and the Statechart notation.

As demonstrated by the example above, the
main rationale for Z.109 to cover state machines
is that the view offered by UML Statecharts is

Transition State

0..*

Procedure

StateConnectionPoints

BasicStateCompositeState

StateAggregation

1..* state 1

0..*

1..* nextState 1

entry

exit

1.
.*

st
at

eP
ar

tit
io

n

Figure 27 UML conceptual
model of SDL state machine

47Telektronikk 4.2000

good for the state overview, while the SDL view
is good for specifying the details of transitions.
In case of large state machines, the SDL way of
dividing them into separate state diagrams is
superior to the graphically nested form of state-
charts.

9 Variables and
Procedures of Agents

Somewhere behind the scene presented so far,
there will be Account objects. Transactions on
the ATM will imply transactions on the account
of the user. A simple model of an account in-
cludes attributes like account number, balance
and credit limit and operations like deposit,
withdraw, open, and close.

The standard way of modelling this is to define
an Account class. SDL and UML are similar
here, with the exception that SDL makes a dis-
tinction between value- and object classes.

SDL: Object and
Value Typed Variables
In addition to a StateMachine and sub-Agents,
an Agent may have both attributes in terms of
Object and Value type Variables, and operations
in terms of Procedures. A Variable may be an
exported variable, in which case other Agents
may observe its value.

[inP]

[outP]

block type ATM

P: Panele

tV

e [cashOut]

[cashed]

CD:
CashDispenser d

v

d

ATM

tP
cd

c
[validIF]

[AMTcenralIF]

c

[PanelVallf] [ValPanellf] [atmCDIF]

[CDatmIF]

Figure 28 Block type diagram
with internal agents and a

state machine

display
(´Select

amount´)

Select
Amount

amount
(amount)

outOfService

state ATM

amount :=0

state ReadAmount

transaction
(account,
amount)

acceptCard
(account)

VerifyCark
dcl

accountAccount,
amountInteger;

ReadAmount

Verify
Transaction

reject
Transaction

display
(´Limit

exceeded´)

ReadAmount
via reenter

ejectCard

ReleaseCard

OutOfService

aborted

dcl nbr Integer;

reenter

abort

display
(`Enter

amount`)

other
Amount

digit(nbr) ok

Enter
Amount

amount :=
amount

* 10 + nbr

-

*

aborted

reenter

Figure 29 State Machine of ATM in SDL

48 Telektronikk 4.2000

UML Mapping. Variables are mapped to Attri-
butes, and Procedures are mapped to a combina-
tion of Operations and Methods.

Base Classes
• Attribute for reference- and value variables;

• Operation/Method for Procedure;

Agent

0..*

Object Value Procedure

0..* 0..*

reference variables

variables value

Account

+ deposit(Amount)
+ withdraw(Amount)
+ open()
+ close()

- accountNumber : Number
- balance : Amount

<<process>>
Account

+ deposit(Amount)
+ withdraw(Amount)
+ open()
+ close()

- accountNumber : Number
- balance : Amount

Figure 30 Variables and Procedures of Agents

Figure 31 UML Class with
Attributes and Operations

Figure 32 UMLSDL

Process Type

<<process>>
Account

+ deposit(Amount);
+ withdraw(Amount);
+ open;
+ close;

- accountNumber Number;
- balance Amount;

process type Account

<<procedure>>
deposit

dcl accountNumber Number;
dcl balance Account

<<procedure>>
withdraw

<<procedure>>
open

<<procedure>>
close

• Class for Procedures that are specialisations of
general Procedures.

Constraints
• Visibility = private is not applicable.

A local Variable is mapped to an Attribute with
visibility = protected. An exported Variable is
mapped to an Attribute with visibility = public.

Figure 31 illustrates the UML way of specifying
a class with attributes and operations.

From this general UML model it is possible to
elaborate into SDL in two different ways: either
Account objects are active objects which execute
their operations themselves, or Account objects
are just data objects with associated operations.

In Figure 32 it has been decided to model the
account by an active object, and therefore, the
stereotype “process” has been applied.

In Figure 33 the corresponding SDL is given,
in both graphical and textual form. The process
type diagram is only sketched. In addition to the
declaration of the variables and of the proce-
dures, a process type diagram will typically con-
tain the specification of the state machine, speci-
fying in which states the different procedures
will be accepted and executed.

The procedure symbols in the process type dia-
gram in Figure 33 play the same role as class
symbols for agent type. They specify that the
enclosing type has a number of procedures and
that the detailed specification of the procedures
is to be found in separate procedure diagrams,
just as for type diagrams, see Figure 34.

10 Procedures
Procedures have been introduced above as prop-
erties of Agents. The example will not contain
any detailed definitions of procedures. Proce-
dures are meant for specifying patterns of be-
haviour that an Agent can perform as part of
transitions. Procedures can be specified in the
same way as Agents: by means of a state

Figure 33 Process
Type Symbol and the
corresponding Pro-
cess Type Diagram

49Telektronikk 4.2000

machine. Simple Procedures will just have
one transition and no states.

SDL: Procedure
A Procedure is a pattern of behaviour specifica-
tion that can be used by Agents performing the
Procedure by calling it as part of transitions.
Procedures may either be LocalProcedures or
ExportedProcedures. A LocalProcedure is a pro-
cedure that is used locally in an Agent, while
other Agents (according to the signature defined
by a RemoteProcedure) may request the execu-
tion of an ExportedProcedure.

A Procedure can be a specialisation of another
(general) Procedure, thereby inheriting parame-
ters, eventual local variables and behaviour spec-
ification.

A virtual Procedure is a Procedure that can be
redefined in subtypes of the enclosing Agent
type. A virtual Procedure can be either redefined
(in which it is still virtual) or finalized (in which
case it is no longer virtual). Redefinitions/final-
izations must obey the constraint of the virtual.
A virtuality constraint is in terms of a general
Procedure, and the redefinitions/finalizations
must be subtypes/subprocedures of the con-
straint.

UML Mapping. Procedures are mapped to a
combination of Operations, Methods and
Classes. The signature of the Procedure is repre-
sented by an Operation, while the body is repre-
sented by a Method. A Procedure that is a spe-
cialisation of another Procedure is in addition
represented by a Class (in the namespace of the
Class representing the enclosing type) with
stereotype “procedure” and with a Generalisa-
tion relationship to the Class (also stereotyped
with “procedure”) representing the superproce-
dure.

Base Classes
• Operation/Method for Procedure;

• Class for Procedures that are specialisations
of general Procedures.

Tags
• For Procedure:

- Virtual - the Procedure is a virtual
Procedure;

- Redefined - the Procedure is a redefined
Procedure;

- Finalized - the Procedure type is a final-
ized Procedure.

Constraints
• LocalProcedures have private visibility only,

while ExportedProcedures have public visibil-
ity only;

• Visibility = private is not applicable.

A LocalProcedure is mapped to an Operation
with visibility = protected. An ExportedProce-
dure is mapped to an Operation with visibility
= public.

11 Data Types
Data types are used to define the properties of
attributes and parameters to signals and opera-
tions. The access code that follows each card,
with a card identification number and a personal
identification number, is an example of an
attribute defined by a data type. The data type
AccessCode will define a structure consisting
of two fields: cardId and pin.

SDL: Data Types
SDL data types come in two different forms. A
value data type<data type definition>:value:use
in text defines a set of values. An object data
type <data type definition>:object:use in text
defines a set of objects.

Variables of Object types are references with
an associated reference semantics. Assignment

procedure deposit

... details omitted

procedure withdraw

... details omitted

procedure open

... details omitted

procedure close

... details omitted

Figure 34 Procedure
diagrams corresponding
to the procedure symbols

in Figure 33

LocalProcedure ExportedProcedure

Procedure

Figure 35 Procedures

50 Telektronikk 4.2000

between these variables is reference assignment,
and two reference variables may denote the same
Object instance. Variables of Value types exhibit
value semantics: assignment means e.g. copying
the value from one variable to another.

Data types can be defined in various ways: either
by enumerating the elements of the type (literal)
or by constructing a tuple from elements of
given sorts (structure of fields).

Operations are Operators or Methods. Operators
are functions that produce new objects or values,
while Methods are applied to instances and can
modify properties of the actual instances. Opera-
tions in general can be defined as virtual, rede-
fined and finalized Operations.

In addition to Operations a DataType may also
define local DataTypes. DataTypes can be de-

fined as part of Packages and as part of types.
DataTypes defined locally to a type can be
defined as virtual DataTypes and thereby rede-
fined/finalized in a subtype of the enclosing
type.

UML Mapping. Object and Value data types are
mapped to stereotyped Classes, i.e. the prede-
fined UML DataType is not used. Variables of
Object and Value types are therefore mapped to
attributes with user-defined classes as attribute
types. Fields of structured types are mapped to
Attributes. Operators and Methods are mapped
to a combination of Operations and Methods.

Base Classes
• Object type is a stereotyped Class (“Object”);

• Value type is a stereotyped Class (“Value”).

Tags
For both “Object” and “Value” the following
Tags apply:

• Virtual - the object/value type is a virtual
type;

• Redefined - the object/value type is a rede-
fined type;

• Finalized - the object/value object/value type
is a finalized type.

Operators and Methods have the same visibility
options (public, protected, private) as Operations
in UML, so there is a direct mapping.

In Figure 37 it has been decided to model
Accounts by means of objects with fields and
methods. The corresponding textual SDL partial
definition (not including the bodies of the meth-
ods) is also included in the figure.

The SDL version of the data type is given in the
textual form, contained in a text symbol, which
will be part of a diagram. SDL also allows a
class symbol as a partial specification of the data
type, but in order to have it completely defined,
the textual form is necessary.

Figure 38 gives an example of the definition of
a simple value data type AccessCode in both
UMLSDL and in SDLUML.

12 Packages and Overall
System Specification

Both SDL and UML have the notion of package
for the grouping of elements and of a topmost
unit of specification. Figure 39 is a package dia-
gram in SDL, using the signal types defined in
the package ATMsignals and defining three
block types.

Operations0..*DataType

Object Value Operator Method

Figure 36 Data Type

<<object>>
Account

+ deposit(Amount);
+ withdraw(Amount);
- open;
- close;

- accountNumber : Number
- balance : Amount

object type Account struct
private accountNumber Number;
private balance Amount;
methods
public deposite (in Amount);
public eithdraw (in Amount);
private open;
private close;

endobject type;

Figure 37 Object Type in UMLSDL and in SDLUML (textual form)

<<value>>
AccessCode

valid(): Boolean

cardId : Integer
pin : Integer

value type Access Code
struct

cardld Integer;
pin Integer;

methods valid -> Boolean;
endvalue type;

Figure 38 Value data
type in UMLSDL and
in SDLUML (textual
form)

51Telektronikk 4.2000

SDL: Packages and Systems
A Package is a grouping of definitions, including
type definitions but not instance definitions. A
Package may also contain other Packages. A
Package may use another Package, including all
its definitions or just a subset of these. The Pack-
ageInterface of a Package defines the elements
of a Package that are visible outside the Pack-
age.

The complete SDL SystemSpecification consists
of a number of Packages and possibly a System.
If no System is included, the SystemSpecifica-
tion is simply just a means to define a set of
Packages.

A System may also use Packages, with the
implication that the definitions in the Packages
become visible as if they were defined in name-
space enclosing the System namespace. Systems
do not contain Packages. Decomposition of a
System into parts is obtained by the general
mechanism for structuring of Agents. The Sys-
tem is the special outermost Block Agent (see
Figure 5), and as Agents may contain Agents
(connected by Channels), a System may be
decomposed into a number of Block Agents or
a number of Process Agents, depending on the
concurrency involved between the parts of the
System.

UML Mapping. A Package is mapped to a Pack-
age constrained as specified below. The use of
a Package is mapped to an import Dependency.
The PackageInterface is mapped to public visi-
bility for the model elements to which the ele-
ments in the PackageInterface are mapped.

A SystemSpecification is mapped to a Model
Package with a system-stereotyped class for
the System Agent.

While a UML Model may have a number of
Models, each representing a view on the mod-
elled system, the corresponding SDL system-
Specification may only contain one view, repre-
sented by the System.

Note also that the UML notion of Subsystem is
not used in the mapping. The reason for this is
that parts of an SDL system are Block Agents.
Blocks can be created dynamically, they have
unique identifiers and they can have attributes
and operations – and that is not possible with
UML Subsystems.

Constraints
A SystemSpecification can only have Packages
and a System, i.e. no other Models.

The UML model corresponding to Figure 39 is
given in Figure 41.

13 Context Parameters
An SDL type can be parameterised, so that it
can be used in different contexts. Parameterised
types are often defined in packages, as they are
supposed to be usable in different systems. Con-
text parameters are typically types, but they may
also be variables and instance sets.

Bank

1

ATM CentralUnit

package ATMModel

use ATMsignals;

1

Figure 39 Package diagram
in SDL

SystemSpecification
0..*

Package

Definition Package System

use
0..*

0..* 0..* 0..*

0..*
use

Figure 40 Package and SystemSpecification

1..* 1

<<system>>
Blank

<<block>>
ATM

<<block>>
CentralUnit

ATMsignals

<<import>>

ATMmodel

Figure 41 Package and
Model in UMLSDL

52 Telektronikk 4.2000

SDL: Context Parameters
A type in general can have formal context
parameters. A formal context parameter repre-
sents a corresponding entity in the context
(scope) of the type.

The types in Figure 43 can be parameterised by
context parameters.

Depending on the kind of type, context parame-
ters can be agent types, procedures, data types,
signals and even variables. The simple rule is
that entities that can be defined in the context of
a given type also can be context parameter of the
type.

When defining a new type based upon a parame-
terised type, the actual context parameters are
types, procedures, data types, signals or vari-
ables in the scope where the new type is defined.

Context parameters are constrained, so that the
specification of the parameterised type can be
analysed independently of where it is used for
defining new types.

UML Mapping. Context parameters are repre-
sented by TemplateParameters of the Class that
represents the SDL type.

The provision of actual context parameters is
represented by a binding. The binding as an
explicit relationship does not exist in SDL. It is
part of the definition of the type as a subtype of
the parameterised type.

In SDL the context parameters are specified as
part of the name of the type, see Figure 44.

In Figure 45 the corresponding ATM class in
UML is a class with template parameters. The
actual parameters are provided as part of the
binding.

14 References
1 ITU-T. SDL combined with UML. Geneva,

ITU-T, 2000. (Z.109.)

2 UML documentation on: www.omg.org/uml.

ContextParameter

formalContextParameters 0..*

Type
Figure 42 Parameterised Type

Type

Agent Interface DataType Signal Procedure State

Figure 43 Types that can be parameterised

<<block>>
ATM<value type currency>

block type NorwegianATM inherits ATM<NOK>

... details omitted

Figure 44 Parameterised ATM type and a type with actual parameters, in SDL

<<bind>>

<<block>>
ATM

currency
<<block>>

ATM

currency

NorwegianATM

Figure 45 Parame-
terised ATM type and
a binding, in UML

53Telektronikk 4.2000

Summary of Z.109 SDL Combined with UML

This paper provides an introduction to the ITU Recommendation Z.109: SDL Combined with UML.

The style is different from the one of Z.109, in the sense that SDL (and a conceptual UML of SDL)

is the entry point. From this viewpoint it should be clear which subset of SDL is covered.

Z.109 provides a specialisation and restrictions of the following UML model elements, with an

indication of the mapping to SDL:

• Packages represent packages in SDL;

• Models represent SDL specifications, each consisting of a set of packages and a system.

Subsystems are not used; the structuring of systems into subsystems is in SDL covered by

a special kind of objects (block agents) and thereby mapped to Composition in UML;

• Classes represent SDL types, with the following stereotypes representing the different kinds of

entity types in SDL. The features of classes represent different SDL type properties, depending

on the stereotype:

– «system»;

– «block»;

– «process»;

– «procedure»;

– «interface»;

– «object»;

– «value»;

– «state»;

– «signal».

• State machines represent state machines of agents;

• A subset of Associations represents the corresponding concept in SDL. Two special kinds of

association represent partially other SDL concepts:

– composition as a partial representation of containment between agents;

– association stereotyped with gate representing a gate with endpoint constraint;

• Generalization represents the corresponding specialisation in SDL;

• The following UML Dependencies are used to represent different dependencies in SDL:

– «import»: a package using another package;

– «create»: an agent being created by another agent;

Virtual types and procedures/operations are represented by the following Tags:

– virtual;

– redefined;

– finalized.

Telektronikk 4.2000

1 Introduction
The system1) is a simple system to provide
access to users to certain access zones through
access points. In the most abstract specification,
nothing is said about what means are used to
achieve this access other than the fact that some
individual code is the base for authentication. In
a more concrete description, it is uncovered that
we have a system based on a card bearing the
necessary information for access, and that there
is a door that needs to be opened and closed by
the user.

The language MSC is a formal language. MSC-
96 has a formal semantics defined in Annex B
of the recommendation Z.120 [5]. The language
is well suited to define interaction sequences.
We shall use this language to specify our ex-
ample system of Access Control.

The reader may make good use of earlier de-
scriptions of MSC. Tutorials on MSC-92 and
MSC-96 can be found in TIMe [6]. There are
also MSC methodology papers presented at SDL
fora in 1995 and 1997 [7, 8]. For the more for-
mally inclined we recommend to have a look at
Michel Renier’s doctoral thesis [9] or a shorter
presentation of formal semantics of MSC [10],
or the paper by Andreas Prinz on Formal Seman-
tics of Specification Languages in this issue of
Telektronikk.

MSC is being used on its own as a precise way
to describe interaction behavior or it is used
together with other languages. Requirements
expressed using MSCs can be used in model-
checking of an SDL description [11] and as a
base for producing TTCN test cases [12, 13].

Thus MSC is being used extensively in all
phases of system development.

2 Basic MSC
We start by specifying the service of controlling
the access of users to some Access Zones. A
very simple description of a scenario where the
User is accepted by the system is given in Figure
1. The simple MSCs merely describe a set of
event traces. An event is something that happens
in one moment in time. An event in MSC is typi-
cally an output of a message or an input of a
message, or the setting of a timer, or the timeout
of a timer. A trace is a sequence of events.

In the diagram UserAccepted we have two in-
stances called User and ACSystem. The User

sends a message Code to the ACSystem and later
receives an OK message indicating that the
ACSystem will Unlock the door. The MSC is
bounded by a frame representing the border be-
tween the environment and the inner instances.
The points on the frame that represent relations
between the environment and the MSC such as
the Unlock message to environment in Figure 1
are called gates. The MSC has a name in the
upper left corner preceded by the keyword msc.
The six cornered shapes at the start and at the
end of the MSC are conditions. They represent a
description of the situation present at that point.
We shall turn to conditions later.

Most people, regardless of their background in
software engineering, will normally understand
such message sequence charts. One should be
aware, however, that to specify the complete set
of event traces is not always so easy. In MSC
UserAccepted there are two possible traces as
the diagram does not give explicit ordering
between the output of the Unlock message from
the ACSystem and the reception of the OK mes-
sage by the User. More informally one may say
that whether the door is unlocked before or after
the User recognizing the OK, is not defined.

MSC-2000: Interacting with the Future
Ø Y S T E I N H A U G E N

Øystein Haugen (45) works for
Ericsson Research NorARC,
Norway and has been heading
the standardisation effort within
ITU for MSC leading to MSC-
2000. Haugen holds a PhD in
computer science from the Uni-
versity of Oslo. His interests
have been in the area of making
precise software methods more
applicable to common engi-
neers. He also holds a position
as associate professor at the
Institute for Informatics at the
University of Oslo. In 1993 he
co-authored (with prof. Rolv
Bræk) the textbook “Engineering
Real Time Systems” (Prentice
Hall) in connection with the SISU
project.

oystein.haugen@ericsson.no

MSC-2000 [1] is the latest recommendation from the International Telecommunication
Union (ITU) defining Message Sequence Charts. Earlier recommendations of MSC have
been issued in 1992 [2] and in 1996 [3].

This tutorial goes through MSC-2000 by means of examples from an Access Control
system.

1) Throughout this tutorial we shall use one example, the Access Control System pioneered by Bræk
& Haugen in Engineering Real Time Systems [4].

54

55Telektronikk 4.2000

Both solutions are possible. This is implied
formally by the two major invariants of event
ordering in MSC:

1 The events on an instance line are ordered
from the instance head to the instance end.

2 The output of a message comes before the
input of the same message.

The problem with the basic MSCs was that when
they became popular due to their simplicity, a
normal system would have a large number of
basic MSCs such that maintaining the base of
MSCs would be very difficult. There were no
language mechanisms to help structure the total
description. MSC references were introduced to
improve this as they made it possible to include
references to separately defined MSCs in the
body of other MSCs, as shown in Figure 2. This
is very similar to the introduction of subroutines
in FORTRAN. We see that the Unlock gate of
User_Accepted in Figure 1 naturally appears as
an actual gate from the MSC reference in Figure
2. Gates can be compared with parameters, or
with interface points.

The introduction of MSC references was prac-
tical also for the new overview diagram that
showed how MSCs were to be composed, as
illustrated in Figure 3. The idea is of course that
the High Level MSCs (in short called HMSCs)
show the combination of MSCs in diagrams
where the instances and the messages are ab-
stracted away. This has proved to be very help-
ful to get an overview of MSC descriptions, and
to prescribe the intended composition.

3 Time in MSC
The basic MSC approach to time is character-
ized by the use of timers, based on the same
principle as SDL [14]. Typically the user will
describe the timers that will be present in an
implementation. The description will specify the
starting of the timers and the consumption of
timer messages. Stopping the timer is of course
also a possibility if other messages are received
that make the timing irrelevant.

3.1 Imperative Description of Time
In Figure 4 we see a diagram with an inline
expression. The initial condition is that the
door is unlocked. Then the timer door is started.
The first operand of the alternative description
describes the normal situation where the door is
opened by the User and the timer is stopped and
the door is closed. The second operand describes
that the User neglects the open door and the
timer expires. Finally, in both cases the door
locks again. An inline expression is bounded by
an expression frame, the operands are separated
by a dashed separator line, and the operator is

Figure 2 MSC with MSC reference and actual gates

Figure 3 High-level MSC for improved overview

Figure 1 Simple MSC msc User_accepted

msc UserAccepted

User AC System

Code

OK

when Idle

Door unlocked

Unlock

msc AutoDoor

User AutDoor

opened door

Idle

Door open

Unlock

AC System

User_Accepted

msc UserAccess

when Door unlocked

Idle

UserRejectedUserAccepted

Unlocked_reset

Unlocked_unclosed

Unlocked_timeout

56 Telektronikk 4.2000

shown in the upper left corner of the expression
frame.

We note that the timer events may appear indi-
vidually. The events associated with the same
timer occurrence may also be connected by a
vertical line (not shown).

The initial conditions containing “when Door
unlocked” in Figure 4 fit well with the final con-
dition of Figure 1. The initial conditions check
that the appropriate label is the current label for
the covered set of instances while the final con-
ditions set the value of the label. Thus conditions
are used to restrict how the MSCs can be legally
composed in sequence.

3.2 Constraint-Oriented
Approach to Time

Another approach to describing time was intro-
duced in MSC-2000. Now it is possible to de-
scribe time-stamps as well as time constraints.
In Figure 5 we describe the same situation again
using time constraints. While timers are concep-
tually more according to the view of the techni-
cal system, time constraints are more according
to the (human) User. The User knows that when
the system is neglected the unlocking of the door
will be followed by a Lock after more than 10
seconds. The keyword inf describes infinity.
Time constraints describe time relations between
events that must be fulfilled for the whole sce-
nario to be valid. What makes the time con-
straints hold is not described.

In MSC-2000 we can describe time constraints
on intervals or on time points. We may also
measure time intervals or points and use those
measurements in time.

4 Data in Messages
Data has been made more precise in MSC-2000
and this implied that there was a need for more
formal declaration of data. In Figure 6 we see
that different aspects of data are defined in a
diagram that defines a context for the individual
MSC diagrams.

For each instance, the variables are declared
with their name and associated data type. The
data type is of course to be used for typecheck-
ing of expressions. The message types that have
data parameters are also declared such that
parameter type checking can be performed on
message passing.

For MSC-2000 it was decided that instead of
defining a data language entirely on its own, and
instead of adopting one particular data language,
the data language should be parameterized. This
means that the designer can use his favorite data
language as long as it is properly declared.

Figure 4 Using timers

Figure 5 Using time con-
straints

Figure 6 Data in messages

msc Unlocked_Idle

User

Opened

Idle

when Door unlocked

Push door

AC System

alt

door

door

door

Closed

Lock

msc UserAcceptedUnlocked_timeout

User

OK

Idle

when Idle

Code

AC System

Unlock

Lock
[10,inf>

msc UserAcceptedUnlocked_timeout

User

OK

Idle

when Idle

Code(_=:id)

AC System

Unlock

Lock
[10,inf>

57Telektronikk 4.2000

The language-clause indicates the name of the
chosen data language such that the MSC ana-
lyzer can get access to the proper interfaces be-
tween MSC and the chosen data language. The
data-clause gives the necessary data declarations
in that given language. The wildcard-clause indi-
cates an identifier which designates a wildcard
value of a data type.

Finally, the parenthesis-clauses give declarations
of different kinds of parentheses in the data lan-
guage such that a pure MSC-parser can parse the
data expressions even when the analyzer has no
interface to the chosen data language. The
escape-clause has the same purpose when paren-
thesizing is not sufficient.

In Figure 6 we see that the Code message is sup-
plemented by the binding “_ =: id”. The under-
line is defined (by the developer as shown in
Figure 7) as a wildcard value meaning that it
designates just any value. “id” is a name of a
variable of the ACSystem. Thus the Code mes-
sage with the binding denotes that the Code mes-
sage transmits a value which may just be any
integer from the User to ACSystem where the
transmitted value is bound to the variable id.

5 Decompose MSC
Instance Kind

An MSC document diagram defines the context
in which a set of MSC diagrams appear. This set
of MSC diagrams share the same set of interact-
ing instances. This set of instances are compo-
nents of the context and the MSC document can
be understood as defining an enclosing instance.
Actually a diagram normally defines a type and
in case of MSC documents they define instance
kinds. This corresponds well with decomposition
as we shall see in greater detail below.

5.1 ACContext
In Figure 7 we have in addition to the instance
and data declarations also MSC references in
two groups. Above the dashed separator there
are the defining MSCs and under the separator
there are the utilities. The distinction can be
compared with public and private attributes of
classes in Java or C++. The semantics of an
MSC document is the set of all traces given by
the defining MSCs. Some of the MSCs refer-
enced from the MSC document in Figure 7 have
been presented as single MSCs earlier in this
paper.

5.2 ACSystem
We have up to now only dealt with the ACCon-

text, but now we want to go into the ACSystem

instance (kind).

The ACSystem, defined by the MSC document
in Figure 8, is an instance in ACContext. The

mscdocument ACContext
inst User; inst ACSystem variables id:int;
msg Code: (int);
timer Door: (time);
language Java
wildcards _: int;
data import ac.java.util;
parenthesis nestable “(”,”)”; escape´\´;

UserAccess PIN_Change

NewUser

UserAccepted UserRejected

Unlocked_unclosedUnlocked_Idle

Figure 7 Mscdocument of the
Access Control context

mscdocument ACSystem
inst AccessPoint inherits Entry variables alev, cid:int;
inst Console inherits Entry;
inst Authorizer variables level, code:int;

AC_UserAccess AC_PIN_Change

AC_NewUser

AC_EstablishAccess AC_OpenDoor

AC_GivePIN

Figure 8 The
Access Control

System structure

msc AC_UserAccess

AccessPoint
decomposed by

AP_UserAccess

msg

(”Illegal PIN”)

Idle

when Idle

Authorizer Console

AC_EstablishAccess(”Illegal PIN”)

code(_)

msg(”Illegal PIN”)

when PIN OK

AC_OpenDoor

opt

Figure 9 AC_UserAccess

58 Telektronikk 4.2000

MSC document of ACSystem can be defined
implicitly by decomposing the ACSystem in
every MSC diagram of ACContext. In Figure 9
we see that such decomposition is indicated syn-
tactically by a decoration of the instance name.
Associated with that decoration there is a refer-
ence to another MSC that represents the decom-
position of that instance with respect to the MSC
within which the decomposition appears. Thus
the total decomposition of the instance is defined
by the MSC document defining that instance.

For reasons that will become clearer later, we
shall not make the diagrams of ACSystem (Fig-
ure 8) structurally equivalent to those of ACCon-

text. In Figure 9 we show the user access sce-
nario redefined independently within the ACSys-

tem. The user access applies an MSC reference
to an MSC that establishes the access rights of
the user followed by an option specifying that if
the user is eligible for the access zone he will be
asked to enter.2) The option is a special alterna-
tive inline expression (see also Figure 4) where
the second operand is empty.

In order to explain decomposition, we shall now
go into the inner interactions of the AccessPoint

with respect to the UserAccess service. Accord-
ing to the diagram in Figure 9 we will find this
in the MSC AP_UserAccess described in Figure
10. From the decomposition in Figure 10 we see
that an AccessPoint must contain at least the
instances Panel, Controller and Door.

2) Note that the opt-expression is beyond the MSC frame to indicate that the option has a larger scope
than this diagram.

msc AP_UserAccess

Panel

msg

(”Illegal PIN”)

Idle

when Idle

Controller Door

Entry_EstablishAccess(”Illegal PIN”)

Code

msg(”Illegal PIN”)

when PIN OK

AP_OpenDoor

msg(”Please enter”)

opt

Figure 10 AP_UserAccess

The decomposed instance can be understood as a
sequence of language constructs of which some
should be interpreted as gates relative to the
decomposition diagram. Such gates are not only
peer gates as we know from basic MSC (see Fig-
ure 2), but also decomposition specific gates
such as MSC references, MSC reference expres-
sions and inline expressions.

One major principle must be respected in de-
composition. When an MSC reference covers
the decomposed instance, the decomposition
shall contain a corresponding global MSC refer-
ence. In Figure 9 AC_EstablishAccess covers
AccessPoint and in Figure 10 Entry_EstablishAc-

cess is the corresponding global MSC reference.

The same principle applies to inline expressions,
a corresponding “extra-global” inline expression
with the same operation and operand structure
shall appear in the decomposition. An extra-
global inline expression is an expression where
the frame goes beyond the diagram frame indi-
cating that the scope of the inline expression is
beyond the scope of the diagram, typically from
being decomposed.

Comparing the two opt-expressions of Figure 9
and Figure 10 we see that the structures of the
inner operand correspond.

Regarding the decomposition of MSC references
there is also a requirement of commutativity
which in this context means that understanding
the system through the reference first and then
doing decomposition should result in the same
interpretation as understanding the decomposi-
tion first and then the corresponding reference.
In Figure 11 we show how commutativity
works.

From AC_UserAccess (Figure 9) follow the
MSC reference AC_EstablishAccess (Figure
12). We see that the one instance Entry is decom-
posed as Entry_EstablishAccess which is exactly
what we would expect from the other route of
decomposition and referencing given by decom-
position of AccessPoint in AC_UserAccess to
AP_UserAccess (Figure 10).

In AC_EstablishAccess we have not directly
used AccessPoint, but rather Entry. This is
acceptable as AccessPoint is a specialization
of Entry as shown also in the MSC document
ACSystem in Figure 8. The conceptual reason
for this is that an AccessPoint and a Console will
both have a means to control the entry of the
user. The AccessPoint will control a physical

59Telektronikk 4.2000

door while the Console will control the entry
to the database. Both share a CardReader and
a Keypad.

Entry is also an instance parameter of
AC_EstablishAccess (Figure 12). In AC_UserAc-

cess (Figure 9) the actual instance parameter
AccessPoint is given implicitly by the MSC ref-
erence covering the AccessPoint instance line.

Since there is no need to include instances with
no events in a diagram, we need not have Door

inside the diagram Entry_EstablishAccess.

5.3 Data Again
AC_EstablishAccess in Figure 12 can also be
used to illustrate the similarities and differences
between static and dynamic variables. The static
variables are given in the parameter list of the
diagram, in this case txt:String. This variable is
not changed within the diagram and can there-
fore be applied anywhere within the diagram.

The dynamic variables are associated with an
instance and defined in the MSC document. In
Figure 8 we see that AccessPoint has variables
cid and alev which are both integers. Authorizer

has the integers level and cde. The message pass-
ing also indicates which variables are affected by
and affecting the message through the parameter

msc AC_UserAccess

AccessPoint decomposed as
AP_UserAccess

opt

Entry_EstablishAccess

msc AP_UserAccess

Panel Controller

Entry_EstablishAccess

opt

msc AC_EstablishAccess(inst Entry)

Entry decomposed as
Entry_EstablishAccess

msc Entry_EstablishAccess

Panel Controller

reference

decomposition

Figure 11 Commutative decomposition

msc
AC_EstablishAccess(txt:String; inst Entry;)

Entry
decomposed as

Entry_EstablishAccess

AccLevel(alev := level)

PIN OK

Authorizer

alt

msg(txt)

otherwise

Idle

Not acceptable
access level

when (alev<2)

Code(cid =: cde)

AC_GivenPIN

Code(cid)

Figure 12
AC_EstablishAccess

60 Telektronikk 4.2000

binding given with the message. Complete mes-
sages are shown in Figure 12.

Messages that go to and from the environment
will have only one end of the binding depending
on the direction of the message. In Figure 12 the
message msg(txt) is such a message that shows
only the parameter value and not its pattern
binding.

Initial conditions of MSC diagrams or of inline
expression operands are called guards. Their
text is preceded with the keyword when. When
the dynamic variables are used in a guard, only
dynamic variables of one instance should appear
in the guard. This only instance must be the only
instance that is ready to execute an event within
that operand. In the example alev is the variable
of Entry and in the first operand only Entry is
ready to execute. The second operand is guarded
by the otherwise guard which is equivalent to
the situation where none of the other guards of
the alternative hold.

6 Method Calls
In our case we may have realized that the autho-
rization of the Code is very much a synchronized
activity and that the AccessPoint will definitely
wait for the result of the authentication before
continuing. In MSC-2000 the use of method
calls and suspension region are used to exactly
specify this as shown in Figure 13.

7 Decomposing HMSCs?
In MSC-2000 there are still no mechanisms or
requirements on how to decompose instances
relative to an HMSC. We have seen above that
decomposition is well defined for simple MSCs
where the instances and messages etc. are all
present. With HMSCs there is a difference. In
an HMSC there are no explicit instances and
messages. It is possible to specify the contained
instances, but their relation to messages, refer-
ences etc. is not explicitly defined in the HMSC.

In our example we have an overview HMSC
description in Figure 3. There we are focusing
on how the situation will be perceived by the
User or an observer external to the MSC. User-

Access will either result in the user being
accepted or rejected. If the User is accepted
there are three situations relating to how he goes
through the door. If we had chosen to try and
decompose the ACSystem from this overview
diagram, we could have transformed the diagram
to a simple MSC with inline expressions. This
can always be done. Then we would have con-
structed the decomposition according to the
structural static requirements mentioned above.
This would not have resulted in the decomposi-
tion given in Figure 9.

The AC_UserAccess was created partly to illus-
trate some other points in MSC-2000. Further-
more it was designed from the perspective of the
ACSystem. The ACSystem must specify why the
distinction between the user being accepted and
the user being rejected appears. This is why the
AC_EstablishAccess is performed. Another rea-
son for this sub-MSC is that it can be reused also
in other services such as NewUser and
ChangePIN.

We now have the following methodological
choices:

1 Start from the overview diagram and trans-
form to simple MSC and then construct the
decomposition from that; or

2 Develop the more detailed view somewhat
independently and then afterwards make sure
that the results are compatible.

We have here chosen the latter approach. From
an MSC language perspective the MSC docu-
ments ACContext and ACSystem will remain
independent, but from a logical perspective (also
formally) they are interrelated.

msc
AC_EstablishAccess(txt:String; inst Entry;)

Entry
decomposed by

Entry_EstablishAccess

PIN OK

Authorizer

alt

msg(txt)

otherwise

Idle

Not acceptable
access level

when (alev<2)

call GetAccLevel(cid)

AC_GivenPIN

Code(cid)

GetAccLevel(alev := level)

Figure 13 AC_Establish-
Access with method call

61Telektronikk 4.2000

8 Summary
We have gone through some parts of an example
using MSC. We have focused on those mecha-
nisms that are new to MSC-2000 namely im-
proved structuring of MSC documents, time
and data, and method calls.

9 References
1 ITU. Message Sequence Charts (MSC).

Ø Haugen (ed.). Geneva, 1999. (Recommen-
dation Z.120, p. 126.)

2 ITU. Message Sequence Charts (MSC).
E Rudolph (ed.). Geneva, 1993. (Recom-
mendation Z.120, p. 36.)

3 ITU. Message Sequence Charts (MSC).
E Rudolph (ed.). Geneva, 1996. (Recom-
mendation Z.120, p. 78.)

4 Bræk, R, Haugen, Ø. Engineering Real Time
Systems. New York, Prentice Hall, 1993.

5 ITU. Formal Semantics of Message
Sequence Charts. S Mauw et al. (eds.).
Geneva, 1998. (Recommendation Z.120,
p. 76.)

6 Bræk, R et al. The Integrated Method –
TIMe. Trondheim, Sintef, 1997.

7 Haugen, Ø. Using MSC-92 Effectively. In:
SDL’95 with MSC in CASE. Proceedings of
the Seventh SDL Forum, Oslo. North-Hol-
land, Elsevier, 1995.

8 Haugen, Ø. The MSC-96 Distillery. In: SDL
’97 Time for Testing. SDL, MSC and Trends.
Proceedings of the Eighth SDL Forum. Evry,
Paris. North-Holland, Elsevier, 1997,
167–182.

9 Reniers, M A. Message Sequence Chart :
Syntax and Semantics. Eindhoven, Eind-
hoven University of Technology, 1998.

10 Mauw, S, Reniers, M A. Operational Seman-
tics for MSC’96. In: Tutorials of the Eighth
SDL Forum SDl’97: Time for Testing – SDL,
MSC and Trends. Cavalli, A and Vincent, D
(eds). Evry, Institut national des télécommu-
nications, 1997, 135–152.

11 Ek, A. Verifying Message Sequence Charts
with the SDT Validator. In: SDL ’93 Using
Objects. Proceedings of the Sixth SDL
Forum. Darmstadt, Germany. North Hol-
land, Elsevier, 1993, 237–249.

12 Grabowski, J. Test Case Generation and
Test Case Specification with Message
Sequence Charts. Institut für Informatik und
angewandte Mathematik, Universität Bern,
1994.

13 Nahm, R E M. Conformance Testing Based
on Formal Description Techniques and Mes-
sage Sequence Charts. Universität Bern,
1994.

14 ITU. Specification and Description Lan-
guage. R Reed (ed.). Geneva, 1999. (Recom-
mendation Z.100.)

Telektronikk 4.2000

1 Introduction
ASN.1 [1, 2, 3, 4] is already a widely used lan-
guage with established supporting tools. It pro-
vides a means to formally specify data structures
independent of machine or transfer syntax and is
directly integrated into the SDL [5] and TTCN
[6] languages. The integration with SDL enables
the specification of associated semantics for the
ASN.1 data structures, and the integration with
TTCN enables direct testing of protocols defined
using ASN.1. The typical application area for
ASN.1 is in the structure definition of protocol
messages. ASN.1 definitions can be combined
with one of several standardised encoding rules
which specify the physical representation (i.e.
bit-pattern) of the abstract ASN.1 types. The
combination of ASN.1 definitions and selected
encoding rules can be used to automatically pro-
duce the required encoders and decoders for a
protocol.

The purpose of this paper is to increase the use
of the ASN.1 language. This paper is divided
into two main parts. The first part – ‘language
basics’ – is designed for those new to ASN.1. It
attempts in a very concise manner to give an
overview of the most important elements of the
notation by providing simple examples and brief
explanatory text. See Box 1.

The second part of this document – ‘new fea-
tures’ – is designed for those who already have
a grounding in the basics of ASN.1, but would
like to understand and use the new features of
the language introduced in the 1994 and 1997
versions of the standard.

To complete the ASN.1 picture, the last clause
of the document covers some of the on-going
work within the ASN.1 standardisation commu-
nity to further extend the language into new
areas.

2 New Features
Having considered the basics of the ASN.1 lan-
guage in the other section, we now consider the
new features of the language introduced in the
latest versions of the standard.

2.1 Automatic Tagging
Each ASN.1 type has a tag associated with it.
A tag gives a unique identity to the type, as
explained below.

Within a message or syntax definition it is possi-
ble to specify structures which from the decod-
ing point of view are ambiguous, for example
consider the type below:

MyModule DEFINITIONS EXPLICIT TAGS ::=

BEGIN

ProblemType ::= SEQUENCE {

sometimes INTEGER OPTIONAL,

-- Problem here

always INTEGER

}

END

When receiving such a structure without some
extra information, the decoder will not be able
to tell whether the first integer value it decodes
inside the sequence is the value of the field
sometimes or that of field always.

In older versions of ASN.1, before 1994, the
specifier would have solved such a problem by
explicitly adding unique tags before the ambigu-
ous fields. These tags would be visible in the
encoding of the structure and therefore the
decoder could use these tag values to distinguish
between the fields.

ProblemType ::= SEQUENCE {

sometimes [0] INTEGER OPTIONAL,

-- [0] is a tag

always [1] INTEGER

-- [1] is another tag

}

A Tutorial Introduction to ASN.1 97
C O L I N W I L L C O C K

ASN.1 is an established formal notation for defining data structures and message formats.
The new versions of this language standardised in 1994 and 1997 includes a number of
powerful new constructs, which improve and extend the existing notation. This paper pro-
vides an overview of basic ASN.1 notation, and provides a tutorial introduction to the new
features.

Colin Willcock (36) is Research
Manager at Nokia Research
Center. He received his BSc
from Sheffield University in
1986, his MSc from Edinburgh
University in 1987 and his Doc-
torate from the University of
Kent at Canterbury in 1992. He
is currently working on testing
methodology, tool development
and standardization of specifica-
tion languages. He is a member
of ETSI STF16 developing
TTCN-3 and a member of the
joint ISO/ITU-T ASN.1 Editors
group. He is the ex-rapporteur
for ITU-T Z.105 and current rap-
porteur for ASN.1 Encoding
Control within ETSI MTS.

colin.willcock@nokia.com

62

63Telektronikk 4.2000

• Examples of simple type definitions using ASN.1 built-in types are:

NumberOfElephants ::= INTEGER -- use INTEGER to define positive and negative discrete values

RainInBochum ::= BOOLEAN -- use BOOLEAN to define binary values

StudentState ::= ENUMERATED { sober, tipsy, drunk, inebriated } -- use ENUMERATED to define values with finite no. of states

ExactHeight ::= REAL -- use REAL to define continuous values

AdultArtImage ::= BIT STRING -- use BIT STRING to define raw data or bit maps

Data ::= OCTET STRING -- use OCTET STRING to define binary data with length a

multiple of 8

RudeWord ::= VisibleString -- use the appropriate string type for character string values

• Example of simple value definitions using either built-in types or the defined types above are:

elephantsInTheRoom INTEGER ::= 0 -- using builtin type INTEGER

elephantsOutside NumberOfElephants ::= 10 -- using simple user defined type NumberOfElephants

rainingNow RainInBochum ::= TRUE -- unfortunately almost always true

stateOfJens StudentState ::= tipsy -- enumerated value

heightOfIna ExactHeight ::= {mantissa 16, base 10, exponent 1} -- REAL value definition

bitmap1 BIT STRING ::= ‘10011’B -- the B after the string means it’s a bit value string (i.e. 1 or 0s)

messageData Data::= ‘08985550’H -- the H after the string means it’s a hex value string (i.e. 0-9 A-F)

finnish RudeWord ::= “perkele” -- a character string value uses “ ” as delimiters

• Examples of sub-type definitions are:

HolidayDays ::= INTEGER(0..10) -- The subtype may only take the values 0 to 10

ModelStudent ::= StudentState (sober | tipsy) -- The subtype may only take the values sober or tipsy

SmallImage ::= BIT STRING (SIZE (1..100)) -- The length of the BIT STRING must be between 1 and 100

ASN.1 constructors are used to define structured types and values.

• Examples of structured types and values are:

-- use SEQUENCE type to define a record structure, i.e. a collection of variables of known number and definite order

FinnishStereotype ::= SEQUENCE { -- type definition

numberOfRainDeer INTEGER,

hasMobilePhone BOOLEAN OPTIONAL, -- field is optional

location ENUMERATED {helsinki, oulu, other}

}

marko FinnishStereotype ::= { -- value definition

numberOfRainDeer 1,

hasMobilePhone TRUE,

location other

}

-- use SEQUENCE OF to define a list or array, i.e. a collection of variables that have the same type, a definite order

-- and a large or unknown number

GirlFriends ::= SEQUENCE OF VisibleString -- type definition

firstLoves GirlFriends ::= {“Janice”, “Lindsea”, “Ally”} -- value definition

Box 1 Language Basics

ASN.1 provides the ability to specify both type and value definitions, these are referred to as type notation and value notation respec-

tively. These types and values can be either simple, based directly on the existing ASN.1 built-in types, or be structured, using the

ASN.1 constructors.

Note that all type identifiers must start with a capital letter and all value identifiers must start with a lower case letter. The assignment

symbol is ‘::=’ and the notation requires no statement termination symbol.

ASN.1 also enables the definition of sub-types by the addition of constraints to type definition as shown below.

64 Telektronikk 4.2000

Automatic tagging is a feature which, when used, frees the speci-
fier from ever having to explicitly add or even consider tagging
within a message or syntax specification.

The process of manually adding tags is no longer necessary. The
specifier must simply select AUTOMATIC TAGS as the tag default
in the module header and the tags will be automatically generated
as and when they are needed by a set of language transformations.

MyModule DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

ProblemType ::= SEQUENCE {

sometimes INTEGER OPTIONAL,

-- [0] magically associated with sometimes

always INTEGER

-- [1] magically associated with always

}

END

2.2 Extensibility
Extensibility is a mechanism to provide forward and backward
compatibility between different versions of an ASN.1 definition.
Extensibility can be specified locally by use of the extension
marker or globally by using the optional module header field
EXTENSIBILITY IMPLIED. The extension marker ‘...’ is normally
used in the definitions of ENUMERATED, SEQUENCE and
CHOICE types.

If we consider the example shown in Figure 1, the use of the
ASN.1 extensibility mechanism allows the specification of the
CallMsg such that the phones running different versions of the pro-
tocol can still communicate with each other. The first version of
the protocol uses the extension marker to indicate that this type is
expected to be extended in some later version. In version 1.1 this
does indeed happen, and the new extension additions (any number
are allowed) are enclosed in the ‘[[’ and ‘]]’ version brackets. In
the protocol version 2.0 we can see that there is a further extension
addition.

The extension mechanism works by allowing the decoder to skip
over unknown additions. If we consider the case of Figure 1, the
entity in the middle, running protocol version 1.1 will receive
messages from the entity to the left which has fewer components
in the sequence than defined in its version of the protocol. Because
of the presence of the extension marker the decoder will know that
the last expected field (cost) is an extension addition and therefore
treat this in a similar way to an optional field, accepting the mes-
sage and passing it to the application.

In the case where the entity in the middle receives a CallMsg from
the entity on the right running version 2.0, there will be more com-
ponents in the message than specified in its protocol specification.
Because of the presence of the extension marker, the decoder
knows that there is a possibility it might receive such a message
from a later protocol version and although it cannot decode that
later part, it can skip over it and continue decoding the parts of
the protocol it does know.

-- ASN.1 also provides SET and SET OF constructors. These are analogous to SEQUENCE and SEQUENCE OF

-- respectively except the collection of variables has no implicit ordering

-- use CHOICE to define a variable selected from a known collection of possible variables

MobilePhone ::= CHOICE { -- type definition

nokia INTEGER,

ericsson INTEGER,

none NULL -- NULL means no associated component

}

myHandy MobilePhone ::= nokia : 8210 -- value definition

markosHandy MobilePhone ::= nokia : 9110

jensHandy MobilePhone ::= none

The presented ASN.1 simple and structured types can be arbitrarily nested to build up the required message or data structure. The

required collection of ASN.1 type and value definitions are grouped together using ASN.1 modules; these provide a mechanism for

structuring and referencing.

• Example of an ASN.1 module:

MyModule DEFINITIONS ::=

BEGIN

-- ASN.1 definitions go here

END

Box 1 Language Basics, continued

65Telektronikk 4.2000

Although the ASN.1 extension mechanism enables forward and
backward compatibility from a decoding point of view, the actual
application which calls the ASN.1 decoder must also be written in
such a way that it can handle the presence or absence of extra ele-
ments after the extension marker.

2.3 Exception Identifier
The exception identifier provides the ability to indicate to an app-
lication above the ASN.1 decoder where within the abstract syntax
a decoding error occurred. The exception identifier consists of the
symbol ‘!’ followed by either a type and a value of that type or in
the absence of a type, an integer value. The exception identifier
can be associated with any constraint or extension marker, for
example:

dayError INTEGER ::= 1

DateType ::= SEQUENCE {

year INTEGER (1970..2001),

month INTEGER (1..12),

day INTEGER (1..31 ! dayError)

-- if decoding fails on this field send dayError value

} -- to the application

When an exception identifier is present in a specification, the
associated standard or application documentation should state the
required functionality of the application on reception of this value.

2.4 New String Types
The new string types BMPString, UniversalString and
UTF8String allow the specification of character strings based
on the ISO/IEC 10646 standard [7]. This allows the use of a huge
number of symbols from many languages and nations. Because the

Figure 1 ASN.1 Extensibility
mechanism

-- Protocol Version 1.0

CallMsg ::= SEQUENCE
 {

msgID INTEGER,
called INTEGER,
…

}

-- Protocol Version 1.1

CallMsg ::= SEQUENCE
 {

msgID INTEGER,
called INTEGER,
…,
[[
cost REAL
]]

}

-- Protocol Version 2.0

CallMsg ::= SEQUENCE
 {

msgID INTEGER,
called INTEGER,
…,
[[
cost REAL
]].
[[
qos REAL
]]

}

character set is so large, four octets are normally needed to iden-
tify a particular character, as opposed to a single octet in normal
ASCII. To allow for this, a new value notation has been added to
ASN.1 for these string types, this allows the definition of named
values from the character set. For example:

LatinCapitalLetterA BMPString ::= { 0, 0, 0, 65}

UniversalString includes the entire ISO/IEC 10646 character set
with each character encoding to four octets. BMPString is a subset
of UniversalString which only includes the characters from the
Basic Multilingual Plane. BMPString characters, because they are
a subset of the full ISO/IEC 10646 character set, can be encoded
into two octets. UTF8String includes the entire character set, but
allows variable encoding lengths for characters, depending on
which part of the character set the character is from. The encoding
is such that the most often used characters are encoded in the
smallest space and the least used characters are encoded in the
largest space [8].

2.5 Information Objects
Information objects can be considered a generic table mechanism
which allows the association of specific sets of field values or
types. Information objects replace the macro notation and the
ANY DEFINED BY construct present in older versions of ASN.1
and have the advantage that they are directly machine processable.

Typically information objects are used to model protocols. They
enable in a specification to define that the value of a particular
field will determine the structure of the following fields. For
example given a simple protocol message which consists of a mes-
sage type, followed by indication of what to do if the message
type is unknown by a receiver, followed by the message data,

66 Telektronikk 4.2000

where the type of the message data is dependent on the message
type, we could define the following information object class:

-- Definition of Information Object Class

MESSAGE ::= CLASS {

&msgCode INTEGER UNIQUE,

-- INTEGER type value field

&msgCriticality ENUMERATED,

{ ignore, report, reject }

-- ENUMERATED type value field

&MsgData OPTIONAL

-- Open type field

}

WITH SYNTAX {

CODE &msgCode

CRITICALITY &msgCriticality

[DATA TYPE &MsgData]

}

This defines the information object class MESSAGE, which is like
a template for all possible messages within our simple protocol.
This information object class has three fields msgCode,
msgCriticality and MsgData, these represent the three parts of the
protocol messages. The msgCode field is a value field of type
integer in which the message type is stored. The unique keyword
signifies that all instances of this information class will have a
unique value for this field (i.e. message type). The msgCriticality

field is a value field of type enumerated and the last field MsgData

is a type field – i.e. a field which can contain a type. The
WITH SYNTAX clause at the end of the definition merely provides
an user friendly syntax for defining instances of this information
class.

Information objects are often best visualised as a table. The table
associated with the MESSAGE information Object class is shown
in Table 1.

Once the overall information object class has been defined, infor-
mation object instances can be specified to represent the con-
stituent messages in the protocol. For instance the information
object definitions below specify the four messages of our simple
example protocol:

-- Information Object Definition

setup MESSAGE ::= {

CODE 1

CRITICALITY reject

DATA TYPE OCTET STRING

}

setupAck MESSAGE ::= {

CODE 2

CRITICALITY report

DATA TYPE INTEGER

}

release MESSAGE ::= {

CODE 3

CRITICALITY reject

}

relAck MESSAGE ::= {

CODE 4

CRITICALITY ignore

}

The information objects can be organised into information object
sets which can represent all the messages in a protocol or subsys-
tem, for instance:

-- Information Object Set Definition

ConnectPhaseMsgs MESSAGE ::= {

setup |

setupAck |

release |

relAck ,

...

-- Other messages can be added

}

The associated table for the ConnectPhaseMsgs information
object set is shown in Table 2.

So far we have defined the information object class which pro-
vides a protocol template and then used this class to define infor-
mation objects representing the individual messages in the proto-
col. These information objects have then been brought together
into an information object set which represents the entire set of
protocol messages.

Information objects are just collections of information. Informa-
tion objects cannot be transmitted, for that purpose we need sepa-
rate type definitions. Therefore, we need to relate the information
object definitions to an actual overall ASN.1 type which can be
directly used in message transfer. The associated ASN.1 type defi-
nition for the simple example protocol is:

-- Associated PDU type definition for MESSAGE Information Object

Class

ConnectPhasePDU ::= SEQUENCE{

id MESSAGE.&msgCode,

-- INTEGER field

criticality MESSAGE.&msgCriticality

-- ENUMERATED field

data MESSAGE.&MsgData OPTIONAL

-- open type field

}

This definition defines the type ConnectPhasePDU which can
contain any message which conforms to the MESSAGE informa-

Field msgCode msgCriticality MsgData

Type INTEGER ENUMERATED OPEN TYPE
Table 1 Table template for
MESSAGE object class

67Telektronikk 4.2000

MsgCode msgCriticality MsgData

1 reject OCTET STRING

2 report INTEGER

3 reject -

4 ignore -

Table 2 Associated table
for ConnectPhaseMsgs

object set

tion class (i.e. could be defined as an information object of this
class).

The full power of information objects and information object sets
requires the use of tabular and relational constraints which are
described in the following section.

2.6 Constraints
The newer versions of the ASN.1 language provide three new
forms of constraint specification: user defined constraints, tabular
constraints and component relational constraints.

User defined constraints are used to informally specify constraints
which are too complex to define using any of the other existing
ASN.1 constructs; they provide a syntax to specify an extended
comment:

– Example of user defined constraint

SMIMStatus ::= OCTET STRING (CONSTRAINED BY {-- each

octet must have pattern 1010 for bit 2-5 --})

The user defined constraint is specified using the keywords
CONSTRAINED BY; the associated curly brackets contain the
specification for the constraint. The contents of the curly brackets
is considered to be just a special form of comment.

Tabular constraints provide a way of limiting the contents of a
field associated to an information object class to those contained
within a specified object set. For example if we consider the pre-
viously defined type ConnectPhasePDU we can constrain the
allowed values of this type by applying a tabular constraint to
its constituent fields.

-- Associated PDU type definition for MESSAGE Information Object

-- Class with tabular constraint

ConnectPhasePDU ::= SEQUENCE{

id MESSAGE.&msgCode

({ConnectPhaseMsgs}),

-- constrained to 1,2,3 or 4

criticality MESSAGE.&msgCriticality

({ConnectPhaseMsgs}),

data MESSAGE.&MsgData

({ConnectPhaseMsgs}) OPTIONAL

-- OCTET

-- STRING/INTEGER

}

In this example each field may only take the values present in the
specified information object set for that field. For example the
field id which is associated with the MESSAGE class field
&msgCode may only have the values in the information object
set ConnectPhaseMsgs for that field, i.e. 1, 2, 3 or 4.

Constraints using information object sets can be taken one step
further by using component relational constraints. Relational con-
straints provide a way of constraining the contents of one field
depending on the value of a second field. For example to constrain
the values of criticality and data to be consistent with the associated
value of the id field defined within the information object set
ConnectPhaseMsgs, the connectPhasePDU type definition can
be extended as follows:

-- Associated PDU type definition for MESSAGE Information Object

Class with Relational constraint

ConnectPhasePDU ::= SEQUENCE{

id MESSAGE.&msgCode

({ConnectPhaseMsgs}),

criticality MESSAGE.&msgCriticality

({ConnectPhaseMsgs}{@id}),

data MESSAGE.&MsgData

({ConnectPhaseMsgs}{@id}) OPTIONAL

}

The @id is the relational constraint in this example. It links the
value of the stated field (id) to the contents of the field containing
the relational constraint, ensuring that the two are consistent with
the information object set definition, i.e. if the id field has the
value 1 then the criticality field is constrained to the value reject
and the data field must be of type OCTET STRING. More gener-
ally relational constraints can be best visualised with reference to
the table associated with the information object set. The relational
constraint is equivalent to selecting only the values of one (or
more) rows within the table.

2.7 Parameterisation
The ASN.1 language now provides a general parameterisation
mechanism which allows for example value and type parameters
for both type and value notation. The formal parameter list is spec-
ified after the identifier in the definition, and the actual parameter
list is specified when the definition is referenced.

Value parameterisation allows the passing of a value of a defined
type, this can be used to complete a value definition or provide
constraint values for type definitions, for example:

68 Telektronikk 4.2000

-- Value parameterisation in value definitions

-- Value definition with value parameter

genericGreeting{ IA5String : name} IA5String ::= {“Hello”, name}

-- Use of parameterised value in value assignment

firstString IA5String ::= genericGreeting{ “ World” }

-- assign value “Hello World”

-- Value parameterisation in type definitions

-- Type definition with value parameters

MyMessage{ INTEGER : maxSize, INTEGER : minSize} ::=

SEQUENCE

{

asp INTEGER,

pdu OCTET STRING(SIZE(minSize.. maxSize))

-- limit size to be within bounds

}

-- Use of Parameterised type definition. MyMessage is instantiated

with different actual parameters.

MyLargeMessage ::= MyMessage{10000, 1}

MySmallMessage ::= MyMessage{10, 1}

In addition to value parameters, ASN.1 supports type parameters.
Type parameterisation allows the passing of a type into a defini-
tion, for example:

-- Type parameterisation in type definitions

-- Type definition with type parameter

GenericMessage{ MsgDataType} ::= SEQUENCE

{

asp INTEGER,

pdu MsgDataType

-- this field will be of the type passed in as a parameter

}

-- Use of Parameterised type definition

SetupMessage ::= GenericMessage{ OCTET STRING}

3 Future Developments
This paper has described the new features introduced into the
ASN.1 language in the 1994 and 1997 versions of the standard.
To complete the ASN.1 overview this section briefly considers
some of the areas which are currently under development within
the ASN.1 standardisation community and will likely become
additions to the ASN.1 language in the future.

One area where extensions are being worked on is constraints for
string types. The current proposal is to introduce a constraint
scheme which is similar to regular expressions. This would allow
string constraints like:

– Possible future string constraints

MyString ::= IA5String(PATTERN “train..to.*”)

The allowed values for MyString would be limited to strings that
match the regular expression defined within the constraint. In this
case a matching string would start with the five characters “train”,
followed by any two characters, followed by the two characters
“to”, followed by any string of any length.

These new string constraints will be very useful in the specifica-
tion of new text based protocols, which form a major part of many
web based technologies.

Another area which at present is under development is encoding
control notation [9]. Currently there is a gap in the formal specifi-
cation techniques relative to the definition of encoding rules. This
means that although the abstract structure of a protocol message
can be formally defined, the actual format of the bits transmitted
on the line or through the air cannot be formally specified. There
is a small number of standardised encoding rules (e.g. Basic
Encoding Rules – BER [10], and Packed Encoding Rules – PER
[11]) but in many application domains such as radio interfaces,
these do not satisfy today’s requirements for very efficient trans-
mission of information. The development of advanced encoding
control will extend the use of ASN.1 in protocol specifications
which presently use other less formal notations due to the implied
encoding restrictions of the current language.

References
1 ITU-T. Information technology – Abstract Syntax Notation

One (ASN.1): Specification of basic notation. Geneva, 1998.
(ITU-T Recommendation X.680 (1997). ISO/IEC 8824-
1:1998.)

2 ITU-T. Information technology – Abstract Syntax Notation
One (ASN.1): Information object specification. Geneva, 1998.
(ITU-T Recommendation X.681 (1997). ISO/IEC 8824-
2:1998.)

3 ITU-T. Information technology – Abstract Syntax Notation
One (ASN.1): Constraint specification. Geneva, 1998. (ITU-T
Recommendation X.682 (1997). ISO/IEC 8824-3:1998.)

4 ITU-T. Information technology – Abstract Syntax Notation
One (ASN.1): Parameterisation of ASN.1 specifications.
Geneva, 1998. (ITU-T Recommendation X.683 (1997).
ISO/IEC 8824-4:1998.)

5 ITU. Programming Languages – CCITT Specification And
Description Language (SDL). Geneva, 1993. (ITU-T Recom-
mendation Z.100.)

6 ISO. Information technology – Open System Interconnection
Conformance testing methodology and framework Part 3: The
Tree and Tabular Combined Notation (TTCN). Geneva, 1994.
(ISO/IEC 9646-3:1994.)

7 ISO. Information technology – Universal Multiple-Octet
Coded Character Set (UCS): – Architecture and Basic Multi-
lingual Plane. Geneva, 1993. (ISO/IEC 10646-1:1993.)

8 ISO. Information technology – Universal Multiple-Octet
Coded Character Set (UCS): – Architecture and Basic Multi-
lingual Plane – Amendment 2: UCS Transformation Format 8
(UTF-8). (ISO/IEC 10646-1:1993/ Amd.2:1996.)

69Telektronikk 4.2000

9 Willcock, C. New Directions in ASN.1: Towards a Formal
Notation for Transfer Syntax. In: G Csopaki, S Dibuz, K Tar-
nay (eds.). Testing of Communicating Systems Methods and
applications, Volume 12. Kluwer, 1999, 31–40.

10 ITU-T. Information technology – ASN.1 encoding rules: Spec-
ification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER).
Geneva, 1998. (ITU-T Recommendation X.690 (1997).
ISO/IEC 8825-1:1998.)

11 ITU-T. Information technology – ASN.1 encoding rules: Spec-
ification of Packed Encoding Rules (PER). Geneva, 1998.
(ITU-T Recommendation X.691 (1997). ISO/IEC 8825-
2:1998.)

Further Reading
Larmouth, J. ASN.1 Complete. Morgan Kaufmann, 1999. (ISBN 0-
12233-435-3) (http://www.oss.com/asn1/larmouth.html)

Dubuisson, O. ASN.1 – Communication between heterogeneous
systems. Morgan Kaufmann, 2000. (ISBN 0-12-6333361-0.)
(http://www.asn1.elibel.tm.fr)

Telektronikk 4.2000

1 Introduction
This paper gives a tutorial overview of CHILL,
the ITU-T Programming Language [1]. CHILL
is an acronym with the original long form
“CCITT High Level Language”, which reflects
the fact that ITU-T was formerly called CCITT.

CHILL has been originally developed in CCITT
during the period 1975 – 1983. After this, it has
been continuously updated and used for the de-
velopment of many telecom systems around the
world [2]. This paper also contains more details
about the history and application of CHILL.

Today CHILL is a modern object-oriented lan-
guage, which also supports concurrency in an
object-oriented manner. In the last Study Period
(1997–2000) the following language elements
have been included:

• Interfaces;
• Support of Unicode;
• Friend-procedures;
• Overloading of procedures;
• Final (unmodifiable) components in objects.

In the body of the paper we give an overview of
the language elements of CHILL and describe in
more detail those elements of CHILL that were
added more recently.

In this paper we use the typical terminology of
the field of programming languages, especially
for basic terms. CHILL, as many other lan-
guages, has a number of specific terms. Espe-
cially for the following terms we use the tradi-
tional terminology:

type “mode” in CHILL
variable “location” in CHILL
statement “action” in CHILL

2 Language Overview
CHILL is a procedural and object-oriented lan-
guage, which contains a number of elements that
support the development of large programs, as
they are typical for the telecom field. The fol-
lowing tree shows the language elements of
CHILL 2000.

Data Structures
Scalar: integer, float, characters, Boolean,

enumerations, pointer, procedure type,
process type, event, time;

Composite: string, record, array, set, buffer,
signal.

Sequential Programming
Variable, constant, expression, function call;
Assignment;
Procedure call;
EXIT, RESULT, RETURN, GOTO;
Statement sequence;
Selection statements: IF, CASE (multidimen-
sional);
Repetition statements: DO, WHILE, FOR.

Object-oriented Programming
Sequential, unsynchronized object;
Sequential, synchronized object;
Concurrent, synchronized object;
Interface;
Friend.

Concurrent Programming
Process;
Start process;
Communication via buffer;
Communication via signal;
Critical region and co-ordination with events;
Concurrent, synchronized object.

Program Structure
Block;
Procedure / Function / Process;
Object-Type / Class;
Module / Region.

Genericity
Generic Procedure / Process;
Generic Module / Region;
Generic Object Type / Class;
Generic Interface.

Program Verification
Precondition and postcondition for methods;
Invariant for object type / class;
ASSERT statement.

CHILL 2000
J Ü R G E N F . H . W I N K L E R

CHILL is a programming language mainly used in the area of telecom systems. This paper
gives an overview of the language elements of CHILL and reports in more detail on new
language elements which have been added recently, especially object-orientation and
genericity.

Jürgen F.H. Winkler (57) has
since 1993 been a full professor
of Computer Science at the
Friedrich Schiller University in
Jena, Germany. His main inter-
ests are program correctness,
object-orientation, programming
languages and their implementa-
tion. Before joining the university
he was with the corporate re-
search of Siemens AG in Munich.
Among other projects he has
been involved in the definition
and implementation of Object-
CHILL, a forerunner of CHILL
2000, and with the Siemens Ada
compiler. He also founded the
“International Workshop on Soft-
ware Configuration Manage-
ment”. Dr. Winkler received his
PhD and his Diploma, both in
Computer Science, from the Uni-
versity of Karlsruhe, Germany.

jwinkler@acm.org

70

71Telektronikk 4.2000

Box 1 contains a number of small examples for most of the ele-
ments listed above, in order to give the reader some impression of
CHILL 2000 as a programming language.

Box 2 contains a comparison of CHILL2000 and Java based on
the tree structure of the overview on CHILL given above. If one
of the languages does not contain a certain element the corre-
sponding entry is empty (e.g. “Genericity” in Java).

3 New Elements in CHILL 2000
During the last two study periods (1993–1996, 1997–2000) new
and important language elements have been added to the language.
The most important of them are:

• Object-Orientation;
• Genericity.

3.1 Object-Orientation
Object types, which are typically called classes in the area of
object-orientation [3, 4], come in CHILL 2000 in four different
flavors

• Module type
An object (or instance) of such a type has the typical properties
of a module. It has components, which can be public or internal,
and it does not do any co-ordination in case of concurrent
accesses to its components. With respect to concurrency module
objects are passive, i.e. they do not have an own thread of con-
trol.

• Region type
An object (or instance) of such a type has the typical properties
of a region. It has components, which can be public or internal,
and it co-ordinates concurrent accesses to its components. With
respect to concurrency, region objects are passive, i.e. they do
not have an own thread of control.

• Task type
An object (or instance) of such a type has a similar structure as
module and region objects. It has components, which can be
public or internal. With respect to concurrency it has its own
thread of control and it co-ordinates concurrent accesses to its
components. It is therefore similar to task objects in Ada [5] and
this is the reason for its name.

• Interface type
An interface type defines an interface, which consists of the
specification of public components. There are no objects of
interface types. Interface types are typically used as base types
of other object types.

Together the new object types are called moreta types, where
moreta has been formed from the first letters of module, region,
and task.

A common characteristic is that the definition of a non-interface
moreta type (= class) consists of a specification part and a body.
This separation is very useful from a software engineering point of
view. The interface describes what a user (client) of the given type
must know in order to use the type or its objects. The body con-
tains the internal implementation of the components specified in
the interface.

As an example we look at the definition of a stack type.

SYNMODE IntStackType1 = MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem INT IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(INT)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length) INIT := 0;

END IntStackType1;

The type IntStackType1 is defined like other types in CHILL. The
keyword MODULE indicates that it is a module type and the key-
word SPEC indicates that it is the specification part of this type.
The procedures (methods) Push and Pop are exported and are there-
fore public components of IntStackType1. Length, StackData, and
TopOfStack are internal components. This is an example of encap-
sulation and is necessary to guarantee the stack protocol.

The corresponding body contains in this case the bodies of the two
procedures.

SYNMODE IntStackType1 = MODULE BODY

Push: PROC(Elem INT IN) EXCEPTIONS(Overflow)

IF TopOfStack = Length

THEN CAUSE Overflow;

ELSE TopOfStack +:= 1;

StackData(TopOfStack) := Elem;

FI;

END Push;

Pop: PROC() RETURNS(INT) EXCEPTIONS(Underflow)

IF TopOfStack = 0

THEN CAUSE Underflow;

ELSE RESULT StackData(TopOfStack);

TopOfStack -:= 1;

FI;

END Pop;

END IntStackType1;

Objects of the type IntStackType1 are declared in the same way as
variables for the traditional types. The manipulation of these vari-
ables is done in the typical style of object-orientation.

DCL Stack1, Stack2 IntStackType1;

Stack1.Push(10);

Stack2.Push(100);

. . . Stack1.Pop(). . .

Stack1 and Stack2 are adequate for sequential programming. It
is now quite easy to define a stack type CIntStackType1 whose
objects co-ordinate concurrent calls of their methods. In CHILL
there are two ways to accomplish this:

a) change the keyword MODULE into REGION

SYNMODE CIntStackType1 = REGION SPEC

/* same as before */

END CIntStackType1;

And analogously for the body.

72 Telektronikk 4.2000

b)derive the type CIntStackType1 from the existing type IntStack-
Type1.

SYNMODE CIntStackType1 = REGION SPEC

BASED_ON IntStackType1

END CIntStackType1;

Since there are different kinds of object types there exist several
possibilities for the derivation of types from base types.

• A class can be directly derived from one base class (single
inheritance between classes);

• A class can be directly derived by combining an arbitrary num-
ber of base interface types (multiple inheritance between inter-
faces and classes);

• An interface type can be derived from an arbitrary number of
base interface types (multiple inheritance between interfaces).

These conditions can be summed up to the rule that CHILL uses
single inheritance for classes and multiple inheritance for inter-
faces.

Since module, region and task differ in their properties, the fol-
lowing derivation constraints have to be observed:

Base type: Permissible derived type:
module module, region, task
region region
task task

The derivation mechanism of object-orientation is a mechanism
for the realization of structural polymorphism. A derived type DT
and its objects contain the components inherited and possibly
additional components defined in DT. As an example, we define
a stack type IntStackType2, which is derived from IntStackType1
but contains the additional function Top() (INT) which returns the
value of the topmost element, but does not change the contents of
the stack.

SYNMODE IntStackType2 = MODULE SPEC

BASED_ON IntStackType1

GRANT Top;

Top: PROC() RETURNS(INT) EXCEPTIONS(Underflow)

END Top;

END IntStackType2;

SYNMODE IntStackType2 = MODULE BODY

BASED_ON IntStackType1

Top: PROC() RETURNS(INT) EXCEPTIONS(Underflow)

IF TopOfStack = 0

THEN CAUSE Underflow;

ELSE RETURN StackData(TopOfStack);

FI;

END Top;

END IntStackType2;

3.2 Genericity
The stack is a good example to demonstrate the concept of gener-
icity. In section 3.1 the element type of the stack is INT. If we
need stacks with other element types, we have to duplicate or in
general replicate the code for each new element type. From a soft-
ware engineering point of view, this code replication is very
unwelcome. There are two ways to try to avoid this problem.

a) Use “REF UltimateBaseType” as the element type of the stack
type. If the language does not have an ultimate base type, an
appropriate base type has to be used.

SYNMODE IntStackType3 = MODULE SPEC

GRANT Push, Pop, ElemType;

SYNMODE ElemType = REF UltimateBaseType;

Push: PROC(Elem ElemType IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(ElemType)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) ElemType,

TopOfStack RANGE(0:Length) INIT := 0;

END IntStackType3;

The body of IntStackType3 is essentially the same as that of
IntStacktype1. The difference is in the identifiers IntStackType3
and ElemType.

The objects of IntStackType3 are now heterogeneous stacks, i.e.
due to polymorphism, they may contain objects of different
types.

DCL Stack3 IntStackType3;

Stack3.Push(new IntStackType1);

Stack3.Push(new IntStackType2);

Stack3.Push(new IntStackType3);

b)If we want to have homogeneous stack objects, as those of the
types IntStackType1, IntStackType2, or CIntStackType1 are,
genericity (or parametric polymorphism) is the right mechanism
to use. A generic entity is an entity which is parameterized in a
more general way than traditional procedures. In CHILL the fol-
lowing entities may be used as parameters of a generic entity:

values of arbitrary types;
types;
procedures and functions.

It is especially the possibility to use types as parameters which
provides new possibilities for the formulation of programs.

The use of genericity is typically done in two steps:

i) define a generic entity, i.e. an entity which has formal generic
parameters. Such a generic entity is a template for more spe-
cific entities.

ii)define an instantiation of the generic template by providing
actual generic parameters for the formal ones.

73Telektronikk 4.2000

A generic stack type may now look as follows:

GenericStackTemplate1:

GENERIC MODE ElemType = ANY_ASSIGN;

MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem ElemType IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(ElemType)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length) INIT := 0;

END GenericStackTemplate1;

As for IntStackType3, the body of GenericStackTemplate1 is
essentially the same as that for IntStackType1.

GenericStackTemplate1 has one formal generic parameter,
ElemType, which is of the kind ANY_ASSIGN. This means
that variables of type ElemType can be assigned inside the defi-
nition of GenericStackTemplate1. This property is needed in the
bodies of Push and Pop. On the other hand, any type which is
used as a corresponding actual generic parameter must at least
support the operation of assignment. This guarantees that any
legal instantiation will produce a legal type.

Using GenericStackTemplate1, we obtain non-generic stack
types by instantiating the template with an actual generic para-
meter. If we use INT as actual generic parameter, we obtain an
object type which is essentially equivalent to IntStackType1.

SYNMODE IntStackType4 = NEW GenericStackTemplate1

SYNMODE ElemType = INT;

END IntStackType4;

If we use FLOAT as actual generic parameter we obtain a type
FloatStackType whose objects can only take float values as ele-
ments.

SYNMODE FloatStackType = NEW GenericStackTemplate1

SYNMODE ElemType = FLOAT;

END FloatStackType;

After having created two generic instantiations of the template
GenericStackTemplate1 we see that with genericity the code
duplication is avoided.

We see that both structural polymorphism (through inheritance)
and parametric polymorphism (through genericity) are very useful
mechanisms for the formulation of programs.

4 Use of CHILL in Telecom Systems
Since its birth, CHILL has been used quite widely in the world of
telecommunications. Rekdal mentions about 13 companies [2],
and if we account for the fact that several companies in Korea
have built systems using CHILL, we can say that about 15 signifi-
cant companies in the telecom field have built systems using
CHILL. Since large companies as e.g. Alcatel and Siemens sell
their systems all over he world, CHILL is passively used by hun-
dreds of millions of people. In Germany for example, the conven-
tional telephone network is essentially based on systems written in
CHILL. There are mainly two systems used: EWSD from Siemens
and System12 from Alcatel.

A lot more details about these aspects of CHILL are given in [2].

References
1 ITU-T. CHILL – The ITU-T programming language). ITU,

Geneva, 1999. (Recommendation Z.200 (11/99.)
(http://www.itu.int/itudoc/itu-t/approved/z/z200.html)

See also: ISO/IEC 9496:1998 CCITT high level language
(CHILL). http://www.iso.ch/cate/d30537.html

2 Rekdal, K. CHILL – the international standard language for
telecommunications programming. Telektronikk, 89 (2/3),
5–10, 1993.

3 Dahl, O, Myhrhaug, B, Nygaard, K. Common Base Language.
Oslo, Norwegian Computing Center, 1970.

4 Goldberg, A, Robson, D. Smalltalk-80 – The Language. Read-
ing, Mass., Addison Wesley, 1989. (ISBN 0-201-13688-0)

5 ISO/IEC. Information Technology – Programming Languages
– Ada. Geneva, ISO/IEC, 1995. (ISO/IEC 8652:1995(E).)

74 Telektronikk 4.2000

This box gives a tutorial overview on the language elements of
CHILL in three pieces:

Sequential programming
(types and statements)

Object-oriented programming and Genericity
Concurrent programming

Sequential Programming: Types
From a structural point of view we may distinguish between
scalar types and composite types. In this overview we follow
roughly this pattern.

Scalar Types
The values of scalar types are indivisible entities. Important
scalar types are numbers, enumerations and references.

As is usual in computing, we distinguish integer numbers and
types, and floating point numbers and types.

Integer numbers are written as usual:

1, 123, -450

Large numbers may be structured for better readability using the
underscore character: 1_721_119

We may write numbers using different bases:

Binary numbers: b’1010

Octal numbers: o’12367

Hexadecimal numbers: -h’12ABC

There are predefined integer types (e.g. INT) and the user may
also define his own types, especially types with specific value
ranges:

NEWMODE line = RANGE(1:8);

/* e.g. the lines of a chess board */

A variable of a given type is defined in a declaration statement:

DCL CurrentLine line INIT := 1;

Such a variable can be initialized with a specific value.

For rational numbers CHILL uses floating point types. FLOAT
is a predefined type, but it is also possible to define problem spe-
cific floating point types, e.g. a type for temperature in a given
range.

NEWMODE Temp = FLOAT(-273.15:1000.0);

For numbers the usual arithmetic operations are defined:

DCL I INT INIT := 25*25 + 17;

DCL J INT INIT := I/2;

The type BOOL contains the two truth values FALSE and TRUE
and can be used for conditions and computations in propositional
logic:

DCL CallFinished BOOL INIT := FALSE;

. . .

IF NOT CallFinished THEN . . .

Very useful are also the enumeration types, e.g.

NEWMODE ActionType = SET(A1, A2, A3);

NEWMODE ColorTy = SET(red, green, blue);

SYNMODE month = SET

(jan,feb,mar,apr,may,jun,

jul,aug,sep,oct,nov,dec);

Composite Types
The values of composite types consist of several components
which may themselves be scalar or composite values. The com-
posite types in CHILL are structures (records), arrays and
strings, buffer and signal, sets, and objects.

Structures are heterogeneous tuples:

NEWMODE DateType =

STRUCT (day INT(1:31),

mo month,

year INT(1:3000));

NEWMODE TimedActionType =

STRUCT (action ActionType,

date DateType);

The values of structures can be denoted by unlabelled or by
labelled tuples:

DCL Today DateType INIT := [24,aug,2000];

DCL Today DateType INIT :=

[day: 24, mo: aug, year: 2000];

If we want to implement a linked list of timed actions, we can
use a reference type (pointer type). The values of reference types
point to other values.

NEWMODE RefToTimedActionListType =

REF TimedActionListType;

NEWMODE TimedActionListType =

STRUCT(action TimedActionType,

next RefToTimedActionListType);

DCL TimedActionList TimedActionListType;

The following two assignment statements now create a linked
list containing two timed actions.

Box 1 CHILL in Examples

75Telektronikk 4.2000

TimedActionList :=

ALLOCATE(TimedActionListType,

[[A1, [16,sep,2000]],NULL]);

TimedActionList :=

ALLOCATE(TimedActionListType,

[[A3, [28,aug,2000]],

TimedActionList]);

For homogeneous tuples, as e.g. vectors or matrices, array types
can be used. They can have an arbitrary number of dimensions.

NEWMODE VectorType = ARRAY(1:3)FLOAT;

NEWMODE SqMatrixType =

ARRAY(1:3, 1:3) FLOAT;

DCL Vect1 VectorType

INIT := [1.0, 2.5, 5.0];

DCL Matrix1 SqMatrixType

INIT := [[1.0, 2.0, 3.0],

[4.0, 5.0, 6.0],

[7.0, 8.0, 9.0]] ;

String types are similar to one-dimensional arrays with a special
element type, which is either CHARS (= Latin-1), WCHARS
(= Unicode) or BOOL.

NEWMODE NameType = CHARS(20) VARYING;

DCL MyName NameType INIT := “Winkler”;

DCL FirstLetter CHAR INIT := ‘W’;

Sequential Programming: Statements
The section on types already contains several assignment state-
ments. It is therefore not necessary to give further examples.

There are two kinds of selection statements: IF and CASE.

IF a>b THEN max := a; ELSE max := b; FI

The CASE-statement selects among more alternatives. The
CASE-statement of CHILL can also select an alternative using a
tuple of n selection values.

CASE A, B OF Bool, Bool;

(false),(false) : Res := false;

(false),(true) : Res := false;

(true), (false) : Res := false;

(true), (true) : Res := true;

ESAC

There are FOR-loops and WHILE-loops to express repetitive
computations.

DO WHILE sieve/=empty;

primes OR:= [MIN(sieve)];

DO FOR j := MIN(sieve)

BY MIN(sieve) TO max;

sieve -:= [j];

OD;

OD;

Object-Oriented Programming
and Genericity
CHILL supports object-oriented programming in a very versatile
way in that it combines object-orientation, concurrency and
genericity. We show the popular example of the stack data type.

First the specification / interface:

SYNMODE IntStackType1 = MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem INT IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(INT)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length)

INIT := 0;

END IntStackType1;

The corresponding implementation/body looks like this:

SYNMODE IntStackType1 = MODULE BODY

Push: PROC(Elem INT IN)

EXCEPTIONS(Overflow)

IF TopOfStack = Length THEN

CAUSE Overflow;

ELSE

TopOfStack +:= 1;

StackData(TopOfStack) := Elem;

FI;

END Push;

/* body of Pop */

END IntStackType1;

Stack objects are declared in the same manner as variables of
other types.

DCL Stack1, Stack2 IntStackType1;

Stack1.Push(10);

Stack1.Push(20);

IF Stack1.Pop() > 10 ...

Since Stack1 and Stack2 have a finite capacity, it would be
better to check whether the operations have been executed
normally, i.e. check whether an exception has occurred.

Stack1.Push(30)

ON(Overflow): TempValStack1 := 30;

PushStack1 := True;

END;

IntStackType1 is a sequential stack without coordination of con-
current calls, i.e. Stack1 behaves very much like a module. It is
easy to define a stack type whose objects behave like regions:

Box 1 CHILL in Examples, continued

76 Telektronikk 4.2000

SYNMODE IntStackType2 = REGION SPEC

/* as in IntStackType1 */

END IntStackType2;

SYNMODE IntStackType2 = REGION BODY

/* bodies of Push and Pop */

END IntStackType2;

If we use inheritance such a stack type with coordination can be
obtained even simpler:

SYNMODE IntStackType2 = REGION SPEC

BASED_ON IntStackType1

END IntStackType2;

Both IntStackType1 and IntStackType2 have a fixed element
type. If we need stack types for other element types, we have
to duplicate the code.

It is simpler first to define a generic stack template StackTem-
plate1 and then define IntStackType1 and DateStackType1 as
generic instantiations of StackTemplate1.

GenericStackTemplate1: GENERIC

MODE ElemType = ANY_ASSIGN;

MODULE SPEC

GRANT Push, Pop;

Push: PROC(Elem ElemType IN)

EXCEPTIONS(Overflow) END Push;

Pop: PROC() RETURNS(ElemType)

EXCEPTIONS(Underflow) END Pop;

SYN Length = 10_000;

DCL StackData ARRAY (1:Length) INT,

TopOfStack RANGE(0:Length)

INIT := 0;

END GenericStackTemplate1;

The corresponding implementation/body looks like this:

GenericStackTemplate1:

GENERIC MODE ElemType = ANY_ASSIGN;

MODULE BODY

/* bodies of Push and Pop */

END GenericStackTemplate1;

This template can be used to define object types as instantiations
of the template. We do not have to duplicate the code, but only
have to provide an actual generic parameter.

SYNMODE IntStackType4 =

NEW GenericStackTemplate1

SYNMODE ElemType = INT;

END IntStackType4;

SYNMODE DateStackType1 =

NEW GenericStackTemplate1

SYNMODE ElemType = DateType;

END DateStackType1;

IntStackType4 is essentially equivalent to IntStackType1.

Concurrent Programming
One essential difference between sequential and concurrent pro-
gramming is the presence of active entities, i.e. entities which
have their own thread of control. Such entities are called active
entities in contrast to passive entities, as e.g. procedures.

CHILL contains two kinds of active entities: the process and the
task object.

Processes typically communicate via buffers, signals or regions.
A traditional example is the producer-consumer problem, where
a number of processes produce data items and a number of pro-
cesses consume these data items.

ProducerConsumer: MODULE

DCL PCBuffer BUFFER(100)ItemType;

ProducerType: PROCESS()

DCL Item ItemType;

DO WHILE NotFinished

/* produce new data item */

Item := NewValue;

SEND PCBuffer(Item);

OD;

END ProducerType;

ConsumerType: PROCESS()

DCL Item ItemType;

DO WHILE NotFinished

RECEIVE (PCBuffer IN Item);

/* consume the data item */

OD;

END ConsumerType;

/* Two producers and one consumer */

START ProducerType();

START ProducerType();

START ConsumerType();

END ProducerConsumer;

If there are several kinds of consuming or processing the items
produced by the producers, we can define a task type with corre-
sponding methods.

ProducerConsumer2: MODULE

ProducerType: PROCESS()

DCL Item ItemType;

DO WHILE NotFinished

/* produce new data item */

Item := NewValue;

CASE KindOfProcessing OF

(Kind1): Consumer.Consume1(Item);

(Kind2): Consumer.Consume2(Item);

ESAC;

END ProducerType;

SYNMODE ConsumerType = TASK SPEC

GRANT Consume1, Consume2;

Consume1: PROC(Item ItemType IN);

Consume2: PROC(Item ItemType IN);

END ConsumerType;

Box 1 CHILL in Examples, continued

77Telektronikk 4.2000

SYNMODE ConsumerType = TASK BODY

Consume1: PROC(Item ItemType IN)

/* consume the data item */

END Consume1;

Consume2: PROC(Item ItemType IN)

/* consume the data item */

END Consume2;

END ConsumerType;

/* Two producers and one consumer */

DCL Consumer ConsumerType;

/* automatic start */

START ProducerType();

START ProducerType();

END ProducerConsumer2;

CHILL in Examples, continued

Box 2 CHILL vs. Java

CHILL

Data Structures
Scalar: integer, float, characters, boolean, enumerations,

pointer, procedure type, process type, event, time
range types

Composite: string, record, array, set, buffer, signal

Sequential Programming
Variable, constant, expression, function call
Assignment
Procedure call
EXIT, RESULT, RETURN, GOTO
Statement sequence
Selection statements: IF, CASE (multidimensional)
Repetition statements: DO, WHILE, FOR

Object-oriented Programming
Sequential, unsynchronized object
Sequential, synchronized object
Concurrent, synchronized object
Interface
Friend

Concurrent Programming
Process
Start process
Communication via buffer
Communication via signal
Critical region and coordination with events
Concurrent, synchronized object

Program Structure
Block
Procedure / Function / Process
Object-Type / Class
Module / Region

Genericity
Generic Procedure / Process
Generic Module / Region
Generic Object Type / Class
Generic Interface

Program Verification
Precondition and postcondition for methods
Invariant for object type / class
ASSERT statement

Java

Data Structures
Scalar: integer, float, characters, boolean

no range types
Composite: string, array, set, and many others (in the prede-

fined APIs)

Sequential Programming
Variable, constant, expression, function call
Assignment
Procedure call
BREAK, RETURN
Statement sequence
Selection statements: IF, SWITCH (onedimensional)
Repetition statements: WHILE-DO, DO-WHILE, FOR

Object-oriented Programming
Sequential, unsynchronized object

Concurrent object
Interface

Concurrent Programming

Synchronized method and synchronized statement
Concurrent object

Program Structure
Block
Procedure / Function
Object-Type / Class
Package

Genericity

Program Verification

Additional Elements

Applet java.applet
Reflection java.lang.reflect
GUI definition javax.swing, java.awt
SW components java.beans, org.omg.CORBA
Remote Procedure Call java.rmi
Internet access java.net
Data security java.security
Data base access java.sql
Data compression java.util.zip
Painting java.awt
Music java.sound.midi

Telektronikk 4.2000

1 Fundamentals
The Reference Model for Open Distributed Pro-
cessing (RM ODP) [1] defines an architecture
for the design of distributed services where the
basic idea is to split the design concerns into
several viewpoints: enterprise, information,
computational, engineering and technology.
This is in order to overcome the immense com-
plexity of today’s distributed systems by struc-
turing the design process.

To describe models of distributed services from
the computational viewpoint a combination of
Object Definition Language (ODL) [2] and
Specification and Description Language (SDL)
[3] is proposed by ITU. An ODL computational
model defines the objects (or components) and
groups of them together with the interface signa-
tures. All definitions are given in terms of types
(called templates in ODL), so ODL does not
support the definition of instances, their configu-
rations and the precise formal behavior descrip-
tion. Additional information especially on the
behavior and on the connection between the
component instances is needed in order to allow
validation, automated code generation and auto-
mated testing. A structural equivalent mapping
of ODL to SDL is one possible starting point for
a more precise behavior description and object
configurations. However, it should be noted that
the intention is not to require a detailed SDL
model for each individual component. SDL is
needed for components where validation, auto-
mated code generation and/or automated testing
should be performed. There are two different
ways to come to component implementations.
One is based on a mapping of ODL to C++
(which follows the corresponding mapping of
CORBA IDL[4] as a subset of ODL), the other
is based on an automated code generation from
SDL.

ODL is based on the work done by TINA-C on
TINA ODL [5] from 1996. The motivation for
this work and the following ITU activities was
to provide specification support for stream inter-
faces and of objects with multiple interfaces,
which is not possible in CORBA IDL. These
features have been added using CORBA IDL as
the base notation. The ITU activities lead to the

ITU ODL standard Z.130, which is a strict
superset of CORBA IDL.

2 Computational Object
A computational object (CO) is an autonomous
interacting data processing unit in the computa-
tional model of a distributed system. The COs
interact through their well defined computational
interfaces. The modelling process focuses on
how a particular functionality can be provided
without taking into account what kind of com-
puting or network infrastructure is used to im-
plement the object.

Hence, the task of a computational model is to
define the object (or component) structure
together with the interface signatures and to
describe the behavior provided at the interfaces
on a high level of abstraction. ODL focuses on
the first aspect while behavior definitions are
provided informally only.

Object class O supports two kinds of interfaces
I1 and I2, nothing is said about the instantiation
of these interfaces. I1 is a name of an operational
interface, which here supports only one opera-
tion Op1, where O is the server of that opera-
tion. I2 is a stream interface, which is able to
handle two information (media) flows F1 and
F2, where O is the producer of F1 and the con-
sumer of F2.

CO O{

behavior this is an example;

supports

ModA:I1, // Interface I1 is defined

// in Module ModA

ModB:I2; // Interface I2 is defined

// in Module ModB

}; // end of O

3 Interface
Interfaces are access points to object implemen-
tations. A computational interface template com-
prises a textual (informal) behavior specification
and, as appropriate, either an operational inter-
face signature, or a stream interface signature.

Operational Interface
The following information is specified:

Object Definition Language
M A R C B O R N A N D J O A C H I M F I S C H E R

The ITU Object Definition Language (ODL) is an extension of CORBA IDL version 2.0 sup-
porting multiple interfaces, both operational and stream interfaces, and supports groups of
objects and user-defined data types.

Marc Born (29) received his MSc
in Computer Science from Hum-
boldt Universität zu Berlin in
1996, whereupon he started
work at GMD FOKUS as a sci-
entist, working mainly in the area
of object-oriented development
and specification of telecommu-
nication systems in national and
international projects. Since
1999 he has been active in
EURESCOM and other interna-
tional projects. He is currently
involved in the standardisation
activities of the ITU-T SG 10
regarding ITU-ODL, SDL and
DCL. He has started on his PhD
thesis on a methodology for dis-
tributed telecommunication sys-
tem design, in particular the defi-
nition of a suitable notation for
relevant modelling concepts.

born@fokus.gmd.de

Joachim Fischer (48) has been
University Professor for Mod-
elling and Computer Simulation
at the Humboldt-Universität
Berlin since 1994. He received
his MSc in Mathematics in 1977
and his PhD in Computer Sci-
ence in 1982. In 1988 he pub-
lished his habilitation thesis at
the HU on rapid prototyping of
distributed systems using exe-
cutable formal description tech-
niques. His current working area
is in the development of tool-
supported description and de-
sign techniques for complex dis-
tributed systems and their appli-
cation in the telecommunications
domain. He is involved in many
European projects and a member
of SDL-Forum, ITU and ASIM
(German Simulation Society).

fischer@informatik.hu-berlin.de

78

79Telektronikk 4.2000

• The signature of each operation which is sup-
ported, so that it can be invoked by clients
(operation name, parameter types, return
types, exceptions);

• The definition of one-way operations with
neither return types nor exceptions;

• The semantics of each operation, including
sequencing, and concurrency constraints
applicable to the operations;

• The type and the name of each attribute (spec-
ifying attributes implies to have get and set
operations later in the implementation code).

Stream Interface
The following information is specified:

• The signature of each stream flow (flow name,
sink or source indication, flow type/format);

• The semantics and QoS aspects of each stream
flow.

An interface template can be shared between
several object templates. Interface template
specifications can be included in an object tem-
plate declaration as supported interfaces or as
required interfaces.

Supported interfaces
Supported interfaces are offered interfaces of
a computational object. They are the only inter-
face templates for which instances may exist
on the objects instance.

Required interfaces
The required interfaces of an object prescribe
interfaces on other objects that this object in-
vokes operations on.

Initial Interface
One and only one of the supported operational
interfaces of an object template may be declared
as being the initial interface of that object. That
interface will be instantiated when the object
template itself is instantiated. This interface
instance may be used for initialization or con-
figuration purposes.

Interfaces which are supported by an object may
only exist as long as the object itself exists.

4 Object Group
A group template allows the specifications of
ensembles of computational objects. An infor-
mal predicate defines the interpretation of such a
group. One important application of an ensemble
is to define a composite object. Another applica-
tion is to specify a loosely coupled logical unit
of objects, for instance a collection of objects

which are managed by one manager. The later
corresponds to the idea of groups in TINA ODL.

Interface template specifications can be referred
to in an object group template as supported or
required interfaces (contracts). These contracts
are the interface templates whose instances can
be used by COs external to the object group
(supported) or needed by the instances of the
group members from the environment (required).

group G1 {

predicate

“This group manages a subnetwork. The

NetworkCoordinator manages this group.”

members

CMC, NetworkCoordinator, NetworkCP,

ElementCP; //computational objects

supported

Configurator, Trail, TC;

};

5 Data Description
Data types and constants can be declared in
almost any scope within an ODL specification.
Later, these types or constants can be used for
declaration of operation, exception, flow, and
other template constructs. As for any template
declaration, it is required that a type or constant
is declared prior (i.e. earlier in the file) to its use.

The syntax supported by ODL for type and con-
stant declaration is identical to OMG-IDL.

const string str=“xyz“;

typedef float Bps;

enum Guarantee {

Deterministic, Statistical, BestEffort

};

struct AudioQoS {

union Throughput switch (Guarantee){

case Statistical: Bps mean;

case Deterministic: Bps peak;

case BestEffort:

struct Interval {

Bps min;

Bps maxd;

} range ;

};

union Jitter switch (Guarantee) {

case Statistical: Bps mean;

case Deterministic: Bps peak;

};

};

Figure 1 Computational
Object (CO) with supported

interfaces
12

F1

F2

O

Op1

I1

80 Telektronikk 4.2000

6 Template Inheritance for
Interfaces, Objects and
Object Groups

Interface templates, object templates and object
group templates are considered units of specifi-
cation modularity. A template is derived from
another template of the same kind. Rules for
inheritance will allow new interface templates,
object templates and object group templates to
be declared as extensions of previously defined
ones. For all template kinds, multiple inheritance
is supported.

Only the essential elements of interface template
inheritance are presented here. It is possible to
declare interface template I4 inheriting opera-
tion11 from I1, and adding operation opera-
tion41. Similarly, S2 may inherit from S1 the
source flow voiceDownStream and the sink
flow voiceUpStream, and add the source flow
videoFlow21. I1 and S1 are defined as follows:

interface I1{
...

// data types

typedef ... DataType11;

typedef ... DataType12;

void operation11 (in DataType11 ...,

out DataType12 ...);

}; // end of I1

interface S1{
...

// flow types

typedef ... VoiceFlowType;

source VoiceFlowType voiceDownStream;

sink VoiceFlowType voiceUpStream ;

}; // end of S1

The inheriting interface templates can then be
defined as follows:

interface I4: I1{
...

typedef ... DataType41;

void operation41 (in DataType41 ...);

}; // end of I4

interface S2: S1{

...

typedef ... FlowTypeS21;

source FlowTypeS21 videoFlow21 ;

}; // end of S2

Object template O, using the inherited spe-
cialised interface templates, can be defined as
follows:

CO O {

behavior ...

supports I4, S2;
...

}; // end of O

7 Module
A module introduces a scope for contained defi-
nitions. It may contain definitions of templates
for objects, interfaces, object groups and user-
defined data types. Modules can be nested. The
usage of modules enables a structured specifica-
tion development.

8 Naming and Scoping
The following kinds of definitions form nested
scopes within an ODL specification: module,
object group template, object (CO) template,
interface template, data types (struct, union),
operation and exception. For example, the fol-
lowing ODL definitions are contained in one
specification.

module M1 {
...

group G1 {
...

CO O1 {
...

interface I1 {
...

typedef ... DataType1;
...

void operation1

(in DataType1 parameter1...);
...

}; // end of I1

}; // end of O1

}; // end of G1

}; // end of M1

An identifier can only be defined once in a
scope, but can be redefined in nested scopes.
Based on the ODL example above, the qualified
name of G1 is M1::G1. Similarly the qualified
name of DataType1 is M1::G1::O1::I1::
DataType1.

9 Design Methodology
Since ODL describes structures and signatures
of components only, there are two ways of cov-
ering the semantics of them. The traditional one
is to step directly into the implementation. For
supporting this, there is a need for a language
mapping from ODL into the used implementa-
tion language to make use of the specified struc-
ture and signature information. Such a language
mapping to C++ has been developed and is part
of Z.130. By applying this mapping, the time
needed for the implementation can be reduced
compared to using the IDL to C++ mapping pro-

81Telektronikk 4.2000

The most important steps of the methodology are:

Step (1): Take the information and the enterprise (viewpoint)

specification, partially developed using UML[6], and

define a computational (viewpoint) specification ex-

pressed in ODL, using the mapping rules of Z.130.

Step (2): The ODL specification is mapped into a structurally

equivalent SDL skeleton specification.

Step (3): The SDL inheritance feature is applied to enrich the

SDL specification generated by step 2 with behavior

descriptions for both the interface and object tem-

plates. The behavior description is based on the speci-

fication of states and transitions. Step 3 can be re-

peated to achieve different levels of abstraction in the

design of object composition and behavior. The result

is an executable SDL model in the computational view-

point. It is not yet an engineering viewpoint solution.

Box 1 Mapping from ODL over SDL to C++

Step (4): With help of tool packages, the SDL specification from

step 3 can be checked for correctness of syntax and

static semantics. Additionally, it is possible to generate

C++ code that can be linked with a simulation library.

This leads to a simulator for the SDL system, which

represents the ODL specification and includes the

computational behavior aspect and hence allows to

check the dynamics of the system.

Step (5): A simulation of the computational model is used to

detect design errors prior to implementation. An SDL

debugger is a component that supports this kind of val-

idation. Another way of error detection is to explore the

state space of the SDL model to find lifelocks or dead-

locks. If design errors are detected, a repetition of the

steps 1 to 4 could be necessary.

Step (6): Platform specific C++ code can be generated out of

the SDL model. If necessary, the SDL model can be

refined before; this specification is called Engineering

SDL specification.

The result of applying this method is a computational model of

either a complete telecommunication service or a single compo-

nent or a set of components.

Enterprice
Viewpoint

Information
Viewpoint

Computational
Viewpoint

Engineering
Viewpoint

Technology
Viewpoint

ODL
Specifi-
cations

ODL
Editor

Generator

Trans-
formator

SDL
Skeleton

Platform
specific

C++ Code
Generator

C++
Code

Trans-
formator

SDL
Debugger

Computational
SDL

Specification

Engineering
SDL

Specification

C++
Skeleton

Generator

(1)
(2`)

(2)

(3`)

(3)

(6)

(4)(5)

Validation by
Simulation

Figure 2 Steps in system design using ODL and SDL

82 Telektronikk 4.2000

vided by the Object Request Brokers (ORBs)
only in terms of IDL compilers.

Though the way of direct mapping from ODL
to the implementation language is the most
common method, another approach is needed
in order to allow validation of the component
behavior before its implementation and to per-
form automated code generation and testing.
This approach is to provide a computational
viewpoint behavior description for the compo-
nents. This behavior description should be an
abstract one since in most cases only the external
visible behavior should be specified without pre-
scribing any implementation details. SDL is a
convenient language to state the behaviour de-
scription. A mapping to SDL is part of Z.130 too.

The mapping is supported by tools, and has been
applied in different EU projects dealing with the
development of telecommunication services.

10 ODL Limitations
ODL was defined before the OMG standardiza-
tion activities reached the final stage where com-
ponents with multiple interfaces [7] were de-
fined. An interesting question to ask now is
how the current version of ODL compares to
the computational modelling concepts of ODP,
SDL and Component IDL.

Limitations of the Computational
Concepts of ODL
ODL does not support behavior specification;
especially there is no description concept for
binding functionality. It does not provide mecha-
nisms for template instantiations and the config-
uration of systems based on components. Fur-
thermore, signal communications cannot be
described directly. Meanwhile, this is supported
by OMG with events. Practical experiences have
shown that the support of stream flow types in
ODL is not adequate. The concept of flow types
should be substituted by the usage of standard-
ized formats (MP3, MPEGII, ...).

Language Mapping Problems
If a solution were to be found for the problems
of missing ODP concepts, the resulting ODL
language would have more expressive power
than OMG Component IDL. However, there is a
problem of mapping stream interfaces. The only
possible way of mapping is to map these inter-
faces to implicit operational interfaces for man-
aging the stream flows, which are declared by
the stream interfaces. A generation of concrete
operations (and their signatures) can only be
realized for a concrete platform which itself
has to be standardized first.

Regarding the SDL mapping, there are also
some open issues:

Since ODL does not provide means for behavior description,

there must be a solution for describing the behavior of a dis-

tributed application outside the ODL specification. As already

indicated, this could be done via a mapping to SDL. However, it

is not realistic to require a detailed SDL model for each individual

component. It depends on the application for which component

an SDL specification makes sense. This is due to the fact that not

all problems can be adequately described by state machines. As

a consequence, not all component implementations can be

derived from their SDL specification via automatic code genera-

tion. If performance aspects have to be considered, or if SDL is

not suitable to specify the component behavior in every detail, the

components have to be implemented by hand. In this case, there

is a need to have language mapping not only from ODL to SDL,

but also to an implementation language like C++ in order to use

the structural information contained in the ODL specification for

the implementation (Step (2’)).

Since ODL is a strict superset of CORBA IDL, all aspects con-

cerning the communication between the components of a system

are described using CORBA IDL interface descriptions. In order

to be able to use existing ORB implementations as a platform to

implement an ODL specification, the mapping for the CORBA IDL

part of ODL is adopted. The intention is that the existing ORB

specific CORBA IDL compilers can be used to map the IDL part

of an ODL specification to C++.

Additionally, the structural information of computational objects or

components should be reflected in the implementation language,

as well. This information reflects design decisions made during

system design. It is not a requirement to map the structural infor-

mation into the implementation language, since the application

will work even if only the IDL part is mapped (Only the interfaces

are of importance for communication). But ODL should be under-

stood as a computational design language, and the structural

information contained in it makes the programming of distributed

applications easier. Therefore, a language mapping of ODL to

C++ is part of Z.130. This language mapping allows flexible struc-

turing of implementations and ensures that the developer can

make use of the computational design information in the imple-

mentation stage (Step (3’)). The mapping rules are aligned with

those from ODL to SDL and from SDL to TTCN. This facilitates

the application of automated testing facilities and increases the

benefits resulting from the application of ODL and SDL in the

design methodology. See Figure 2.

Box 2 Direct mapping from ODL to C++

83Telektronikk 4.2000

Problem Statement
A design task, which should be solved using ODL, can be sum-

marized as follows:

An Interactive TV Station Server should be developed, which

should provide a number of channels for clients (audio & video

data). The server should be able to receive inputs from its clients

in the form of joystick and mouse events. Furthermore, the server

has to provide a mechanism to set configuration data. There

have to be two configuration variants, where the second variant

should provide a more sophisticated behaviour.

The client for this station should also be designed, and it should

be able to receive the channels and to provide the mouse and

joystick events which trigger some changes in the sent channel.

The client should also be configured.

Relevant Constructs
A system designer who has to produce an ODL specification for

the above task would design the computational viewpoint in the

following way:

• Specification of the mouse and joystick events as ODL structs

with two members for the x and y pos of the mouse or joystick.

• Specification of an operational interface, which has two one-

way push operations for the mouse and joystick events.

• Specification of the flow types for the audio and video flows

that have to be exchanged. This could be octet types.

• Specification of a stream interface which has two sources, one

of the audio flow type and one of the video flow type.

• Specification of operational interfaces with the basic configura-

tion operation for both the client and the server and a subtype

of this operational interface with the extended configuration

operation for the server.

• Specification of two computational objects representing the

servers. The base CO supports the stream interface and the

interface with the push operations. It has the base configura-

tion interface as initial interface. The second CO is a subtype

of the base CO, it has the interface with the extended configu-

ration operation as initial interface.

• Specification of a CO, which requires the stream interface and

the interface with the two push operations. It declares the base

configuration interface as initial interface.

Box 3 Example: Interactive TV

ODL Specification

audio

video

Push_MouseEvent

Push_joyEvent

ServerComponent

Service

Specific_configure

SepcificService SepcificService_initial

Service_stream

configure

ClientComponent
ClientComponent_initial

Service

Service_stream

configure

ServerComponent_initial

Figure 3 Graphical ODL specification for Interactive TV example

84 Telektronikk 4.2000

• A more harmonized language mapping would
be achieved if SDL would offer the use of
ODL data types as an alternative data type
concept.

• Since SDL does not support multiple inheri-
tance a flattening process is necessary for the
mapping.

Intended ODL Improvements
ODL does not yet have a well-defined graphical
syntax and some graphical symbols are missing,
for required interface and initial interface, for
inheritance, and for text boxes for data types.
Therefore, there are some degrees of freedom
here for the development of tools. It is expected
and intended that tool vendors come up with
their own graphical notation and use textual
ODL as an interchange format.

References
1 ITU-T. Open Distributed Processing – Ref-

erence Model Part 3/4. Geneva, ITU, 1995.
(Rec. X.903/X.904 | ISO/IEC 10746-3/-4.)

2 ITU-T. Object Definition Language.
Geneva, 1999. (Rec. Z.130.)

3 ITU-T. SDL – Specification Description
Language. Geneva, 2000. (Rec. Z.100.)

4 OMG. The Common Object Request Broker
Architecture and Specification, Version 2.3.
Needham, MA, 1999.

5 TINA-C. Object Definition Language Man-
ual, Version 2.3. Trinton Falls, NJ, 1996.

6 OMG. Unified Modeling Language Specifi-
cation, Version 1.3. Needham, MA, 1999.

7 OMG. Corba Components – Vol. I. Need-
ham, MA, 1999. (ORBOS 99-07-01.)

module InteractiveGame {

typedef octet Audio;

typedef octet Video;

struct MouseEvent {

long pos_x;

long pos_y;

};

struct JoyEvent {

long pos_x;

long pos_y;

};

interface Service {

oneway void push_mouseEvent(in MouseEvent mouse

);

oneway void push_joyEvent(in JoyEvent joy);

};

interface Service_stream {

source Audio audio;

source Video video;

};

}; // end module InteractiveGame

module ServiceComponents {

interface ClientComponent_initial_;

CO ClientComponent {

requires ::InteractiveGame::Service,

::InteractiveGame::Service_stream;

initial ClientComponent_initial_;

}; // end object ClientComponent

interface ClientComponent_initial_ {

void configure ();

};

interface ServiceComponent_initial_;

CO ServiceComponent {

supports ::InteractiveGame::Service,

::InteractiveGame::Service_stream;

initial ServiceComponent_initial_;

}; // end object ServiceComponent

interface ServiceComponent_initial_ {

void configure ();

};

module SpecificServiceComponents {

interface SpecificService_initial_;

CO SpecificService: ::ServiceComponents::

ServiceComponent {

initial SpecificService_initial_;

}; // end object SpecificService

interface SpecificService_initial_ :

::ServiceComponents::ServiceComponent_initial_ {

void specific_configure ();

};

}; // end module SpecificServiceComponents

}; // end module ServiceComponents

Box 3 Example: Interactive TV, continued

85

Conformance Testing with TTCN
I N A S C H I E F E R D E C K E R A N D J E N S G R A B O W S K I

The Tree and Tabular Combined Notation (TTCN) is a semi-formal notation which supports
the specification of abstract test suites for protocol conformance testing. An abstract test
suite is a collection of abstract test cases1). As indicated by the name TTCN, test cases are
described in the form of behavior trees and different kinds of tables are used for the graphi-
cal representation of test suites.

Ina Schieferdecker (33) received
her PhD from the Technical Uni-
versity Berlin in 1994. Since 1993
she has been a researcher at
GMD Fokus, and a lecturer at
Technical University Berlin since
1995. Her interests cover testing
methods for distributed systems
and formal methods for the
design, validation and prototyp-
ing of distributed systems. She
has been head of the Compe-
tence Center for Testing, Inter-
operability and Performance
(TIP) since 1997 and is actively
involved in several testing pro-
jects. She has published several
papers on testing telecommuni-
cations systems and developing
test systems, and is involved in
the definition of MSC in ITU-T
SG10 and of TTCN-3 in ETSI.

Schieferdecker@fokus.gmd.de

Jens Grabowski (38) graduated
from the University of Hamburg
with a diploma degree in Com-
puter Science and Chemistry.
He spent two years at SIEMENS
AG in Munich focusing on proto-
col specification and protocol
validation based on Petri Nets,
SDL and MSC. 1990–1995 he
was research scientist at the
University of Berne, where he
received his PhD in 1994. Since
1995 Grabowski has been
researcher and lecturer at the
Institute for Telematics at the
Medical University in Lübeck;
since 1996 he has also worked
as expert in several ETSI stan-
dardization projects. He is a
member of the ETSI experts
team which develops the third
edition of TTCN.

jens@itm.mu-luebeck.de

1) CTMF and TTCN use the terms abstract and executable to distinguish between implementation-
independent and implementation-dependent concepts, e.g. abstract test suite and executable test
suite, abstract test case and executable test case or abstract service primitive. This paper intro-
duces mainly implementation-independent CTMF and TTCN concepts. Qualifiers like abstract or
executable will only be used in case of ambiguities.

“Product testing is still seen as the only reli-
able way to assure that outsourced products
meet the required specification and are suit-
able for inclusion in the live network.”
Cited from Counting on IT, Issue 7 by
National Physical Laboratory, UK, Summer
1998.

1 Introduction
TTCN [3] is the means of the Conformance
Testing Methodology and Framework (CTMF)
for the description of test suites for conformance
testing. See terminology and explanations in
Box 1. TTCN has two syntactical forms (Figure

1), called TTCN/gr (TTCN GRaphical form) and
TTCN/mp (TTCN Machine Processable form).
TTCN/gr is intended to be used by humans and
TTCN/mp is developed for the exchange of doc-
uments between different computers and for fur-
ther processing of TTCN test suites. A TTCN/gr
description can be translated into an equivalent
TTCN/mp representation and vice versa. In this
paper only TTCN/gr examples are presented.

In the following, the different TTCN constructs
are described by developing an example test
suite2). The system to be tested is a parcel ser-
vice. A test case should check whether the parcel

1 (PS_Init:= Reset_ParcelService())

2 [PS_Init] (P)

3 [NOT PS_Init] I

Detailed Comments:

Nr Label Behaviour Description Constraints Ref Verdict Comments

Test Step Name : Preamble

Group :

Objective : To bring the SUT into the initial state

Default :

Comments :

Description :

Test Step Dynamic Behaviour

Figure 1 The TTCN forms: TTCN/gr and corresponding TTCN/mp code below the table

...
$Begin_TestStep
$TestStepId Preamble
$TestStepRef Example_ATS/
$Objective /* To bring the SUT into the initial state */
$DefaultsRef
$BehaviourDescription
$BehaviourLine
$LabelId
$Line [0] (PS_Init:= Reset_ParcelService())
$Cref
$VerdictId
$End_BehaviourLine
$BehaviourLine

$LabelId
$Line [1] [PS_Init]
$Cref
$VerdictId (P)
$End_BehaviourLine
$BehaviourLine
$LabelId
$Line [1] [NOT PS_Init]
$Cref
$VerdictId I
$End_BehaviourLine
$End_BehaviourDescription
$End_TestStep

Telektronikk 4.2000

86 Telektronikk 4.2000

Underlying Service

LT

TCP

IUT

UT

PCO

PCO

PDUs

ASPs

Conceptual Test Architecture

Conformance Testing Framework

Testing a system is performed in order to assess its quality and to

find errors. An error is considered to be a discrepancy between

observed or measured values provided by the system under test

and the specified or theoretically correct values. Testing is the pro-

cess of exercising or evaluating a system or system component by

manual or automated means to verify that it satisfies specified

requirements. It approves a quality level of a tested system.

Conformance testing in particular is the process of testing the

extent to which implementations of OSI protocol entities adhere to

the requirements stated in the relevant standard or specification.

Conformance testing is functional black-box testing. The term

functional refers to the correct functional behavior of an Implemen-

tation Under Test (IUT), i.e. the correct input/output behavior in

each state. Black-box testing means that the internal structure of

the IUT remains hidden, i.e. it is a black box for the test developer.

The OSI conformance testing procedure is defined in the interna-

tional ISO/IEC standard 9646 Conformance Testing Methodology

and Framework (CTMF) [1]. CTMF consists of seven parts and

covers the following aspects: concepts (part 1), test suite specifi-

cation and test system architectures (part 2), test notation (part 3),

test realization (part 4), means of testing and organizational

aspects (part 5, 6, and 7). The Tree and Tabular Combined Nota-

tion (TTCN) is defined in part 3 of CTMF. By definition, the target

systems to be tested according to the CTMF principles are imple-

mentations of OSI protocol entities. However, CTMF and TTCN

are applicable in a much wider scope than OSI-based systems.

The CTMF principles and TTCN have also been applied success-

fully for conformance testing of ODP-, TINA-, CORBA- and IP-

based systems, APIs and reactive systems in general3).

In conformance testing, the IUT is an implementation of an OSI

protocol entity. The IUT is part of an open system called System

Under Test (SUT). The conceptual conformance test architecture

is shown in the figure below.

The IUT has an upper and a lower interface through which it is

tested. Conformance testing is done at standardized interfaces

called Points of Control and Observation (PCOs)4). Typically, the

lower interface of an IUT is accessible only from remote. There-

fore, the underlying service of the IUT is used to define an appro-

priate PCO on a remote site, i.e. the lower interface of the IUT is

moved to the remote site. Communication is always meant to be

asynchronous and therefore, a PCO is modeled by two FIFO

queues, i.e. one queue for each direction.

CTMF distinguishes between an Upper Tester function (UT) and a

Lower Tester function (LT). As indicated by the names, the upper

interface of the IUT is controlled by the UT and the lower interface

is controlled by the LT. During the test, the UT plays the role of a

user that makes use of the service provided by the IUT and the LT

plays the role of a peer entity of the IUT, i.e. the LT and the IUT

communicate in order to provide the service to the UT.

IUT and UT communicate by means of Abstract Service Primitives

(ASPs). Conceptually, IUT and LT provide their service by

exchanging Protocol Data Units (PDUs). In practice, the PDUs are

encoded in ASPs of the underlying service, i.e. PDUs will not be

exchanged directly. However, CTMF allows to abstract from the

encoding of PDUs, i.e. allows to specify the exchange of PDUs in

abstract test cases. Therefore, it is not necessary to distinguish

between ASP and PDU explicitly, and hence, only the term PDU is

used.

As shown in the figure, Test Coordination Procedures (TCP) can

be used to coordinate the actions of LT and UT. This might be

necessary if LT and UT are realized in separate tester processes.

The figure presents the conceptual test architecture only. In prac-

tice, several variations of the conceptual test architecture are

used. The test methods defined in CTMF are local, distributed,

coordinated and remote test method. They differ in the possibili-

ties to coordinate LT and UT and the ability to control and observe

2) Only a few TTCN tables can be presented in this paper, but the complete example test suite is available from the authors.
3) An overview of the use of conformance testing and TTCN is given in [9].
4) In most cases, a PCO maps to a Service Access Point (SAP) in the OSI basic reference model.

87Telektronikk 4.2000

Postamble

End State
(Verification)

End State
(Test Body)

Test State

Stable State

Preamble

Test Body

Verification

Test Case Scheme

the IUT. In addition, CTMF defines a multi-party context which

allows to combine the different test architectures in order to spec-

ify tests with several UT and LT processes.

The test case development starts with the identification of test pur-

poses. A test purpose is a prose description of a single require-

ment or a set of related requirements which should be tested. Test

purposes are identified based on the requirements in the specifi-

cation of the IUT.

A test case is the implementation of a test purpose for a particular

test architecture, i.e. a complete specification of the actions

required to achieve a specific test purpose. The definition of a test

case follows the schema shown below.

A test case starts and ends in stable testing states, which need

not to be identical. It consists of a preamble, a test body, an

optional verification step and a postamble. With the preamble, the

IUT is driven from a stable testing state to the test state from

which the test body is performed in order to check the test pur-

pose. If the end state of the test body is not unique, it has to be

checked by a verification step and then a postamble is used to

drive the IUT into a stable testing state again. Otherwise, the IUT

is put into a stable testing state immediately with the postamble.

Test cases developed according to the principles of CTMF are

abstract. Executable test cases are derived from abstract ones by

compilation and adaptation to the Means of Testing (MoT). The

MoT is the combination of equipment and procedures that can

perform the derivation, selection, parameterization and execution

of test cases. It consists typically of dedicated test devices and

facilities for the coordination of test devices and the observation of

the IUT. These facilities may be installed inside the SUT.

service behaves as shown in Figure 2. A pro-
ducer asks for a service offer and the parcel ser-
vice indicates within a certain time frame that
a 24h delivery service is available. Then, the
goods are sent to the parcel service, which deliv-
ers them to the consumer. The consumer accepts
the goods by sending an acknowledgement to
the parcel service. The acknowledgement is for-
warded as a confirmation to the producer. The
confirmation is expected within 24h in accor-
dance with the service assured by the parcel ser-
vice. Not shown in Figure 2 is the possibility of
the parcel service promoting new services to the
producer by sending advertisements at any time.

The test architecture for testing the parcel ser-
vice is shown in Figure 3. The IUT is the parcel
service which is connected to the LT functions
Consumer and Producer through the PCOs
LT_Cons and LT_Prod. This test architecture
can be seen as a combination of two remote test
methods in a multi-party context, i.e. a special
variant of the conceptual test architecture de-

scribed in Box 1. In this section, a non-concur-
rent test case will be developed, i.e. the
behaviour of both LT functions will be imple-
mented in one test component which controls
and observes both PCOs.

2 Basics of TTCN
A TTCN test suite is composed of four parts: an
overview part (Section 2.1), a declarations part
(Section 2.2), a constraints part (Section 2.3) and
a dynamic part (Section 2.4).

2.1 Overview Part and
Test Suite Structure

The overview part of a TTCN test suite can be
seen as a table of contents and provides all infor-
mation needed for the general presentation and
understanding of the test suite. It defines the test
suite name and test architecture, describes the
test suite structure, provides references to addi-
tional documents related to the test procedure
and includes indexes for the test cases, test steps
and default behaviour descriptions5).

5) The meaning of test steps and default behaviour descriptions will be explained in Section 2.4.

Conformance Testing Framework, continued

88 Telektronikk 4.2000

The documents related to the test procedure are
the specification on which the test suite is based,
a PICS (Protocol Implementation Conformance
Statement) document and a PIXIT (Protocol
Implementation eXtra Information for Testing)
document. In most cases, the referenced specifi-
cation is a protocol standard. The PICS docu-
ment is a questionnaire on mandatory and
optional features of the IUT and the PIXIT docu-
ment is a questionnaire on additional informa-
tion required for the test execution such as
address and timer information.

The different elements of a TTCN test suite
appear in a predefined strict order. Only in the
dynamic part it is possible to define a logical
structure for test cases, test steps and default
behaviour descriptions by putting them into
groups and subgroups (Figure 4). Test events are
the smallest elements and are explained in Sec-
tion 2.4.2. The test suite for the parcel service
example contains only one test group, which is
specified in Figure 5.

2.2 The Declarations Part
The declarations part provides definitions and
declarations used and referenced in the subse-
quent parts of the test suite. Specifically, the
declarations part defines and declares types,
operations, selection expressions, test compo-
nents, PCOs, timers, variables, constants and the
encoding of ASPs and PDUs. In the following,
the data types are explained and examples of
operation definitions, test suite parameter decla-
rations, variable declarations, timer declarations
and PDU type definitions are given.

Parcel
Service
(IUT)

CustomerProducer

Test Case Description

LT_ConsLT_Prod

Figure 3 Test Architecture
for the Parcel Service

Test Event Test Event Test Event

Test Step Test Step Test Step

Test Case Test Case Test Case

Test Group Test Group

Test Group Test Group Test Group

Test Suite
Figure 4 Structure in a Test Suite

Customer

T_ParcelService

Parcel ServiceProducer

MSC Example

24h_Service

Acceptance

Offer

Indication

T_Consumer
Send

Confirmation

Deliver

Acknowledge

Figure 2 Behaviour of a Parcel Service

89Telektronikk 4.2000

2.2.1 Data Types
TTCN has its own data type system and allows
the usage and definition of ASN.1 data types.6)

The TTCN type system includes the predefined
data types INTEGER, BOOLEAN, BITSTRING,
HEXSTRING, OCTETSTRING, and various
character strings such as IA5String, Numeric-
String and PrintableString. In addition, TTCN
allows to define structured types which are com-
parable to C structures or ASN.1 sequences. For
the usage of ASN.1, TTCN provides special
tables, which include pure ASN.1 code.

2.2.2 Test Suite Operations
Test suite operations are comparable to functions
in common programming languages like C or
Pascal. They can be used to encapsulate any
functionality relevant for the test execution such
as setting up basic connections, resetting the IUT
or just calculating a specific value. An example
for the definition of a test suite operation is
shown in Figure 6. The table header contains the
name of the operation, a description of the input
parameters and the type of the result. The table
body includes the behaviour specification of the
operation which may either be given in the form
of a pseudo-code like procedural definition lan-
guage or in the form of an informal textual
description. For simplicity, the behaviour speci-
fication of the operation in Figure 6 has been
omitted.

2.2.3 Test Suite Parameters
Test suite parameters are global parameters of
the test suite. Typically, they are derived from
the PICS and PIXIT documents and are constant
during test execution. Test suite parameters
serve as a basis for test case selection and for the
parameterization of test cases. The declaration of
the test suite parameter Duration_T_Parcel-
Service of the parcel service example is shown
in Figure 7. The parameter is used to set the
duration of timer T_ParcelService in Figure 9.

2.2.4 Variables
TTCN supports two types of variables: test suite
variables and test case variables. Test suite vari-
ables are defined globally and retain their values
throughout the whole test campaign. They are
used to pass information from one test case to
another. Test case variables are also declared
globally, but their scope is local to a test case.
Each test case receives a fresh copy of all test
case variables when it is started. The declaration
of the test case variable PS_Init with the initial
value TRUE is shown in Figure 8. In Figure 1,
PS_Init is used to store the result of the test suite
operation Reset_ParcelService given in Figure 6.

Figure 5 Test Suite Structure

Suite Name : Example_ATS

Standards Ref : None

PICS Ref : None

PIXIT Ref : None

Test Method(s) : Remote Test Method

Comments : This is an ATS for explaining selected TTCN constructs.

Test Suite Structure

Test Group Reference Selection Ref Test Group Objective Page Nr

Valid/ Test the valid behaviour 18
of the Parcel Service.

Detailed Comments:

Figure 8 Declaration of a Test Case Variable

Test Case Variable Declaration

Variable Name Type Value Comments

PS_Init BOOLEAN TRUE This is to store the result of the
Reset_ParcelService TSO.

Detailed Comments:

Figure 7 Declaration of a Test Suite Parameter

Test Suite Parameter Declarations

Parameter name Type PICS/PIXIT Ref Comments

Duration_T_ParcelService INTEGER This is the timeout
period for the timer to
watchdog the indication
process of the Parcel
Service.

Detailed Comments:

Figure 6 Definition of a Test Suite Operation

Operation Name : Reset_ParcelService

Result type : BOOLEAN

Comments : This is used to initialize the Parcel Service, e.g. the storage
capacity should be reset.

Test Suite Operation Definition

Description

...

Detailed Comments:

6) For further information on ASN.1, please refer to [7] and to the paper on ASN.1 in this issue of the journal.

90 Telektronikk 4.2000

2.2.5 Timer Declarations
As shown in Figure 9, timers are declared with
their name, an optional default duration and a
timeout period in the range from pico second
(ps) up to minute (min). The two timers
T_ParcelService and T_Consumer of the parcel
service example (Figure 4) are declared in Fig-
ure 9. The default duration of T_ParcelService

is set to the test suite parameter Duration_T_
ParcelService (Figure 7). The default duration
of T_Consumer is given by an expression of type
INTEGER reflecting the 24h=24*60min dura-
tion for the 24h service.

2.2.6 PDU Definitions
Instances of PDU types are (either directly or
embedded in ASPs) sent to or received from the
IUT at PCOs. As presented in Figure 10, the def-
inition of a PDU type consists of its name, the
PCO type associated with the PDU type, and a
list of PDU fields. Each PDU field is defined by
its name and its type. The encoding of PDU
fields follows the relevant protocol specification
unless encoding information is included in the
test suite. Figure 10 defines the Offer PDU of the
parcel service example (Figure 2). The definition
is given in the form of an ASN.1 PDU type defi-
nition and shows the usage of ASN.1 in TTCN.
The table body includes a pure ASN.1 type defi-
nition. The Offer PDU type uses a unique object
identifier referring to the type of goods and an
INTEGER value referring to the amount of
goods that should be delivered.

2.3 The Constraints Part
The constraints part of a TTCN test suite pro-
vides the values of the PDUs (and ASPs) to be
sent to or received from the IUT. This is done by
means of PDU (and ASP) constraints. A PDU
constraint is related to a PDU type and describes
a concrete value or value ranges of the PDU
type. Constraints are referenced in the dynamic
part of a test suite (Section 2.4) in order to de-
scribe the PDU exchange in the different test
cases. A constraint specification will follow the
structure of the corresponding PDU type and can
be specified either in tabular form or in the form
of the ASN.1 value notation.

A constraint for a PDU which should be sent to
the IUT, has to provide concrete values for all
PDU fields. An example constraint for the Offer
PDU type (Figure 10) is presented in Figure 11.
It defines the value of the type_of_good field to
be {1 2 3 4 5} and the value of the amount_of_
good field to be 100.

A constraint for a PDU that is received from the
IUT may define value ranges for the PDU fields.
TTCN provides powerful matching mechanisms
to specify specific values (if concrete values are
expected) and to specify value ranges (if several
values are expected). Value ranges can be speci-
fied by referring to any value of a given type, by
listing specific values, by complementing spe-
cific values or by providing value patterns.
Value patterns are described by using wildcards
such as ‘*’, ‘-‘ or ‘?’.

Figure 9 Timer Declaration

Timer Declaration

Timer Name Duration Unit Comments

T_ParcelService Duration_T_ParcelService min Timer between Offer and
Indication

T_Consumer 24*60 min Timer between Send and
Confirmation

Detailed Comments:

Figure 10 A PDU Type Declaration

PDU Name : Offer

PCO Type : LT_PCO

Encoding Rule Name :

Encoding Variation :

Comments : Ask for an offer to deliver certain goods by the Parcel
Service

ASN.1 PDU Type Definition

Type Definition

SEQUENCE {type_of_good OBJECT IDENTIFIER, amount_of_good INTEGER}

Detailed Comments:

Figure 11 Sending Constraint for an Offer PDU

Constraint Name : Offer_Large

PDU Type : Offer

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments : Sending a question for an offer to the Parcel Service

ASN.1 PDU Constraint Declaration

Constraint Value

{type_of_good {1 2 3 4 5}, amount_of_good 100}

Detailed Comments:

91Telektronikk 4.2000

An example for a constraint of the Indication
PDU which should be received from the IUT of
the parcel service example is shown in Figure
12. The Indication PDU which matches the con-
straint must have information about the deliv-
ered goods, i.e. the kind and amount of goods
must be identical to the information contained in
the preceding Offer PDU (Figure 11). In addi-
tion, an order number and an indication of the
24h service has to be received, but these can
have any values (indicated by ‘?’). The comment
field can be omitted or have any value (indicated
by ‘*’).

2.4 The Dynamic Part
The dynamic part describes the dynamic
behaviour of the tester processes by test cases,
test steps and default behaviour descriptions.

2.4.1 Test Cases, Test Steps and
Default Behaviour Descriptions

A test case is a complete program, which has to
be executed in order to judge whether a test pur-
pose (cf. Box 1) is fulfilled or not. Test cases
can be structured into test steps and default be-
haviour descriptions.

A test step can be seen as a procedure definition
which can be called in test cases by means of an
ATTACH operation. Figure 13 presents a TTCN
test case description. In lines 1 and 4 of the table
body, the test steps Preamble and Postamble are
attached to the test case behaviour. The corre-
sponding TTCN specifications can be found in
Figure 1 and Figure 14.

A default behaviour description is a special test
step and copes with exceptional test situations
where the IUT does not behave in an expected
manner. In contrast to a test step, a default
behaviour description is not used inside a test
case or test step behaviour description. Instead,
it is referenced in the table header. Figure 15
presents the default behaviour description Other-
wiseFail. This is the default for the parcel ser-
vice example and referenced by the test case
shown in Figure 13.

The specification of the test behaviour is identi-
cal for test cases, test steps and default
behaviour descriptions and can be found in the
body of the corresponding tables (Figures 1, 13,
14, 15). The body consists of columns and rows.
The Nr. column includes row numbers. The
Label column allows to specify labels for the
TTCN statements defined in the Behaviour
Description column. The Constraints Ref. col-
umn provides references to constraints (Section
2.3). The Verdict column includes verdict
assignments to indicate the success or failure of
a test run with respect to the sequence of state-
ments that have been performed. In the follow-

Figure 12 Receiving Constraint for an Indication PDU

Constraint Name : Indication_24h

PDU Type : Indication

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments : Receive an offer from the Parcel Service.

ASN.1 PDU Constraint Declaration

Constraint Value

{goods {type_of_good {1 2 3 4 5}, amount_of_good 100}, order ?,
delivery_time 24, comments*}

Detailed Comments:

Figure 13 Test Case Description

Test Case Name : Indication_1

Group : Valid/

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Selection Ref :

Description : Test the offer and indication sequence of behaviour.

Test Case Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +Preamble

2 LT_Prod !Offer Offer_Large
START T_ParcelService

3 L1 LT_Prod ?Indication Indication_24h (P)
CANCEL T_ParcelService

4 +Postamble

5 LT_Prod ?Advertisement Advertisement_Any Ignore
advertisement

6 GOTO L1

Detailed Comments:

Figure 14 Test Step Description

Test Step Name : Postamble

Group :

Objective : To reset the test system and to assign the final verdict.

Default :

Comments :

Description :

Test Step Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CANCEL

2 [TRUE] R

Detailed Comments:

92 Telektronikk 4.2000

ing sections, all TTCN statements are intro-
duced, the execution of behaviour descriptions
is explained and the assignment of test verdicts
is described.

2.4.2 TTCN Statements
The Behaviour Description column includes
TTCN statements. TTCN statements can be
grouped into test events, control constructs and
pseudo events.

Test events are SEND, IMPLICIT SEND,
RECEIVE, OTHERWISE and TIMEOUT.
SEND and IMPLICIT SEND specify the send-
ing of PDUs. RECEIVE and OTHERWISE
denote the processing of received PDUs. OTH-
ERWISE is the mechanism for dealing with
unforeseen test events and denotes that the test
system shall accept any incoming PDU. TIME-
OUT events check for the expiration of timers.
Test events may be qualified and/or followed by
assignments and timer operations. Instead of
keywords, TTCN uses ‘!’ to describe send
events and ‘?’ to denote receive events. For
example, the statement LT_Prod ! Offer (Figure
13, line 2) describes the sending of PDU Offer
via PCO LT_Prod to the IUT and the statement
LT_Prod ? Advertisement (Figure 13, line 5)
denotes the reception of PDU Advertisement at
PCO LT_Prod from the IUT.

Control constructs are ATTACH, GOTO and
REPEAT. The ATTACH construct allows to
attach test steps. GOTO transfers control to a
statement identified by a label in the Label col-
umn and REPEAT is used for the specification
of loops.

Pseudo events are qualifiers (i.e. boolean expres-
sions), timer operations (i.e. SET, READTIMER
and RESET) and assignments.

The TTCN statements in a behaviour description
can be grouped into statement sequences and
sets of alternatives. Statement sequences are
represented one after the other on separate lines,

being indented from left to right. The statements
on lines 1 to 4 in Figure 13 constitute a state-
ment sequence. Statements on the same level of
indentation and identical predecessor form a set
of alternatives. In Figure 13, the statements on
lines 3 and 5 form a set of alternatives. They are
on the same level of indentation and their com-
mon predecessor is the statement on line 2.

2.4.3 Behaviour Execution
The execution of a behaviour description will be
explained by means of Figure 13. Execution
starts with the first level of indentation (line 1)
and proceeds towards the last level of indenta-
tion (lines 4 and 6). Only one alternative out of a
set of alternatives at the current level of indenta-
tion is executed, and execution proceeds with the
next level of indentation relative to the executed
alternative. For example, the statements on lines
3 and 5 are alternatives. If the statement on line
3 is executed, processing continues with the
statement on line 4. Execution of a behaviour
description stops if the last level of indentation
has been visited, a final test verdict has been
assigned (see below), or a test case error has
occurred.

Before a set of alternatives is evaluated, a snap-
shot is taken. This means that the state of the test
component, the state of all PCOs and all expired
timer lists related to the test case are updated and
frozen until the set of alternatives has been eval-
uated. This guarantees that the evaluation of a
set of alternatives is an atomic and deterministic
action.

Alternatives are evaluated in the order of their
specification. The first alternative with success-
ful evaluation is executed, i.e. all conditions of
that alternative are fulfilled. Execution then pro-
ceeds with the set of alternatives on the next
level of indentation. If no alternative can be
evaluated successfully, a new snapshot is taken
and the evaluation of the set of alternatives is
started again.

2.4.4 Verdict Assignment
Test verdicts are assigned in the Verdict column
of test cases, test steps and default behaviour de-
scriptions. TTCN supports three different ver-
dicts: PASS to indicate that the test behaviour
gives evidence for conformance, FAIL to de-
scribe that the specification has been violated,
and INCONCLUSIVE for cases where neither
a PASS nor a FAIL can be given.

TTCN distinguishes between preliminary and
final test verdicts. Preliminary verdicts are given
in parentheses, e.g. the preliminary PASS in line
3 of Figure 13. Final verdict assignments are
specified without parentheses, e.g. the three final
FAIL verdicts in Figure 15. The difference

Figure 15 Default Behaviour
Description

Default Name : OtherwiseFail

Group :

Objective : Cover all unexpected reactions from the IUT.

Comments :

Description :

Dynamic Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 LT_Prod?OTHERWISE F

2 LT_Cons?OTHERWISE F

3 ?TIMEOUT F

Detailed Comments:

93Telektronikk 4.2000

between a preliminary and a final test verdict is
that the assignment of a final test verdict termi-
nates the test case execution, i.e. it can be con-
sidered to be a combination of a verdict assign-
ment and a subsequent stop operation.

For the handling of test verdicts, each test case
has a predefined variable R. Variable R stores
the current preliminary verdict of a test case and
its value becomes the final verdict if the test case
ends without the assignment of a final verdict. In
other words, the assignment of a test verdict in
the Verdict column of a behaviour description is
an assignment to variable R. As shown in Figure
14, variable R can also be used to calculate the
final verdict of a test case. The entry R in the
Verdict column indicates that the test case ends
and that the actual value of R will be the final
verdict.

There are special rules for the assignment of ver-
dicts during the execution of a test case. They
are shown in Figure 16 and can be summarized
as: “A verdict can only become worse”. For
example, if the value of R is (FAIL), then the
assignment of (PASS) or (INCONCLUSIVE)
will have no effect on R. Please note that the
value none in Figure 16 describes the situation
where R has not been initialized, i.e. no prelimi-
nary verdict has been assigned to R.

2.4.5 The Example Test Case
The test case Indication_1 in Figure 13 should
be read as follows: the test case starts with the
execution of test step Preamble in order to ini-
tialise the parcel service. Afterwards, an Offer is
sent to the parcel service at PCO LT_Prod and
the timer T_ParcelService is started. Then, two
alternative events are expected:. Either, an Indi-
cation or an Advertisement is received. If an
Indication is received (line 3), the timer
T_ParcelService is cancelled, a preliminary
PASS verdict is assigned and Postamble is exe-
cuted in order to reset the test system. If an
Advertisement is received (line 5), a GOTO
statement is used (line 6) to put the test case con-
trol back to the set of alternatives at label L1 in
order to await the expected Indication PDU.

The Preamble (Figure 1) executes the test suite
operation Reset_ParcelService and stores the
result in the test case variable PS_Init. In case
of a successful initialisation, i.e. the value of
PS_Init is TRUE, a preliminary PASS verdict is
assigned (line 2) and the test case proceeds with
the execution. If the initialisation is not success-
ful, i.e. PS_Init has the value FALSE, a final
INCONCLUSIVE verdict is assigned (line 3)
which terminates the test execution.

The Postamble (Figure 14) resets the test system
by cancelling all running timers (line 1). Finally,

it assigns the final verdict by referring to the
value of the special verdict variable R (line 2).

The default behaviour OtherwiseFail (Figure 15)
defines that the reception of any other PDU at
LT_Prod (line 1) or LT_Cons (line 2) will lead
to the assignment of a FAIL verdict and the ter-
mination of the test case. In addition, the occur-
rence of a timeout (line 3) will also terminate the
test case with the final test verdict FAIL.

3 Concurrency in TTCN
The term concurrent TTCN refers to TTCN lan-
guage constructs and concepts for the descrip-
tion of concurrent test cases. In concurrent
TTCN, each test case consists of several test
components that execute independently and in
parallel. A Main Test Component (MTC) con-
trols the test case execution and creates Parallel
Test Components (PTCs). The MTC cannot stop
PTCs but has the possibility to check their termi-
nation by means of a DONE statement. A test
case always ends when the MTC ends. Each test
component controls its own local verdict. The
final verdict of a test case is calculated according
to the rules described in Figure 16 by the MoT.

Test components can coordinate themselves by
exchanging Coordination Messages (CMs) at
Coordination Points (CPs). CPs connect test
components and are similar to PCOs. CMs are
similar to PDUs, but they are used for the infor-
mation exchange among test components only.

A concurrent test configuration for the parcel
service example is given in Figure 17. It uses
PTC_Main as MTC, which creates the PTCs
PTC_Prod and PTC_Cons. The PTCs control

Current Entry in verdict column
value of R (PASS) (INCONC) (FAIL)

none pass inconc fail

pass pass inconc fail

inconc inconc inconc fail

fail fail fail fail

Figure 16 Handling of Test
Verdicts

Parcel
Service
(IUT)

PTC_ProdPTC_Prod

LT_ConsLT_Prod

CP1

PTC_Main

Figure 17 Example of a
Concurrent Test Architecture

94 Telektronikk 4.2000

and observe the IUT via the PCOs LT_Prod and
LT_Cons. They coordinate themselves through
the coordination point CP1.

The definition of the MTC PTC_Main for an
example test case is shown in Figure 18. After
the Preamble (line 1), PTC_Main creates
PTC_Prod and PTC_Cons (line 2). The
behaviour of the PTCs is given by the test step
descriptions Deliver_1_Prod and
Deliver_1_Cons. The test behaviour can be
related to Figure 2: Deliver_1_ Prod covers the
testing of the sequence from Offer to Confirma-
tion at PCO LT_Prod, while Deliver_1_Cons
covers the Delivery and Acknowledgment events
at PCO LT_Cons. PTC_Main waits for the ter-
mination of the two PTCs through a DONE
statement. The MTC assumes their successful
termination by assigning a preliminary pass ver-
dict7) (line 3). Finally, the Postamble finishes
the test case.

The use of a CM is shown in Figure 19. The CM
Continue on line 1 enables the PTC to proceed
with the test execution by expecting to receive
a Delivery PDU at PCO LT_Cons (line 2). The
Delivery should be parameterized with the cor-
rect order number which was sent to PTC_Cons
as a parameter of the CM. This number is used
as a parameter to the constraint for Delivery. At
the end, PTC_Cons initiates a proper Acknowl-
edgment and terminates.

4 Outlook:
Next Version of TTCN

Currently, the third edition of TTCN (TTCN-3)
is in work at ETSI [4, 10]. TTCN-3 is a text-
based language for the specification of tests for
reactive systems. TTCN-3 is on a syntactical
(and methodological) level a drastic change
compared to the previous TTCN versions. How-
ever, the main concepts of TTCN have been
retained and improved and new concepts have
been included, so that TTCN-3 will be applica-
ble for a broader class of systems. New concepts
are e.g. a test execution control program to
describe relations between test cases such as
sequences, repetitions and dependencies on test
outcomes, dynamic concurrent test configura-
tions, and test behaviour in asynchronous and
synchronous communication environments. Fur-
ther improved concepts are, e.g. the integration
of ASN.1, the module and grouping concepts to
improve the test suite structure, and the test
component concepts to describe concurrent test
setups.

Figure 18 Description of PTC_Main

Test Case Name : Deliver_1

Group : Valid/

Purpose :

Configuration : Example_Conc_Conf

Default :

Comments :

Selection Ref :

Description : Test the offer and indication sequence of behaviour.

Test Case Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +Preamble

2 CREATE (PTC_Prod: Deliver_1_Prod,
PTC_Cons: Deliver_1_Cons)

3 ?DONE(PTC_Prod, PTC_Cons) (P)

4 +Postamble

Detailed Comments:

Figure 19 Description of PTC_Cons

Test Step Name : Deliver_1_Cons

Group : ConcurrentVersion/

Objective :

Default : OtherwiseFail_LT_Cons

Comments :

Description :

Test Step Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CP1 ?Continue(Order_No:= Continue_Order_Recv
Continue.order)

2 LT_Cons ?Deliver Deliver_Large (P)
(Order_No)

3 LT_Cons !Acknowledge Acknowledge_Large
(Order_No)

Detailed Comments:

testcase Indication_1() runs on MTCType {
// Test the offer and indication sequence of behaviour

activate(OtherwiseFail)
Preamble();
LT_Prod.send(Offer_Large);
T_ParcelService.set;
alt {

[] LT_Prod.receive(Indication_24h) {
T_ParcelService.stop;
verdict.set(pass);
Postamble()

}
[] LT_Prod.receive(Advertisement_Any); {

goto alt;
}

}
}

Figure 20 TTCN-3 Description of Figure 13

7) Please note that any worse verdict returned by
one of the test components will overrule this
assignment according to the table given in
Figure 16.

95Telektronikk 4.2000

The top-level unit of a TTCN-3 test suite is the
module which can import definitions from other
modules. A module consists of a definitions part
and a control part. The definitions part of a mod-
ule covers definitions for test components, their
communication interfaces, type definitions, test
data templates (previously known as con-
straints), functions, and test cases. The control
part of a module calls the test cases and
describes the test campaign. For this, control
statements similar to statements in other pro-
gramming languages (e.g. if-then-else and while
loops) are supported. They can be used to spec-
ify the selection and execution order of individ-
ual test cases. TTCN-3 provides a variety of
constructs to describe test behaviour within a
test case such as the alternative reception of
communication events and their interleaving.
Moreover, default behaviour can be covered, e.g.
unexpected reactions from the system under test.
In addition to the automatic test verdict assign-
ment, more powerful logging mechanisms are
provided, e.g. for detailed tracing. An example
of a TTCN-3 test case definition is shown in
Figure 20. It is the TTCN-3 representation of the
TTCN test case in Figure 13.

In addition to the pure textual format, TTCN-3
will define at least two presentation formats: A
tabular conformance testing presentation format
[5] that resembles the tabular form of TTCN and
a graphical presentation format [6, 8] that sup-
ports the presentation and also the development
of TTCN-3 test cases, as Message Sequence
Charts (MSC).

References
1 ISO. Information Technology – Open Sys-

tems Interconnection – Conformance Testing
Methodology and Framework. – Seven Parts
Standard. Geneva, 1991–1999 (includes [2]
and [3]). (ISO/IEC 9646.)

2 ISO. Information Technology – Open Sys-
tems Interconnection – Conformance Testing
Methodology and Framework – Part 2:
Abstract test suite specification. Geneva,
1991. (ISO/IEC 9646-2.)

3 ISO. Information Technology – Open Sys-
tems Interconnection – Conformance Testing
Methodology and Framework – Part 3: The
Tree and Tabular Combined Notation
(TTCN). 2nd ed. Geneva, 1998. (ISO/IEC
9646-3.)

4 ETSI. TTCN-3 – Core Language. European
Norm (EN) 00063-1 (provisional). Sophia-
Antipolis, 2000. (ETSI TC MTS.)

5 ETSI. TTCN-3 – Tabular Presentation For-
mat. EN00063-2 (provisional). Sophia-
Antipolis, 2000. (ETSI TC MTS.)

6 ETSI. TTCN-3 – MSC Presentation Format.
EN00063-3 (provisional). Sophia-Antipolis,
2000. (ETSI TC MTS.)

7 ITU. Information Technology – Abstract
Syntax Notation One (ASN.1). Geneva, 1994.
(ITU-T Recommendations X.680-683.)

8 ITU. Message Sequence Chart (MSC).
Geneva, 2000. (ITU-T Recommendation
Z.120.)

9 Walter, T, Schieferdecker, I, Grabowski, J.
Test Architectures for Distributed Systems –
State of the Art and Beyond (Invited Paper).
In: Testing of Communicating Systems.
Petrenko, A, Yevtuschenko, N (eds.). Dor-
drect, Kluwer, 1998, 149–174. (Volume 11.)

10 Grabowski, J et al. On the Design of the new
Testing Language TTCN-3. In: Testing of
Communicating Systems. Ural, H, Probert,
R L, von Bochmann, G (eds.). Dordrect,
Kluwer, 2000, 161–176. (Volume 13.)

Telektronikk 4.2000

Why Methods?
Nobody believes that knowing a natural lan-
guage like English or Chinese is sufficient to
write great novels. Nevertheless, some people
believe that knowing a programming language
like C or Java is all you need to write great soft-
ware. Surprisingly many believe that knowing
analysis and design languages such as the ITU-T
languages or UML is sufficient to design great
systems. By simply introducing UML, with sup-
porting tools, they believe their development
teams will design better systems at lower cost.
This is of course not true! Like writing novels
or making programs, system design takes a lot
more than language knowledge.

Part of this additional knowledge, when written
down and presented systematically, is generally
known as methods and methodology. Methods
define a systematic way to produce given results,
and therefore, constitute the core of a discipline
like systems engineering. Without any methods
there would be no discipline! In the context of
systems engineering, methods prescribe how to
go about producing specific results such as re-
quirement specifications, design descriptions
and test plans. Methodology is a system of meth-
ods and principles, put together to cover a larger
part of the systems engineering process than a
single method. The goal of systems engineering
methodology is to help make better systems
more efficiently and with better control. Ideally,
knowing a methodology should be the same as
knowing how to make great systems. In reality,
good methodology helps people make sound
solutions by bringing order into chaos and pro-
viding guidelines, but it does not replace human
capabilities (creativity, experience, theoretical

knowledge, etc.). It is a kind of condensed and
generalised experience presented in a systematic
way.

To understand the scope of systems engineering
methods, it is necessary to step back and con-
sider what it takes to develop successful prod-
ucts.

The Macro Cycle
The bottom line is that successful systems sat-
isfy real needs existing in some domain (mar-
ket). The key to success is therefore first and
foremost to understand the needs that are present
in the domain (both those that are explicitly
expressed and those implicitly present). The
second issue is to analyse the needs and define
(specify, design, implement) systems that can
satisfy (some of) the needs in a cost-effective
way. The last issue is to manufacture and install
systems into the domain such that the needs are
really satisfied and a maximal market share is
created. This picture is not static. In the next run,
the domain is changed by the installed systems,
experience is gained and new needs arise that
cause the cycle to repeat in a spiral-like way as
illustrated in Figure 1.

Figure 1 also illustrates that systems develop-
ment deals with a reality consisting of domains
and systems on the one hand and descriptions of
the reality on the other. Traditional crafts use
few descriptions1) if any, and most effort is
focused on the reality itself. In systems engineer-
ing it is the opposite. It is an intellectual process
where most effort is focused on descriptions, and
comparatively little on the reality itself2). The
main reason is that descriptions (e.g. mathemati-

On Methodology Using the ITU-T
Languages and UML
R O L V B R Æ K

A methodology is a system of methods and principles, where each method defines a sys-
tematic way to produce given results. The general goal of a systems development method-
ology is to support development of systems of a high quality through a controlled process
that is as efficient as possible. To this end a methodology seeks to prescribe what are good
practices and what are not so good practices. Although they share the same overall goal,
there are considerable differences among methodologies. A framework will be presented in
the following that enables some principles to be identified and some important differences to
be highlighted. One interesting question is how the ITU-T language family and UML stand in
relation to each other from a methodology point of view.

Rolv Bræk (56) received his
Siv.ing. degree (M.S.E.E.) in
1969 from the Norwegian Uni-
versity of Science and Technol-
ogy (NTNU) and is currently Pro-
fessor in the Department of
Telematics at NTNU. Rolv Bræk
has extensive experience from
application development using
formal methods as well as from
teaching, consulting and intro-
ducing systems engineering
methodologies to industry. He
is co-author of the book “Engi-
neering Real Time Systems –
An Object Oriented Methodology
using SDL”, and “TIMe The Inte-
grated Method” published on
CD-ROM by SINTEF. His cur-
rent research interest is rapid
service development.

Rolv.Braek@item.ntnu.no

1) The term “description” is used here in the general sense of a symbolic representation of something
as it is also used in the term “Formal Description Technique” (FDT). We do not distinguish be-
tween prescriptions, inscriptions and descriptions here.

2) One must of course always have the reality in mind and ensure that descriptions are valid.

96

97Telektronikk 4.2000

cal models, SDL diagrams, Java programs3)) are
the only means by which the reality can be prop-
erly understood, communicated and analysed by
human beings and by machines. Another reason
is that, in many cases, one cannot afford to ex-
periment and make mistakes with the real thing.
Consequently, descriptions are the main objects
of systems and software engineering.

Having established the importance of descrip-
tions, the next issue is to decide what descrip-
tions to make and how to make them. These are
the primary questions any systems engineering
methodology should answer4).

Most methodologies will agree with the macro-
scopic picture in Figure 1, that there are at least
domain descriptions and system descriptions
(although domain descriptions may not be em-
phasised by every methodology). Domain de-
scriptions are developed in order to enable the
people involved to understand an existing real-
ity, assess needs and plan new systems. System
descriptions, on the other hand, are used to cre-
ate a new reality satisfying the needs.

Although they are used for two different pur-
poses (the domain descriptions to understand

and analyse; the system description to produce
and document), they both describe a reality. In
both areas we are looking for suitable ways to
describe complex realities. The main difference
between domain descriptions and system de-
scriptions is that system descriptions are used
constructively when manufacturing systems, and
must describe technical solutions in more detail
and more precisely than domain descriptions. In
addition, they must be organised in a way that
supports an efficient and controlled development
process. Domain descriptions, in contrast, should
not go into system specific detail, but rather pro-
vide a common conceptual frame of reference
for product planning and system development.
They should have a wider scope than system
descriptions, in order to capture the needs and
future usage context of systems in the domain.
Once they are made, domain descriptions can
be re-used in all systems developments targeting
that domain, as long as the domain remains sta-
ble. It should be noted however, that many alter-
native domain descriptions may be developed
for the same domain, and that the domain de-
scriptions are likely to evolve as more insight
and experience is gained even if the domain
itself is not changing.

Figure 1 The macro
cycle/spiral

3) Note that programs are descriptions with the special property that a machine in the real world may
execute them.

4) But not every methodology has done that. Some have focused primarily on activities and treated
descriptions as secondary issues.

EXIT
ADM

DATA-
ROM

Develop

Model

Manufacture

Install

Domain

System

Domain
descriptions

System
descriptions

98 Telektronikk 4.2000

It is important to understand that the full macro
cycle need not be performed for each system
instance. Typically many system instances will
be produced from the same system descriptions,
and a given domain description may hold for
several system descriptions. Each macro step
produces results that can be maintained sepa-
rately and can be the responsibility of different
departments in a company, if so desired.

Note that the descriptions (of domain and sys-
tem) are the basis for communication between
all the parties involved. Tradition has often
caused different groups (e.g. marketing people
and developers) to develop and use very differ-
ent description techniques, which means that dif-
ferent groups communicate poorly and that the
same information is repeated in different forms.
An opportunity for improvement on the enter-
prise level is to introduce common languages
and methods reducing the number of separate
descriptions and increasing the value of each.

The macro cycle in Figure 1 illustrates the
golden principle of all methodologies, which is
separation of concerns; in this case, to describe
independent aspects in separate descriptions. A
consequence of this principle is that each de-
scription focuses on aspects that are dependent.

How to Describe Complex
Realities?
In this section we do not distinguish between
domain descriptions and system descriptions,
but focus on the general problem of describing
a complex reality5). We shall try to establish
some basic principles and principal solutions
before discussing language and method issues.

First of all, it is important to realise that reality is
so complex that a human being is unable to keep
it all in mind at the same time. It is absolutely
necessary to factor out aspects that can be under-
stood one at a time and then be combined into an
understanding of the whole. Two golden rules
should be applied in combination:

• Separation of concerns. Identify aspects that
are as independent as possible and describe
them separately. In this way, the complexity
of each description is reduced, and may there-

fore be expressed more clearly. Separation
also helps to increase the modularity of a set
of descriptions by allowing descriptions con-
cerned with independent aspects to be
changed independently. Finally, if different
aspects require different skills and knowledge,
separation helps to utilise different kinds of
expertise better. Note that separation is not a
goal in itself. Little is gained if the separated
parts are too dependent.

• Conceptual abstraction. The general idea with
abstraction is to remove irrelevant detail in
order to focus on the essential. Conceptual
abstraction means to replace low level con-
cepts representing technical detail by more
abstract concepts that are better suited to
describe and study some aspects, i.e. by some
kind of model. Mathematical models used for
performance analysis and strength calculations
are well known examples of conceptual ab-
straction.

In order to be useful, a conceptual abstraction
must capture the nature of the phenomena in a
way that helps to improve understanding, com-
munication and/or analysis. The essential pur-
pose of ICT systems is to perform some logical
behaviour6) and handle some information. This
sets them apart from systems where physical
strength, power or movement is part of the pur-
pose. Physical devices like computers, cables,
screens and cabinets are merely the means to
realise ICT systems while their purpose is to
provide some functionality.

In order to focus on the essential, we need to
separate the functionality7) in terms of logical
behaviour and information handling from the
accidental way it is implemented, and to model
the functionality using a suitable conceptual
abstraction.

Three main aspects that are largely independent
can be identified and separated in different
descriptions8):

• Functionality. This is a conceptual abstraction
of logical behaviour and information. The pur-
pose is to describe logical behaviour and in-
formation as clearly as possible. And to do so

5) In order to describe the “reality” we may apply generalisation into types as well as conceptual
abstractions. Descriptions may therefore be organised as description of general concepts (types,
classes) and descriptions of particular phenomena (objects, instances).

6) We distinguish between logical behaviour and physical behaviour. Logical behaviour is the
idealised behaviour that provides the system services. It is usually discrete, while physical
behaviour involves physical properties and is usually continuous [14].

7) Note that “functionality” is used here as a term to represent information handling and logical
behaviour in a general sense. The mathematical term “function” has a more restricted meaning.

8) A further refinement is normally needed, but this serves to illustrate the main points.

99Telektronikk 4.2000

in terms that enable users and developers to
communicate precisely, to establish a common
understanding, and to ensure that the descrip-
tions of functionality correctly represent the
existing domain and/or the system being
developed. It provides a view where the sys-
tem may be seen as a whole, independent of
realisation and technology. Functionality is
normally described in terms of structures of
active and passive objects with associated
object behaviours.

• Realisation. This is a precise technical defini-
tion of the realisation in terms of the different
technologies used, such as mechanics, elec-
tronics and software. This view is necessary
to actually produce a working system. A large
number of realisations will normally be possi-
ble for a given functionality, and the choice
will depend on what properties are desired
from the realisation itself (often called non-
functional properties). If properly separated,
a given description of functionality may hold
for several realisations.

• Deployment. This defines a mapping between
functionality and realisation by describing the
realisation (the physical system) on a high
level, by identifying the technologies used and
by describing how and where the functionality
is realised. It should focus on aspects that
come in addition to the functionality, such as
distribution, hardware/software allocation and
use of middleware. Deployment and Function-
ality together may constitute the main design
documentation.

As indicated in Figure 2, the separations may be
considered as different viewpoints of the same
reality.

The Reference Model for Open Distributed Pro-
cessing (RM-ODP), identifies a different set of
viewpoints: Enterprise, Information, Computa-
tional, Engineering and Technology, where the
Computational and Information viewpoints
cover Functionality [1], while the Engineering
and Technology viewpoints (roughly) cover
Deployment.

Indeed, most contemporary methods for systems
engineering identify these aspects, but the way
that the aspects are represented in descriptions
vary considerably, and so does the terminology
used. Some will claim that it does not matter
which method is used as long as some methods
are used. This may well be true for methods
based on similar conceptual abstractions, e.g.
methods based on communicating state
machines, but there are significant differences
between conceptual abstractions and some of
these differences have a strong impact on

methodology. The most important differences
are found in the conceptual abstractions and lan-
guages used to express functionality.

How to Describe Functionality?
It is desirable that the languages for functionality
satisfy at least three essential requirements:

• Human comprehension. Functionality should
be represented in a way that enables human
beings to fully understand it and to communi-
cate precisely about it. To this end the con-
cepts of the language must be well defined,
and easy to understand.

• Analytical possibilities. It should be possible
to reason about behaviours in order to com-
pare systems, to validate interfaces, and to
verify properties. This requires a semantic
foundation suitable for analysis.

• Realism. The language should build on con-
cepts that can be effectively realised in the
real world. Although overlooked in many
cases, this requirement is essential for two
main reasons: 1. That it shall be possible
to implement the functionality, 2. That the
description of the functionality can serve
as valid documentation of the real system.

The choice of conceptual abstraction is the main
key to all this. One reason why methods for
communicating systems have developed differ-
ently from general software engineering meth-
ods is that they deal with different domains. In
communicating systems, interactions between
concurrently operating, physically distributed
objects have been central, while data structures
and algorithms have been more central in other
areas. For this reason the conceptual abstractions
developed for communicating systems have put
concurrency and communication up front, and
have treated data and algorithms in that context.
This is clearly reflected in SDL where a system
must be defined in terms of communicating state
machines with a sequential behaviour that en-
capsulates data and algorithms. UML, in con-

Reality
Descriptions

Structure Behaviour Functionality
(Structure + Behaviour)

Deployment

Realisation

mechanics softwareelectronics

Figure 2 Three main aspects
or viewpoints

100 Telektronikk 4.2000

trast, treats concurrency and State Machines as
options, while Classes with Attributes and Oper-
ations are put up front. One may say that SDL
puts the logical behaviour up front, while UML
puts information up front.

When different domains now are merged into
modern ICT systems, there must be ways to
combine the approaches. The well-known prob-
lems from the communication domain do not
disappear. Logical behaviour involving concur-
rency and interactions will still be an important
aspect to factor out, as it determines the way that
services are provided to users and thereby how
the users will judge the system quality. Logical
behaviour is both complex and difficult to
understand due to its dynamic (transient) nature.
Therefore a conceptual abstraction of behaviour
that facilitates understanding and communica-
tion about logical behaviour is extremely impor-
tant.

The drawback with programming languages in
this area is that realism is achieved at the ex-
pense of human comprehension and analytical
possibilities. Although programming languages
(like CHILL, Java or C++) can describe logical
behaviour, they do it by specifying action se-
quences. These are better suited to instruct the
machine how to do things than to explain for
the human being what is done. Humans need to
understand the external interactions and the re-
sulting evolution of state transitions that take
place when the behaviour executes.

Some of the more mathematical languages, like
LOTOS and Z, emphasise analytical possibilities
at the expense of realism (and to some extent
human comprehension). This is one reason why
they have not gained wider popularity.

Communicating state machines of different
forms are presently the best known conceptual
abstractions used to describe logical behaviour,
because they satisfy all three requirements
above. State machines can be implemented in
many ways, and combine realism with human

comprehension and analytical possibilities. For
this reason state machines are part of most con-
temporary approaches, including UML and
SDL. But in UML they are optional.

Object and Property
Descriptions
There is a general trend now to use object orien-
tation as a common approach to describe both
functionality, deployment and realisation. It is
also a trend to use interaction scenarios to de-
scribe interactions between users and systems
(use cases) and between objects within systems
and among systems. Finally, state-transition
based specifications are used to define the be-
haviour of individual objects.

This is not very surprising, considering that
more and more applications tend to be dis-
tributed and reactive. Object orientation helps
to master complexity by providing a structure in
terms of objects, and by factoring out common
features in general classes or types. Objects do
not live alone, but communicate with other
objects. Describing the behaviour of each object
in terms of states and transitions that are trig-
gered by incoming signals from other objects
has proven to be of great value, and is now
adopted in one form or another in most system
engineering approaches.

A system generally consists of a structure of
objects. Systems and objects are defined by
means of object descriptions that represent how
objects are related to other objects, how they are
composed from attributes and other objects, and
how they behave. Objects may be defined using
Types or Classes, and inheritance may be used
to define the Types/Classes. UML Class Dia-
grams, SDL diagrams and Java classes are all
examples of object descriptions. Object descrip-
tions provide the perspective of designers.

Systems and objects generally have properties.
Properties are defined by means of property
descriptions that state external properties of a
system or object without prescribing their inter-
nal construction. Property descriptions are not
constructive, but are used to characterize an
object from the outside. There are many kinds
of properties: behaviour properties, performance
properties, maintenance properties, etc. This is
the perspective that is normally used in specifi-
cations. UML collaboration diagrams, MSC dia-
grams, test cases in TTCN, and performance fig-
ures are all examples of property descriptions.

As illustrated in Figure 3, the separation between
objects and properties is orthogonal to the three
main viewpoints identified in Figure 2, leading
to six different aspects to describe.

Figure 3 Objects and
properties

Objects

Service...

Functionality
(Structure + Behaviour)

Deployment

Realisation

mechanics softwareelectronics

Descriptions

Properties

Performance...
Dependability...

Tests...
Measurements

101Telektronikk 4.2000

Properties associated with functionality are often
called functional properties, while properties
associated with deployment and realization are
called non-functional properties.

The interplay between property descriptions and
object descriptions is central to systems develop-
ment. Normally the first step is to specify the
required properties, then to use the properties as
input to synthesize a design (defined by means
of object descriptions); and finally to verify that
the design satisfies the properties. In principle
these three steps are performed for each view-
point. An important advantage of the ITU-T lan-
guages MSC (for properties) and SDL (for ob-
jects) is that the relationships between properties
and objects can be formally defined and sup-
ported by tools.

It is important to note that a given property de-
scription may hold for many different object
descriptions. A given set of MSC diagrams may,
for instance be executed by several different
SDL systems, and many alternative realizations
may be able to pass the same set of TTCN test
cases, and satisfy the same performance require-
ments.

Coverage by the ITU-T
Language Family and UML
Figure 4 shows how the ITU-T languages and
UML cover the description aspects identified
in Figure 3. Apparently, the coverage is similar,
with deployment as one exception. Here UML
offers component diagrams and deployment dia-
grams, while the ITU-T languages have no nota-
tion at all9) (but the issue is addressed in a new
question for the study period 2001-2004: ques-
tion Q11/10 Deployment and configuration lan-
guage). The ITU-T languages must therefore be
combined with other notations in this area, such
as the one presented in [2] that was also used in
the SDL method guidelines [3], or by UML.

In the functionality area, the overlap is consider-
able after SDL-2000 has adopted (some of) the
notation from UML Class Diagrams and the
concept of composite states from UML State
Machines. The need to use UML in combination
with SDL has been greatly reduced by this, since
the ITU-T languages now cover most aspects
that were previously the strongpoint of UML.

When comparing UML with SDL, we may note
some important conceptual differences:

• In SDL, the concept of a system is central. A
system has well defined interfaces and is com-
posed from agents that operate concurrently
and communicate by asynchronous message
passing. A system models an executing part of
the real world, but may be defined with refer-
ence to a system type. In UML there is no
such system concept. There are only classes
and associations between classes. Object
structures may be described, but only for
illustrative purposes.

• In SDL, an agent may be composed from a
possibly complex structure of agents and can
be defined as an agent type. In this way, a
composite type can be defined and used as
one entity with well-defined interfaces. UML
lacks a corresponding concept of composite
types. Composition is just a special associa-
tion between classes in UML.

• In SDL, concurrency and asynchronous com-
munication between agents is the norm. State
machines define the sequential behaviour of
agents. In UML, concurrency and asyn-
chronous communication is an option.

Some of these differences may disappear in
UML 2.0, but presently UML is not really a sys-
tem modelling language. It is an open ended and
flexible language for modelling classes without
internal structure (apart from attributes). This
makes it well suited for visual modelling of ob-
ject oriented software, but not really for system
modelling – as yet. For system modelling SDL
provides more powerful conceptual abstractions,
and in addition an action semantics that makes

9) One could argue that the ITU-T Object Definition Language (ODL) belongs to deployment, but the
main focus of the language is objects and interfaces providing functionality. One may also argue
that it is a property language, as the main focus is on interface definitions.

Figure 4 The ITU-T languages
compared with the UML

notations

Objects

Functionality

Deployment

Realisation

UMLsdl.

SDL,
ASN.1,

ODL

ITU-T

MSC Class
Diagrams,
State
Maschines

UseCase
Diagrams,
Sequence and
Collaboration
Diagrams, OCL,
Activity Diagrams

TTCN,
MSC

Deployment
and
Component
Diagrams,
Class
Diagrams

Sequence and
Collaboration
Diagrams,
OCL

CHILL,
ASN.1

TTCN,
MSC

Sequence and
Collaboration
Diagrams,
OCL

Properties Objects Properties

UML

102 Telektronikk 4.2000

its behaviour well defined. A methodology using
UML may compensate for this to some extent by
providing guidelines and rules and more precise
interpretation of UML.

MSC and UML Sequence Diagrams are basi-
cally the same, but UML Sequence Diagrams
lack the decomposition/composition mecha-
nisms that MSC provides, and this gives MSC
clear advantages when dealing with more com-
plex cases. UML Collaboration Diagrams offer
a view on interactions that many find useful,
but this view is missing in the ITU-T language
family.

TTCN and ASN.1 cover aspects that UML is
missing entirely.

Note that Class Diagrams are mentioned also in
the Deployment compartment for UML. One
reason for this is that UML classes may be use-
ful to visualise high-level realisation classes. A
more important reason is that many people actu-
ally use UML Class Diagrams on a very low
level just to visualise realisation classes, such
as Java classes. Considerable method support is
required to use UML with sufficient conceptual
abstraction to be useful as Functionality descrip-
tion. Many UML users are not aware of this, but
keep the UML use as a kind of visual program-
ming. This is especially true for people with a
strong programming background and little mod-
elling experience.

Elaboration vs. Translation
We may distinguish between two fundamentally
different approaches to systems development:

• The elaboration approach. Here the function-
ality is described using informal languages
with incomplete semantics, and therefore the
functionality description is incomplete.
Details have to be added by elaboration during
deployment design and realisation. As a result,
the realisation description ends up as the only
complete view of the system and is often the
only one that is maintained. This gradually
reduces the value of the other views, and
makes the documentation very realisation de-
pendent. When the technology and platforms
change, as they do fast these days, more than
necessary must be redone, because it is hard
to factor out and reuse functionality that is not
changed. Mainstream software engineering
has followed the elaboration approach, and
this has also been the case for most UML use
including the Rational Unified process, RUP.

• The translation approach. Here the function-
ality is described as completely as possible
using a language with well-defined and realis-
tic semantics. The deployment is kept as
orthogonal as possible to the functionality
(using the principle of distribution trans-
parency), and realisation of functionality is
carried out by (manual or automatic) transfor-
mation of the functionality description. Ad-
vantages of this approach are that the func-
tionality can be completely defined, analysed
and simulated before implementation, and that
the functionality description can remain valid
for the realisation and serve as documentation.
It may even be possible to generate the (appli-
cation part of) realisations automatically, but
this depends on the language and available
tools. Functionality descriptions can apply to
several implementations and survive technol-
ogy and platform changes, and thereby give
better return of investment, which is desirable,
since functionality tends to last longer than
realisations.

The impact that this choice of approach has on
methodology and on the potential for process
improvement should be obvious. But it has been
a popular opinion that the translation approach is
infeasible in a real industrial setting, and there-
fore the take-up of the translation approach has
been slow. This may be partially caused by
reluctance to introduce formal methods, espe-
cially among programmers. However, the trans-
lation approach does work, and many companies
are now using it routinely in their product devel-
opments with good results. Experience from
using the translation approach with SDL has
shown that the approach helps to reduce the

Figure 5 The elaboration
approach vs. the translation
approach

Functionality

Deployment

Realisation

Elaboration
approach

Translation
approachFunctionality

Deployment

Realisation

Initial
development

New
service

New
realisation

Effort spent

103Telektronikk 4.2000

number of errors in systems considerably10),
even when the translation to implementation is
done manually. With automatic code generation,
the figures are even better, because the transla-
tion errors are removed; see the article by
Richard Sanders on implementing from SDL in
this issue.

Separating the description of functionality from
the realisation gives some additional benefits.
First, that it provides a view where the system
may be seen as a whole, independent of realisa-
tion technology. Second, that it can remain sta-
ble and survive technology changes. Finally, that
it provides a solid foundation for technology
trade-off and optimisation.

Figure 5 is an illustration of the differences
between the two approaches. In the translation
approach the viewpoints/aspects are well sepa-
rated, while in the elaboration approach the sep-
arations are not so clear. Comparatively more
effort is spent on functionality in the translation
approach and less effort on realisation. Since
functionality is expressed using formal lan-
guages, the quality of functionality can be
assured separately from the quality of realisa-
tion. Provided that the realisation of functional-
ity is automatically generated, the testing may
concentrate on non-functional properties like
performance and response times. An important
point illustrated in the figure, is that the func-
tionality description need not be changed if the
realisation platform or programming language
is changed. When using the translation approach,
it is sufficient to change the deployment and
realisation. The functionality description can
be reused and thereby provide a better return of
investment than possible when using the elabo-
ration approach. One Norwegian company for
instance, migrated from CHILL to C++ by
changing their code generator and generate the
new C++ code from the same SDL source as
they previously used to generate CHILL.

Quality Assurance
Quality assurance techniques come in two main
categories:

• Corrective techniques that focus primarily on
defect detection, with subsequent correction.
All the traditional verification and validation
techniques including simulation, testing and
inspection are in this category.

• Constructive techniques that focus primarily
on defect avoidance, i.e. to avoid introducing
errors in the first place. Tools for design syn-
thesis and automatic program generation are

obvious examples, but languages and methods
that help to improve understanding and com-
munication are clearly in this category too.

Corrective techniques may be seen as iterative,
while constructive techniques are formative.

The quality of ICT systems can be split into two
main aspects as suggested by Figure 2:

• Quality of functionality, that is related to the
main purposes, i.e. the needs of the domain,
and is concerned with the information han-
dling and logical behaviour.

• Quality of realisation, that is related to the
way the functionality is realised.

These aspects are quite independent and should
as much as practically possible be separated
(according to the golden rule on separation of
concerns). With the elaboration approach, a clear
separation of concerns is more difficult than in
the translation approach. The ITU-T languages
offer many advantages here, due to their concep-
tual abstractions, their well-defined semantics,
and the possibility to define formal relationships
between descriptions. An SDL model can for
instance be extensively simulated and validated
before implementation takes place, and imple-
mentation errors can be avoided by automated
translation to realisation code. SDL models may
be formally verified against properties specified
in MSCs, and TTCN test cases can be derived
from MSCs and thereby ensure that the realisa-
tion is conformant with the specification.

Method Maturity Level
Some companies using the translation approach
have made the transition from implementation
oriented development to design oriented devel-
opment. They no longer treat the implementation
code, in e.g. C++, as their primary documenta-
tion, but as secondary, derived documentation.
Application designs expressed in languages such
as SDL and MSC have taken over the role as pri-
mary documentation. On this level the applica-
tion is understood and maintained in terms that
are closer to user understanding. However, there
is a snag: the amount of detail required to enable
automatic code generation may clutter the de-
scription and reduce readability to a level where
human errors are likely to increase. Some sort of
layering is required to avoid this. Steve Randall
describes one approach in his paper in this issue.
Another approach is used in TIMe [4] where the
functionality is split into an application part and
an infrastructure part that are combined in a
framework.

10) At least by 50 %.

104 Telektronikk 4.2000

Those that have moved to design oriented devel-
opment, naturally seek further improvements. In
a competitive market place, the ability to add
new services (or modify existing services) with
short time to market, while keeping the quality
stable at a high level, is often sought as the next
improvement. In practice, this means to focus
more on the domain and the properties. Issues
that emerge then are how to model properties
separately and how to compose and map proper-
ties to designs. The ideal situation would be
property oriented development, where designs
are derived automatically from property descrip-
tions. Although this vision cannot be realised
today, some small steps in that direction have
been made using existing languages and tools.

Using MSC to describe behaviour properties, for
instance, offers some possibilities. First, because
MSCs provide a readable and precise way to
describe interaction behaviour and thus help to
avoid errors, and secondly because MSCs can be
used both constructively to (partially) synthesise
application designs, and correctively to verify
that application designs satisfy the properties
specified in an MSC.

Methodology
The macro cycle/spiral in Figure 1 suggests a
macro methodology as represented in Figure 6.
Although it is very simplified, almost naïve, it
illustrates the scope of methods and methodol-
ogy: a set of results and activities. Note that all
the activities in Figure 6 may go on at the same
time, and normally will do so, by working on
different individual results. Four main result
areas with associated activities are identified in
Figure 6, and a set of methods (a sub-methodol-
ogy) can be defined for each of them11). A cen-
tral issue of methodology is to specify the
results:

• What results should be achieved? At least
descriptions covering the six different aspects
we have identified in Figure 3 should be de-
veloped. The description icons in Figure 6
illustrate this.

• What should the results be like? The lan-
guage/notation to use in each description must
be specified, and rules must be provided for
language use, both concerning the appearance
(syntax) and the meaning (semantics).

• What relationships should hold between
results? What are the rules for consistency
between descriptions that can be used for veri-
fication and validation? What rules ensure a
consistent documentation?

In principle, the activities are just means to
achieve the results. In practice, they need to
be broken down and explained both to provide
guidelines and to facilitate project control. But
the decomposition should focus primarily on
steps in the result space, and not on activities
per se. For each activity a method may specify:

• Guidelines for performing the activity;
• Preconditions for starting the activity;
• Intermediate results that should be produced;
• The final results (outputs) of the activity;
• The sub-activities that should be performed.

We may illustrate this by the system develop-
ment activity. The goal here is to develop the
six aspects of system descriptions such that the
complete result satisfies all the rules and the
relationships. This is achieved by decomposing
the “Develop system” activity in Figure 6. A
natural progression through intermediate results
using the translation approach is illustrated in
Figure 7. Here we have illustrated the state of
the system description by colouring the fields of
the icon that represent a description aspect that is
ready. This shows a normal progression of de-
scription states. The figure may seem to describe
a pure “waterfall” approach where each descrip-
tion aspect must be completed before starting on
the next, but this is not necessarily the case.
Each description aspect may consist of parts that
may be developed separately, either in parallel
or in sequence. By allowing activities to start
with partial input and to run in parallel, the
methodology can support alternative ways to
order the activities over time, such as an incre-
mental process or a spiral process.

Figure 6 Macro
methodology12)

11) Note that methods and methodology are concerned with how to produce the best possible results,
not actually producing them.

12) Note that the domain and the system are represented by separate descriptions that each may
cover all six aspects.

System

Install System

Model Domain

Produce System

Develop System

Domain Domain
description

System
description

105Telektronikk 4.2000

Sometimes, such figures as Figure 7 are mixed
up with descriptions of development processes.
A development process is a generalised project
plan that specifies an ordering of milestones/
results and activity executions that every project
should follow. Contrary to a methodology, a
process specifies the activity executions in
phases that actually produce results. A method-
ology should be more general and describe rules
and guidelines in a way that can be applied by
several processes. Therefore, a methodology
should focus on activity types rather than activ-
ity instances (executions of activities). It should
be possible to enact the activities in many ways
and still produce results according to the guide-
lines and rules of the methodology.

Languages, or description techniques, determine
the way that the reality can be described and
understood. It is not so much the syntax of the
languages that matters as the underlying con-
cepts, or meaning. It is conceptual differences
that really make methods and methodologies dif-
ferent. Many guidelines and rules focus on the
meaning of descriptions rather than the syntax
they are expressed with. Such guidelines and
rules may often be applied to a range of lan-
guages using different syntax as long as the
underlying concepts are similar.

Summing up, the core of systems engineering
methodology is a set of descriptions, rules for
well-formed descriptions, defined relationships
between descriptions and guidelines for activi-
ties.

Some Methods
The first methods using the ITU-T language
SDL were developed more than 20 years ago.
Several industrial product developments at that
time demonstrated that the quality of complex
real time systems could be managed by means
of the conceptual abstraction that the language
provided, combined with a translation approach.
At that time hardly any tools existed, so the
products were developed using hand drawings
in SDL and manual code generation. The author
was responsible for one early method, called
SOM that was used on an industrial scale by
several companies during the late 1970s – early
1980s. Experiences from its first five years of
use can be found in [5].

Based on positive experiences with SOM and
similar methodologies, several Norwegian com-
panies joined forces in the SISU project aiming
to further develop and disseminate such method-

ologies. It was realised that the best way to en-
sure wide acceptance and adequate tools would
be to use internationally standardised languages
and work to make these as good as possible.
SISU therefore funded parts of the Norwegian
contributions towards the MSC-92 language and
to make SDL-92 object oriented. This effort on
standardisation was complemented with devel-
opment of a methodology using SDL-92 and
MSC-92 in combination with a notation called
SOON13) for general object modelling. The
method was documented in [2]. This methodol-
ogy was further developed into TIMe, The Inte-
grated Method [4], [6], based on SDL-96 and
MSC-96 combined with UML.

During the same period, many companies devel-
oped methods using the ITU-T languages for
their own internal use, see e.g. [7], and the tool
vendors Telelogic and Verilog defined methods
to help their customers use the languages and
tools to their advantage [8], [9]. Method guide-
lines were also defined by the ITU-T [3], [10],
[11], and ETSI developed method guidelines as
explained in the paper by Steve Randall in this
issue.

Lately the Rational Unified Process, RUP [12],
[13], has been receiving considerable attention.
It should be noted that RUP is not a methodol-
ogy, but a web-enabled software engineering
process using UML and Rational tools, such as
Rational Rose. RUP is based on the elaboration
approach.

Specify
functionality

Design
functionality

Specify
deployment

Design
deployment

Specify
realisation
and test

Realise
and test

Figure 7 Sub-activities and
intermediate descriptions of

“Develop system”

13) SOON was used for the same purposes as UML are used for when combined with SDL: general
conceptual descriptions and deployment descriptions. The main reason for using SOON was that
there were no UML available at that time.

106 Telektronikk 4.2000

References
1 ITU-T. Basic Reference Model of Open Dis-

tributed Processing – Part 1: Overview.
Geneva, 1997. (ITU-T Recommendation
X.901.)

2 Bræk, R, Haugen, Ø. Engineering Real Time
Systems. An object-oriented methodology
using SDL. Prentice Hall, 1993. (ISBN 0-13-
034448-6.)

3 ITU-T. SDL methodology Guidelines.
Geneva, 1992. (ITU-T Recommendation
Z.100, annex I.)

4 TIMe: The Integrated Method; Electronic
textbook. 2000, November 15 [online] –
URL: http://www.informatics.sintef.no/
projects/time/

5 Bræk, R, Helle, O, Sandvik, F. SOM : An
SDL Compatible Specification and Design
Methodology. Experiences from 5 years of
extensive use. 4th International Conference
on Software Engineering for Telecommuni-
cation Switching Systems (SETSS), 1981.
(IEE conference publication no. 198.)

6 Bræk, R et al. Quality by Construction
Exemplified by TIMe – The Integrated
Method. Telektronikk, 95 (1), 73–82, 1999.

7 Robnik, A, Dolenc, M, Alcin, M. Industrial
Experience Using SDL in IskraTEL. In: Pro-
ceeedings of Seventh SDL Forum. SDL’95.
Bræk, R, Sarma, A (eds.). Elsevier, 1995.
(ISBN 0 444 82269 0.)

8 Ek, A. The SOMT Method. Malmö, Tele-
logic, 1995. (http://www.telelogic.com/
download/papers/SOMT.pdf)

9 ObjectGEODE – Method Guidelines.
Toulouse, Verilog, 1997.

10 Reed, R. Methodology for Real Time Sys-
tems. Computer Networks and ISDN Sys-
tems, 28, 1996.

11 ITU-T. SDL+ Methodology: use of MSC and
SDL [with ASN.1], Supplement 1 (05/97).
Geneva, 1997. (ITU-T Recommendation
Z.100.)

12 Kruchten, P. Rational Unified Process – An
Introduction. Addison-Wesley, 2000. (ISBN
0-201-70710-1.)

13 Rational Unified Process. 2000, November
15 [online] – URL: http://www.rational.com/
products/rup/index.jsp

14 Shakeri, A. A Methodology for Development
of Mechatronic Systems. Trondheim, Norwe-
gian University of Science and Technology,
Department of Telematics, 1998. (PhD thesis
1998:104.)

107

1 Introduction
For many years now, writers of telecommunica-
tions protocol standards have used the ITU-T
Specification and Description Language, SDL,
defined in Recommendation Z.100 [1], to pro-
vide a pictorial representation of the standard-
ized protocols. Unfortunately, few, if any, of
these standards employed SDL as anything other
than a convenient notation for illustrating the
flow of control within a unit implementing the
protocol. In most cases, this approach resulted in
a very readable specification – due mainly to its
informality – but one which was syntactically
and semantically flawed. Such SDL often con-
tains ambiguities which make compatible imple-
mentations difficult to achieve. In recent years
there have been some attempts to produce stan-
dards as formal SDL models (an example is the
INAP CS2 specification to be found in EN 301
140-1 [5]) and although these are accurate and
almost directly implementable, they tend to be
complex and quite difficult for the human reader
to assimilate and comprehend.

The benefits of specifying a protocol in formal
SDL, even within an international standard, are
great as automatic tools can be used to check the
syntax and semantics of the specification, to
simulate the interactions between signals and to
validate the overall structure of the model. In
addition, modern Computer Assisted Test Gen-
eration (CATG) techniques are such that a rea-
sonably usable TTCN test suite can be generated
directly from the SDL model. However, the ben-
efits of readability that can be derived from an
informal specification should not be underesti-
mated.

In 1996, ETSI’s Technical Committee “Methods
for Testing and Specification” (TC-MTS) de-
cided that it would be worthwhile to investigate
means of assisting standards rapporteurs to
develop SDL models which combined the bene-
fits of both formal and informal specification but
which had few of the disadvantages. The result
of TC-MTS’s efforts is a set of guidelines which

define an approach to protocol specification
which has subsequently been labelled, “Descrip-
tive SDL” and is the subject of this article.

2 A Definition of
Descriptive SDL

Before describing how it can be achieved, it is
worth considering exactly what Descriptive SDL
actually is and is not. First and foremost, it is not
a new language or even a rigid subset of the
existing SDL. It is, in fact, little more than SDL
which:

• is expressed simply enough to make it easy for
a human to read;

• follows SDL’s rules of syntax;

• has correct static semantics (for example, con-
sistent use of data items);

• could easily be extended into a complete
model for simulation and validation purposes.

One other characteristic of Descriptive SDL that
is particularly important in the development of
protocol standards is that the normative require-
ments (those aspects of the specification with
which an implementation must conform) should
clearly be identified.

The Descriptive SDL concept originally grew
from the belief that there is a core of the lan-
guage which is almost intuitive to any engineer
who has ever had to draw or read a flow-chart.
The majority of these engineers know instinc-
tively that a rectangular symbol means “Do
something” and that a diamond-shape means
“Make a decision”. In addition, input symbols,
output symbols, procedure calls and states can
usually be interpreted correctly when viewed in
the context of a complete diagram. On the other
hand, most non-experts would find it difficult to
understand the meaning of symbols such as the
continuous input even with a copy of Z.100 [1]
to hand. Having come to this realisation, it was

Descriptive SDL
S T E V E R A N D A L L

Steve Randall (52) has worked
in software and systems engi-
neering and design for over 30
years. He started in Mitel Tele-
com Ltd in 1979 as UK Software
Manager responsible for the
development of software for
PABX products. In 1991, Steve
Randall and Alex Hardisty estab-
lished PQM Consultants, now a
successful partnership specialis-
ing in International standardisa-
tion for Corporate Networks.
Steve has led projects at the
European Telecommunications
Standards Institute (ETSI)
involving standards for the QSIG
private network signalling sys-
tem and handbooks on the use
of formal languages in protocol
standards. For 1 1/2 years he
led the devleopment and valida-
tion of the set of guidelines satis-
fying the need for accessible
and understandable protocol
standards and which is now
commonly referred to as
“Descriptive SDL”.

steve.randall
@pqmconsultants.com

SDL has been used informally by protocol standards writers for many years. Although infor-
mal SDL of this type is often very expressive, it lacks the formality necessary for ambiguities
to be avoided and it cannot be simulated or validated. The “Methods for Testing and Specifi-
cation” Technical Committee (TC-MTS) at the European Telecommunications Standards
Institute, ETSI, have produced a set of guidelines which aim to help standards writers to pro-
duce SDL which is syntactically and semantically correct but which lacks none of the bene-
fits of expression that have been achieved previously with informal use of the language.

Telektronikk 4.2000

108 Telektronikk 4.2000

not difficult to decide that it would be useful to
provide some guidance to protocol standards
writers to enable them to make the most of this
easily-understood core symbology.

When work began on EG 202 106 [4], the ex-
pectation was that following the guidelines
would not necessarily result in SDL which
would be complete enough to simulate and vali-
date but experience has shown that in most cases
it is possible to produce executable and, there-
fore, testable SDL which can genuinely be
regarded as “Descriptive SDL”. Although the
guidelines were originally developed to help
improve the SDL included in telecommunication
protocol standards, they could equally well be
used to improve the readability of models in
“real” systems. With the powerful automatic
tools that are available today for analysing SDL
and compiling working models from it, there is a
strong, and understandable, temptation to write
SDL that only the tools can understand. All too
often we forget that SDL stands for Specifica-
tion and Description Language and that, as its
name implies, it also has considerable value in
communicating concepts and ideas to other
human beings.

3 The Guidelines
When work began on the development of the
“Guidelines for the use of SDL for Descriptive
Purposes”, the first step was to look at a number
of existing standards and to identify common
mistakes in the use of SDL, particularly where
these caused ambiguities or made the specifica-
tion difficult to comprehend. These mistakes
included such things as the use of free text
(without quotes) in task symbols, the use of
ASN.1 data types directly as variables without
the inclusion of a dcl statement and the use of
message names which had not been defined as
signals. The next step was to use common sense
and established software engineering techniques
to develop some reasonably simple methods for
overcoming many of these problems in the use
of SDL. These methods are reflected in the
guidelines which have been collected together
in the ETSI Guide, EG 202 106 [4].

It was clearly necessary for the guidelines to be
separated into natural groups so that the right
advice for any particular situation could be
found easily. A number of different groupings
were considered but the following seems to be
the most appropriate:

• Naming Conventions;

• Presentation and Layout of Process Diagrams;

• Logical Structuring of Diagrams;

• The Use of Procedures and Operators;

• The Use of Decisions;

• Communication and Addressing (including
System structures);

• The Specification and Use of Data.

It is not practical to describe every one of the
guidelines here as this information can be
obtained from EG 202 106 itself. However, it
may be valuable to provide an example from
each of the above categories.

4 Naming Conventions
When composing names and identifiers in any
modern programming language, it is often
tempting to use short combinations of letters and
numbers. Indeed, for some of us, it is difficult to
forget the lessons learned in writing assembler
code and FORTRAN IV. Unfortunately,
although these cryptic identifiers may have
meaning to the writer, they are likely to be inde-
cipherable to other readers. On the other hand,
SDL allows names and identifiers that are al-
most unrestricted in length and even has rules
that permit names to be wrapped across more
than one line. Without care, these names can
easily become unwieldy and meaningless.

Descriptive SDL suggests (rather than mandates)
some useful constraints that software developers
may wish to apply in order to ensure that names
are meaningful and easy to read.

Like most of the guidelines, the following exam-
ple, which relates to the number of characters in
a name, is little more than common sense, but it
was felt that it was worth saying anyway.

Example of a naming convention guideline:

Names of less than 6 characters may be too
cryptic and names of more than 30 characters
may be too difficult to read and assimilate.

As an illustration of the use of this guideline, the
SDL name for a variable that holds Input from
the User could be abbreviated to something like
“Uip” or, by taking the easy way out, it could be
identified as “User_Input” or it could very accu-
rately describe exactly what user input is by the
use of “Collection_Of_Keystrokes_From_The_
User”. It is clear that the first one is too short to
be really meaningful and that the last one is too
long for easy use. That just leaves the term
“User_Input” which clearly expresses the pur-
pose of the variable while being short enough
for easy manipulation within SDL symbols.

109Telektronikk 4.2000

5 Presentation and Layout
of Process Diagrams

Although the layout of an SDL diagram does
not affect its correctness, it can have a major
impact on its readability and interpretability.
On a cramped page it is easy to miss a vital
connection or even to see one that is not there.

Descriptive SDL includes some useful sugges-
tions for laying out SDL process diagrams in a
way that avoids these problems.

Example of a presentation and layout guideline:

The flow of SDL process diagrams should be
from the top of the page towards the bottom.

Again, this guideline is no more than simple
common sense, but SDL that flows from one
point on the page to all points of the compass
is not uncommon but it is remarkably difficult
to read.

6 Logical Structuring
of Diagrams

It is surprising how easy it is to take a program-
ming language based on logic and produce a
specification that lacks any logical structure at
all. Within any specification, it is necessary to
be able to move quickly and easily between
logically associated points without the need to
review every page. Paragraphs and chapters are
used intuitively to give a readable logical struc-
ture to prose but doing the same in a graphical
language does not seem to come so naturally.

Within the Descriptive SDL guidelines there is
useful advice on how to structure the SDL in a
specification, particularly a standard, to make
the most logical sense.

Example of a logical structuring guideline:

Process diagrams should segregate normal
behaviour from exceptional behaviour.

In its textual description, a protocol standard
usually separates normal behaviour and excep-
tional behaviour under different section head-
ings. Figure 1 shows a simple example of how
making a similar separation within a process dia-
gram can improve the readability of the SDL and
simplify testing.

Although this guideline applies specifically to
the use of SDL in protocol standards, the con-
cept of splitting logically distinct behaviour
flows is valid in any application.

7 The Use of Procedures
and Operators

One of the greatest barriers to the easy compre-
hension of a complex protocol specification is
the inclusion of too much detail in the process
graphs. It is not always useful to see in minute
detail how a particular function is achieved
when all that is needed to understand the overall
process is an indication that the function must
take place. SDL procedures and operators pro-
vide an excellent mechanism for separating the
“How” from the “What”. Layering a model in
this way allows the reader to choose to concen-
trate only on the functions performed and not
on the methods for implementing them.

Example of a guideline on the use of procedures
and operators:

Behaviour that could be considered a side-
effect to its defined purposes, should not be
specified in a procedure.

This, once again, appears to be a statement of
the obvious but it is not unusual for an SDL
writer to assign a meaningful name to a proce-
dure and then, as time goes by, to add more and
more functionality to it without considering what
was originally implied by its name. As an exam-
ple, a procedure identified as “Get_User_Name”
should do nothing more than get and return the
name of the user. Readers would quite reason-
ably expect other operations, such as getting the
user’s email address or saving the user’s tele-
phone number in the appropriate record in a
database, to be specified elsewhere. This guide-
line is particularly important in the context of
layering a model.

Figure 1 Segregation of nor-
mal and exceptional behaviour

SETUP_
_RESPONSE

(status)

IDLE

status

Prepare_
Normal_

Response

Process_
Error_Status

=Success
/*Normal
behaviour*/

else
/*Exceptional behaviour*/

110 Telektronikk 4.2000

del Users_Name boolean;

synonym Known boolean = true;

synonym Unknown boolean = false;

Unknown

Known

Users_Name

8 The Use of Decisions
Although decisions have to be used correctly in
an SDL implementation model in order for the
model to compile and build, it is very unusual to
see a correctly formulated expression in a deci-
sion symbol within the SDL that is found in
standards. However, the use of informal text
usually makes the meaning of the decision
extremely clear as can be seen in Figure 2.

The Descriptive SDL guidelines show how it is
possible to write syntactically correct decisions
without losing any clarity that comes from the
informal approach that can be seen in the above
example. They also show how decisions can be
used more extensively than is currently normal
within protocol standards to improve the overall
structure of process graphs.

Example of a guideline on the use of decisions:

Identifiers used in decisions should clearly
reflect to a reader the ‘question’ and ‘answer’
nature of the conditions being expressed.

It is not unusual to find decisions in SDL which,
although syntactically and semantically correct,

make it very difficult to determine what question
is being asked and what possible answers there
are. After all, that is exactly what a decision
symbol should convey – a question and a range
of possible answers. By carefully choosing iden-
tifiers for variables, operators and procedures
and by using synonyms to assign logical names
to constants such as true and false, it is possible
to construct decisions which do, in fact, clearly
identify the question and the possible answers.
Figure 3 shows how this principle can be applied
to the example shown previously in Figure 2 to
make it syntactically correct without losing any
implicit meaning.

9 Communication
and Addressing

Within a telecommunication protocol standard,
perhaps the most important aspect of the SDL is
the sending and receiving of signals by individ-
ual entities (processes) within the system. The
contents, format and timing of these signals are
the essence of the protocol. It is, therefore,
important to ensure that the use of signals is
clear and accurate within a specification. In
addition, the relationships between blocks and
processes within the system clearly identify
where these protocol messages can be expected
to appear.

A problem that is probably peculiar to the use
of SDL in standards relates to the inclusion, or,
rather, the omission, of system and block graphs
to present the underlying architecture of a sig-
nalling protocol. That is not to say that the archi-
tecture is not described graphically but it is rare
for SDL to be used for this purpose. Other dia-
grams, which are usually informal, are used in-
stead. Descriptive SDL addresses this issue by
showing how the same information can be speci-
fied using the formal, checkable graphs available
in SDL.

Figure 2 Informal text used
in a decision

Figure 3 Use of synonyms in a decision

Figure 4 Informal representation of a communication system

users
name known

?

no

yes

Transit
Exchange

Z-
Reference

Z-
Reference

Z-
Reference

Z-
Reference

Originating
Exchange

Terminating
Exchange

111Telektronikk 4.2000

Example of a guideline on the use of formal
structure:

SDL should be used to show the structure of a
system as well as its behaviour.

To illustrate this guideline, Figure 4 shows the
type of informal diagram that is sometimes used
in a standard to describe the overall system
architecture. Although it is quite informative in
terms of the generic system topography, it does
not identify any aspect of the protocol between
the individual exchanges. There is no formal
meaning to the lines connecting the units so
there is no possibility of testing their validity
or of developing a protocol description based
on this architecture.

Although not as attractive pictorially, the SDL
system graph shown in Figure 5 conveys useful
additional information and forms a solid formal
base from which the process graphs can be de-
veloped. By placing the telephones (terminals)
in the environment and by commenting Z_REF_
A and Z_REF_B as “NORMATIVE”, it makes
it clear that only the relationships between the
exchanges are important within the context of
the standard. The use of signallists and commu-
nication path names adds information which is
not available in the diagram in Figure 4.

Although there is generally little or no ambiguity
regarding the destination of a signal at its source
(process) or the source of the signal at its desti-
nation, this does not necessarily mean that these
useful items of information will be obvious to
the reader without referring to other diagrams
and text. An SDL process graph is very much
easier to read and understand if the destination
of all output signals and the source of all re-
ceived signals are made explicit. The to and
via constructs, even when not strictly necessary,
positively identify where a signal is to be sent or,
at least, the route it will take. A comment added

to each input symbol is an effective way of
showing where the associated signal originated.
Examples of these approaches are shown in Fig-
ure 6.

Figure 5 Formal SDL
representation of a

communication system

Figure 6 Identification of
signal source and destination

[(FromCalled_User)]

Originating_
Exchange

NORMATIVE

NORMATIVE

Transit_
Exchange

Destination_
Exchange

Z_ref_A

Z_ref_B

CALLING_USER_IF

CALLED_USER_IF

[(ToCalled_User)]

[(Orig_To_Dest)]

[(Dest_To_Orig)]

[(ToCalling_User)] [(FromCalling_User)]

[(Orig_To_Dest)]

[(Dest_To_Orig)]

systemZ_Reference_Model 1(1)

From HLR

to Transit_Exchange
SETUP
(Setup_

Parameters)
via Z_REF_A

SETUP
(Setup_

Parameters)

CALL
PROCEEDING

112 Telektronikk 4.2000

Example of a guideline on communication and
addressing:

There should be only one signal in each
output symbol.

Although the syntax of SDL permits multiple
signals to be included in a single output symbol,
limiting the number of signals to one per symbol
helps to improve the clarity of specification –
one output, one signal.

10 The Specification
and Use of Data

Descriptive SDL provides only a small amount
of guidance on the specification and use of data
in SDL models. Much of the advice that might
be necessary here has already been covered in
other sections of the guidelines. For example,
the readability of data items is greatly improved
by careful choice of identifier according to the
naming conventions discussed earlier.

As the Abstract Syntax Notation, ASN.1 [3], is
used extensively for defining the contents and
structure of protocol message parameters in
telecommunication standards, the guidelines
concentrate primarily on the combined use of
both ASN.1 and SDL. It is not possible to pro-
vide an exact mapping between the two lan-
guages (as examples, SDL has no choice con-
cept and ASN.1 does not have the range-limiting
possibilities offered by syntype) although ITU-T
Recommendation Z.105 [2] makes a good
attempt at this. Following the Descriptive SDL
guidelines should help to avoid many of the
problems in this area.

Generally, the guidelines related to specifying
and using data in an SDL model are concerned
with simplifications such as hiding the structures
of complex data sorts by using sequence, set
and struct.

Example of a guideline on the specification and
use of data:

The top-level parameters of messages should
be contained in a single structured type (e.g.
ASN.1 SEQUENCE or SET) rather than spe-
cified as a list of simple types.

Here is a clear example of a guideline aimed at
simplifying the specification by suggesting that
if the parameters of a message contain more than
one information element, they should be speci-
fied in a separate data structure. This avoids
overloading the associate output and input sym-
bols with lists of individual parameter items.

11 Conclusion
This article has only been able to give a flavour
of Descriptive SDL and it is necessary to read
EG 202 106 [5] for the complete picture. This
can be obtained free of charge from the ETSI
web site at http://webapp.etsi.org/pda/. Probably
the most important thing to remember is that
Descriptive SDL is a pragmatic way of using
existing SDL rather than a new language in
itself. It would be wrong to try to suggest that
the guidelines would be applicable in their
entirety outside the area of protocol standards
development but they do contain some very
valuable common sense which any software
engineer designing in SDL would do well to be
reminded of. The more advanced features of the
language should not, of course, be avoided just
because some people find them difficult to inter-
pret but well structured SDL that is expressed
clearly enough for a human to read and under-
stand will always be much easier to review and
maintain.

Acknowledgements
The development of the Descriptive SDL guide-
lines took place as a project led by the author
and funded by the European Telecommunica-
tions Standards Institute (ETSI). Significant
technical contributions were made by Milan
Zoric and Anthony Wiles of the ETSI Secre-
tariat, Rick Reed of TSE Limited, Juhana
Britschgi of Nokia and André Wendling of
Clemessy.

References
1 ITU. Specification and Description Lan-

guage (SDL). Geneva, 1993. (ITU-T Recom-
mendation Z.100.)

2 ITU. SDL combined with ASN.1. Geneva,
1994. (ITU-T Recommendation Z.105.)

3 ITU. Information technology – Open Sys-
tems Interconnection – Abstract Syntax
Notation One (ASN.1): Specification of basic
notation. Geneva, 1994. (ITU-T Recommen-
dation X.680.)

4 ETSI. Guidelines for the use of formal SDL
as a descriptive tool. Sophia Antipolis, 1999.
(ETSI EG 202 106.)

5 ETSI. Intelligent Network (IN); Intelligent
Network Application Protocol (INAP);
Capability Set 2 (CS2); Part 1: Protocol
specification. Sophia Antipolis, 1999. (ETSI
EN 301 140-1.)

113

1 Introduction
In ETSI the PTCC (PEX and Testing Compe-
tence Centre) exists with a mission to assist
ETSI Technical Bodies in the application of
state-of-the-art specification and testing tech-
niques in a pragmatic and flexible manner to
help ensure the technical quality of ETSI deliv-
erables in an efficient and economic manner.

The presentation in this paper is based on PEX
experience gained during the development of the
Radio Link Control (RLC) protocol standard of
HIPERLAN/2 system developed by the ETSI
European Project Broadband Radio Access Net-
works, EP BRAN

2 The HIPERLAN/2 System
The increasing demand for ‘anywhere, anytime’
communications and the merging of voice, video
and data communications create a demand for
broadband wireless networks. ETSI has created
the BRAN project to develop standards and
specifications for broadband radio access net-
works that cover a wide range of applications
and are intended for different frequency bands.

HIPERLAN/2 is one of the systems being stan-
dardised by EP BRAN. HIPERLAN/2 is capable
of supporting multi-media applications by pro-
viding mechanisms to handle QoS. The typical
operating environment is indoors. Restricted
user mobility is supported within the local ser-
vice area; wide area mobility (e.g. roaming) may
be supported by standards outside the scope of
the BRAN project. HIPERLAN/2 systems are
intended for operation in the 5 GHz band.

HIPERLAN/2 provides transport services with
data rates up to 54 Mbit/s. Integration into dif-

ferent network types is achieved by convergence
layers.

HIPERLAN/2 has the potential to become the
technology in the 5 GHz range. It is technologi-
cally superior to other wireless LAN standards
because of the highly efficient use of the avail-
able resources, possible support of QoS, and
efficient means for the support of security func-
tions (authentication and encryption) well inte-
grated into association procedure.

Figure 1 shows the HIPERLAN/2 protocol stack
and the functions in it. The left part contains the
Radio Link Control Sub layer (RLC), which
delivers a transport service to the DLC Connec-
tion Control (DCC), the Radio Resource Control
(RRC) and the Association Control Function
(ACF). Note that only the RLC entity is stan-
dardised which defines implicitly the behaviour
of the DCC, ACF and RRC. The RLC protocol
is operating in a radio environment with signifi-
cant probability of messages not received by the
peer entity. Since there is no underlying layer
that would assure reliable communication, the
RLC has to provide retransmission mechanisms
itself.

3 Supporting the Protocol
Development Process

3.1 Specification
The main goal behind the use of SDL in stan-
dards has been to improve the functional specifi-
cation in the standard by making it more precise.
However, the use varies from highly informal to
very formal models that are useful for simulation
and validation aimed at error detection. The for-
mer appears to be readable, but is not precise

Combined Use of
SDL, ASN.1, MSC and TTCN
A N T H O N Y W I L E S A N D M I L A N Z O R I C

The purpose of most telecommunication standards is to promote interoperable products.
Many techniques are used in order to make the standards more precise. In some cases con-
trolled use of the natural language can make specifications less ambiguous. However, for
complex systems, this is often not sufficient, and therefore, specifications using formal lan-
guages with their simulation and error detection capabilities are employed. Interoperability is
further improved if an organised process of test specification development accompanies the
base standard development. This paper describes the way combined use of SDL (Specifica-
tion and Description Language) [1], MSCs (Message Sequence Charts) [6] and ASN.1
(Abstract Syntax Notation One) [2, 3, 4, 5, 8, 9] along with test development in TTCN (Tree
and Tabular Notation) [7] affect the standards and the product implementation. While there
are many elements that are specific for standardisation domain, some experiences should
be relevant in general use of these languages.

Anthony Wiles (51) received his
MSc in Physics and Computer
Science from Uppsala Univer-
sity, Sweden in 1984. He has
been involved in the develop-
ment of TTCN since the lan-
guage first originated late 1980s
and was the ISO editor of the
original TTCN language specifi-
cation. He has published several
papers and tutorials on the prac-
tical and theoretical aspects of
protocol specification, automatic
test generation, testing and the
use of TTCN. Anthony Wiles is
currently manager of the Proto-
col and Testing Competence
Centre at ETSI, which advises
and provides support to many of
ETSI’s technical bodies.

Anthony.Wiles@etsi.fr

Telektronikk 4.2000

Milan Zoric (51) received his
Dipl.Ing. diploma in Electrical
Engineering and his MSc in
Telecommunications and Infor-
mation Technology from the
Univ. of Zagreb, Croatia in 1972
and 1982 respectively. His work
has been related to SDL since
the early 1980s. He participated
in the validation of SDL formal
semantics in 1988, published
numerous papers related to SDL
and led a team developing an
SDL tool. Since 1995 he has
participated in a number of ETSI
projects related to the use of
SDL in standardisation, and
worked as consultant for other
international companies. In 1998
Milan Zoric joined the Protocol
and Testing Competence Centre
at ETSI.

Milan.Zoric@etsi.fr

114 Telektronikk 4.2000

enough and often hides ambiguities; see the
paper by Steve Randall on Use of SDL for
descriptive purposes in this issue. The latter may
be precise and correct, but looks in many cases
like program code, which hinders the main pur-
pose of the SDL specification: to communicate
the desired functionality to the readers.

Fortunately, it was agreed at an early stage in the
RLC development, when only some rough ideas
about the protocol existed, to use formal SDL in
RLC protocol development supported by PTCC
expertise. It should also be noted that the proto-
col development group had BRAN specific ex-
pertise, but had modest knowledge about SDL,
MSCs and ASN.1.

The main goal was to arrive at a correct specifi-
cation that would be readable, especially for
readers that are experts in writing test specifica-
tions and in implementing the standard. In accor-
dance with this goal, the protocol development
group initially agreed to use the following
approach:

a) Develop SDL models that specify only the
parts of the system which are most important
for achieving interoperability. At the same
time it was planned to cover these parts by
test specifications.

b)Use MSCs to specify the normal behaviour.

c) Use ASN.1 to specify at an abstract level the
data used in messages. That was most impor-
tant for Protocol Data Units, but there was no
reason not to use ASN.1 for other data specifi-
cation.

d)Use Descriptive SDL (see the paper by Steve
Randall on Use of SDL for descriptive pur-
poses in this issue) for modelling of full
(normal and exceptional) behaviour where:

- normal behaviour is clearly distinguished
from exceptional behaviour;

- naming rules are identified and followed;

- operators are used for any data manipula-
tion.

During the protocol development many aspects
were refined. The two most notable refinements
were:

e) High Level MSCs were introduced;

f) The MSCs were refined to include description
of options, alternatives and MSC references.

When the specifications were well advanced, the
decision was taken not to use standardised en-
coding rules but to define the encoding of RLC
PDUs in a tabular format.

3.2 Testing
ETSI members have long recognised the impor-
tant role that standardised test specifications play
in the development of products based on ETSI
standards. Comprehensive conformance test
specifications exist for technologies such as
GSM, DECT, INAP, N-ISDN, B-ISDN, Q-Sig,
TETRA, VB-5 and HIPERLAN/1. Plans for
year 2000 include tests for 3GPP (terminals),
HIPERLAN/2, HiperAccess and possibly some
TIPHON protocols.

Even in a climate where time-to-market is
paramount, the importance of testing has not
been marginalized. In fact, the reverse seems to
have occurred. Vendors know that a tested prod-
uct is a quality product and are prepared to put
time, effort and valuable expertise into this
activity.

Nonetheless, it makes good economic sense to
rationalise the testing process as much as possi-
ble. While certain key areas quite rightly require
regulatory testing, the policy today is to keep
this to a minimum. As a consequence there has
been a subtle but fundamental change in the
development and application of ETSI test suites
over the last few years. Manufacturers are
increasingly using these test specifications for
their internal product testing, and the tests them-
selves are concentrating on a specific purpose:
conformance testing for interoperability.

For HIPERLAN/2, two sets of tests were
planned. One set, written manually in TTCN,

Figure 1 HIPERLAN/2 proto-
col stack and functions

Data Link Control -
Basic Data Transport Function

Radio Link Control sublayer

Radio
Resource
Control

Association
Control

DLC
Connection

Control

RLC

Error Control

Medium Access Control

Physical Layer

Higher Layers

Convergence Layers
DLC Control SAP DLC User SAP

Control Plane User Plane

S
co

pe
of

H
IP

E
R

LA
N

/2
st

an
da

rd
s

115Telektronikk 4.2000

was intended to represent the normative part of
the testing standard. The other set was to be
derived semi-automatically from the SDL mod-
els using CATG (Computer Aided Test Genera-
tion). The purpose of using CATG tools was to
increase the understanding of the benefits that
might be achieved in the context of standardisa-
tion.

4 Practical Experiences

4.1 Specification

4.1.1 MSC and HMSC Diagrams
In the early stages of the RLC protocol develop-
ment, MSC diagrams were used to define the
message interchange for normal protocol be-
haviour. MSC diagrams are very intuitive and
require almost no training. They are much easier
to develop and change than the SDL diagrams,
which means they are well suited for initial
phases of the work.

Rather than showing only the messages, the dia-
grams included additional information, such as
starting and ending conditions and timer setting
and resetting actions. Initially the diagrams had
only some informal information about parame-
ters of messages, but the final version contains

the specification of parameters using ASN.1
syntax. One example MSC diagram is shown
in Figure 2.

During the work it became obvious that the
MSC diagrams for some procedures were be-
coming very complex, difficult to manage and
difficult to read. At that stage, High-level MSCs
(HMSC) were introduced. The first impression
was that HMSCs just helped to improve the
graphical presentation, but it soon became
apparent that HMSCs bring many additional
benefits that change both the way of working
and the final result a great deal. As an illustra-
tion, the association procedure of the RLC proto-
col is given in Figure 3.

The following are the most important benefits of
using HMSCs:

• Segregation of description levels
While the HMSC specifies what needs to be
done, the MSCs show how it should be done.

• Improved organisation of specification work
The work first concentrates on what is re-
quired, and then on the details completed
in a how part.

Figure 2 The MSC diagram of
MAC-ID-ASSIGN procedure

MSC MAC_Id_Assignment

MT_ENV MT_RLC AP_RLC AP_ENV

Open RLC
DLCC

Open RLC
DLCC

ACF_mac_id_assign_req

({magic,
rlc-version,
mac-id})

ACF_mac_id_assign_cnf

({magic,
mac-id})

T_mac_id_assign

RLC_MAC_ID_ASSIGN

({magic,
rlc-version,
mac-id 0})

RLC_MAC_ID_ASSIGN_ACK

({magic,
mac-id,

mac-id 1})

ACF_mac_id_assign_ind

({magic,
rlc-version,
mac-id})

ACF_mac_id_assign_rsp

({magic,
mac-id})

Beacon_Received

MAC_ID_Assigned

mac-id repeated
for
safety reasons

T_mac_id_assign_ack

116 Telektronikk 4.2000

• Additional power of expressing requirements
HMSC can conveniently express options and
alternatives in using parts of a complex proce-
dure. In the HMSC a line that bypasses the
MSC reference says that a procedure behind
the bypassed MSC reference does not always
have to be used.

• Improved documentation
The documentation is better organised, seg-
mented in manageable units and much more
readable and understandable.

• Reduced possibility of ambiguities
This kind of complex procedure description
is less open to ambiguities in contrast to plain
text.

• Better input for SDL development
The MSC diagrams, when placed in the wider
context of a HMSC diagram, provide a signifi-
cantly better input to SDL model develop-
ment.

No major problems were encountered during the
work on MSCs and HMSCs. However, some
minor problems were identified where improved
understanding and guidance were needed. For
example, it is not obvious how the MSC-condi-
tions should be understood so that appropriate
naming could be selected. Once defined, some
care has to be given to updating the information
on conditions. Since things change as initial
ideas mature towards the final design decision,
the updates are needed along the way.

A limit on how far the development of MSC dia-
grams should proceed must be set. In this case, it
was decided that the MSCs were to cover normal
behaviour only. In other applications, important
exception cases could also be added. For de-
tailed definition of exception cases, SDL is
better suited than MSCs.

The testing experts’ reaction to the use of MSC
and HMSC diagrams (without any training or
prior explanation) was very positive, in fact they
asked whether additional HMSC diagrams could
be developed for parts of protocol behaviour not
initially covered by HMSC diagrams. We wit-
nessed that HMSC and MSC diagrams were
used very much during the test development.
The MSC and HMSC diagrams were subject to
numerous reviews in member companies. The
stable releases are always made available to
engineers implementing the system in member
companies. For this purpose, pdf format of those
diagrams was very frequently requested.

4.1.2 SDL
The scope of the SDL modelling was restricted
to parts that are essential for interoperability.
This means that the SDL is describing how the
implementation of a standard should behave at
the normative interface and not how it should be
implemented and built in order to achieve this.
We may express this even more strongly by say-
ing that the SDL model in a standard should
never be such that it can be directly implemented
as a product. It can serve as a reference, parts of
it could be used directly in implementations (for
example ASN.1 specification of PDUs), but im-
plementation dependent details should never be
introduced in the standard.

The fact that the model can simulate the be-
haviour at the normative interface brings many
benefits but would not in itself earn acceptability
by the readers. Readers are engineers trying to
understand the SDL specification with a view to

Figure 3 HMSC of the RLC
association procedure

MSC Association

Beacon_Received

RBCH_Association RBCH_Association_
_Request

MAC_Id_Assignment

Link_Capability

Encryption_Startup

Authentication

DM_Common_Key_
_Distribution

loop <1,8>
Info_Transfer

MT_ASSOCIATED_TO_AP

1(1)

117Telektronikk 4.2000

Process Type RLC_MT

;FPAR AP_1, AP_2 PId;

RVCH_assoc_
_Received

Normal

ACF_mac
_id_assign_req

(acfMacIdAssign)

rlcMacIdAssign :=
builMacIdAssign
(acfMacIdAssign)

RLC_MAC_
ID_ASSIGN

(acfMacIdAssign)
TO selectedAP

SET
(T_mac_id_assign)

retransCounter :=
retransMax

MACidreq_
_Sent

MACidreq_
_Sent

Normal

RLC_MAC_ID_
_ASSIGN_ACK

(rlcMacIdAssignAck)

acfMacIdAssignAck :=
buil_mac_id_
_assign_enf

(rlcMacIdAssignAck)

ACF_mac_id_
_assign_cnf

(rlcMacId
AssignAck)

RESET
(T_mac_id_assign)

MacIdAssigned

MacIdAssigned
Link_Negotiation_

_Started

Exception
Link Capability Sending
delayed or los

RLC_MAC_ID_
_ASSIGN_ACK

(rlcMacIdAssignAck)

MacIdAssigned

RLC_MAC_ID_
_ASSIGN_NACK

(rlcMacIdAssignNAck)

acfMacIdAssignNack :=
buil_mac_id_

_assign_nack_cnf
(rlcMacIdAssignNack)

RESET
(T_mac_id_assign)

ACF_mac_id_
_assign_nack_cnf

(rlcMacIdAssignNack)

MT_DISASSOCIATED_
_FROM_AP

MACidreq_
_Sent

Exception

RLC_MAC_
ID_ASSIGN

(acfMacIdAssign)
TO selectedAP

T_mac_id_assign

retransCounter
=0

RLC_MAC_
ID_ASSIGN

(rlcMacIdAssign)
TO selectedAP

retransCounter :=
retransCounter - 1

SET
(T_mac_id_assign)

MACidreq_
_Sent

True

False

8(59)

Figure 4 Part of the SDL
specification where the

MAC-ID-ASSIGN procedure
is “implemented”

implementation. For them, human readability is
the ultimate criterion that determines whether
the model is acceptable or not. Once they have
an understanding of the model, they can start
examining what it does or does not cover and
judge whether the model is complete and cor-
rect. The possibility of simulation and validation
is good for detection and removal of undesired
properties (deadlock, lost signals, etc.). How-
ever, human inspection is very important in
order to determine whether the valid model ful-
fils its purpose.

Our practical experience is that the combined
use of HMSCs, MSCs and descriptive SDL
makes the SDL model readable. Once the read-
ers understand the requirements of the normal
behaviour expressed in MSC and HMSC dia-
grams, they start reading the SDL model by
examining where this behaviour can be found
in the SDL model. Clear separation of normal
behaviour from exceptional behaviour in the
SDL model helps them to easily find what they
are looking for. Identification of the normal
behaviour description in the SDL model, and its
consistency with the MSC description, builds the
initial confidence that the model is sound. Hav-
ing a firm understanding of the normal be-

haviour, the reader can proceed to examine
the exceptions.

It has to be noted that in this scenario many
readability issues are determined already when
working on MSC diagrams. For example, the
naming chosen in MSC diagrams needs to be
followed in SDL diagrams as well.

Our experience in the SDL review process was
that very valuable comments were received from
engineers who claimed having no expertise in
SDL, but who were very familiar with the proto-
col.

As an illustration, a page from the SDL specifi-
cation is given in Figure 4. This SDL diagram
could be examined against the MSC diagram
given in Figure 2.

Data are in the SDL diagrams strictly handled by
operators defined for this purpose. Because most
operators are very simple we used operators
defined in textual SDL syntax. This does not
change the substance of the specification but
reduces the number of operator definition pages
by more than 50 %, compared to graphical oper-
ator diagrams.

118 Telektronikk 4.2000

The main benefit of using operators is that oper-
ator names indicate what needs to be done,
whereas the operator definition hides away the
details of how it is done, and this helps to sim-
plify the diagrams where operators are used, i.e.
the process graphs. The added benefit is the
improved type checking. In SDL2000 methods
could be used in the same way instead of opera-
tors.

4.1.3 ASN.1
The use of ASN.1 allowed the group to start
defining the protocol data units (PDU) indepen-
dently of the transfer syntax. Individual data
were specified along with the respective con-
straints in value range and/or length. It was
possible to specify optional fields and to define
optional field groups. ASN.1 data specification
is easy to integrate into the SDL model and the
TTCN test specification.

Since the decision was to use the manual encod-
ing tables, the abstract specification was used to
develop the concrete encoding tables. It would
be possible to demonstrate that the existence of
the abstract data specification leads to better
structured transfer syntax tables than could have
been achieved without abstract specification.
However, the benefits of abstract syntax are
likely to be forgotten, because the transfer tables
are those that need to be implemented.

4.2 Testing
The HIPERLAN/2 testing strategy is as follows.
Two sets of conformance test specifications are
currently under development: those for testing
the radio aspects, which are necessary for regu-
latory purposes, and those for testing the proto-
col aspects. In the latter case the tests concen-
trate on specific parts that are critical to inter-
working, such as the RLC protocol, error-han-
dling mechanisms (ARQ) and, of course, the
various convergence layers.

The HIPERLAN/2 protocol conformance test
suites are being developed at ETSI. These test
suites will be used by the members of EP BRAN

to self-test their HIPERLAN/2 products. In addi-
tion, the HIPERLAN/2 Global Forum will use
the conformance specifications as a basis on
which to perform further interoperability testing.

One of the positive side effects of producing test
specifications is that their development, if done
in a timely manner, can give valuable feedback
to the base standards. A classic example of this
is DECT, where the test suite development team
worked very closely with the EP DECT specifi-
cation group as well as with the developers of
real DECT test systems. This activity validated
both the test suites and the relevant DECT stan-
dards.

4.2.1 HIPERLAN/2 Test Architecture
A single-party testing concept is used, which
consists of the following abstract testing func-
tions:

Lower Tester
A Lower Tester (LT) is located in the remote
BRAN H/2 test system. It controls and observes
the behaviour of the Implementation Under Test
(IUT).

RLC ATS
A RLC Abstract Test Suite (ATS) is located in
the remote BRAN H/2 test system.

RCP PCO
The Point of Control and Observation (PCO) for
RLC testing is located at a Service Access Point
(SAP) between the RLC layer and the MAC
layer. All test events at the PCO are specified in
terms of Abstract Service Primitives containing
complete PDU. To avoid the complexity of data
fragmentation and recombination testing, the
SAP is defined below these functions.

Notional UT
No explicit upper tester (UT) exists in the sys-
tem under test. Nevertheless, some specific
actions to cover implicit send events and to
obtain feedback information are necessary for
the need of the test procedures. A black box
covering these requirements is used in the SUT
as a notional UT according to ISO 9646. This
notional UT is part of the test system.

4.2.2 Producing Test Specifications
A core set of test cases, concentrating on fea-
tures critical to interoperability, were developed
manually. The HMSCs and MSCs provided
valuable and precise input to the development
of these test specifications. The HMSCs gave a
good framework for defining groups of tests,
while the MSCs were useful in providing the
main flows for individual test purposes, often
clarifying difficult parts of the base standard.
For complex parts of the behaviour, also the

Figure 5 Test architecture
for RLC

RCP PCO

RLC
(ATS)

DLC/MAC

PHY

Lower Tester

RLC
(IUT)

ARQ

DLC/MAC

PHY

SUT

Notional UT

RCP PCO

RLC
(ATS)

DLC/MAC

PHY

Lower Tester

RLC
(IUT)

ARQ

DLC/MAC

PHY

SUT

Notional UT

119Telektronikk 4.2000

SDL specification was consulted during manual
test specification. In all, approximately 160 test
purposes with corresponding test cases written
in TTCN were produced (80 for mobile terminal
(MT) side, 80 for the access point (AP) side).

In parallel, the SDL model was used to generate
some additional test cases. This required some
extra detail to be added to the model, but gener-
ally not too much. For the MT side, the tool gen-
erated over 260 individual test cases and a simi-
lar number for the AP side. On analysis it was
seen that in many cases several simple generated
test cases mapped to one more complex test case
manually produced. When this was taken into
account, it was found that 44 of the generated
test cases mapped exactly to the manual test
cases, and 80 new test cases, not specified manu-
ally, were created. Again, similar figures were
found for the AP side. At this stage it is too early
to say if the generated test cases are of the same
quality as the manually produced test cases, but
the results look promising. The generated test
cases will be included as an informative annex in
the testing standard when it is finally published.

This work also provided a useful side effect by
validating the SDL model at the same time. Use-
ful feedback was provided to the SDL team from
the testing activity.

5 Conclusions
On the whole, experience showed that the use of
these techniques led to better quality in the rele-
vant standards, for both the base standards and
the testing standards. Early feedback from
implementers indicates this to be true in
the product development process, as well.

While development of the models took a signi-
ficant amount of commitment and effort, their
production did not delay delivery of the stan-
dard. Experience shows that it is important to
maintain a systematic way of working, where a
good co-operation between the protocol experts
and PEX is vital. While each ETSI project has
its own unique problems and needs, it is ex-
pected that the pragmatic use of methodology,
similar to that applied in HIPERLAN/2, will
continue to play an increasingly important role
in the timely development of high-quality stan-
dards and test specifications. This in turn should
play an important role in ensuring that HIPER-
LAN/2 products will interoperate.

6 Acknowledgements
The authors would like to acknowledge the good
and devoted work of the EP BRAN groups de-
scribed here, and thank the Chairman of EP
BRAN Mr Jamshid Khun-Jush for supporting
the publication of this paper.

References
1 ITU-T. Languages for Telecommunication

Applications – Specification and Description
Language (SDL-2000). Geneva, ITU, 1999.
(ITU-T Recommendation Z.100 (11/99)).

2 ITU-T. Information technology – Abstract
Syntax Notation One (ASN.1): Specification
of basic notation. Geneva, 1998. (ITU-T
Recommendation X.680 (1997). ISO/IEC
8824-1:1998.)

3 ITU-T. Information technology – Abstract
Syntax Notation One (ASN.1): Information
object specification. Geneva, 1998. (ITU-T
Recommendation X.681 (1997). ISO/IEC
8824-2:1998.)

4 ITU-T. Information technology – Abstract
Syntax Notation One (ASN.1): Constraint
specification. Geneva, 1998. (ITU-T Recom-
mendation X.682 (1997). ISO/IEC 8824-
3:1998.)

5 ITU-T. Information technology – Abstract
Syntax Notation One (ASN.1): Parameteri-
sation of ASN.1 specifications. Geneva,
1998. (ITU-T Recommendation X.683
(1997). ISO/IEC 8824-4:1998.)

6 ITU-T. Languages for Telecommunication
Applications – Message Sequence Chart
(MSC). Geneva, ITU, 1999. (ITU-T Recom-
mendation Z.120 (11/99).)

7 Information technology – Open systems
interconnection – Conformance testing
methodology and framework – Part 3 : The
tree and tabular combined notation. Geneva,
1998. (ISO/IEC 9646-3:1998 (ITU-T Rec.
X.291, ETSI TR 101 666).)

8 Larmouth, J. ASN.1 Complete. Morgan
Kaufmann, 1999. ISBN 0-12233-435-3.
(http://www.oss.com/asn1/larmouth.html)

9 Dubuisson, O. ASN.1 – Communication
between heterogeneous systems. Morgan
Kaufmann, 2000. ISBN 0-12-6333361-0.
(http://asn1.elibel.tm.fr)

Telektronikk 4.2000

1 Introduction
One of the positioning features of SDL, and
possibly the main reason for its adoption by an
increasing number of users outside the tradi-
tional telecom domain, is the ease in which SDL
models can be transformed to a wide range of
popular programming languages. From the early
days where such transformations were done
manually, to the present situation with good tool
support for automated transformations, the trans-
formation from a formal model in SDL to an
actual system running on a computer has be-
come relatively short and well paved.

Newcomers to the SDL world quickly adapt to
the state-of-the-art of the SDL CASE tools that
are available. Given good tools users can experi-
ence the true benefits of design-oriented devel-
opment. These benefits include an executable
model of a system, enabling simulation at differ-
ent levels of granularity, and intuitive traces of
the system’s actual or intended behaviour ex-
pressed in Message Sequence Charts. Advanced
model checking facilities are available, and a
fairly straightforward means of generating im-
plementations both for host and target. All this
can be achieved while maintaining much of the
tool functionality even in the target implementa-
tion environment.

In the earlier days of SDL, hand coding from
specifications (e.g. protocol standards) and sys-
tem designs was commonplace. Engineers found
practical solutions to the manual transformation
from SDL to running systems, and reported good
results, such as fewer errors and easier mainte-
nance. Despite the manual work involved, the
implementation process was efficient, and typi-
cally counted for less than 30 % of the total de-
velopment effort, testing included. Many prod-
ucts where developed this way, and resulted in
an increase in the number of SDL users. Since
the end of the 1980s this manual coding scheme
has increasingly been replaced with automatic
generation of code by tools.

SDL encourages the translational approach1) to
design, as opposed to the elaborational approach
favoured by methods like Booch and OMT, and
which to a certain degree is still true of many
UML methods. The benefits of a translational
approach with automatic code generation are
obvious and imminent:

• The SDL system and the implementation are
by nature consistent, which was often not the
case with manual coding from informal SDL;

• Systems can to a large extent be maintained
solely on the SDL level, keeping complicated
behaviour expressed in a form more easily
understood by humans (i.e. MSC and SDL),
in contrast to machine-friendly programming
languages (e.g. C++, Java, Chill, etc.).

In this article we shall dwell slightly on these
translation issues, that is, how the SDL primi-
tives can be turned into software running on
hardware. Newcomers to SDL and automated
program generation often consider such issues
uninteresting, trusting tool support to cater for
the technicalities involved. And while the latter
attitude generally speaking is viable, some
words about the transformation from the ideal

Implementing from SDL
R I C H A R D S A N D E R S

SDL is rated as a fine modelling language by researchers and industry alike. But can it
be used to derive efficient implementations? This article sheds light on some of the issues
involved.

Richard Sanders (41) is
Research Scientist at SINTEF
Telecom and Informatics, and
lecturer at the Norwegian Uni-
versity of Science and Technol-
ogy (NTNU), from which he
graduated in 1984. He has pre-
viously worked as a consultant
with CAP Gemini and as a soft-
ware designer and manager at
Stento, developing intercom sys-
tems and participating in the
SISU project. He joined SINTEF
in 1995, and helps introduce
new development methods in
companies, holds courses and
carries out research in the field
of system development method-
ologies. He is currently under-
taking a PhD at the Institute of
Telematics at NTNU.

richard.sanders
@informatics.sintef.no

Design orientation

Design orientation is characterised by a

development process where systems are

understood and maintained mainly in terms

of abstract design descriptions, e.g. in SDL

and MSC. This is considered to be a more

mature process than Implementation orienta-

tion, where the actual programming code is

the only true description of the system, and

any design models that exist act as illustra-

tions only. The step up from Design orienta-

tion is Property orientation, where the focus

is on desired properties.

1) The translational approach involves transformation between different models at different levels of
detail, e.g. from an implementation-independent model in SDL to code in C++. This in contrast to
the elaborational approach, which is distinguished by re-working and adding details into models as
you progress down the development life cycle, until the model is to some extent complete.

120

121Telektronikk 4.2000

world of formal definition techniques to the
accidental world of programming languages
and computers can be worthwhile, since many
implementation choices are available. Indeed,
knowing and controlling them is crucial for any-
one needing to remove bottlenecks and optimise
performance. This activity is here called Imple-
mentation Design.

2 The Ideal World of SDL
SDL is a language with an ideal view of the
world. It is based on the concept of finite state
machines communicating via asynchronous3)

messages. The underlying SDL machine of each
process contains a single FIFO queue of infinite

length where all signals to the process arrive.
SDL processes consume one signal at a time
from the FIFO queue, and perform a transition
on that signal. Transitions take an “insignificant”
amount of time, and run to completion once they
are started. Note that processes operate in paral-
lel, so the transitions of many processes may run
at the same time. All data belong to processes4),
and are described by abstract data types of possi-
bly infinite range. SDL channels are secure;
SDL signals never disappear in a signal trans-
mission.

Additional SDL constructs include:

Figure 1 Implementation
descriptions illustrate the

coupling between functional
design and implementation

design2)

(+): Central hardware

BLOCK TYPE LocalStation 1(1)

Panel

LSControl

DOOR

e

[(out)]

CE

[(inp)] [(out)] [(inp)]

CU

[(validity)]

C

[(Code)] [(validity)] [(Code)]

SS TYPE General

(*):
Application

Message
routing

(*):
Datacomm.

(*):
In / Out

(*):
Application
Operating

system
Error

handling

Communi-
cation

network

field bus

Note: Operating system and Error handlling
interface to all other blocks.

P1

D

[(validity)]

[(Code)]

[opened, closed]

[open, close]

(*):
Controlled

process

Local
computer

<1>

field bus

Local
computer

<1>

Commu-
nication
network

Terminals

<1> Execute SS TYPE General

(+): Local hardware

 HS TYPE General hardware

(*):
Process
Interface

SDL design

Software design

Hardware design

implement

implement

execute

represent

represent

Hardware

Software

2) This figure uses the SOON notation [1] to depict Software design and Hardware design. See also
[4, 8, 9, 10]. See [11] to see to what extent UML stereotypes can model the same as SOON.

3) A kind of synchronous communication is supported in remote procedure calls.
4) SDL 2000 now allows data to belong to blocks, though access to the data is controlled by the state

machine associated with the block.

122 Telektronikk 4.2000

• Process identity values (PId) used to identify
communicating peers (no specific implemen-
tation is presumed by SDL);

• Priority input;

• Enabling conditions;

• Remote procedure calls;

• A save queue for signals to be treated after
the next change of state;

• Importing and exporting variables from/to
other process;

• Timers that can be started or stopped, and that
signal timeouts in the form of signals in the
FIFO queue. SDL recognises time ticks, but
does not define the interval between two ticks.

For space and simplicity, these and other SDL
mechanisms are not elaborated any further in
this article. An overview of the interior of an
SDL state machine is shown in Figure 2, see
also the paper by Rick Reed on SDL-2000 for
new millennium systems in this issue.

3 The Not-So-Ideal Real World
SDL is different from the real world in many
respects. Real systems have finite resources
like limited queue lengths and maximum value
ranges for data variables, and programs on a
single computer do not run truly parallel. Real
systems are subject to errors, e.g. the malfunc-
tioning of hardware, and the corruption of sig-

nals on unreliable communication paths. In addi-
tion there may be different synchronisation
needs between a system and its environment
than the asynchronous, time-independent world
of SDL messages.

There is a design gap between SDL and the
world of programming languages [1]:

• Concurrency. Sequential programming lan-
guages like C or Java give no support to the
concurrency of SDL. Some languages like
CHILL and ADA support concurrency but
do so differently from SDL.

• Timing. Very few programming languages
support time at all. SDL-like timing is not
directly supported by any language, not even
by CHILL.

• Communication. SDL-like signal communi-
cation is not directly supported by any pro-
gramming language.

• Sequential behaviour. An SDL process graph
specifies state-transition behaviour in the fash-
ion of an extended finite state machine. Pro-
gramming languages specify action se-
quences.

• Data. SDL data are abstract and possibly in-
finite. The implementation in a programming
language has to be concrete and finite.

But many of these differences can be overcome
with affordable measures. Some of these mea-
sures and techniques will be introduced in the
following sections.

3.1 Implementing Signal Transfer
Message transfer in the ideal SDL world can
most generally be implemented using an asyn-
chronous messaging technique, or in special

Figure 2 The SDL machine

Implementation design

The goal of Implementation Design is to define the mapping between the

abstract system defined in SDL, and a concrete system made up of hardware

and software components. [1]

input port finite state machine
input signals

output signals

timers

variables

signal name

save queue signal save

timeouts

input signal
parameters

timer
operations

data
operations

output signal
parameters

123Telektronikk 4.2000

cases as continuous values, or procedure calls
or method calls in the programming language.

3.1.1 Signals Implemented as
Method Calls

Using method or procedure calls, the signal
sending is implemented by calling a method
implemented in the receiving process. That
method contains the transition of the receiving
process. This synchronous technique is the most
time efficient, but can only be used in special
cases where the following conditions are satis-
fied [1]:

• The SDL behaviour must have the nature of a
procedure call tree (e.g. A calls C who calls E,
who returns to C, who calls F, who returns to
C, who returns to A; see Figure 3).

• Only the SDL process at the root of the tree
can receive signals from the environment or
run SDL timers (process P1 in the example).

• Any response modelled as SDL signals must
be implemented as return values in the proce-
dure call, which limits the number of return
signals to exactly one, which must be the last
SDL action in the transition of the called pro-
cess.

• The maximum processing time for any such
call tree should not exceed the arriving rate
of external signals to the root process.

This implementation scheme5) is time and space
efficient in software, since it relies on some of
the most basic primitives of programming lan-
guages and processors (e.g. using stack regis-
ters). The scheme is a common technique used
for message calls in traditional designs of infor-
mation systems modelled in e.g. OMT or UML.
It implies synchronous communication seman-
tics, and has inherent limitations that make it
inappropriate for communication structures that
form a network. The scheme is only viable when
the mentioned set of criteria is fulfilled. These
criteria are seldom present in reactive real-time
systems, hence schemes involving asynchronous
message communication and flexible scheduling
are used.

The method call scheme can be used with advan-
tage in parts of an SDL design where these crite-
ria are satisfied, while other parts use the more
general implementation technique of buffered
messaging mentioned below. Optimisation per-
formed during manual coding typically involved

changing the SDL model so that these criteria
were met within components faced with high
performance requirements. Commercial tools
for automatic code generation do not seem to
address this issue very well (although the criteria
analysis could well be performed by the tools).

3.1.2 Signals Implemented by
Message Buffers

As stated above, the most general implementa-
tion of message sending involves buffered com-
munication. This separates communication from
activation, but requires additional memory (the
buffers) and processing (buffer handling) com-
pared to procedure calls. A very general app-
roach involving parallel software processes (here
denoted Sender and Receiver) that communicate
using a general semaphore S is shown in Figure
4 [1].

The infinite message queues of SDL do not exist
in the real world, but by employing techniques
like semaphores providing back pressure, or ex-
ception handling at buffer overflow, the sending
processes may be temporarily suspended. Then
the receiving process can consume a signal from
the limited sized input buffer, thus making room
for additional messages. Protection using sema-
phores is shown in Figure 4, where Sender must
fetch a free buffer from the freepool F prior to

[a,b] P1 [c,d] P2 [e,f] P3
SDL

UML
classes

P1

state

a(), b()

P2

state

c(), d()

P1

state

e(), f()

Implement Implement Implement

Pseudo code of class P2:
int state;
void P2_c () {

switch (state)
{ case 1: P3_e (); P3_f (); State: = 2; return:

case 2:; return;}
}

}

void P2_d () {
switch (state)
{ case 1: P3_f (); State: = 3; return:

case 2:; return;}
}

}

Figure 3 Implementing com-
munication with method calls

5) Note that this technique departs from the SDL semantics of run-to-completion for transitions that
applies between SDL processes.

124 Telektronikk 4.2000

sending a message to Receiver via S. Receiver
will return the buffer to the freepool F after con-
suming the message. S and F are general sema-
phores containing queues, which are typically
well supported by operating system kernels.

3.1.3 Optimising Parameter Passing
A final remark on the implementation of signal
transfer is concerned with the parameters of SDL
signals. In SDL, a process can only get hold of
the input parameters by copying them into pro-
cess variables. Likewise, parameters have to be
explicitly set in output signals. There is no built-
in mechanism to forward a received signal to
some other receiver, complete with parameters.

This typically leads to a lot of copying in and out
of parameters, and large amounts of process data
required to hold values that are of no interest to
the process as such. In designs of protocol stacks,
this is particularly apparent. Many newcomers to
SDL react to this, and view it as a waste of time
and space.

However, this need not be the case in the imple-
mentation. An analysis of the SDL can show that
parameters are e.g. forwarded largely unchanged,
and an implementation can e.g. reuse the mes-
sage buffer without returning it to the freepool in
Figure 4. Or analysis can reveal that process data
are only used to hold values for the duration of a
transition, and never longer. In an implementa-
tion, such process data need not be stored in non-
volatile memory, but instead placed on the stack.
These are examples of optimisations that are
common-place in good compilers, and should
be found for SDL compilers too. See also [2].

Note, though, that there are limits to what a gen-
eral code generator can analyse; if a process
calls external code, the code generator may not
be able to perform a complete analysis. If so,
other mechanisms must be used, e.g. special
annotation or commenting of signals and data.

3.2 Implementing SDL Processes
The implementation scheme most close to the
ideal SDL world is realising each SDL process

Figure 5 UML deployment
diagrams used to express soft-
ware structure (from Telelogic
deployment editor)

message

wait
Sender

message

send
S:gs Receiver

buffer

send

buffer

wait
F:gs

Legend:

software process

procedure

data

pointer

Figure 4 Concurrent buffered
communication

process B

Composite
Aggregation

Node

Compo-
nent

Thread

Object
(reference
to an SDL
entity)

(no thread is specified,
implying a single thread
for the component)

Association

125Telektronikk 4.2000

instance on its own hardware processor. Thus
every process runs truly parallel. This is seldom
feasible, and the most common technique is to
collect a number of SDL process instances in
one software process (also known as operating
system process or task), and have a number of
such software processes running at different
levels of priority.

SDL processes are typically allocated to high
priority tasks (like timing and I/O processes),
medium priority tasks (the application pro-
cesses), and low priority tasks (SDL processes
that perform background jobs performing statis-
tics, monitoring, logging and error reporting).

This type of software design decision is outside
the scope of SDL, and cannot be formally cap-
tured in the SDL model. Instead, additional
descriptions are necessary, see Figure 1. Design
methodologies like TIMe [3, 16] treat imple-
mentation design as a topic of its own, and SDL
tools typically have additional functionality to
help such grouping and code distribution in the
program generation process. An example is the
deployment editor in Telelogic TAU, see Figure
5. See also the paper by Philippe Leblanc,
Anders Ek and Thomas Hjelm on Telelogic
SDL and MSC Tool Families in this issue.

3.3 Implementing State
Transition Diagrams

The term process has two distinct meanings; an
SDL process is a Finite State Machine, while a
software process (also known as operating sys-
tem process or task) is a unit of scheduling and
priority in a running software system. One of
the important decisions during Implementation
design is deciding the mapping from SDL pro-
cess to software process; this can be decisive
for the properties of the resulting system.

The state diagrams of SDL that model the actual
behaviour of the SDL process can be imple-
mented in a number of ways, with various re-
sults regarding execution time, space required,
and support for range of SDL constructs, see [1].

The state-oriented method uses the CPU’s pro-
gram counter to store the state of the SDL pro-
cess, with GOTO jumps for state changes. On
the one hand, this scheme saves time and space
in the implemented software process, but on the
other hand wastes time and space by requiring
more software processes, since it limits the map-
ping to a 1:1 relationship between SDL process
instances and software process instances.

The most general scheme is to use a table form
of the state diagram combined with common
programming language constructs. The current
state of each process is typically stored in a pro-
cess variable along with the process data, and
the state diagrams are stored in table rows for
fast look-up at transition time. Multiple instances
of a single process type or of different process
types can be grouped together to run in the same
software process, providing a N:1 mapping.

3.4 Implementing Abstract Data
Types – and Adding Legacy Code

Not all detailed working of a system deserves
to be visible at the SDL level. Examples include
aspects like device drivers, complex algorithms
and complex operations on data. The SDL way
of concealing some of this detail is by extended
use of operations on user defined data types.
Data types are defined on the SDL level, typi-
cally by building upon the predefined SDL data
types, or by making new types. New data types
are defined from the predefined types, e.g. by
restricting the value range, thereby providing a
mapping to programming language constructs.

syntype BYTE integer constants (0:255);

For example, the ideally infinite range integer of
SDL can be used to make an 8-bit BYTE type:

The BYTE variables can then easily be mapped
to e.g. “short unsigned int” in C, for a given
compiler for a given processor.

SDL-96 [4] allows operations on data to be
described with axioms. Axioms are not construc-
tive, and are seldom used in practice6). Instead,
operations are defined by their signature at the
SDL level, and are implemented in the program-
ming languages of your choice. An example of
this is given in Figure 6.

Hand coding SDL operations is one method
of interfacing manually written or legacy code
into the SDL world. Another way of interfacing
legacy code is by concealing a legacy part in
dedicated SDL processes, e.g. a database system
or a GUI. SDL tool vendors provide good sup-
port for such code integration, although reverse
engineering is not yet generally available from
commercial CASE tools7) (many contend that
reverse engineering is not applicable to SDL
systems engineering). One of the benefits of

6) Axioms were removed from the SDL-2000 standard [9].
7) Work within reverse engineering to SDL is currently in progress, e.g. at the Software Engineering

Institute at Moscow [12].

126 Telektronikk 4.2000

interfacing legacy code in dedicated SDL pro-
cesses, is that this maintains a loose coupling
between the SDL part and the legacy part.

3.5 SDL Runtime Support
A common technique employed when imple-
menting SDL systems is introducing a layer of
software called the SDL runtime support be-
tween the application processes and the operat-
ing system that runs on the hardware. Novice
SDL users may not be aware of this layer, since
program generation tools typically offer code
generation to both naked processors and a range
of operating system kernels like PSOS, VRTX,
etc. The SDL runtime support implements many
concepts of the SDL machine (see Figure 2),

with some limitations due to the nature of the
real world, thereby making the task of imple-
menting the actual SDL processes much simpler,
see Figure 7 [1].

4 Support for Program Gener-
ation from CASE Tools

Generally speaking, the commercially available
tools give good support for program generation,
and the common SDL application developer
does not need to spend much time analysing
what schemes are used in the program genera-
tion. The dedicated application developer proba-
bly never needs to read the generated code,
which may be of interest during initial integra-
tion testing only. The resulting programming

newtype dir_no /* Directory number */

struct
digits integer; /* Number dialled */
no_digits integer; /* Number of digits */

adding
operators

append_digit : dir_no, integer -> dir_no;
endnewtype;

dir_no append_digit(dir_no dno, int digit)
{

if ((digit>=0) && (digit<=9))
{

dno.digits=dno.digits * 10 + digit;
dno.no_digits ++;

} else {
error(PARAM_OUT_RANGE, digit); }

return (dno);
}

Figure 6 Abstract data type
in SDL-96 with corresponding
C code for an operator

BLOCK Application

A

Advantages of SDL rutime systems:

• Simple transformation from SDL to application,
• Same application code on different platforms,

e.g on host and target;

• Virtual SDL machine implements the SDL
concepts;

• SDL support exists in host version and
target version;

• Simple interface to operating systems;

• Large structural similarities between
different executions, and between
simulation and production code.

Application

B C

D

SDL runtime
support

Operating
system

Operating
system

Host
computer

Target
computer

Coding for SDL runtime support

virtual SDL machine

virtual concurrent
computer

(e.g. C++,Java)

different
execution
platforms

Figure 7 Layered implementation using an SDL runtime support

127Telektronikk 4.2000

code can in general be untouched by human
hand – and unread by human eye.

But the same does not apply to the necessary
few who are responsible for mapping the ideal
design onto the real world. And this is not al-
ways a trivial task, as this article hints at. To get
optimised code for a new product, blood, sweat
and tears may still be required. And although
tool vendors have and are investing considerable
effort in facilitating the program generation pro-
cess (a fact that is reflected in the considerable
rise in price of the toolkit when program genera-
tion is added), there is still much left to be
desired.

It is not yet the case that the implementation
designer can choose different implementation
techniques for different SDL components in a
system, e.g. to optimise for space in one in-
stance, and size in another. Or that implementa-
tion speed and size are automatically adjusted
depending on which SDL constructs are used
in an actual design.

SINTEF has been working with program genera-
tion for over 15 years, and has developed a very
flexible program generator named ProgGen [5,
6]. ProgGen takes as input the textual version of
an SDL design, and outputs code in a variety of
formats and programming languages, depending
on the skeleton files defined by the implementa-
tion design. This tool has recently been extended
with the capability of selecting different map-
ping strategies for different parts of an SDL

design, according to implementation design
decisions fed into the program generator in a
textual form [7], see Figure 8. Although Prog-
Gen is not a fully-fledged tool (e.g. it currently
only supports SDL-88 and SDL-92 [8]), it shows
what can be obtained from using flexible tools.

5 Consequences of Program
Generation to the Develop-
ment Process

Working in a design-oriented paradigm, users
report higher quality and higher productivity,
especially when maintaining or enhancing sys-
tems designed using SDL. Many companies
have over a decade of experience with automatic
code generation from SDL, and are constantly
increasing the penetration of SDL in their re-
active real-time system designs.

Industry typically reports that errors delivered
to the market are reduced by at least 50 % com-
pared to a pre-SDL development process, and
that an increased productivity of 20–30 % in
software design has been measured8). Even
higher yields in the area of test generation and
execution can be expected when TTCN9) is
introduced. The added cost of investing in a new
development process is typically earned within
the first project, with subsequent projects reap-
ing the full benefits. Developers can more easily
move between projects, projects become less
person-dependent, and project progress is easier
to define and monitor (less of the “90 % fin-
ished” syndrome). This is good news for project
leaders, management and designers alike.

ProgGen

Parser for
the Design

model

Abstract model
for the Implemen-

tation model

Unparser

Implementation
model

Target
code

Parser for
the SDL
model

Abstract model
for the Implemen-

tation model
SDL model

Transformation
modelData Executable code

Legend:

8) Data from the Norwegian SISU project in 1989 – 1996 [13]. CASE vendors boast of even higher
earnings [14].

9) Test suites in Tree and Tabular Combined Notation (TTCN) can be semi-automatically derived
from SDL and MSC models [15].

Figure 8 ProgGen’s architecture

128 Telektronikk 4.2000

Some words of caution should be mentioned,
though. One direct consequence of automatic
code generation is that SDL is used much as a
graphical programming language, substituting
textual languages such as C++ and Java10). SDL
was initially not designed to be a programming
language, and has until SDL-2000 left much to
be desired in that respect. Many constructs
expected by programmers have been absent or
were cumbersome, e.g. expressing behavioural
loops11).

The CASE tools supporting inline-programming
directives in native programming languages
have introduced another drawback. It is easy to
understand the motivation for inline code, since
it simplifies the task of generating complete
applications in some chosen programming lan-
guage. But it defies the objective of building
implementation-independent models; one can no
longer change implementation language without
going through the whole model and altering the
inline code.

One aspect to be kept in mind by SDL designers
wanting to generate code automatically, is the
need to be formal. If one has the habit of using
SDL slightly informally, and wants to start gen-
erating code, the need to be precise and detailed
becomes apparent. Loose ends must be tied up,
and informal use of SDL constructs revised.
These revisions also apply when simulation and
formal analysis of SDL system is performed,
so this extra work is not a weighty argument
against code generation, since simulation gives
a high return on investment. There are reports
from industry that an additional 30 % effort is
required to fully formalise SDL designs, com-
pared to designs in informal SDL. This increase

in design effort, though, is quickly earned in the
later maintenance and enhancement phases.

Note that some SDL tools support the simulation
of informal SDL, a feature that is attractive for
high level designs.

Some companies evaluating automated code
generation have become aware of the penalty
involved in the way of memory requirements
and processing overhead introduced by some of
the implementation platforms. Although these
requirements vary depending on e.g. the level of
debugging requested, and the fact that different
target operating environments are supported by
CASE tools12), one can still find examples of
manual coding that are more efficient.

With manual coding you can take advantage of
your knowledge of the environment, using short-
cuts to save time and space. This can work fine,
as long as the assumptions are valid and are
understood. One can single out particularly
demanding parts to be hand coded or realised
in hardware, while other parts are generated
automatically.

There is a strong pressure on tool vendors to
improve the code optimisations, like there used
to be when 3rd generation programming lan-
guages were introduced. Programmers now gen-
erally tend to rely on the quality of compilers,
and do not write assembly code by hand unless
they really have to. Hopefully, the same will
soon apply for SDL code generation, if it does
not apply already.

6 Impact of SDL 2000
Many of the new features added in the 2000 ver-
sion of SDL [9] have taken into account the fact
that SDL has become popular as a graphical pro-
gramming language. For instance, it is now pos-
sible to introduce temporary data in transitions,
that easily can be implemented as stack vari-
ables, thereby limiting the static memory
requirements of an SDL process implementa-
tion; only data with a life span longer than a
transition needs to be stored in persistent memory.

Exception handling, similar to what you find in
C++ and Java (and CORBA), is defined in SDL

´inline code´
/*#CODE
jobdataptr->int1 =
(JOBDT*) init (
&(pr_ext->param1));
*/

Figure 9 Example of inline
code in an SDL process graph

10)Interestingly enough, designers of digital hardware have moved in the opposite direction. Textual
hardware description languages like VHDL and Verilog substitute the earlier graphical hardware
expressions of the schematics and block diagrams. In general the goal is to strike a good balance
between pictures and words. SDL is possibly close to this goal within its realm of description.

11)Many of the changes to SDL introduced in SDL 2000 were motivated by the current use of SDL as
a programming language, and has resulted in many requested programming features, like loop
constructs and stack variables (see later).

12)E.g. C-micro from Telelogic.

129Telektronikk 4.2000

2000. This is depicted in special graphics in the
process graphs.

The action language introduced in SDL 2000
supports typical programming constructs such as
loops and conditions, features which “SDL pro-
grammers” have missed. This results in a textual
representation of what previously was space-
consuming graphics, or was hidden in operators
or, worse yet, as inline code in some program-
ming language, see Figure 10. The action lan-
guage should remove the need for much of the
inline code that is all too often found in SDL
designs, and should bring SDL design back
toward the implementation-independent track
where it originally was and should be.

We conclude that SDL is moving in a direction
that is favourable for those wanting to derive
their code from SDL, and who wish to maintain
systems at the SDL level. It is possible to com-
bine designs in SDL with models in UML that
cover other system aspects (like database sys-
tems and GUI). Tool vendors are working hard
to implement the aspects of SDL 2000 most
needed by SDL users, especially in the field of
program generation. This, along with the other
aspects of SDL treated in other articles in this
issue, will continue to increase the adoption of
SDL in product development world-wide.

7 References
1 Bræk, R, Haugen, Ø. Engineering Real Time

Systems. Hemel Hempstead, Prentice Hall
International, 1993.

2 Henke, R, König, H, Andreas Mitschele-
Thiel, A. Derivation of Efficient Implemen-
tations from SDL Specifications employing
Data Referencing, Integrated Packet Fram-
ing and Activity Threads. In: SDL’97. Time
for Testing, Proceedings of the Eighth SDL
Forum, 397–414. Amsterdam, Elsevier Sci-
ence, 1997.

3 Bræk, R et al. TIMe : The Integrated
Method. 2000, October 12 [online]. – URL:
www.sintef.no/time.

4 ITU-T. CCITT Specification and Description
Language. Geneva, ITU-T, 1996. (Recom-
mendation Z.100 (SDL’96).)

5 Floch, J. Supporting evolution and mainte-
nance by using a flexible automatic code
generator. In: Proceedings of ICSE-17 – 17th

International Conference on Software Engi-
neering, Seattle, 1995.

6 The ProgGen program generator. 2000,
October 12 [online]. – URL: www.inform-
atics.sintef.no/projects/proggen/.

7 Johansen, U. SEP sluttrapport : Designstyrt
oversetter fra SDL. Trondheim, SINTEF,
1999. (Sintef report STF40 A99040.) (ISBN
82-14-01729-7)

8 ITU-T. CCITT Specification and Description
Language. Geneva, ITU-T, 1994. (Recom-
mendation Z.100 (SDL’92).)

9 ITU-T. CCITT Specification and Description
Language. Geneva, ITU-T, 1999. (Recom-
mendation Z.100 (11/99).)

10 ITU-T. SDL Methodology Guidelines.
Geneva, ITU-T, 1993. (Recommendation
Z.100 (03/93) Appendix I.)

11 Floch, J. Using UML for architectural
design of SDL systems. Trondheim, SINTEF,
2000. (SINTEF report STF 40 A00009.)

12 Mansurov, N, Probert, R L. Dynamic sce-
nario-based approach to re-engineering of
legacy telecommunication software. In:
SDL’99 The Next Millennium, Proceedings
of the Ninth SDL Forum. Amsterdam, Else-
vier Science, 1999.

13 The SISU project. 2000, October 12 [online].
– URL: www.sintef.no/sisu.

14 Crossing the fjord. Signals. Malmø, Tele-
logic, 1999. (Telelogic Newsletter No 2.)
(www.telelogic.se)

15 Kerbrat, A, Jéron, T, Groz, R. Automated
test generation from SDL specifications. In:
SDL’99 The Next Millennium, Proceedings
of the Ninth SDL Forum. Amsterdam, Else-
vier Science, 1999.

16 Bræk, R et al. Quality by construction exem-
plified by TIMe – The Integrated Methodol-
ogy. Telektronikk, 95 (1), 73–82, 1999.

dcl i1, i2 integer;
i1 : = (x / 5) + 1;
i2 : = i1 * 2:

• • •
{...}

...

Figure 10 Textual tasks in
SDL 2000

130 Telektronikk 4.2000

Introduction
When formal description techniques (FDTs)
such as the Specification and Description Lan-
guage SDL [17] were developed for computer
communication systems, the idea of precise and
rigorous specification were the driving force.
Prose specifications of complex technical mat-
ters are not always sufficient to guarantee inter-
working of products from different vendors.
Also, hidden ambiguities are sometimes only
discovered after the respective systems have
been put into operation. Errors of this kind tend
to be very expensive. FDTs have promised some
help in this matter, because they make possible
rigor, precision, completeness, and so on.

However, it did not take long before these
promises proved to be only partly true. While
FDTs provide the basis for rigor, precision and
completeness, they do not guarantee these quali-
ties. In fact, using FDTs is very similar to pro-
gramming, from which it is known that errors
occur easily. Hence, validation techniques are
very important and will be explained in the sec-
ond section of this paper.

Even if we have a perfectly valid specification,
its value is somehow limited if we cannot relate
it formally to an implementation. In some cases,
this relationship comes for free: If the specifica-
tion is directly translated into an executable
implementation without any manual steps. Un-
fortunately, this is not the common case. Usu-
ally, the SDL specification abstracts from a
number of details which later appear in an im-
plementation. These abstractions are filled with
life during the design and implementation pro-
cess. That is of course a source for errors. We
will therefore devote the third section of this
paper to the aspect of conformance testing, i.e.
to the question on how to show that an imple-
mentation really conforms to a specification.

We conclude this paper with a summary and
a view on current research activities.

Validation
Specifying a system with a formal specification
language like SDL [16] is in some respects simi-
lar to implementing a system with an ordinary
programming language. In both cases, the result
will probably contain errors. Therefore, formal
specifications as well as system implementations
have to be tested in some way. However,
although it is basically the same problem, the
testing of an implementation is different from
the testing of a formal specification.

On a terminology level, implementation testing
is also called verification and it involves activi-
ties concerning the question “Am I building the
system right?”. In contrast, validation deals with
the question “Did I build the right system?” [21].

In the domain of designing and testing computer
protocols using formal methods, both terms are
used in a mixed way. This is due to the fact that
a strict distinction of these two testing terms is
not always possible.

Hence, according to [12], the term validation is
used to describe all activities “used to check that
the formal specification itself is logically consis-
tent”.

Another difference between the testing of an
implementation and a specification is the under-
lying machine. The model specified by the for-
mal language is usually executed on an abstract
machine with potentially infinite resources. Fur-
thermore, several views of one system may be
specified using different models or even differ-
ent specification languages. This is in contrast to
the testing of an implementation module, which
comprises all the different models and runs on a
physical machine.

There are several methods to check the consis-
tency of a formal specification. Static techniques
analyse the formal specification without execut-
ing the model described by the specification.
Dynamic analysis techniques build an execut-
able model from the formal specification in
order to validate it.

Validation and Testing
D I E T E R H O G R E F E , B E A T K O C H A N D H E L M U T N E U K I R C H E N

Dieter Hogrefe (42) graduated
with a diploma degree in Com-
puter Science and Mathematics
from the University of Hannover
where he later received his PhD.
His research activities are
directed towards Computer Net-
works and Software Engineer-
ing. He has published numerous
papers and two books on analy-
sis, simulation and testing of for-
mally specified communication
systems. He has worked for
SIEMENS research centre, the
University of Hamburg, and the
University of Berne. Since 1996
he has been director of the
Telematics Institute in Lübeck
and full professor at the Univer-
sity of Lübeck.

hogrefe@itm.mu-luebeck.de

Beat Koch (35) studied Com-
puter Science at the University
of Berne, Switzerland. After his
graduation in 1994, he worked
as a software engineer in indus-
try. Since 1996, he has been a
research assistant at the Intitute
for Telematics of the Medical
University in Lübeck, Germany.
His research focuses on auto-
matic test generation and he is
one of the developers of Tele-
logic’s Autolink tool. Currently,
he is finishing his PhD thesis on
“Test-purpose-based Test Gen-
eration for Distributed Test
Architectures”.

bkoch@itm.mu-luebeck.de

Use of formal specifications provides the basis for allowing validation of the specification
towards expected behaviour, and it allows testing of an implementation according to the for-
mal specification. This paper introduces and provides an overview of techniques for valida-
tion and testing.

131

Static analysis
Static analysis techniques evaluate a specified
model without executing it. This can be achieved
manually by reviews, inspections or walk-
throughs, and in an automated way by syntax
and semantic analysis.

Depending on the kind of manual static analysis,
the author, other experts or professional inspec-
tors analyse the documents by following a
checklist. Besides general questions regarding
completeness and consistency, such checklists
may contain questions concerning properties
specific to the formal language used for specifi-
cation.

In the domain of automated static analysis, syn-
tax analysis will just check whether the specifi-
cation is in accordance with the rules describing
correct statements in the particular language.
Semantic analysis uncovers the use of variables
without declaration, data-type clashes or refer-
ences to unspecified parts. In general, syntax and
semantic analysis assure that the specified sys-
tem is well-defined, complete and self-consistent
from a language point of view. A system that has
passed these checks is comparable to a program
that has been successfully compiled [11]. How-
ever, these techniques are not powerful enough
to reveal whether the functionality of a system
is correctly specified or not.

Dynamic Analysis
Dynamic analysis techniques execute the model
described by the behavioural parts of the formal
specification. This allows different approaches
of validation. First of all, it is possible to test the
executable model like any other executable pro-
gram. Test scenarios with suites of test cases can
be applied to the model. Comparing the expected
behaviour with the observed behaviour as a result
of a stimulus sent to the system allows validation
of the specification on a black box basis.

A white box driven approach is to explore the
functional behaviour of the model step by step.
During such an exploration, two classes of prop-
erties can be checked [11]: General properties
that apply to nearly any system independent of
the particular requirements. They can be defined
without reference to a particular system. Exam-
ples of such properties are the absence of dead-
locks and livelocks, no reading of variables
before assignment, or range violations. The
second class of properties is system specific
properties. They concern the special dynamic
behaviour of the model depending on user
requirements. By specifying assertions, invari-
ants or other observable conditions which are
particular to the modeled system, a validation
tool can check whether these conditions hold
during the execution of the model.

While the general properties can be checked
automatically, checking the system specific
properties requires an explicit description of the
properties. Making these property descriptions
is usually time consuming and may in turn be
error-prone.

Figure 1 shows the relationship between model,
formal specification and the corresponding im-
plementation.

Simulation Based Validation
The most common dynamic analysis technique
used in practice is based on a simulation-like
state space exploration [12]. Another application
for simulation is performance validation. This
topic concerns non-functional timed properties
of the examined system and is not covered here.

Exploring the state space of a model allows a
white box based validation of the specification.
Starting from the initial state, the executable
transitions leading to successor states can be
calculated. Analysing each visited state with
respect to general and user-defined properties
enables us to validate the specified model. Two
classes of exploration algorithms have to be dis-
tinguished: exhaustive and non-exhaustive
exploration algorithms.

Exhaustive validation performs an analysis of
the complete model. Thus, definite statements
about properties such as the absence of dead-
locks can be made. The most common exhaus-
tive exploration approach builds the reachability
graph of a system by visiting all reachable states.
The visited states in this graph are used during
the exploration to avoid multiple visits of states.
This ensures the termination of the algorithm. A
reachability graph comprises all execution paths
the system is able to perform. Deadlocks, live-
locks or dead code can be discovered in this way.
The state diagram of a small sample system and
the corresponding reachability graph with a sam-
ple execution path is given in Figure 2. Circles
depict states, arrows correspond to transitions.

Figure 1 Relationship between model,
specification and implementation

Formal

Specification

describes
Model

System

Implementation

may be
 automatically
 translated implements

Helmut Neukirchen (29) studied
Computer Science at the Univer-
sity of Technology Aachen with a
focus on distributed systems and
software construction. He gradu-
ated with a diploma degree in
1999. Since January 2000 Hel-
mut Neukirchen has been
research assistant at the Insti-
tute for Telematics at the Medi-
cal University of Lübeck on the
EU project INTERVAL. His main
research interests are formal
methods in specification and
testing of communication and
real time systems.

neukirchen@itm.mu-luebeck.de

Telektronikk 4.2000

132 Telektronikk 4.2000

Unfortunately, this method is only applicable to
small systems. The number of states grows
exponentially with the complexity of a system.
Non-exhaustive exploration algorithms cope
with this state explosion problem by exploring
only parts of a system. Certainly, this method
cannot prove error-freeness for the whole sys-
tem, but experience has shown that specification
errors manifest themselves in many different
states. Therefore, it is not necessary to cover all
execution paths of the system to spot errors. The
problem is to find a sufficient subset of all paths.

One practical technique is to choose a more or
less random subset of depth-bound paths. Most
tools provide a random walk exploration: Transi-
tions to be executed are chosen randomly, yield-
ing a random exploration of the state space [24].
By repeating random walks, the desired cover-
age of the specification is obtained.

A more elaborate non-exhaustive technique is
the bit-state exploration [12]. Each state is en-
coded via a hash function to represent an array
index. In this way, each state identifies a slot in
a hash table used to indicate whether that state
has already been visited or not. This enables
tools to approximate an exhaustive search of
considerably larger systems, because less mem-
ory is needed for each state – instead of storing
visited states completely, just a one-bit slot per
state is needed. Because of the risk of hash value
conflicts, bit-state exploration is nevertheless a
non-exhaustive validation technique.

Independently of these techniques, the number
of states can be reduced by a controlled partial
search. SDL tools like SDT and ObjectGEODE

offer options to let the user limit the state space
which has to be validated. For example, valida-
tion tools can be guided by Message Sequence
Charts (MSC) [15] describing scenarios for the

model under analysis. Such a guidance is a spe-
cialization of the notion of a validation model
[12]. A validation model is a small, formally
specified executable model describing a certain
aspect of the system being validated. The com-
plete system specification is checked against the
validation model.

In the SDL domain, MSCs and SDL-based
observer processes are used to validate a speci-
fication with regard to user-defined properties.
By giving an MSC that describes some desirable
behaviour of the system, the simulator checks
for execution paths satisfying the following
properties: The execution trace must include all
events that exist in the MSC and must not con-
tain any observable event that is not part of the
MSC. The sequence of observable events must
be consistent with the partial ordering of the
events that is defined by the MSC.

Other Validation Techniques
If a system is specified using a more abstract
specification language than SDL, more sophis-
ticated validation techniques can be employed.
Such languages are not widely used in the com-
mercial area, because they differ from the popu-
lar imperative state machine based specification
languages. An example is the µ-calculus which
is based on temporal logic.

An approach well studied in the academic area
is model checking. The idea behind this is to
express states and possible transitions by means
of logical predicates. Thus, questions concerning
reachability can be answered by automatically
solving logical equations. Symbolic model
checking is still based on state exploration, but
algebraic transformations are used and states are
represented symbolically, not explicitly in a
reachability graph. These symbolic logical for-
mulas can be transformed into boolean expres-
sions which in turn can be represented very effi-
ciently by binary decision diagrams (BDDs) [3].
This allows us to explore larger systems [4]. The
Xeve/Estérelle toolkit is an example of a sym-
bolic model checking tool [1]. Another widely
used model checker is the Spin tool [12]. It uses
a partial order reduction technique to cut down
the state explosion. In [19], a study of the inter-
connection of ObjectGEODE with a model
checker is presented.

The Las tool introduces a new validation
approach [7]. Linear programming is used to
prove properties on communicating automata
yielding a polynomial complexity. Linear pro-
gramming is an efficient technique to solve cer-
tain optimization problems. This approach
avoids the construction of the reachable state
space of a model. Instead, it calculates directly
on the formal model whether or not a certain

Figure 2 A state diagram and
its corresponding reachability
graph

execution
 path

(a) State diagram (b) Reachability graph

133Telektronikk 4.2000

property holds by searching an execution path
satisfying the property. The practical value of
this approach is not yet clear and further studies
are necessary.

Testing
Testing is an important aspect of today’s product
development cycle. The complexity of new tele-
communications systems increases constantly;
the amount of time needed for testing and its
cost grow accordingly. In order to reduce time
and cost for testing, research institutes, standard-
ization organizations, tool providers and industry
are actively developing formal methods, lan-
guages and tools for test generation and test
execution. In this section, we will focus on test
generation for software systems.

In the domain of software testing, many cate-
gories are distinguished: Domain, risk, load,
stress, scenario, feature, integration or user test-
ing are just some of the common testing meth-
ods. We will concentrate on conformance test-
ing, where the conformance of a system imple-
mentation (the Implementation Under Test
(IUT)) with regard to a (formal) system specifi-
cation is checked. The Conformance Testing
Methodology and Framework (CTMF) has been
standardized with the ISO/IEC 9646 multipart
standard [13]; it provides the foundations for the
methods and tools discussed here.

Figure 3 shows the relationship between speci-
fication, test suite and implementation. A test
suite consists of a set of test cases. Each test case
describes sequences of signals which are ex-
changed between the tester and the IUT through
Points of Control and Observation (PCO). At
the end of each sequence, one of the three possi-
ble test verdicts pass, inconclusive and fail is
assigned. During test execution, the execution
of each test case should end with a pass verdict.
If this is the case, then a conformance statement
can be made about the implementation.

There are two main problems which have to be
solved in order to get high-quality conformance
test suites: First, a set of test cases has to be
identified which as a whole guarantees a certain
level of conformance. Second, a test suite has to
be generated which contains the information
necessary to derive executable tests.

Test Case Generation
There are two approaches to test case generation:
Automatic (exhaustive) test case generation, and
test-purpose-based test case generation.

Exhaustive Test Generation
Exhaustive test generation methods aim at iden-
tifying and generating complete test suites auto-
matically. The input is a Finite State Machine

(FSM) or some variation, e.g. an Extended FSM
(EFSM), Communicating FSM (CFSM) or Com-
municating Extended FSM (CEFSM). EFSM is
the underlying model of a one-process SDL spe-
cification; CEFSMs correspond to SDL specifi-
cations with multiple communicating processes.

An important aspect of exhaustive test generation
methods is the definition of the test suite goal.
One commonly used goal is the establishment of
a guaranteed fault coverage, e.g. 95 %: If a test
suite is executed completely and no error is de-
tected, then the statement can be made that the
implementation is guaranteed to be free of 95 %
of all possible faults (it may contain any number
of the remaining five percent of possible faults,
though). There are several types of faults, the
main ones being output and transfer faults [20].
Output faults occur if the output of a transition
does not match the expected output; transfer faults
occur if a transition ends in the wrong tail state.

Another common test suite goal is to obtain a
certain code coverage. Taking an SDL specifica-
tion as an example, a code coverage of 90 %
would mean that 90 % of all SDL symbols in
the specification are covered by at least one test
case. In general, test suites which obtain a high
fault coverage are considered to be of higher qual-
ity than the ones which rely on code coverage.

Unfortunately, due to the state space explosion
problem, current methods for exhaustive test
generation can only handle specifications which
are very limited in size and often restricted with
regard to the specification possibilities offered
by languages such as SDL. Nevertheless, meth-
ods and tools have been developed which pro-
duce test cases to test the components of a
CEFSM in isolation or in context (embedded
testing); examples can be found in [2] and [5].

Test-Purpose-Based Test Generation
Exhaustive test generation as described in the
previous section has two major drawbacks: First,
it can only be applied to small systems or parts
of systems; it cannot be used for today’s real-
world complex systems, because of state space
explosion and infinite state spaces. The second,
less technical but nevertheless important draw-
back is the lack of test case documentation.

Formal

specification

Code generation /

manual implementation

System

implementation

Test suite

Testgeneration Testing

Figure 3 Relationship
between specification,

test suite and
implementation

134 Telektronikk 4.2000

Automatically generated test cases tend to be
rather non-descriptive sequences of test events
which do not make much sense to the human
reader. Test-purpose-based test generation meth-
ods alleviate both these problems.

The main idea behind test-purpose-based test
generation is the following: Before a system is
specified formally and implemented with some
programming language, there are usually re-
quirements capture and analysis phases. In these
phases, engineers define the important signal
flows. Later on, the system is specified with a
formal specification language. It is obvious that
the specification should exhibit the behavior
defined during requirements capture, so the sig-
nal flows defined there can now be used as test
purpose descriptions. To generate test cases, the
system specification can be simulated against the
test purpose descriptions. During the simulation
run, the signal exchange at predefined Points of
Control and Observation (PCO) is observed.
Signal sequences which correspond to the test
purpose description lead to a pass verdict;
observed signals which are correct according to
the specification but which are not expected in
the test purpose are marked with an inconclusive
verdict. This method has originally been pro-
posed in [10] using SDL as the system specifi-
cation language and MSCs for test purpose
description (Figure 4).

Obviously, with the test-purpose-based app-
roach, the quality of a test suite cannot be mea-

sured with fault coverage criteria.1) The com-
pleteness and quality of the test suite mainly
depends on the experience of the persons defin-
ing the test purposes. However, the generated
test cases are guaranteed to be consistent with
the formal specification. This consistency is not
given by default, since test designers are not
necessarily aware of the formal specification.
Furthermore, efficient algorithms and tools exist
which can generate test cases even for very com-
plex systems [9]. Last but not least, test purpose
descriptions can also be used as documentation
for the system. The applicability of this method
to various real-world systems and protocols has
been shown [22], [23].

Test Generation without
a Formal System Specification
For many existing systems in industry, formal
system specifications have never been developed
and it would not be cost-effective to do a specifi-
cation just for test generation purposes. In other
cases, only partial specifications exist. Neverthe-
less, the idea of being able to specify test pur-
poses with MSCs instead of directly writing test
cases in a specialized test language has been
widely accepted. For this reason, industry
requires tools which are able to translate test
purpose descriptions directly into test cases.

Test Suite Generation
The road to executable test suites does not end
with the identification and generation of test
cases. Test suites must be saved either in a pro-
prietary language defined by the test equipment
vendor or in the standardized Tree and Tabular
Combined Notation (TTCN) [14]. If TTCN is
chosen and the test suite is supposed to be easily
readable and understandable by humans, then
the following optimizations should be done auto-
matically by the test generation tool:

• All declarations should be generated;

• The number of constraints should be mini-
mized by merging identical constraints and
by supporting constraints parameterization;

• Constraints should get meaningful names;

• The number of test steps should be minimized
through parameterization.

If Concurrent TTCN is used to specify tests for
a distributed test architecture, then the tool has
to support additional features: Test case descrip-
tions have to be split into descriptions for all test
components and synchronization messages
should be generated automatically.

Figure 4 Test-purpose-base
test generation

1) It is possible to measure the code coverage during simulation, though.

TTCN test
suite

Generate
test suite

System
implementation

Implement

MSC test purpose
description

Formalize

System
requirements

server as

basis for

Test

purposes

SDL system
specification

Formalize

135Telektronikk 4.2000

The ultimate goal of any industrial-strength
TTCN test generation tool must be to generate
test suites which require no manual postprocess-
ing.

Tools
There are two SDL-based test generation tools
which are available commercially: Autolink [9]
has been developed in a joint project with Tele-
logic AB by the Institute for Telematics of the
University of Lübeck; it is part of the Telelogic
Tau tool suite. TestComposer [18] has been
developed by Verilog as part of the Object-
GEODE tool set. Both tools are based on the test-
purpose-based test generation methodology and
they contain many similarities. Below, we just
give a summary of the distinguishing features
of the tools.

Autolink has been available since 1997 and it
has been evaluated and used in projects of the
European Telecommunications Standards Insti-
tute (ETSI), as well as telecommunications com-
panies. Because of the incorporation of many
features requested by users, its strengths lie in
the readability of generated test suites and in its
adaption to industry realities. Therefore, besides
offering state exploration based test generation,
Autolink also supports the direct translation of
MSCs into test cases without the need of a com-
plete formal system specification. Other unique
features are:

• Generation of Concurrent TTCN output
including the automatic generation of coordi-
nation messages;

• Inclusion of a simple configuration language
which allows to define rules for automatic
constraints naming, constraints parameteriza-
tion and test suite variables (PIXIT);

• Support for distributed test generation.

Although TestComposer has been developed
from scratch, it is based on a relatively long his-
tory of research and tools in the domain of auto-
matic test generation. Its strengths lie in its state
space exploration techniques. For example, Test-
Composer is able to generate test cases from par-
tially defined test purpose descriptions; the miss-
ing parts are filled in automatically. Other distin-
guishing features are:

• Automatic postamble2) computation;

• Comprehensive timer support;

• Output of test suites in a user-definable
format.

Conclusions
Although it may not seem obvious at first sight,
there are several similarities between validation
and automatic test case generation. Both tech-
niques require searching the state space of the
system under investigation. During validation,
the tools look for peculiarities in the state space
such as unspecified reception or deadlocks. Dur-
ing exhaustive test case generation, the whole
state space is searched for those test cases which
can detect faults in an implementation. In the
test purpose based method, the state space is ex-
plored to check if a trace exists which matches
a predefined and formally specified test purpose.
This way, test cases are generated which lead to
pass and inconclusive test execution verdicts.
Due to these similarities, tools such as Autolink
[9] and TestComposer [18] make use of tech-
niques originally developed for validation, such
as described in [12].

Validation and test case generation both suffer
from the state space explosion problem which
makes it impossible to exhaustively validate or
test systems of practical size. However, the use
of available tools is already beneficial and
highly recommendable: For validation, advanced
state space exploration algorithms have been
developed which allow to explore significant
parts of the state space of real-world system
specifications in a feasible amount of time.
For test generation, support of the pragmatic
approach of using (human specified) test pur-
poses combined with state space exploration has
made tool-assisted development of high-quality
test suites a reality.

Experience in industry and ETSI has shown that
the initial effort to develop a formal specification
can be quite high. However, this effort is offset by
the ability to detect design errors at an early
development stage through validation, by the pos-
sibility of automatic code generation and the abil-
ity to easily develop test suites through automatic
test generation. All in all, relevant reductions in
time-to-market and development cost can be
expected through the use of formal techniques.

A lot of research is going on in the field of for-
mal specification, validation and test generation.
At the end of 1999, new versions of SDL and
MSC have been standardized by the Interna-
tional Telecommunication Union (ITU). With
the Unified Modeling Language (UML), a new
notation for object-oriented software develop-
ment has been standardized by the Object Man-
agement Group (OMG). At ETSI, guidelines are
developed on how to use object-orientation in
the standardization and specification process of
telecommunication systems. Also at ETSI, a

2) A postamble is a sequence of test events to bring the IUT into a stable, well-defined state.

136 Telektronikk 4.2000

completely new version of the testing notation
TTCN is in the final stages of development.
Meanwhile, research institutes and tool pro-
viders continue to develop enhanced methods
and tools for validation and test generation.

References
1 Bouali, A. Xeve : an estérel verification

environment. Sophia Antipolis, Inria, 1997.
(Technical Report 0214.)

2 Bourhfir, C et al. A test case generation tool
for conformance testing of SDL systems. In:
Dssouli, E et al. [8], 405–419.

3 Bryant, R E. Graph-based algorithms for
boolean function manipulation. IEEE Trans-
actions on Computers, 35 (8), 667–691, 1986.

4 Burch, J R et al. Symbolic model checking :
1020 states and beyond. In: Proceedings of
the 5th Annual IEEE Symposium on Logic in
Computer Science, Philadelphia. Los Alami-
tos, IEEE Computer Society Press, 1990,
428–439.

5 Cavalli, A et al. Hit-or-jump : An algorithm
for embedded testing with applications to in
services. In: Proceedings of the Joint Inter-
national Conference FORTE/PSTV’99. IFIP
TC6 WG6.1. Boston, Kluwer, 1999.

6 Cavalli, A, Sarma, A (eds.). SDL’97 – time
for Testing. Proceedings of the Eighth SDL
Forum, Evry, France, September 1997.
Amsterdam, Elsevier, 1997.

7 Devulder, S. A comparison of lpv with other
validation methods. In: Proceedings of ASE-
99: The 14th IEEE Conference on Automated
Software Engineering, Cocoa Beach. Los
Alamitos, IEEE computer Society Press, 1999.

8 Dssouli, R, Bochmann, G v, Lahav, Y (eds.).
SDL’99 – the Next Millennium, Montréal.
Proceedings of the Ninth SDL Forum. Ams-
terdam, Elsevier, 1999.

9 Ek, A et al. Towards the industrial use of
validation techniques and automatic test gen-
eration methods for SDL specifications. In:
Cavalli and Sarma [6], 245–259.

10 Grabowski, J, Hogrefe, D, Nahm, R. Test
case generation with test purpose specifica-
tion by MSCs. In: SDL’93: Using Objects.
Proceedings of the Sixth SDL Forum. Ams-
terdam, North-Holland, 253–265.

11 Hogrefe, D. Validation of SDL systems.
Computer Networks and ISDN Systems,
28 (12), 1659–1667, 1996.

12 Holzmann, G. Design and Validation of
Computer Protocols. Englewood Cliffs,
Prentice-Hall, 1991.

13 ISO/IEC. Information technology – Open
systems Interconnection – conformance test-
ing methodology and framework. 1994.
(International ISO/IEC multipart standard
No. 9646.)

14 ISO/IEC. Information technology – Open
systems Interconnection – conformance test-
ing methodology and framework – Part 3:
The Tree and Tabular Combined Notation
(TTCN). 1997. (International ISO/IEC stan-
dard No.9646-3.)

15 ITU-T. Message Sequence Charts. Geneva,
1999. (ITU-T Recommendation Z.120.)

16 ITU-T. Specification and Description Lan-
guage (SDL). Geneva, 1999. (ITU-T Recom-
mendation Z.100.)

17 Sarma, A, Ellsberger, J, Hogrefe, D. SDL –
Formal object-oriented language for com-
munication systems. London, Prentice-Hall,
1997.

18 Kerbrat, A, Jéron, T, Groz, R. Automated
test generation from SDL specifications. In:
Dssouli et al. [8], pages 135–151. Proceed-
ings of the Ninth SDL Forum.

19 Kerbrat, A, Rodriguez-Salazar, C, Leujeune,
Y. Interconnecting the objectgeode and cae-
sar-aldeberan toolsets. In: Cavalli and Sarma
[6], 475–490.

20 Petrenko, A, Bochmann, G v, Yao, M. On
fault coverage of tests for finite state specifi-
cations. Computer Networks and ISDN Sys-
tems, 29 (1), 81–106, 1996.

21 Rakitin, S. Software Verification and Valida-
tion. Norwood, Artech House, 1997.

22 Scheurer, R. Demonstrating the Applicability
of Automatic Test Case Generation Methods.
PhD thesis. Berne, University of Berne, 1997.

23 Schmitt, M et al. Autolink – putting SDL-
based test generation into practice. In: Pro-
ceedings of the 11th International Workshop
on Testing of Communicating Systems
(IWTCS’98), Tomsk, Russia, 1998. IFIP
TC6. Amsterdam, Kluwer, 1998, 227–243.

24 West, C. Protocol validation. Computer Net-
works and ISDN Systems, 24, 1992.

137

1 Introduction
The intention to standardise Open Architectures
for Distributed Systems was one of the most
challenging undertakings in computer science.
The need to establish a common understanding
of the variety of aspects that characterise dis-
tributed systems, was the reason that brought
together the leading standards bodies ISO and
ITU-T to standardise the Reference Model of
Open Distributed Processing (RM-ODP), which
has been standardised in the X.900 series of
ITU-T Recommendations. In itself the Reference
Model is a conceptual framework for architec-
tures for distributed systems and needs refine-
ment to be applicable in a certain domain.

For this purpose a number of further standardisa-
tion activities were started, one of which is the
work in ITU-T SG10 to define a distributed plat-
form for telecommunication applications, name-
ly the draft ITU Distributed Processing Environ-
ment Architecture (ITU DPE [1]). The DPE
focuses on the aspects of the RM-ODP related to
the run-time environment for telecommunication
and information services and applications. The
purpose of the DPE is to provide detailed techni-
cal requirements that should lead to specifica-
tions, both to help the DPE vendors to develop
their products and the application developer to
understand the infrastructure support that the
DPE provides. Before detailing some of the most
important aspects of the DPE this article elabo-
rates on the RM-ODP, explaining some of the
basic concepts, such as viewpoints, functions
and transparencies. The main part of this article
summarises the requirements and functionality

for the DPE to support the execution of dis-
tributed telecommunications applications and
discusses the main issues for the construction
of a DPE.

2 The Reference Model
for Open Distributed
Processing

The elements of a distributed system (comput-
ers, networks, operating systems, etc.) may in
general form a heterogeneous landscape, since
they may be built by a diversity of hardware and
software vendors. Co-operation is an inherent
characteristic of distributed systems. RM-ODP
enables co-operation in heterogeneous systems
by imposing certain commonalties, which trans-
form the heterogeneous system into an open sys-
tem. In order to accommodate future technologi-
cal advancements the Reference Model is com-
pletely independent of technology characteris-
tics. Thus RM-ODP provides one of the most
important properties of open systems, namely
the separation of a system specification from its
implementation. Furthermore, it provides the
formalism for the specification of server- and
client-components in an open distributed system.

2.1 ODP Documents
The RM-ODP standard consists of the following
four documents:

• Overview and Guide to Use [2] introduces the
Reference Model and provides an informal
description of the concepts, such as the object
model, the viewpoints, etc. This document
explains the application of the Reference

Distributed Platform for
Telecommunications Applications
A N A S T A S I U S G A V R A S

Anastasius Gavras (37) works
for EURESCOM GmbH as Pro-
ject Supervisor in the area of
security middleware and man-
agement of networks and sys-
tems. After his studies he
worked five years in the area of
broadband networks and ATM at
GMD-FOKUS in Berlin. In 1994
he joined Deutsche Telekom AG
as an engineer and project
leader in research and develop-
ment. His technical work was
focused on advanced distributed
software architectures and tech-
nologies for telecommunication
applications. In late 1996 and
1997 he was appointed to work
in the international core team of
the TINA Consortium. His final
international experience before
joining EURESCOM was at
Sprint Inc. where he carried out
work of common interest to
Sprint and Deutsche Telekom
in the area of middleware.

Gavras@eurescom.de

Telektronikk 4.2000

Recent advances in distributed computing are based on the paradigm of object orientation in
which functionality is encapsulated in objects. Objects offer their functionality at their inter-
faces. In distributed object computing, it has become irrelevant on which computer the ob-
jects reside and the interactions between the objects can transparently cross physical com-
puter boundaries, by utilising computer networks for communication. A set of services, col-
lectively termed middleware, has been introduced to hide the complexity and heterogeneity
of computers and computer networks. The Object Management Group (OMG) has devel-
oped the Common Object Request Broker Architecture (CORBA) specification, providing an
open standard for the implementation of interoperable middleware products. The Distributed
Processing Environment (DPE) is based on CORBA, and consolidates additional require-
ments that arise from the nature of large-scale telecommunications applications. The DPE
recognises the increased need for flexibility in the architecture arising from the great diver-
sity of systems found in a telecommunication environment. Furthermore it recognises the
need for automated tools to support a number of common management tasks typical for
large-scale systems. Finally the DPE acknowledges the value of the Reference Model for
Open Distributed Processing (RM-ODP) as a guideline for dealing with the complexity of
very large systems. The DPE uses the RM-ODP concepts.

138 Telektronikk 4.2000

Model for the definition of new ODP stan-
dards and architectures.

• Descriptive model [3] defines the concepts,
which are needed to perform the modelling
of ODP systems, and defines the principles
of conformance to ODP systems.

• Prescriptive model [4] describes the required
properties of open distributed systems. These
properties must be fulfilled by all ODP com-
pliant systems.

• Architectural semantics [5] provides the for-
mal specification of some of the concepts of
the descriptive model.

2.2 Concepts of the
Reference Model

RM-ODP defines an object model, which can be
used for the analysis of arbitrary distributed sys-
tems. RM-ODP defines an object as a model of
an entity. An object is characterised by its be-
haviour and, dually, by its state. An object is
distinct from any other object. An object is
encapsulated, i.e. any change in its state can
only occur as a result of an internal action or as
a result of an interaction with its environment.
For a more detailed elaboration on the RM-ODP
object model the reader is referred to [3].

A complete specification of a distributed system
often contains more information than could fit
into a single comprehensive description. In order
to describe a complete system, the Reference
Model uses a number of interrelated descrip-
tions, namely the viewpoints, each describing a
certain facet of the whole system. Each view-
point describes the system from a certain angle
and uses a set of rules specific to that angle,
namely the viewpoint language. Related aspects
of the system can be described in different view-
points, which raise the issue of consistency
among different viewpoint specifications. The
Reference Model defines five viewpoints, name-
ly Enterprise, Information, Computational, En-
gineering and Technology. See Figure 1.

• The enterprise viewpoint describes the terms
and conditions that follow the business
requirements under which a distributed system
operates. The role of the user and its interac-
tions with the system are described here. The
used term enterprise does not imply that a sys-
tem is constrained to be contained within a
single company. The enterprise viewpoint lan-
guage is suitable to describe also distributed
systems spanning several organisations.

• The information viewpoint defines the seman-
tics of information and the semantics of infor-
mation processing in an open system in terms
of a configuration of information objects, the
behaviour of those objects and environment
contracts for the system.

• The computational viewpoint describes a dis-
tributed system as a collection of objects
(computational objects), which interact with
each other according to the client-server prin-
ciple. Here the interfaces of the computational
objects are defined.

• In the engineering viewpoint the detailed dis-
tribution aspects of the system are exposed.
These are defined as a collection of infrastruc-
ture-objects supporting the client-server com-
munication of computational objects. Here
the so-called distribution transparencies are
described.

• The technology viewpoint describes the com-
ponents and the used technologies for the im-
plementation of the system.

The enterprise and information specifications do
not expose the distribution of the system. The
computational viewpoint defines computational
objects and interrelations between them. The
engineering and technology viewpoints specify
the distribution of the components and the
means for their implementation.

2.3 Transparencies and Functions
The programmer of distributed applications
should ideally not need to care about the details
of the communication between application com-
ponents in a network. The programming envi-
ronment that keeps the concerns about commu-
nication away from the programmer is called a
distributed platform. ODP defines a number of
functions that can be offered by the distributed
platform and that can significantly improve
overall system robustness and fault tolerance,
and furthermore reduce the complexity of pro-
gramming a distributed application. Some ODP
functions are shown in Box 1.

Each ODP function shields the programmer
from the distribution concerns and provides sim-

Figure 1 RM-ODP viewpoints

Enterprise specification

Information specification

Computational specification

Engineering specification

Technology specification

Complete

system

specification

139Telektronikk 4.2000

plifications for the construction of distributed
systems. These simplifications are called ODP
transparencies. In other words, ODP functions
provide ODP transparencies. Some important
transparencies are shown in Box 2.

3 Distributed Processing Envi-
ronment

The Distributed Processing Environment (DPE)
is the distributed platform that provides the ODP
transparencies. One or more transparencies may
be provided according to the requirements of the
distributed telecommunications applications that
shall be supported. The DPE can be viewed as
the telecommunications middleware, which sup-

ports the execution of distributed telecommuni-
cation applications. The DPE is the infrastruc-
ture on which distributed telecommunications
applications such as multimedia and real-time
applications can execute.

Any distributed telecommunications application
designed according to RM-ODP will benefit
from using the DPE as a distributed platform.
The DPE itself is based on the RM-ODP con-
cepts and principles and is positioned at the
engineering viewpoint. It uses the engineering
functions as described in RM-ODP as a basis
and, where appropriate, refines them or spe-
cialises them for the DPE. The DPE adopts

Box 1 Example ODP functions

• The node management function controls processing, storage and communication functions within

a node. This function can be used to configure communication channels.

• The group function provides the necessary mechanisms to co-ordinate the interactions of objects

in a multi-party binding. This function can for example facilitate concurrent information exchange

with multiple receivers (e.g. multicast or broadcast).

• The replication function is a specialisation of the group function. All interfaces of a group offer the

same service, establishing redundancies (e.g. replicas) for the purpose of constructing fault toler-

ant systems.

• The migration function co-ordinates the migration of objects from one (source) node to another

(target) node. Migration is accomplished by establishing a replica object at the target node and

activating it according to some predefined rule or condition. Thus, the migration function uses the

replication function.

• The relocation function facilitates an uninterrupted client-server interaction during system changes.

These system changes can for example be caused by communication domain management activi-

ties (change of node’s network address) or other management activities such as migration or repli-

cation.

• The type repository function maintains a database of service type specifications and type relation-

ships in a type hierarchy tree.

• The trading function mediates between service requests and service offers. A server can export its

service, normally in the form of an interface identifier, into a database. A client can then query this

database to receive the interface identifier for a particular needed service.

Box 2 Important ODP transparencies

• The access transparency is the most fundamental one, since it overcomes the hurdle of hetero-

geneity. It provides a common access mechanism for all objects of a distributed system. Its impor-

tance is obvious since it enables communications between objects running on different hardware

systems.

• The replication function can be used to replace a failed object service by a running replica without

the application noticing the replacement and not even noticing the failure of the original service.

This behaviour is called failure transparency.

• When an object service is migrated to another node (e.g. for load balancing reasons) while the

application remains unaware of this migration, this behaviour is called migration transparency.

• A migrated object is assigned new interface identifiers. The relocation function allows clients to still

communicate with the migrated object as if a migration never happened. This behaviour is called

relocation transparency.

140 Telektronikk 4.2000

OMG CORBA [7] as the prime technology base,
and thus the CORBA object services are incor-
porated where appropriate.

The DPE consists of a collection of DPE nodes
that are interconnected. The DPE includes a
DPE kernel, which provides support for object
life cycle control and inter-object communica-
tion. Object life cycle control includes capabili-
ties to create and delete objects during run-time.
Inter-object communication provides the mecha-
nisms to support the invocation of operations
provided by operational interfaces of remote
objects. The DPE kernel provides basic, and
technology independent functions that represent
the capabilities of most operating systems, i.e.
the ability to execute applications and the ability
to support the communication of applications
with each other.

3.1 The Architecture
The DPE architecture as illustrated in Figure 2
is the unifying entity that encompasses all the re-
quired functionality, into a standardised imple-
mentation. It does this by presenting to applica-
tions a view of a well-structured heterogeneous
distributed environment, where applications and
services interact through standardised open
interfaces. The architecture hides the hetero-
geneity of the underlying systems, e.g. program-
ming languages, operating systems, computing
systems and network protocols.

The DPE architecture provides the middleware
for interaction between engineering computa-
tional objects (eCO1)) on remote DPE nodes. It
also provides tools for diagnosis and configura-
tion for use by system and network administra-
tors. The components of the DPE Architecture
are the Kernel, the Object Services and the Sup-
port Tools.

A DPE node is controlled by one DPE kernel.
There is a DPE reference point between any two
DPE nodes. Communication between distinct
DPE nodes takes place over a DPE reference
point.

OMG CORBA is a technology mapping of the
DPE Architecture. Although the DPE architec-
ture is based to a great extent on CORBA, it
does not repeat CORBA functionality and de-
scribes the additional requirements that arise in
the telecommunications domain. At the level of
object services, many OMG adopted object ser-
vices as specified in OMG CORBA Services [8]
can be reused to build a DPE.

3.2 Computational to
Engineering Mapping

Although RM-ODP describes the engineering
modelling concepts, it does not provide a frame-
work for the mapping of a computational speci-
fication, provided in ODL (Object Definition
Language [6], see the paper on Object Definition
Language by Born and Fischer in this issue) or
IDL (Interface Definition Language [7]) onto the
engineering modelling concepts. There is clearly
a lack of methodology for supporting this map-
ping. Direct mapping of ODL and IDL specifica-
tions to a specific language (i.e. C++, Java, etc.)
is available today ([6] and [7]) bypassing the
engineering modelling concepts. The direct lan-
guage mapping introduces a direct dependency
of the computational specification on the target
programming environment, so that at least the
deployment of applications onto several nodes is
depending on the capabilities of the target envi-
ronment. To efficiently apply a complete object
life cycle including deployment, creation/dele-
tion activation/deactivation of objects, and to
support additional functionality such as run-time
object migration (for load balancing or high
availability reasons) etc., an engineering meth-
odology is required. For simplicity reasons we
assume that there exists a methodology for map-
ping computational objects to engineering objects.

3.3 Communication in the DPE
A computational object interacts with other com-
putational objects by invoking the computational
operations they offer, or by exchanging stream
flows with these other objects. Operational
interfaces and stream interfaces are distin-
guished. The interactions that occur at an opera-
tional interface are structured in terms of invoca-
tions of one or more operations and responses to
these invocations. Operations are classified into
interrogations and announcements. Unlike an
interaction via an interrogation, in an interaction
via an announcement, no result is passed back

Figure 2 DPE Architecture

1) The engineering representation of a computational object.

DPE
Support

Tools

DPE Kernel

User Applications

Object Services

DPE Kernel

Domain Boundary

DPE
Reference

Point

141Telektronikk 4.2000

from the server to the client, and the client is not
informed of the outcome (success or failure) of
the invocation.

Computational objects define computational
interfaces as interaction points for other objects.
The engineering interfaces of the engineering
objects reflect the interfaces of the respective
computational objects. Interfaces of engineering
objects are described by engineering interface
references that specify the information needed to
uniquely identify an engineering location of an
interface and to bind to this interface. Engineer-
ing interface references are capable of being
passed across heterogeneous DPE nodes and are
comparable for equality (for enabling the identi-
fication of interfaces after migration of an object
instance for example).

A stream interface is an abstraction that repre-
sents a communication end-point that is a
source, a sink or both a source/sink for informa-
tion flows. When objects interact via stream
interfaces, the information exchange occurs in
the form of stream flows between the objects,
where each stream flow is unidirectional and
is a bit sequence with a certain frame structure
(data format and coding) and quality of service
parameters. A stream message consists of in-
finite-length information.

Binding is a contractual context, resulting from
a given establishing behavior. In order for two
objects to communicate via their interfaces the
execution environment (i.e. the DPE) must pro-
vide the mechanisms to bind them. Bindings can
be categorized according to the interface kind
they bind, into operational or stream binding.
Bindings can be further categorised according
to the establishing behaviour. Explicit bindings
result from the interactions of the objects that
will take part in the binding, i.e. when the user
makes use and controls explicit binding actions,
and implicit bindings are performed by an ex-
ternal party, i.e. when the user does not express
binding actions.

In the DPE implicit binding for computational
interfaces is supported through the GIOP proto-
col that is a mandatory requirement for every
DPE. In this case only the Interface Object Ref-
erence (IOR) is known to the client object that
invokes operations on this interface without
having control of the binding. How the implicit
binding is implemented is extensively elaborated
in the CORBA specification.

In order for two objects to interact by means of
stream flows between them, each object has to
offer a stream interface and the two interfaces
must be bound.

The basic difference between interactions via
operational interfaces and interactions via stream
interfaces is that interactions via an operational
interface are structured in terms of operation
invocations and responses, whereas no such
structure is imposed on interactions via stream
interfaces. Once the stream interfaces of two
objects have been bound, a set of information
flows has been set up between the objects with
some specific quality of service parameters.
Thereafter, the producer of a flow inserts infor-
mation into the flow, and the consumer retrieves
information from the flow and consumes it. No
explicit interaction occurs between the producer
and the consumer during this information ex-
change. The control of these flows is achieved
using operational interfaces. Eventually, either
the producer, the consumer, or some third party
object releases the binding between the producer
and the consumer. Thus, the paradigm for inter-
action via stream interfaces is that of asyn-
chronous message passing objects, while the
paradigm for interaction via operational inter-
faces can be that of a remote procedure call,
or that of asynchronous message passing.

4 Kernel Transport Network
The Kernel Transport Network (KTN) is the net-
work that transports invocations and responses
between different DPE nodes. Guidelines for the
construction of a KTN are given, however no
restriction is implied on the way the KTN actu-
ally maps onto the underlying network technol-
ogy.

The transportation of the invocations between
different DPE nodes is done via some standard-
ised messaging protocol. In order to guarantee
interoperability between DPE nodes a manda-
tory messaging protocol is specified. This proto-
col is the Generic Inter-ORB Protocol (GIOP) as
specified in CORBA. In specific environments
the use of GIOP is either not reasonable or not
possible. In this case CORBA describes the app-
roach for the specification of an Environment
Specific Inter-ORB Protocol (ESIOP). The same
approach is adopted for the DPE Architecture.

A number of different transport protocols may
be used to transport GIOP messages. In order to
guarantee interoperability between DPE nodes a
GIOP mapping onto a mandatory transport pro-
tocol is specified. The mandatory transport pro-
tocol is TCP/IP and the mapping of GIOP onto
it is call Internet Inter-ORB Protocol (IIOP) and
is specified in CORBA.

There is a clear requirement for the DPE to
support protocols other than IIOP for the KTN.
Within the telecommunications domain, two
of the most popular protocol stacks that require
support are the SS7 protocol stack (i.e. the

142 Telektronikk 4.2000

TCAP or SCCP layers) and the ATM protocols
(i.e. the AAL5 protocol). To support these proto-
cols and guarantee interoperability, GIOP map-
pings for protocols such as SS7 and ATM-AAL5
need to be specified.

The issue of interoperability over multiple proto-
cols raises the broader problem of multiple pro-
tocol support in the DPE. The DPE must support
the ability to communicate over multiple proto-
cols, whereas the actual mechanism must be
transparent to the application developer. Never-
theless, it must be possible for the application
developer to set the parameters associated with
a KTN connection. For example the application
developer must be able to specify bandwidth
requirements for a KTN connection if the under-
lying protocol supports this parameter.

5 DPE Interoperability
Framework

Adopting the ODP viewpoints raises a number
of issues with respect to interoperability mainly
in the transition from the computational to the
engineering viewpoint. At the computational
level objects interact with each other without
being concerned about how this interaction is
implemented in a real system. The DPE, which
is positioned at the engineering viewpoint, pro-
vides the mechanisms to enable the interactions
specified at the computational viewpoint.

DPE interoperability specifies an approach to
support the seamless interoperation of objects
running on distinct DPE nodes. The approach is
flexible in the sense that it allows several differ-
ent combinations to support the specific needs
of different environments. The basic idea of a
homogeneous executing environment in which
objects (services and applications) execute is
maintained.

The interoperability framework for the DPE is
based on the interoperability approach taken in
CORBA and enriches it with a solution for inter-
operability in a heterogeneous environment. When
observing two distinct DPE nodes that need to
inter-operate, three different levels of interopera-
tion can be identified (see also Figure 3):

• Object service: When service interfaces are
specified in IDL or ODL no information is
available about the way peer objects perceive
and process information. While the semantics
of basic services (i.e. common object services)
is generally well understood, the application
designer only knows the internal semantics of
specialised applications. At this level the
interoperability concern lies in the internal
semantics of the services or applications. This
level of interoperability is outside the scope of
the DPE.

• DPE kernel: At this level service requests and
service replies are transported between peer
objects by mechanisms provided by the DPE.
The details of these mechanisms involve bind-
ing of the object interfaces (implicitly or ex-
plicitly) through functions provided by the
DPE Application Programming Interface
(API) (see Figure 4) and the DPE reference
point, and data transfer involving the conver-
sion of operation parameters and operation
results into a common format for transmis-
sion.

• Communication: This level is responsible for
the interoperability of the transport protocols,
which are used to transmit the service requests
and service replies at the DPE level. The com-
munication level is also out of scope of the
DPE.

For the DPE a clear separation between the net-
work dependent parts of the DPE and network
independent parts is required. This separation
allows developing an adaptation to a networking
protocol independent of the core of the DPE.
Through this adaptation the development of net-
working protocols for inter-DPE communication
becomes de-coupled from the rest of the DPE.
The mechanism of plug-able protocols enables
the integration of the DPE core and network
adaptation modules of different vendors. More
specifically it allows the use of IIOP as a plug-
able transport protocol. In the case of message
protocol like TCAP the message protocol actu-
ally replaces the CORBA GIOP message layer
according to the CORBA ESIOP approach.

Figure 3 Interoperability
framework

Object service

DPE kernel

Communication

DPE node 2

Communi-
cation API

Object service

DPE kernel

Communication

DPE API

DPE node 1

DPE
reference

point

143Telektronikk 4.2000

6 Engineering Services Pro-
vided by the DPE Kernel

Box 3 lists the engineering features supported by
engineering services that a DPE kernel may pro-
vide. A detailed description of the kernel ser-
vices is omitted here due to space constrains.

Not all kernel services are required for all appli-
cations. Profiles that support different kinds of
services and applications must be defined. These
profiles need to specify which kernel services
are mandatory for a given profile.

7 Object Services
This chapter describes object services needed
to support the execution of telecommunication
applications. Some of these object services are
generic enough in nature to be considered as
general purpose computing services, while other
object services are specific to the telecommuni-
cations domain.

The following object services are considered as
DPE object services:

• Life Cycle Service: The life cycle service pro-
vides functions for creating, deleting, copying,

and moving individual objects or collections
of objects. It also provides capabilities for
deactivation, reactivation, replication, recov-
ery, and migration.

• Naming Service: The naming service is a fun-
damental DPE Service. Its objective is the
localisation of interfaces, especially of object
implementations. The naming service pro-
vides a mapping between a human readable
name and an interface reference.

• Trading Service: The trading service supports
late binding between two objects, the exporter
and the importer. To do so, it administers in-
formation about service offers, the associated
interface references and service attributes. The
exporter offers its services (interfaces); the
importer seeks services and uses the trading
service in order to get hold of them.

• Security Service: The security service man-
ages confidentiality, integrity, accountability,
and availability within the DPE. The security
service counteracts threats of disclosure, de-
ception, disruption, and usurpation of tele-
communication data and services.

Box 3 DPE kernel engineering services

• Flexible DPE architecture allowing the introduction of new binding and communications mecha-

nisms and the ability to incrementally add transparency services (security, transaction, persis-

tence, migration, etc.).

• Multi-protocol support allowing the introduction and simultaneous execution of multiple communi-

cation protocol stacks.

• Generic communication scheme to allow the exploitation of different communication resource

multiplexing policies and the construction of any protocol.

• Flexible binding to provide support for any binding between objects.

• Support for stream interfaces, including the definition of strongly typed stream interfaces, the

ability to bind together multiple stream interfaces and application-level processing of streams.

• Multithreading support.

• A flexible event-to-thread mapping.

• Support for memory management.

• Support for native monitoring functionality.

• Support for interceptors (e.g. filters) to allow for monitoring of events.

• Generic scheduling schemes, supporting both priority and deadline-based scheduling policies.

• Time service.

• Support for different levels of object granularity in both space (memory size) and time (object life-

time and duration).

• Small memory footprint (if necessary for deployment in embedded systems).

• Documented time behaviour.

• Support for computational objects with multiple interfaces (ODL).

144 Telektronikk 4.2000

• Notification Service: The notification service
enables objects to emit or receive notifications
without being aware of the set of objects with
which they are communicating. Similarly, it
enables objects to receive notifications with-
out having to interact with emitter objects.
The service acts as a broker between emitters
and recipients.

• Transaction Service: The transaction service
provides transactional communication be-
tween objects guaranteeing consistency of
applications with properties collectively
referred to as ACID properties: atomicity,
consistency, isolation, and durability. Open
nested transactions are provided for real-time
applications.

• Concurrency Control Service: Concurrency
is a paramount concern in a real-time system,
where a trade-off exists between high avail-
ability on the one hand and application consis-
tency on the other. A Concurrency Control
Service enables multiple threads to co-ordi-
nate their access to shared objects. When
many concurrent threads access a shared
object, any conflicting operations by the
threads are reconciled so as to preserve the
consistency of the object state.

• Persistence Service: The persistence service
allows for the management of the persistent
state of objects. It ensures the integrity of the
data of a given database by ensuring the con-
sistency of the objects.

• Interrogation Service: The interrogation ser-
vice provides interrogation operations on col-
lections of objects. It can be used to return
collections of objects that are either selected
from a source query-able collection or pro-
duced by a query evaluator. Interrogations are
specified using a query language and may per-
form general manipulation operations such as
selection, updating, insertion and deletion on
collections of objects.

• Messaging Service: In order to achieve their
aims of high performance, scalability and
throughput telecommunications applications
may use asynchronous communication in
combination with an event based program-
ming model. The messaging service satisfies
the requirements for a truly asynchronous
method invocation model.

• Migration Service: A migration service as part
of the DPE object life cycle service requires
realisation of two distribution transparencies:

- Relocation transparency masks a migration
of an object from other objects bound to it;

- Migration transparency masks location
changes from the object being relocated.

• Licensing Service: The licensing service en-
ables accounting of access and use of telecom-
munication services and software applications.

• Event Logging: For the purpose of managing
any system, it is necessary to have the ability
to trace the activity history of the system. A
service for making event notifications persis-
tent and storing them (logging) is a basic
requirement.

• Topology: The Topology service provides a
general service for managing the topological
relationships (associations) between dis-
tributed objects. Its purpose is to relieve appli-
cation objects from the burden of managing
associations by providing a service for storing
topological information independent of a spe-
cific application.

• Software Distribution/Installation: The Soft-
ware Distribution/Installation service provides
run-time support when software needs to be
distributed and/or installed on a large number
of nodes. For example when deploying new
telecommunications services, support by the
DPE is needed in order to properly co-ordi-
nate the deployment.

• Software Configuration Management: The
Software Configuration Management service
provides the functionality to configure various
services running over the DPE, in the same
way as management functionality is used in
telecommunication networks to set up and
modify parameters of the physical equipment.
When such functionality is added to the DPE,
the users can manage both software and hard-
ware entities in a seamless fashion. This ser-
vice may be integrated with the Integrated
Management Service (see below).

• Integrated Management: The Integrated Man-
agement Service targets the integration of user
application management, platform manage-
ment and network management.

• Control & Management of Audio/Video
Streams: The Control and Management of
Audio/Video Streams Object Service adopted
the OMG [9] specifies in detail this service.

145Telektronikk 4.2000

8 A Final Word
The open services market is a vision that is
rapidly emerging and that will have a major
impact on the business of telecommunication
operators. Several business roles are expected to
operate in this market. Crucial for the success of
this market is the availability of distributed plat-
forms and open interfaces between the parties.
Standard open interfaces will enable telecommu-
nications operators to provide services to a
larger group of customers and also to provide
a larger set of services to their customers. The
open service market is enabled by distributed
object technology and is founded on distributed
platforms such as the DPE. State-of-the-art
object middleware, such as defined by OMG is
an enabling technology for the open services
market. Several projects (prototypes and real
world deployments) demonstrate already that
distributed platforms are ready to accept the
challenges of a new way of service provisioning.
The telecommunications operators and the mid-
dleware industry are working diligently to fur-
ther enhance the standards and products of dis-
tributed platforms.

9 References
1 ITU-T. ITU-T COM10-R4 Report of the

third meeting of the Study Period. Geneva,
1999.

2 ITU-T. Information Technology – Open dis-
tributed processing – Reference Model:
Overview. Geneva, 1997. (Recommendation
X.901 (08/97).)

3 ITU-T. Information Technology – Open dis-
tributed processing – Reference Model:
Foundations. Geneva, 1995. (Recommenda-
tion X.902 (11/95).)

4 ITU-T. Information Technology – Open dis-
tributed processing – Reference Model:
Architecture. Geneva, 1995. (Recommenda-
tion X.903 (11/95).)

5 ITU-T. Information Technology – Open dis-
tributed processing – Reference Model:
Architectural semantics. Geneva, 1997.
(Recommendation X.904 (12/97).)

6 ITU-T. ITU Object Definition Language.
Geneva, 1999. (Recommendation Z.130
(02/99.)

7 Object Management Group. The Common
Object Request Broker: Architecture and
Specification, Revision 2.4. October 2000.
(Available electronically from
http://www.omg.org)

8 Object Management Group. CORBA Ser-
vices, 1991–2000. (Available electronically
from http://www.omg.org)

9 Object Management Group. Audio/Video
Stream Specification, New Edition. January
2000. (OMG Document Number formal/00-
01-03.) (Available electronically from
http://www.omg.org)

Telektronikk 4.2000

Introduction
Formal languages play an important role in
mathematics and in computer science. In con-
trast to natural languages, formal languages have
two important properties. Firstly, formal lan-
guages always make clear whether a particular
sentence (in mathematics also called “formula”,
in computer science called “program” or “speci-
fication”) belongs to the language or not. This
property is usually called the syntax of the lan-
guage. Secondly, the meaning of the valid sen-
tences is clear. This is called the semantics of
the language.

Nowadays the description of a specification
language typically contains a formal syntax,
but only an informal semantics description.
However, it is important also to state the seman-
tics formally in order to know the implications
of statements in that language.

The specification languages SDL and MSC,
from the International Telecommunication
Union (ITU), benefit from being formally
defined. This article explains the benefits and
how formal definitions are provided. Box 1
provides a simple Glossary of the main terms
used in this paper.

Motivation
There is a need to provide formal definitions of
specification languages. This need comes from a
desire to have better possibilities to check prop-
erties of specifications as well as to provide bet-
ter means to check the correctness of tools sup-
porting the specification language.

The idea is simple: If the formal semantics of a
specification language is given without referenc-
ing any implementation details, one can then
check a concrete implementation against this
description for correctness. The implementation
details can be chosen by the implementation and
are not prescribed by the specification. If a for-
mal definition of the specification language
semantics is provided, you can derive properties
of the system without even implementing it.

In the following, we survey some areas where
formal methods are beneficial.

Formal Grammars
Formal grammars have proved most useful to
formally define syntactical structures. The
Backus-Naur Form (BNF) is an example of a
formal grammar. BNF consists of a set of pro-
duction rules that recursively define a set of
valid character sequences. Backus and Naur
originally developed the BNF grammar for the
prescription of the syntax of the ALGOL 60 pro-
gramming language.

Box 2 shows a characterisation of different for-
mal grammar types.

Please find below the grammar for simple arith-
metic expressions.

T={“0”, “1”, “+”, “-“, “*”}

N={expr}

s=expr

R={<expr,“0”>, <expr,“1”>,

<expr, expr “+” expr>,

<expr, expr “*” expr>,

<expr, “-“ expr> }

Formal Semantics of
Specification Languages
A N D R E A S P R I N Z

Andreas Prinz (37) studied
mathematics and computer sci-
ence at the Humboldt-University
in Berlin and received his MSc in
mathematics (1988) and PhD in
computer science (1990) there.
From 1990 until 1993 he was a
post-doctoral fellow at the Hum-
boldt-University. From 1993 to
1994 he worked at the Software
Verification Research Centre
(SVRC) in Brisbane, Australia
before returning to the Hum-
boldt-University in 1994. Since
1997 he has been working at the
Berlin-based company,
DResearch GmbH. His research
interests include formal methods
together with their application
and use in tools, so he also has
a strong interest in software
technology and compiler con-
struction. Dr. Prinz has worked
in several projects dealing with
the development of modern
telecommunication systems
using advanced technology.

prinz@informatik.hu-berlin.de

While many specification languages today have a formally defined syntax, they often lack a
formally defined semantics. The ITU languages have both. This paper provides motivation
for defining both the syntax and the semantics, and explains how they are provided.

Box 1: Glossary

Syntax: The syntax of a specification language
is the set of constraints on the formulation of
specifications using the language.

Semantics: The semantics of a specification
is the set of the constraints it describes. The
semantics of a specification language is the
semantics of all its syntactically valid specifi-
cations.

Grammar: A grammar is a method of syntax
formalisation.

Formal semantics: The semantics of a specifi-
cation language is called formal if it is defined
by means of mathematics.

Specification: A specification is a set of con-
straints on a system. An SDL specification is
a set of functions provided by a set of commu-
nicating processes.

Implementation: An implementation (within a
certain resource context) is an algorithm which
satisfies the specification.

146

147Telektronikk 4.2000

The set R could be expressed by the following
BNF rule.

expr ::= “0” | “1”

| expr “+” expr

| expr “*” expr

| “-” expr

The success of formal grammars lead to the cur-
rent situation that specification languages have
a formally defined syntax, most often based on
some variant of BNF. The language grammar
is used by tool developers to build tools and
by language users to understand language con-
structs.

Formal Semantics
The definition of the semantics of some specifi-
cation languages (e.g. UML) is given in ordinary
prose. In order to define the syntax of a language
construct, a production from a BNF or other for-
mal grammar is provided. Added to this formal
syntax is a few paragraphs and (hopefully) a
number of examples to define the semantics.
Unfortunately it has been the case that the mean-
ing of the prose is ambiguous, leading to differ-
ent interpretations of the semantics of a language
construct. This may affect both users of the lan-
guage and tool developers. Firstly, a language
user may misunderstand the specification, and
also tool developers may implement a specifica-
tion construct in a manner different from other
tool developers of the same specification lan-
guage. Hence, as with syntax, methods are
required to provide a precise, readable and con-
cise definition of the semantics of a specification
language.

Language Design
When the semantics of a specification language
is defined formally, some interesting questions
can be asked:

• What relations exist between language con-
structs?

• Can some language constructs be derived
from other language constructs?

• Can combined use of language constructs
cause problems?

Although many of these questions were asked
without a formal semantics, it is now possible
to examine them by formal means. Moreover,
already the formalisation process will uncover
omissions and inconsistencies in the language
definition.

Checking the Specification
Formal semantics can be used to mathematically
check properties of the specification. This way,
every possible behaviour of the specification can
be covered and not only those that are consid-
ered during tests or during use. The following
questions can be addressed:

• Does the specification contain a deadlock?

• Does the specification contain an infinite loop
(livelock)?

• Will the specified algorithm always termi-
nate?

• How long will it take to compute the result?

type grammar sample production restrictions on grammar rule

0 unrestricted t1N1t2t3N3 ::= t3N4N5t1t2 none

1 context sensitive t1N1t2N3 ::= t3N4N5t1t2 RHS is longer than LHS

2 context free N1 ::= t3N4N5t1t2 LHS is one non-terminal

3 regular N1 ::= N5t1 LHS is one non-terminal, at most one non-terminal on RHS, at most one
terminal on RHS

Four parts give a grammar: a set of terminal symbols T, a set of
non-terminal symbols N, a start symbol s ∈ N and a set of gram-
mar rules R. Each grammar rule has a left-hand side LHS and a
right-hand side RHS which is depicted as LHS ::= RHS. Both LHS
and RHS are sequences of terminals and/or non-terminals, i.e.
LHS ∈ (T ∪ N)*, RHS ∈ (T ∪ N)*.

Box 2: Grammars

The linguist Chomsky developed a hierarchy of four types of

grammar. More restrictions on the grammar rules mean simpler

grammars and less syntax expressible. However, simpler gram-

mars are easier to analyse, see the table below.

Most often a context free grammar formalism (e.g. BNF) is used to define the syntax of a specification language.

148 Telektronikk 4.2000

In order to formulate such questions formally, it
is necessary to have an appropriate mathematical
description of the language (and thus also for the
individual specification).

Please note, that some of the questions above are
in fact not decidable, i.e. no algorithm can auto-
matically check such a property for any specifi-
cation.

Type Safety
A formal definition of the semantics of a lan-
guage allows to define typing. A correctly typed
specification provides constraints on language
usage, e.g.: In this specification, all data will
behave such that no data flows into a place that
is not capable of holding it.

Typing is a property that is statically decidable,
i.e. it is decidable at compilation time. However,
typing states constraints that are satisfied by the
specification when interpreted. Most modern
specification languages introduce polymorphic
typing. Using a formalisation it is possible to
prove the correctness of the typing rules, i.e.
that static type correctness implies dynamic
type correctness.

Semantics Definition Styles
The problem of language semantics definition
has been a research topic for a considerable
period. However, unlike the area of syntactical
definition, satisfactory solutions have been rare.
Although semantics definitions for mathematical
languages are well-known, defining the seman-
tics for specification languages turned out to be
more difficult. Specification languages are often
larger than the mathematics languages, they
have lots of special cases, and they have
dynamic semantics, i.e. the meaning of a con-
struct depends on the state of the whole system.

Many different methods of formal definitions
have been developed, and these may be subdi-
vided into three general classes:
• operational techniques;
• denotational or functional techniques; and
• axiomatic techniques.

Unfortunately, no single method is appropriate
for both users and tool developers. Sometimes
a semantics does not follow purely one of the
above styles, but is in fact a mixture of them.
In these cases it is often valuable to identify the
parts that are covered by a certain style, in order
to gain a better overview of the semantics. In the
following, the different styles are explained in
more depth using the simplified arithmetic
expressions as defined in the formal grammar
section as an example.

Axiomatic Semantics
Axiomatic techniques for specification language
semantics were derived from mathematical
logic, logical equations and model theory out of
a desire to perform program correctness proofs.
The entities of the language and their relations
to each other are identified. For the example we
have the entities expr, “0”, “1”, “+”, “-“, “*” as
indicated by the following declarations.

domain expr

expr is the only domain set

constants “0”, “1”: expr

0 and 1 denote elements of the domain expr

functions “+”: expr × expr → expr

this defines the signature, i.e. type of the addi-
tion function

“*”: expr × expr → expr

this defines the signature of the multiplication
function

“–“: expr → expr

this defines the signature of the minus sign

Their relations are captured with the following
axioms.

axioms for all x,y,z: expr

1. x ≠ 1+x

2. 0+x = x

3. x+y = y+x

4. x+(y+z) = (x+y)+z

5. 1*x = x

6. x*y = y*x

7. x*(y*z) = (x*y)*z

8. x*(y+z) = (x*y) + (x*z)

9. x+(–x) = 0

10. –(x+y) = –x + –y

11. –(x*y) = –x * y

From the axioms above we can for example
derive that 0*x=0 as follows.

0*x = (a+(-a))*x (by 9)

= x*(a+(-a)) (by 6)

= (x*a) + (x*(-a)) (by 8)

= (x*a) + ((–a)*x) (by 6)

= (x*a) + (–(a*x)) (by 11)

= (x*a) + (–(x*a)) (by 6)

= 0 (by 9)

We can also derive that 1 ≠ 0, because
1 = 1+0 ≠ 0.

The benefits of the axiomatic method are the fol-
lowing:

• It provides a very abstract semantics definition;

149Telektronikk 4.2000

• There is no impact on an implementation;

• Mathematical methods (proofs, model check-
ing) can easily be used;

• The axioms are concise and understandable.

But there are also problems:

• No or only little guidance to implementers is
provided;

• The description tends to be very large when
many basic constructs are considered;

• It is very complex for real languages;

• It is difficult to formalise operations and
states;

• There is no easy overview of the implications
of the definition.

The sample language illustrates the implications
problem. The intention of the definitions above
was to provide a description of the integers. So
we would like to conclude 0 ≠ 1 + 1. However,
this is not implied. It would be perfectly valid if
the domain expr contained only the elements 0
and 1 with 1 + 1 = 0. All axioms hold in this
case.

To avoid writing too many axioms, the axiom-
atic semantics is often restricted to only so-
called initial models. This means that we only
want to consider the most general models match-
ing the definition. This is often stated with two
conditions: no junk and no confusion. ‘No junk’
means that we do not want elements in a domain
that are not really implied by the language defi-
nition, e.g. we do not want to have π in the
domain expr. ‘No confusion’ states that we do
not want to regard elements to be the same
unless explicitly stated. In the above example,
this would mean that we have an implicit axiom
1 + 1 ≠ 0.

Denotational Semantics
The basic idea is to give a denotation to every
element of the language. This means to map the
syntactical expressions of the language to a well-
known domain. For the sample language we
define a mapping from the language entities to
the integers. The denotation function is often
called [_] as in the definitions below.

[expr] = integer

[“0”] = 0

[“1”] = 1

[x “+” y] = [x] + [y]

[x “*” y] = [x] * [y]

[“–” x] = – [x]

Please note that there is always an implicit
axiomatic semantics hidden in this approach, in
the example the semantics of integer, which is
considered to be predefined in ordinary mathe-
matics. The general concept of the denotational
semantics is to map the unknown language to
a known language. This basic known language
should itself have a formal semantics given with
one of the three styles.

The benefits of the denotational semantics are
the following:

• It resembles the syntax structure;

• It builds on known domains;

• The semantics description is fairly abstract.

However, there are also problems:

• It provides only little guidance to tool devel-
opers;

• It is usually too complex for users;

• For complex languages, the target domains are
not readily available;

• There are again difficulties to express states
and operations.

The denotational approach works better the eas-
ier the mapping is. In the example we see that
the mapping is one-to-one and therefore it is
easy to read. However, it is much more difficult
to map a real language such as C to basic mathe-
matical domains. In such a mapping, various
auxiliary functions must be introduced, and one
element of the source language is mapped to
many elements of the target language. Therefore,
a common approach is to first define a special-
ised target language axiomatically, and then to
give a denotational semantics based on this spe-
cial language.

Operational Semantics
The operational approach is the most concrete
one, and it is very near to implementation. The
idea is to interpret the specification in an abstract
interpreter. The abstract interpreter is a program
of an abstract computer (e.g. a Turing Machine).
The operational semantics of the sample lan-
guage in the previous sections is given below
using an abstract Pascal style for the interpreter
program:

procedure compute(e: expr) returns integer is

case e of

“1”: return 1;

“0”: return 0;

“+”: return compute(e.first) + compute(e.second)

150 Telektronikk 4.2000

“*”: return compute(e.first) * compute(e.second)

“–“: return – compute(e.first)

endcase

endprocedure

The operational method is also using a prede-
fined semantics, namely the semantics of the
abstract computer. In fact, this abstract computer
semantics may again be given using any of the
three semantics definition styles. However, the
semantics of the abstract computer need not be
complete, because only one program – namely
the interpreter program – is interpreted. It suf-
fices if the machine can handle this single pro-
gram. Using the operational method, one could
even define the semantics of a language in (a
restricted version of) itself using some kind of
bootstrapping.

There are the following benefits of the opera-
tional method:

• It provides a good formalisation of implemen-
tation;

• It is easily understandable for tool developers;

• It is well suited for state-based languages.

Again, we have some problems:

• Operational descriptions tend to be very
detailed;

• It is very difficult to derive formal proofs from
an operational semantics;

• The operational approach needs an underlying
semantics of an abstract computer.

A similar remark as for the denotational seman-
tics is in place here. The operational approach
is easier to understand when the underlying
abstract computer matches the paradigm of the
source language. Therefore, it is quite common
to first build a special abstract computer which

is tailored to the source language to provide an
easy interpretation.

Formal Semantics for SDL:
Overview

Static Semantics
The static formal language definition consists
of the following parts as shown in Figure 1:

• a concrete syntax;

• a set of well-formedness conditions;

• a set of transformation rules; and

• an abstract syntax as basis for the dynamic
semantics.

The syntax defines the set of syntactically cor-
rect SDL specifications. For SDL we distinguish
between a concrete and an abstract syntax. The
concrete textual syntax (SDL-PR), is formally
defined in BNF. Some extensions are used to
capture the concrete graphical syntax (SDL-GR).
Both the concrete and abstract grammar each
prescribe a syntax tree. Each specification writ-
ten in SDL is considered to make up a syntax
tree, both for the concrete and abstract syntax.
The abstract syntax is obtained from the con-
crete syntax by removing irrelevant details such
as separators and lexical rules. Moreover, short-
hand notations are not represented within the
abstract syntax. They are replaced by their corre-
sponding basic constructs (see also transforma-
tions below).

The well-formedness conditions define addi-
tional conditions that must be satisfied by a
well-formed SDL specification and that can be
checked without interpreting an instance. An
SDL specification is valid if and only if it satis-
fies the syntactic rules and the static conditions
of SDL. In fact, the static conditions refer to the
syntax, but for conciseness reasons they have not
been stated in the concrete syntax because they
are not expressible in a context free grammar.

There are basically five kinds of well-formed-
ness conditions:

1. Scope/visibility rules: The definition of an
entity introduces an identifier that may be
used as the reference to the entity. Only visi-
ble identifiers may be used. The scope/visibil-
ity rules are applied to determine whether the
corresponding definition of an identifier is
visible or not.

2. Disambiguation rules: Sometimes a name
might refer to several definitions. Rules are
applied to find the correct identifier.

Figure 1 Static Semantics
Overview of SDL

Well-formedness Conditions

Transfomation rules

Concrete Syntax (CS)

Abstract Syntax (AS)

Predicate Calculus (PC1)

Rewriting

BNF

BNF

Static Semantics Part Formal DefinitionRepresentation

151Telektronikk 4.2000

3. Data type consistency rules: These rules guar-
antee that at interpretation time no operation
is applied to operands that do not match their
argument types. More specifically, the data
type of an actual parameter must be compati-
ble with that of the corresponding formal
parameter; the data type of an expression
must be compatible with that of the variable
to which the expression is assigned.

4. Special rules: There are some rules applicable
to specific entities. For example, an agent
must contain local agents and/or a (composite)
state.

5. Concrete syntax rules: There are some rules
that refer to the correctness of the concrete
syntax and that do not get transformed into
the abstract syntax, e.g. the name at the begin-
ning and at the end of a definition match.

The well-formedness conditions of SDL are for-
malised by first order predicate calculus (PC1).

Furthermore, some language constructs appear-
ing in the concrete syntax are replaced by other
language elements in the concrete syntax using
transformation rules to keep the set of semantic
core concepts small. For instance the SDL
remote procedure notion is a shorthand notation
for sending a request signal and receiving a reply
signal. The transformations are given in the lan-
guage description. Formally they are represented
as rewrite rules. A single transformation is real-
ised by the application of a rewrite rule to the
concrete specification, which essentially means
to replace parts of the specification by new parts
as defined by the rule.

It is important to identify appropriate core
notions matching the intuitions behind the lan-
guage design in order to facilitate easy trans-
formation. If there are too many notions, the
semantics will be unnecessarily complicated. If
there are too few or inappropriate notions, the
transformations tend to become very complex
and their meaning is no longer easily under-
stood.

Dynamic Semantics
The dynamic semantics is given only to syntac-
tically correct SDL specifications that satisfy
the well-formedness conditions. The dynamic
semantics defines the behaviour associated with
a specification.

The dynamic semantics starts with the result of
the static description, i.e. with the abstract syn-
tax. In order to better show the structure of the
dynamic description, we identify three parts of
the abstract syntax, namely structure, behaviour
and data. The dynamic semantics is based on a

mathematical theory called Abstract State
Machines (ASM). Each SDL specification is
associated with a particular multi-agent, real-
time ASM. Intuitively, an ASM consists of a set
of autonomous agents co-operatively performing
concurrent machine runs. The behaviour of
agents is determined by ASM programs, each
consisting of a transition rule, which defines the
set of possible runs. Each agent has its own par-
tial view on a global state, which is defined by a
set of functions and a set of domains. By having
non-empty intersections of partial views, interac-
tion among agents can be defined.

All parts between the abstract syntax and ASM
belong to the dynamic description. There are
four parts, as can be seen in Figure 2.

• An SDL Abstract Machine (SAM) is defined
using ASM. For better match with the abstract
syntax, we identify three parts of the SAM,
namely (1) basic features to express structural
properties, (2) connections (SDL channels and
other SDL connections) and (3) behaviour
primitives. The last feature can be considered
as the instruction set of the abstract machine.

• An initialisation is necessary to handle static
structural properties of the specification. The
initialisation provides a recursive unfolding of
all the static objects of the specification. The
same process will be initiated at interpretation
time when new SDL agents are created.
Therefore, the initialisation is merely the
instantiation of the outermost SDL agent.

• A compilation function that maps behaviour
representations into the SAM primitives. This
function amounts to an abstract compiler tak-
ing the abstract syntax of the state machines

Figure 2 Structure of the
Dynamic Semantics

Compilation

Interface

Initialization

Abstract Syntax

Behavior DataStructure

SAM

Connections PrimitivesStructure

ASM

152 Telektronikk 4.2000

as input and transforming it into the abstract
machine instructions (see SAM).

• A data semantics, which is separated from the
rest of the semantics by a data interface. The
use of an interface is intentional at this place.
It will allow exchange of the data model, if
for some domain another data model is more
appropriate than the built-in model. Moreover,
the built-in model can be changed this way
without affecting the rest of the semantics.

The new formal semantics of SDL is defined
starting from the abstract syntax of SDL, which
is documented in Z.100. A behaviour definition
corresponding to this abstract syntax is defined.
The approach chosen uses all three basic seman-
tics definition styles. The SAM is an extension
of ASM and both SAM and ASM have a mathe-
matical definition (axiomatic semantics). The
compilation defines an abstract compiler map-
ping the behaviour parts of SDL to abstract code
in ASM programs (denotational semantics).
Finally, the initialisation describes an interpreta-
tion of the abstract syntax tree to build the initial
system structure (operational semantics).

Abstract State Machines – ASM
The dynamic semantics associates a particular
multi-agent real-time ASM with each SDL spec-
ification. The specification is represented as an
abstract syntax tree. The ASM consists of a
dynamically growing and shrinking set of
autonomous agents that perform concurrent
machine runs. The behaviour of ASM agents is
determined by ASM programs, each consisting

of some finite collection of transition rules
which defines the set of possible machine runs.
Each ASM agent has its own partial view on a
given global state, on which it fires the rules of
its program. According to this view, ASM
agents have a local state and a shared state,
through which they can interact.

We point out that there are strong structural sim-
ilarities between SDL systems and multi-agent
ASMs, which is a prerequisite for intelligibility
and maintainability. Conceptually, these struc-
tural similarities are utilised by identifying ASM
agents with active SDL objects, as follows. Vari-
ous classes of ASM agents (with distinguished
behavioural properties) will be introduced for
modelling the behaviour of SDL agents, SDL
agent sets, and SDL channels. ASM agents are
either created during the system initialisation
phase or dynamically according to dynamic pro-
cess creation in the underlying model.

The execution of a system starts from a pre-ini-
tial system state with the creation of a single
ASM agent for the SDL unit “system”. Perform-
ing a stepwise unfolding of the system under
consideration, this distinguished agent then cre-
ates further ASM agents according to the system
substructure and associates a view and an ASM
program with each of them. ASM programs are
determined by the kind of the SDL unit mod-
elled by a given ASM agent. This way, starting
the system amounts to instantiating the SDL unit
“system”, just like it would have happened dur-
ing system execution.

Box 3: History

This box provides an overview of the history of the formal semantics of SDL and MSC.

Year SDL MSC

1988 First formal semantics for SDL: The static semantics is
an axiomatic description of the conditions and the result
of the transformations; the dynamic semantics is operational
using Meta IV and a variant of CCS.

1992 Due to requests from tool builders, the static semantics, First formal semantics of MSC: The static semantics is an
especially the transformations were described operationally. axiomatic description of the conditions; The dynamic
The dynamic semantics approach was not changed. semantics is denotational for the mapping and axiomatic

for the process algebra. An operational semantics for the
process algebra is also provided for courtesy.

1996 The language changes were very small, only minor changes Changes in the MSC language lead to the disposal of the
to the semantics were necessary. axiomatic semantics. The process algebra is formalised

operationally.

2000 The old formal semantics approach could not be pursued No new formal semantics for MSC-2000 as yet.
further due to problems to adequately express timing
aspects and problems with the size of the formal description.
A new semantics as presented here is developed.

153Telektronikk 4.2000

Once an initial abstract machine configuration
reflecting the initial system structure has been
built up, the actual system execution phase
starts. Similar to the system initialisation, the
behaviour of ASM agents during system execu-
tion is determined by corresponding ASM pro-
grams. During a run, further ASM agents may be
created, and existing ASM agents be terminated,
according to the transitions of the SDL agents.

Tools, Executability, Implementation
When the new formal SDL semantics was de-
signed, we were taking the needs for implement-
ing the semantics into account. These needs are
easily understandable when you realise that the
complete formal semantics definition will span
more than 200 pages. Despite all efforts to have
a good structuring and an understandable presen-
tation of the semantics, it will be hard to gain a
complete overview of the semantics. Therefore,
the formal semantics is automatically trans-
formed into an SDL-to-ASM compiler. To make
the implementation possible, it was planned to
use existing tools and to use meta tools as much
as possible. For this reason, yacc and lex and
kimwitu were used to implement the formal
semantics.

The following characteristics make an imple-
mentation possible:

• ASM is an operational technique: The basic
state change primitive defined in ASM is an
update, which is basically the same as an
assignment. All the other constructors define
just finite sets of updates.

• ASM is supported by tools: There are freely
available implementations of ASM. We use
the ASM workbench of Paderborn with the
ASM dialect ASM-SL [13]. A close contact
with the developers of the ASM workbench
ensures that the SDL semantics can be pro-
cessed by this tool.

• A special style of using ASM is applied for
the definition of the SDL semantics: Although
ASMs are executable in principle, there are
some instructions that could cause problems.
In the SDL semantics all set constructions are
computable, i.e. they use only computable
functions over finite domains and not the gen-
eral notion of sets supported by First Order
Predicate Calculus.

Formal Semantics for MSC:
Overview

Static Semantics
The structure of the MSC static semantics is
similar to the SDL static semantics. There is also
a distinction between a concrete grammar and

an abstract grammar. Moreover, there are static
well-formedness conditions that are formalised
using predicate calculus formulae (PC1). How-
ever, MSC does not contain as many constructs
as SDL, so it is possible to give the semantics
without transformations. This is possible be-
cause the mapping between the MSC concrete
syntax and abstract syntax is almost one-to-one,
such that it need not be formalised. See Figure 3
for an overview of the MSC static semantics.

Dynamic Semantics
A dynamic semantics is given only to syntacti-
cally correct MSC specifications that satisfy
the well-formedness conditions. The dynamic
semantics defines the behaviour associated with
a specification.

Each MSC specification is mapped to a particu-
lar process-algebraic term. The process algebra
used to represent an MSC specification is tai-
lored to the language constructs of MSC. The
mapping function amounts to an abstract com-
piler taking the MSC syntax as input and pro-
ducing a process algebraic term. See also the
SDL compilation function for comparison.
According to the semantics classification
scheme, the mapping amounts to a denotational
semantics.

The second part of the MSC semantics is the for-
mal semantics definition for the MSC process
algebra. As indicated in Figure 5, there are two
ways of giving this semantics: an axiomatic
semantics or an operational semantics.

Figure 3 Static Semantics
Overview of MSC

Figure 4 Structure of the MSC
Dynamic Semantics: Part 1

Well-formedness Conditions

Concrete Syntax (CS)

Abstract Syntax (AS)

Predicate Calculus (PC1)

BNF

BNF

Static Semantics Part Formal DefinitionRepresentation

Mapping

MSC Syntax

MSC process algebra

154 Telektronikk 4.2000

In the axiomatic variant, the MSC process alge-
bra is formalised using axioms. This means, the
equalities between two MSCs can be decided
using the axioms of the process algebra formali-
sation.

The operational semantics means that the pro-
cess algebra of an MSC is interpreted using a
transition system. The transition system defines
which moves are possible for the process alge-
braic term.

Concluding Remarks
In this article, we have presented an overview of
the SDL and the MSC formal semantics defini-
tions. The general distinction between axiom-
atic, denotational and operational methods was
used to identify corresponding parts in the
semantics definitions of the two languages.

The subdivision of the semantics into the parts
presented above has proved very useful, as it is
essential to be able to adjust the semantics to the
development of the language. This is achieved
by using two layers of abstraction: (1) abstract
the concrete syntax into an abstract syntax, (2)
transform the abstract syntax to an abstract
machine / an abstract process algebra.

It should be noted that the formal SDL semantics
has been conceived in parallel with the language
definition itself. During this process, several
substantial changes to the language definition,
which turned out to be a “moving target”, were
made. These changes of course affected the for-
mal semantics definition, but usually did not
touch the SAM.

The formal MSC semantics was last updated for
MSC-96. It is contained in Annex B and C of
Recommendation Z.120. It covers the static
semantics as well as the dynamic semantics.
Unfortunately, no new update is made for
MSC-2000, due to lack of human resources.

The SDL-2000 formal semantics will cover the
whole language SDL-2000. As with previous
versions, it will be contained in Annex F of rec-
ommendation Z.100. The approval of the com-

plete Annex F is scheduled for November 2000.
Currently the dynamic semantics and the static
conditions are almost ready, the majority of the
transformations still needs to be formalised.

Bibliography
1 ITU. Specification and Description Lan-

guage (SDL). Geneva, International
Telecommunication Union (ITU), 2000.
(ITU-T Recommendation Z.100.)

2 ITU. Specification and Description Lan-
guage (SDL). Geneva, International
Telecommunication Union (ITU), 1993.
(ITU-T Recommendation Z.100 Annex F.)

3 Glässer, U. ASM semantics of SDL : Con-
cepts, methods, tools. In: Lahav, Y et al.
(eds). Proc. of the 1st Workshop of the SDL
Forum Society on SDL and MSC Berlin,
29 June – 1 July 1998, 2, 271–280, 1998.

4 Lau, S, Prinz, A. BSDL : The Language –
Version 0.2. Berlin, Department of Com-
puter Science, Humboldt University Berlin,
1995.

5 Gotzhein, R et al. Towards a new formal
SDL semantics. In: Lahav, Y et al. (eds).
Proc. of the 1st Workshop of the SDL Forum
Society on SDL and MSC Berlin, 29 June –
1 July 1998, 1, 55–64, 1998.

6 ITU. Message Sequence Charts (MSC).
Geneva, International Telecommunication
Union (ITU), 2000. (ITU-T Recommenda-
tion Z.120.)

7 ITU. Message Sequence Charts (MSC).
Geneva, International Telecommunication
Union (ITU), 1998. (ITU-T Recommenda-
tion Z.120 Annex B and C.)

8 Mauw, S, Reniers, M A. Operational seman-
tics for MSC’96. Computer Networks and
ISDN Systems, 31, 17, 1785–1799, 1999.

9 Glässer, U, Gotzhein, R, Prinz, A. Towards
a New Formal SDL Semantics based on

Figure 5 Structure of the MSC
Dynamic Semantics: Part 2

MSC process algebra

Mathematics (Axioms)

MSC process algebra

Transition System

axiomatic semantics operational semantics

is formalised using is interpreted using

155Telektronikk 4.2000

Abstract State Machines. In: Dssouli, R,
Bochmann, G v, Lahav, Y. SDL’99 : The
Next Millenium. Amsterdam, Elsevier, 1999.

10 Bo, A et al. SDL Formal Semantics – prelim-
inary draft. Beijing, BUPT, 1999. (Technical
Report of BUPT.) See also http://tseg.bupt.
edu.cn.

11 Gurevich, Y. Evolving Algebra 1993 : Lipari
Guide. In: Börger, E (ed). Specification and
Validation Methods. Oxford University
Press, 1995, 9–36.

12 Gurevich, Y. ASM Guide 97. Ann Arbor,
EECS Department, University of Michigan,
1997. (CSE Technical Report CSE-TR-336-
97.)

13 Del Castillo, G. ASM-SL, a Specification
Language based on Gurevich’s Abstract
State Machines : Introduction and Tutorial.
Department of Mathematics and Computer
Science, Paderborn University. (Technical
Report (to appear).)

14 van Eijk, P, Belinfante, A. The term proces-
sor Kimwitu – Manual and cookbook (ver-
sion 4.0). Enschede, University of Twente,
1996. (Technical report.)

Telektronikk 4.2000

1 Scope
First we present the generic activities supported
by the Telelogic tools (Section 2). Section 3
describes the iterative engineering process that
can be applied by project teams working with
these tools, whereas Section 4 presents some
typical industrial applications that are success-
fully developed with the help of these tools.

More details are given on the packaging of the
tools (Section 5). New features are now being
delivered with the most recent versions of the
tools, regarding application deployment, support
of UMTS and support for C++ development,
they are described in Section 6 with a special
focus on the application deployment process.

The SDL and MSC modelling is strongly con-
nected to the UML modelling. Section 7 presents
the mapping rules that are implemented in the

tools. They are based on the real-time specific
UML profile defined in the ITU-T Z.109 Rec-
ommendation.

We conclude the paper on the future of these
technologies. There is a strong trend from the
standardisation bodies and language experts, as
well as from users and tool vendors, to merge
SDL and UML. Telelogic has active participa-
tion in the ITU-T and the OMG to speed up this
process. A tool development roadmap has been
defined and technical teams have been reorgan-
ised in order to deliver in a near future a single
UML, SDL and MSC toolset unifying the differ-
ent SDL, MSC and UML tools, and supplying
concrete benefits for real-time software develop-
ment such as design-level debugging, model val-
idation, code generation, assisted deployment
and test case generation.

Telelogic SDL and MSC Tool Families
P H I L I P P E L E B L A N C , A N D E R S E K A N D T H O M A S H J E L M

Tool support is required for an efficient use of description techniques in industrial contexts.
The objective of this paper is to present the SDL/MSC-based Telelogic tools for analysis and
design of real-time systems. The specification and design languages supported by these
tools are SDL and MSC which are international standards, defined in the ITU-T recommen-
dations in the Z.100 series and Z.120, that are widely used within the real-time software
community, and more particularly for the engineering of telecom applications. Telelogic sup-
plies two integrated tool suites in this area: Telelogic Tau mainly for the communication
industry and ObjectGeode for specific application areas such as aerospace and defence
systems. These tool suites give also a partial support to ASN.1 and TTCN. Both help to
design complex systems and produce reliable and maintainable software applications.

These SDL and MSC tools are complemented with the Telelogic Tau UML Suite that pro-
vides full support to UML. The UML Suite is not further presented in this paper, only its rela-
tionship with the SDL and MSC tools are detailed.

Philippe Leblanc (41) graduated
from the Ecole Nationale Supér-
ieure de l’Aéronautique et de
l’Espace in 1981. He has worked
in the field of real-time software
engineering for 16 years, taking
various positions, from software
developer to project manager
and senior consultant. He has
helped major Real-Time applica-
tion developers deploy formal
description techniques and
object-oriented modelling tech-
niques on industrial projects. He
is ITU-T SG10 Rapporteur for
Methodology linked to the ITU-T
modelling languages. He now
works as Product Maketing Man-
ager at Telelogic on SDL and
UML technologies.

philippe.leblanc@csverilog.com

Anders Ek (40) graduated from
the University of Lund in 1986
with an MSc in Computer Sci-
ence. He has since been work-
ing with artificial intelligence
applications, tools based on for-
mal methods and software de-
sign languages and environ-
ments. He has been working
both as a programmer, software
analyst, project manager, re-
quirements engineer and team
manager. He has worked with
language design and been
active in the experts groups de-
veloping MSC-96 and SDL-2000,
two graphical design languages
standardized by ITU. He joined
Telelogic 1992 and is now head
of a development team focusing
on language design and future
software environments.

anders.ek@telelogic.se Figure 1 Generic Architecture of the Telelogic Tool Families

Model Debugging
& Analysis

Code Generatrion
& Deployment

Visual
Modeling

Test Case
Generation

SW Debugging
& Testing

156

157

2 Supported Activities
Telelogic SDL and MSC tools support the
generic activities depicted in Figure 1. Tool
suites comprise:

• Visual modelling tools to build analysis and
design models according to the UML, SDL
and MSC notations.

• Model debugging and analysis tools to debug
models and to explore their behaviour in auto-
matic mode for early error detection and con-
formance checking.

• Test case generation tools to build interac-
tively or in assisted mode test plans for soft-
ware conformance testing.

• Code generation and deployment tools to con-
vert models into executable applications and
to deploy the generated software onto target
platforms according to various configurations.

• Software debugging and testing tools to help
debugging software applications at design-
level and testing them in accordance with test
plans either produced from models or pro-
vided externally.

3 Engineering Process
The SDL and MSC tools allow developers to set
up an iterative and architecture-centric engineer-
ing process depicted in Figure 2. First the devel-
opment project is divided into successive itera-
tions, each developing an increment of the appli-
cation. The application is completed at the last
iteration. This means that the system architecture
is continuously refined along the process and
that it guides the sequence of iterations.

Within all iterations, two micro-cycles are car-
ried out subsequently. The first micro-cycle

(left-hand side circular arrow in Figure 1, short-
est circular arrows in Figure 2) consists in en-
riching the application models using visual mod-
elling tools, and verifying and validating these
changes using simulation tools. The second
micro-cycle (right-hand side circular arrow in
Figure 1, longest circular arrows in Figure 2)
consists in converting the changes validated dur-
ing the first micro-cycle into executable code
and deploying the generated software on the tar-
get platform; possibly testing these changes on
the host platform first.

4 Typical Industrial
Applications

Software applications targeted by the Telelogic
tool families, range over the whole real-time
software domain, and more particularly: tele-
communications, aeronautics, space, defence and
automotive applications. Historically, the tele-
communication sector is the most important one,
representing more than two thirds of the cus-
tomer base.

Typical examples of systems that have been suc-
cessfully developed with the Telelogic tools are:

• Public and private fixed networks and termi-
nals, based on various technologies such as
ATM, Internet, VoIP, ISDN, IN, etc.;

• Mobile networks and mobile and wireless ter-
minals, based on technologies such as: UMTS,
GSM, GPRS, Bluetooth, CDMA, WLAN,
IEEE 802.11, TETRA, etc.;

• On-board communication software embedded
on aircraft, e.g. for the Future Air Navigation
System (FANS);

• On-board management software embedded on
satellites or on the International Space Station
(ISS);

Formal
analysis and
design
modeling

Verification
and validation
through
simulation

Automated
implementation

SubPart 1 SubPart 2 Last SubPart

Final Delivery

Thomas Hjelm (37) holds an en-
gineering degree and an MSc of
Computer Science from Oxford
University, as well as telecom-
oriented company MBA. He has
over 10 years of senior experi-
ence in software methodologies,
including use of formal methods
for development of security sys-
tems, model-checking of proto-
cols, practical application of the
Telelogic Tau tools, object-ori-
ented methods and CMM based
software process improvement.
He has worked in the areas of
development of real-time soft-
ware CASE tools, train security
software and Mobile Communi-
cations. He has been working as
Product Manager at Telelogic
since 1998.

thomas.hjelm@telelogic.com

Figure 2 Iterative Engineering Process

Telektronikk 4.2000

158 Telektronikk 4.2000

Tau Tools for Model Debugging and Advanced Analysis

Analyser To perform syntactic and static semantic check of

SDL descriptions

Simulator To perform host debugging of SDL descriptions

and regression testing either using a script

language or using MSCs as test descriptions

(see Figure 4)

Validator To perform automatic testing of SDL descriptions

based on formal verification techniques and state

graph exploration

SDL-TTCN Co-Simulation To test SDL applications using TTCN test suites

Tau Tools for Visual Modelling

Organiser To define personal workspaces and browse SDL
descriptions

SDL Editor To create SDL descriptions (see Figure 3)

MSC Editor To create MSC requirements and test specifi-
cations, and to visualise test execution traces

HMSC Editor To create high-level MSCs, in order to structure
large sets of basic MSCs (see Figure 3)

State Chart Editor To create UML state charts and to visualise
overview of SDL state machines

Deployment Editor To create UML component diagrams describing
physical structure of applications

SDL Overview Viewer To display entire SDL hierarchies in one diagram

Type Viewer To display type hierarchies of SDL descriptions

C/C++ to SDL Translator To reuse existing C and C++ code in SDL appli-
cations

ASN.1 Import To reuse existing ASN.1 data definitions in SDL
applications

UML to SDL/MSC Translator To produce preliminary SDL descriptions based
on UML analysis models developed using the
Telelogic Tau UML Suite

• Vehicle electronics such as Embedded Control
Unit (ECU), driver assistance systems, etc.

In terms of project size and software complexity,
Telelogic tools are able to manage a large range
of applications: from large-size projects with up
to 300 developers (e.g. in the case of switching
systems), down to small footprint applications
with 8 kB of ROM (for code) and 256 b of RAM
(for data) running on a micro-controller (e.g. for
military on-board software).

Software produced with Telelogic’s technologies
can be deployed on most of the real-time operat-
ing systems available commercially, such as
VxWorks-Tornado, pSOS+, VRTX, OSE, QNX,
Nucleus Plus, POSIX, Chorus, OSEK, and
workstations running UNIX, Windows or Linux.
Applications can also be generated for bare sys-
tems without any RTOS. In that case, a compact
and optimised SDL virtual machine is included
in the generated application.

Telelogic is the biggest supplier of real-time
software engineering tools with 32 % of the mar-
ket share. Specifically in the telecommunication
sector, Telelogic owns more than 50 % of the
CASE tool market for the development of real-
time systems.

5 Toolset Packaging

5.1 Telelogic Tau SDL
Suite Packaging

The different modules composing the Telelogic
Tau SDL Suite are presented in the following
tables, as well as some tool screenshots.

Telelogic Tau SDL Suite is available on UNIX
and Windows machines.

5.2 ObjectGeode Packaging
The ObjectGeode packaging is similar to the
Tau SDL Suite packaging:

• Visual modelling tools include: SDL Editor,
MSC Editor, SDL&MSC API, Editor API.

• Simulation tools include: Model Debugger,
Model Advanced Analyzer, Simulator API.

• Test case generation tools include: Test Com-
poser and TTCN Test Suite Publisher.

• Tools for application generation, deployment
and software debugging include: SDL C Code
Generator, Run-Time Libraries for various
RTOS, Design Tracer.

ObjectGeode is available on UNIX and Win-
dows machines.Figure 3 SDL and HMSC Diagrams

159Telektronikk 4.2000

6 New Tool Features
New versions of the Telelogic SDL tools have
been recently delivered, in particular the 4th
generation of Telelogic Tau SDL Suite. This
recent tool generation integrates new features
providing significant help for industrial software
development. In particular, it gives full support
for: application deployment using visual models,
UMTS development including import of ASN.1
UMTS modules, and C++ development enabling
reuse of legacy C++ code.

6.1 Deployment Editor and
Targeting Expert

The transformation of logical SDL models into
efficient implementations is a key-activity for
SDL-based application development. The pur-
pose of the Deployment Editor and Targeting
Expert is precisely to provide support in this
activity. Deployment diagrams in Telelogic Tau
SDL Suite describe the physical architecture of
the application and the relation between the logi-
cal SDL entities like blocks and processes and
this physical architecture. This is essentially a
model based on the following main concepts:

• Nodes, i.e. the hardware platforms on which
the application will run;

• Components, i.e. the executable files that
make up the application;

• Logical SDL entities that run in the threads,
i.e. component property set either to light
(only one thread for the entire SDL system),
or tight (one thread per instance) or instance-
set (one thread per instance set).

An example of a deployment diagram is shown
in Figure 5. The aggregation structure illustrates
the relations between the different entities,
which components can execute on which node
type and which SDL entities can run in each
component. The UML stereotypes used in this
diagram are defined in the UML profile elabo-
rated by Telelogic for SDL-96 (see Section 7).

The SDL model and the deployment diagrams
cover two of the most important aspects of an
application, the logical behaviour and the physi-
cal structure. The purpose of the Targeting
Expert tool is to further define the details of each
component in the physical structure. It guides
the user through implementation choices that are
available for each component and makes it pos-
sible to fine-tune the execution of the generated
applications and to define the details of the build
process. It is also the tool of choice for building
the application and can be executed both in
interactive mode, mainly for setting up the gen-
eration and build properties, and in batch mode,
to build the final application. The Targeting

Figure 4 MSC Generation
during SDL Simulation

Tau Tools for Code Generation and Deployment

C Advanced code generator To generate C code for applications with soft
real-time constraints

C Micro code generator To generate C code for applications with hard
real-time constraints in term of memory and
performance

Chill code generator To generate Chill ITU-T language

Targeting Expert To perform fine-tuning and optimisation of gener-
ated code, and to control the build process

Real-Time OS adaptations To make the generated code executable on
various real-time operating systems including
ChorusOS, OSE, pSOS, QNX, VRTX, VxWorks,
Tornado, Nucleus PLUS, Win32 and Solaris

Tau Tools for Software Debugging & Testing

Target Tester To test the generated applications on target
platforms

Tau Tools for Test Case Generation

TTCN Link To perform semi-automatic development of TTCN
test suites based on SDL descriptions

Autolink To perform automatic generation of TTCN test
suites based on SDL descriptions and MSC test
purpose specifications

160 Telektronikk 4.2000

Expert can also export a generated make file
for inclusion in an external make process.

Typical properties that are described using
Targeting Expert are:

• Details of the code generator to be used;

• Details of the compiler that is used, e.g. opti-
misation issues like whether the compiler
most efficiently handles characters or integers,
the command line parameters needed and the
environment variable settings required;

• Definition of what communication links will
be used within the application, defining e.g.
what encoders/decoders to use;

• Description of what tool has to be used to
download the generated application onto the
target platform.

The properties can be set either for a complete
application, for all components running on spe-
cific nodes or for specific components.

6.2 Use in UMTS Projects
Many parts of the UMTS standards are written
using SDL, ASN.1 (e.g. the RLC PDU defini-
tions) and TTCN (conformance tests).

Telelogic Tau has been updated to allow imme-
diate reuse of these parts of the standards. For
example the ASN.1 Import has been extended to
import the full ASN.1 standard covering X.680,
X.681, X.682 and X.683, in concordance with
the new version of the Z.105 standard. In addi-
tion, it is possible to automatically generate PER
encoders and decoders for the UMTS interfaces,
which is an easy way to create application simu-
lators, prototypes or the final application code.

The UMTS support brings several benefits to 3G
projects. It is possible to jump-start the develop-
ment by importing the SDL specifications,
which can then be simulated to help understand-
ing their dynamic behaviour, or they can be used
as the starting point for the application develop-
ment. By importing the ASN.1 specification, the
SDL design will by definition have the right
interfaces with no risk of interpretation or cod-
ing mistakes.

6.3 C++ Support: Effective
Integration of UML and SDL

More and more Application Programming Inter-
faces are written in C++ and it can be very useful
to be able to use these directly in SDL applica-
tions. The C++ Access application allows C++
interfaces such as Microsoft Foundation Classes or
database interfaces to be imported into SDL and
used directly in the SDL diagrams, for example in
Task or Decision symbols. The code generators
will generate the corresponding C++ calls.

The benefit of this approach is that the full SDL
syntactic and semantic checks are available
(contrary to when in-line code is used). It means
that if the C++ interface is changed, the SDL
analysis will immediately detect any inconsis-
tencies between the new interface and the calls
written in the SDL code, thus reducing the risk
of late discovery of coding errors.

The C++ interface allows an effective develop-
ment approach where UML can be used to
design the overall system, where after certain
classes are translated into SDL and others are
developed in C++. By using the C++ Access, the
results of the parallel developments are smoothly
combined. The original UML design ensures
that both parallel development tracks work from
a common well-defined base.

7 Mapping Rules between
UML 1.3 and SDL-96,
and Tool Support

7.1 Principles
In the Telelogic tools, SDL and MSC modelling
is tightly connected to UML modelling. The rec-
ommended engineering process is to start system
modelling with UML, since UML is widely
accepted as a general-purpose modelling nota-
tion. When moving to the architectural and
behavioural design activities, SDL and MSC are
recommended instead as they include: structur-
ing and decoupled communication mechanisms
for building modular architectures, an action lan-
guage to fully describe behaviour, and an execu-
tion model (formal dynamic semantics) making
behavioural models executable.

Figure 5 A Typical
Component Diagram

<<process>>
Main

<<process>>
Game

<<process>>
Demon

G S

WinWS

d1

161Telektronikk 4.2000

The joint use of these three different notations
must be as smooth as possible from an end-user
point of view. The ITU-T has made significant
progress in this area with SDL-2000, which
directly includes UML constructs and the well-
known UML graphical representation, and with
Z.109 that describes the mapping rules between
UML and SDL, see the paper by Birger Møller-
Pedersen on UML combined with SDL in this
issue.

These achievements constitute the theoretical
foundation for the UML to SDL-MSC mapping
supported in the current versions of the Tele-
logic tools. Adaptations were required to map
UML to SDL-96, since Z.109 relates to SDL-
2000. These adaptations have led to limitations
that will be removed as soon as the tools will
be SDL-2000 compliant.

In this mapping, see Figure 6, the three most
important UML diagrams are considered: Class
diagram, Statechart diagram and Sequence dia-
gram. They are respectively converted into:
SDL Structure diagrams, SDL State machine
diagrams and basic MSC. Use-case diagrams in
UML cannot be taken into account, as they do
not contain semantics. The following sections
detail the different mapping rules as defined by
Telelogic for SDL-96. Note that they do not
strictly comply with Z.109 and would be differ-
ent for SDL-2000, since they are applicable to
SDL-96.

7.2 UML Class Diagram and
SDL Structure Diagram

Class diagrams are converted into type defini-
tions in SDL Structure diagrams in accordance
with a set of stereotypes that must be used to
enable the conversion. Stereotypes are «actor»,
«block», «process», «signal» and «newtype».
They are applicable to classes.

The hierarchical structure generated for the SDL
model is based on the active classes stereotyped
with «block» and «process» and on their aggre-
gation links. For each block/process class, two
SDL elements are generated: the corresponding
block/process type and the corresponding block/
process instance set. Associations between
active classes are then converted into gates for
the block/process types and channels/routes
between the block/process instance sets.

Classes stereotyped «actor» are converted into
channels connected to the environment.

Attributes to classes stereotyped «process» are
converted into local variables, as well as associa-
tions pointing to classes stereotyped «newtype».
Operations of classes stereotyped «process» and
«block» are converted into signals or remote
procedures if the operations return values.

Classes stereotyped «signal» are converted into
SDL signal declarations placed at the system
level, and classes stereotyped «newtype» are
converted into SDL newtypes placed also at the
system level.

Inheritance is also supported, using the native
SDL concepts of block/process type and inheri-
tance.

7.3 UML Statechart and SDL
Transition Diagram

UML Statechart diagrams are converted into
SDL state machine diagrams, according to the
general rule: one UML state machine generates
one SDL state machine.

For most of the Statechart constructs, there is
a direct mapping to SDL. For example, State,
Reception, ChangeEvent, Guard, TimeEvent,
SendAction, AssignmentAction, CallAction and

Figure 6 From UML to SDL
and MSC

UML

MSC SDL

Consortium

Conso_1

SYSTEM ATM

ATM_1

Customer

Max

enter_amount

amount (400)

cash (400)

print (´Transaction Completed`)

eject (CashCard)

q_accept (Max, 400)

r_accept (Max, 400, true)

report (Max, 400)

162 Telektronikk 4.2000

TerminateAction are respectively converted into
State, Input, Continuous Signal, Enabling Condi-
tion, Timeout, Output, Assignment, Procedure
Call and Stop.

UML entry and exit actions are mapped to dupli-
cated actions in all the SDL transitions leading
to or leaving the corresponding state.

The main difference comes from the state com-
position mechanism allowed in Statechart and
not in SDL. Hierarchical UML states are flat-
tened, and intermediate entry / exit actions are
duplicated in the SDL transitions. The resulting
SDL state machine is a flat set of transitions
going from simple states to simple states. Note
that this will be different in SDL-2000.

7.4 UML Sequence Diagram
and Basic MSC

The mapping from UML Sequence diagrams to
MSC is straightforward, as a UML Sequence
diagram is a subset of Z.120/96, except for two
constructs, activation flow and method invoca-
tion, which have no correspondence to con-
structs in MSC-1996.

The mapping is one-to-one: a UML Sequence
diagram is converted into a single MSC; a UML
class instance (vertical bar) is converted into an
MSC instance; a UML message is converted into
an MSC message.

Note that MSC has many other features, such as
structural mechanisms, that are not supported in
UML.

7.5 Tool Support with Telelogic
Tau UML Suite

These mapping rules described above are sup-
ported in the Telelogic tool families: models
made with the UML Suite can be converted into
SDL/MSC models processable by the SDL/MSC
tools. Therefore a project can start the modelling
activities with the UML Suite, and then move to
SDL for detailed design with neither time loss
nor information loss.

Practically, a 3-step approach is recommended:

1. The UML model is built using Class dia-
grams, Sequence diagrams and State dia-
grams, without any constraints on the UML
used. This allows pure UML analysts to per-
form this step without any preconception of
what the system architecture will be.

2. The “informal” UML model made in the first
step is reworked: SDL stereotypes are intro-
duced to formalise the UML model, and the
transition actions are reformulated using an

SDL-based concrete syntax. We are still at the
UML level, but the designer must be aware of
the modelling constructs of SDL required for
real-time applications.

3. The “formalised” UML model is ready for
conversion into SDL. The SDL model (and
MSCs if any) is generated. Most of the time,
the model will have to be reworked in order to
have a correct and complete SDL design con-
taining type definitions, architecture and state
machines. This step is similar to the formalisa-
tion activity as defined in the SDL+ Method-
ology (defined in supplement 1 (04/96) to
Z.100): the informal SDL model is reworked
in order to conform to the static and dynamic
semantics of SDL. Statically, it means that
usage of types must conform to their declara-
tions; connections must be coherent; state
machines must be consistent with the type
declarations and connections, etc. From a
dynamic point of view, dynamic creation of
process instances must be compatible with the
state machine definitions; signal routing must
be based on a correct use of Pids and chan-
nels, etc. It does not seem appropriate to work
at the UML level to complete the SDL mod-
elling, even if it is possible, as the SDL tools
give a very efficient support to do that (static
checker and simulation tools run directly on
SDL models).

8 Future of Notations
and Technologies

UML is an excellent general-purpose modeling
technique, but needs to be complemented to effi-
ciently address the development of real-time
applications. UML needs:

• Structuring and loosely coupled communica-
tion mechanisms for building modular
reusable architectures;

• An action language for specifying transition
actions;

• An execution model for executing models.

These requirements are generally recognised
by software engineering experts including the
OMG, and enhancements are already proposed
by the OMG, through two Requests For Proposal
“Action Semantics” and “UML Profile for
Scheduling, Performance and Time” and the
UML 2.0 Request For Information (RFI).

Facing the increasing use of UML for software
engineering and considering these needs, Tele-
logic has set up a 3-step convergence plan, initi-
ated in 1999 (see also Figure 7):

163Telektronikk 4.2000

Step #1:
In 1999, theoretical studies on a mapping
between UML 1.3 and SDL-96 have defined
an informal UML profile for real-time appli-
cations. This allows designers to build consis-
tent UML and SDL models but separately.

In parallel, Telelogic has collaborated with the
ITU-T to define SDL-2000, in order to incor-
porate in SDL the UML constructs that were
missing in SDL-96, mainly a class-based data
model and Statechart-specific concepts, and to
add the UML class representation to the SDL
Structure diagrams.

Step #2:
In 2000, the UML 1.3 – SDL-96 mapping is
automated in the Telelogic tools enabling
designers to generate SDL models from UML
models. This tool support allows a joint and
consistent use of both notations within a pro-
ject, without loss of information. Thus, UML
and SDL end-users benefit from all the power-
ful features provided by the Telelogic Tau and
ObjectGeode Suites, such as model debug-
ging, model validation, test case generation,
code generation and assisted deployment.

In parallel, Telelogic participates to the OMG
RFP working groups and UML 2.0 RFI, in
order to promote the SDL solution as the ref-
erence UML profile for real-time. Submis-
sions consist in extending UML with the
SDL-2000 concepts in order to solve the cur-
rent UML 1.3 limitations: structure and com-
munication based on block, process, gate and
channel; SDL syntax as concrete action lan-
guage; SDL execution model. Major industrial
users are also supporting this approach, such
as Ericsson, Motorola and Alcatel.

The standardisation work is continuing in the
ITU-T to consolidate SDL-2000, and in par-
ticular on methodological aspects.

Internally, all the Telelogic technical teams
involved in the development of the Telelogic
Tau and ObjectGeode Suites have been reor-
ganised, putting together their experience and
their technologies.

Step #3:
In 2001-2002, Telelogic will deliver a coher-
ent and powerful support for SDL-2000 and
UML within a single tool suite, including
advanced simulation and code generation
facilities.

Compatibility between current tool families
and the next product generation will be
sought, in order to provide customers with an
enhanced UML/SDL tool support without dis-
ruption.

This 3-step roadmap is compatible with the
UML evolution as we can anticipate from the
OMG. Within two years, the SDL and UML
notations and technologies will be merged, with-
out sacrificing the benefits of model simulation
and autocoding.

9 More Information
ITU Recommendations, in particular the Z.100
series including Z.100, Z.105, Z.109 and Z.120,
can be accessed from the ITU Web site:
www.itu.int.

The SDL Forum Society, www.sdl-forum.org,
will also provide the readers with valuable infor-
mation regarding SDL and MSC: tutorials, latest
versions of SDL and MSC Recommendations.
A mailing list is also available for members.

The OMG Web site, www.omg.org/uml, gives
you access to the UML Specification as well as
recent information on the UML working groups.

More information on the Telelogic company
and on these products is accessible from
www.telelogic.com.

Figure 7 Technology Trends
1999 2000/1

Analysis and
high-level design

Real-time design,
simulation and

autocoding

Class-based
structure

Behavior

Seamless
real-time

development
workflowUML

MSC

SDL

UML/
SDL2000

Telektronikk 4.2000

1 Introduction
Cinderella SDL is a CASE tool, based on UML
and SDL, for system development. Cinderella
SDL supports the main activities of develop-
ment:

• System analysis, i.e. the definition of a con-
ceptual model for the system to be developed.

• System design, i.e. the definition of an exe-
cutable model for the system to be imple-
mented.

• System tests, i.e. verifying that the system ful-
fils the user requirements.

• System Implementation, i.e. generation of exe-
cutable code.

Ideally, system development starts with analysis,
followed by system design, followed by test of
the system design, followed by generation of im-
plementation code from the design.

However, in practice, software development is
an iterative process where it is often necessary
to go back to a previous activity due to changed
requirements or due to new knowledge of the
system.

That is, software development follows the so-
called spiral model shown in Figure 1 (as
opposed to the ‘waterfall’ model):

For Cinderella, the challenge is to support these
activities in such a way that:

• The amount of redundancy is minimal. That
is, properties that have already been specified
during e.g. analysis should not be repeated
during design.

• The properties of parts belonging to different
activities are kept consistent. That is, there
should be a mechanism to assure that changes,
e.g. in the design, do not invalidate the analy-
sis part or make it obsolete.

• The user is not forced to think in terms of
analysis and design. Rather, the user should be
free to choose views of their own choice.

The freedom in choice of views (or abstractions)
is an essential point1). The choice of view
should not be restricted to the activities above,
because abstraction should provide the ability to
deal with exactly the properties you want, and
not to be concerned with any other properties.

The upcoming version of Cinderella SDL, ver-
sion 2.0, gives a first approach to fulfil this
vision, by providing a tight integration of UML
and SDL. Cinderella SDL is a UML tool for
UML users, an SDL tool for SDL users and an

Cinderella SDL – A Case tool for System
Analysis and Design
A N D E R S O L S E N A N D F I N N K R I S T O F F E R S E N

This paper describes the CASE tool Cinderella SDL that supports system development
using SDL and UML. Current and planned features of Cinderella SDL are described in the
context of the system development activities. For each of the activities, system analysis,
design, test, and implementation, it is illustrated how Cinderella SDL may support this activ-
ity. The paper describes how the tool enables the combined use of SDL and UML, supports
the system design process, can be used for design validation, and provides a basis for code
generation from an SDL/UML system model.

Anders Olsen (44) received his
MSc from the Technical Univer-
sity of Denmark in 1983 and has
worked with SDL ever since. In
the International Telecommuni-
cation Union (ITU) he was
responsible for – and main
author of – the Formal Definition
of SDL, first in 1988 and then
again in 1992. He has played a
central role in numerous SDL
related EU projects, most
recently in the project SCREEN
1996 – 1998, where he was
technical leader. In 1995 he
was co-founder of Cinderella
(www.cinderella.dk). Apart from
the work for Cinderella, he has
also established the company
Cinderella Consult.

anders@cinderella.dk

Finn Kristoffersen (40) holds an
MSc E.E. from the Technical
University of Denmark, and has
been working at Tele Danmark
Research in the Software de-
partment since 1986. He has
been involved in ITU and ETSI
standardisation of formal meth-
ods in conformance testing, and
in mobile protocol specification
and validation projects. He has
worked with WAP service devel-
opment, and he is co-founder of
Cinderella. His current interests
are formal specification methods
and their combined usage in
system development.

finn@cinderella.dk

1) The four activities can be regarded as dealing with the conceptual view, the semantic view,
the external view and the physical view – or in terms of ODP – the informational viewpoint,
the computational viewpoint, the enterprise viewpoint and the engineering viewpoint.

Figure 1 The Spiral Development Model

Analysis

Design

Test

Implementation

164

165Telektronikk 4.2000

This package makes visible all the types that are
defined directly in the system. Thus, the above
two classes correspond to the system as shown
in Figure 3, here represented by the process
instance Toss.

Note that the User is not part of the system. It is
anyway specified on the class level, partly for
explanatory reasons, partly because the User
class will be important during the system test.

The tossPackage is defined as shown in Figure 4.

The process Toss can be defined either with a
state chart or by using an SDL process diagram.

A state chart for the Toss process contains two
states Odd and Even. When the game is in state
Even and it handles the event Probe, it will
respond with Win. When it is in the state Odd
and handles Probe, it will respond with Lose.
The system can randomly change state. In both
states, it can handle the triggered operation
GetCount.

Figure 2 UML classes for
the environment (user) and

the Toss process

Figure 3 SDL system based
on the Toss class

Figure 4 The implicit
SDL package

User

Win()

Lose()

Toss

Probe(Pid user)

GetCount(user Pid)

Win

Lose

Probe

GetCount

toss:Toss

use
tossPackage;

Package tossPackage 1(1)

User

signal Win, Lose, Probe;
remote procedure getCount ; returns Integer;

Toss

SDL/UML tool for those users who want to ben-
efit from both technologies. In this version of
Cinderella SDL, a specification can at one mo-
ment be viewed and edited as UML and the next
moment as SDL. For example, a state machine
can be viewed and edited as a UML state chart
(with few details) or as an SDL process diagram
(with all details).

In the following, the Cinderella approach to sys-
tem development, based on the four activities,
is described:

• Section 2 describes the UML support and how
the user can switch view between UML and
SDL;

• Section 3 describes the SDL features;

• Section 4 describes the methodology for
testing;

• Section 5 describes implementation issues;

• Section 6 concludes the paper.

2 Combining SDL and UML
In the planned version of Cinderella SDL a user
can make a complete system design

• by using UML only; or
• by using SDL only; or
• by combining SDL and UML.

Behind the scene, SDL structures are used no
matter which approach is taken. Therefore, a
system can at any time be viewed in the form
of SDL.

The parts of UML that are supported are those
which form the central part of UML and which
have clear resemblance to SDL-2000, namely
the class diagram and the state charts.

To illustrate how it works, let us consider a very
small game where players get the message Win
or Lose when they trigger (Probe) the system. A
user can at any time ask the system of the score,
i.e. the number of times they got Win more than
Lose.

The system consists of one class: Toss. In addi-
tion, we specify the user, even though the user
is not part of the system. This is partly in order
to include the communication scheme, partly
because the user (the environment) becomes
important during the test phase.

The UML classes are shown in Figure 2.

There is an implicit SDL package with system
name followed by ‘Package’ for every system.

166 Telektronikk 4.2000

The diagram in Figure 5 is a mixture of a UML
state chart and SDL process diagram, but this is
just to show the flexibility. Alternatively, the
state chart can be shown using UML notation
solely, or as SDL using a state machine diagram.

To define the behaviour of the transitions, there
are three options:

1. The user can switch to SDL view where the
user will see an SDL state machine diagram
with empty transitions. The transitions can be
inserted using the SDL editor. Afterwards, the
user can switch to the state chart view without
losing the information.

2. The user can click on the actions (e.g. Win)
and a dialog-based wizard will assist the user
(typically a UML user) through the process
of defining actions.

3. The behaviour is defined in terms of a set of
procedures, one for each combination of state
and input. For example, the calls of the four
procedures, Probe_even_even,
none_even_odd, Probe_odd_odd and
none_odd_even (shown in Figure 6), can be
generated by the tool, while the contents of
the procedures is defined by means of one of
the above approaches.

The SDL graph for the toss process with proce-
dures is shown in Figure 6.

3 The SDL Part
SDL does not enforce a particular system devel-
opment methodology, so an SDL tool should
support different methodologies. Methodology
independent features offered by an SDL tool
may include the following aspects:

• editing and analysis;
• navigation features;
• organising the parts of a specification in dif-

ferent files;
• simulation.

In this section we will describe how Cinderella
SDL provides support for these aspects. In Fig-
ure 7 the graphical user interface to Cinderella
SDL is shown. The three main areas of the tool
are the editing area containing the SDL win-
dows, the specification explorer containing the
specification structure and the properties area
providing information about a selected item.

Editing and Analysis
When developing a system specification in SDL
using Cinderella SDL, a number of basic editing
features ease the design process.

The basic editing features include: diagram type
dependent symbol bars offering only the valid
symbols according to the diagram type and when
new graph symbols are added a connecting flow-
line is automatically inserted. As Cinderella
SDL is a Windows application, all basic editing
functions and keyboard shortcuts for cut, copy
and paste are available. Selection of symbols
may be done either by selecting all symbolsFigure 6 SDL state machine

for the Toss process

[Probe,
getCount]

[Win,Lose]

Process Type Toss
1(1)

Odd

Even

*

User

Lose

Win

Probe

[Random]

Probe

GetCount

[Random]

Figure 5 Overview of the state
machine

Probe

even

Probe_even_
_even

even

none_even_
_odd

odd

any(Boolean)

Probe

Probe_odd_
_odd

odd

none_odd_
_even

even

any(Boolean)

167Telektronikk 4.2000

within an indicated area, by selecting all sym-
bols belonging to the subtree of a selected sym-
bol, or by selecting all symbols in a diagram
page. Editing text in symbols may be done either
directly in the symbol or using a separate text-
editing window. Text search and replace func-
tions are available. The search and replace func-
tions have user defined scope settings to limit
the operation to the current page, current dia-
gram, current and nested diagrams or the com-
plete specification.

Although the SDL editor includes immediate
checks for which symbols may be connected,
it is the syntactical and semantical analyser that
provides the basis for most of the other tool fea-
tures, including advanced navigation and simula-
tion.

Cinderella SDL allows the user to select which
SDL-recommendation shall be used by the anal-
yser, i.e. SDL-92 or SDL-2000. The analysis
level can also be controlled to include only syn-
tax analysis or complete syntax and semantical
analysis. The combined use of the datatype lan-
guage ASN.1 and SDL is also an option that can
be set by the user. The incremental analysis in
Cinderella SDL may be done in the background
while at the same time constructing the informa-
tion needed to offer the advanced navigation
features as described in the following section.
When working on large specifications, the back-
ground analysis may sometimes slow down the
response time of the editor, so this feature can
be disabled and analysis is then performed only
upon user request.

Navigation Features
Navigation is a key issue when developing sys-
tem specifications using SDL. One reason for
this is that an SDL specification typically con-
sists of a number of separate entities like pack-
ages and diagrams, where definition and usage
occur in different places. Cinderella SDL pro-
vides the following features to ease navigation
in a specification:

• Forward/Back functions to browse the list of
diagram pages shown in an editor window;

Figure 8 Right mouse button
functions for a variable name

Figure 7 The Cinderella SDL
user interface

168 Telektronikk 4.2000

• Diagram page navigation functions to show
first, previous, next or last page. Also selec-
tion of a specified diagram page number is
supported;

• Selecting an entity in the specification ex-
plorer and double click on this entity will
activate the entity in the editor window;

• More windows of the specification can be
open simultaneously in the editing area, and
thereby provide the means for a more conve-
nient overview of different entities in a speci-
fication.

As an alternative means to browse a specifica-
tion, it is possible to select a name or symbol in
the specification and use the right mouse button
to get access to all basic operations and informa-
tion available for the selected item. Figure 8
shows an example of the functions available to
a variable name via the right mouse button. For
a variable name, two primary features for brows-
ing are to go to the definition or to view the
properties of the variable in the property pane.

In the property pane all derived information
about a selected entity are shown. As a new fea-
ture it also lists all occurrences of the name in
the properties pane. The usage list, see Figure 9,
is convenient when browsing a specification as
you can activate a specific occurrence of the
name in the editor window by selecting the name
from the usage list. Another feature that is avail-
able from the properties pane is the rename oper-
ation.

The rename feature allows you to replace a spe-
cific name in the specification independently
of the way that name is formatted, and indepen-
dently of whether the same name is used in other
scope units. Figure 10 shows the rename dialog
box for the replacement of a variable name. The
rename feature is only available when a specifi-
cation has been analysed and the selected analy-
sis level is set to a level sufficiently high to sup-
port this operation. The rename operation only
replaces occurrences of the selected name
belonging to the same entity class and in this
way offers a safe way to do renaming in a spe-
cification.

Specification Architecture
Cinderella SDL supports keeping a specification
in a single file, which may be convenient if port-
ing the specification between different PCs; as
well as dividing a specification into several files.
Dividing a specification can be done dynami-
cally and at many levels. In Cinderella SDL
packages, systems, blocks, processes, procedures
and text symbols can be saved to separate files.
The format of the different parts may also be
chosen according to the current needs as the tool
allows mixing of graphical and textual SDL. The
current structure of a specification can be shown
in the “linked files” view as illustrated in Figure
11.

Simulation
During development of the system specification,
verifying the system requirements through simu-
lation is a useful way to check the correctness of
the system design. To support this kind of sys-
tem validation, the simulator should be an inte-
grated part of the tool. In Cinderella SDL the
simulator directly interprets the SDL model, and
hence can be used on partial system specifica-
tions. This allows validation through simulation
to be used very early in the design process. The
simulator also provides a complete dynamic
range check that supports the validation of con-
strained data types.

The simulator supports the operations: single
step, step over, run to a selected symbol, and to
set and remove breakpoints. In addition the sim-
ulator allows you to manipulate the state of the
system, e.g. by inserting signals in the input

Figure 9 The ‘usage’ list
makes browsing to
occurrences of a name easy

Figure 10 The rename feature
provides a safe way to rename
entities in a specification

Figure 11 The Linked file view
shows the file structure of a
specification

169Telektronikk 4.2000

• The test specification serves as documentation
for the design validation performed, and for
the system tests they may be the basis for
the test specification to be performed on the
implementation.

The SDL test process is defined in a separate
specification, which includes the system specifi-
cation or the selected parts of it. When the test
process is simulated in combination with the

Figure 13 User controlled settings must be available to support different
methodologies

Figure 12 MSC view available during simulation

queue of a process, creating new instances of a
process, or change the value of a variable. The
result of a simulation can be viewed as an MSC,
see Figure 12.

Tool Configuration
In order for a specification tool to be useful in
different system development projects, it must
be easy to configure to comply with the method-
ology required by the company and with devel-
oper preferences. For the described features of
Cinderella SDL, they can all be controlled by the
user. Figure 13 shows a single tab for the config-
uration of the explorer pane. A configuration
may be given a name and saved so that it can be
made available when starting the tool again.

To support the portability between different sys-
tem development tools, Cinderella SDL can also
load and save in the standardised exchange for-
mat CIF, as well as the textual representation of
SDL.

4 Design Testing
Design testing is the activity to validate that the
developed system model satisfies the system
requirements identified during analysis. Cin-
derella SDL allows you to define SDL test pro-
cesses to validate your SDL design and use the
simulator to check the system requirements. In
order to increase the value of the validation the
definition of the SDL design model and the test
processes ideally should not be performed by
the same group of system/test designers.

Although SDL is not a dedicated test notation
like e.g. TTCN, it may still be useful for SDL
design testing. Some of the benefits when using
SDL for design testing are:

• The same notation is used for system design
and for test definition.

• There are no requirements for an explicitly
defined test architecture, as the SDL-recom-
mendation defines the rules for communica-
tion between an SDL system and the environ-
ment of the SDL system.

• The testing can be used for ‘black-box’ testing
as well as ‘white-box’ (module) testing.

• It is easy to check exchanged signals and vari-
able values as the same notation is used for
the system specification and the test specifica-
tion.

• Test development and design validation can
be done as an integral part of system specifi-
cation.

170 Telektronikk 4.2000

(partial) system specification, the result may
be checked using the MSC view. As the system
specification file(s) are linked to the test specifi-
cation, it is easy to apply the test again if the sys-
tem has been updated.

In the following example, we illustrate the prin-
ciples of test processes using the toss system
described in Section 2. We want to define a test
case that checks that the score counter is cor-
rectly updated according to the result of sending
an initial Probe signal. If the Win signal is
received the getCount procedure shall return 1
and –1 if the Lose signal is received. The test
specification is shown in Figure 14. The test pro-
cess test_toss is an instance of the user process
that resides in a linked file. In this way the test
specification will always use the latest version
of the toss specification.

The test process instance test_toss consists of a
single test procedure tc_1 that tests the counter.
The process and procedure diagrams are shown
in Figure 15. The variable verdict will have the
value true if the simulation of the test is success-

The test
process

test_toss:
user

tosspackage

The process
to be testedtoss

Figure 14 The test system
for testing the toss process

*
waitResult

Process Type user

testdone

tc1
(verdict)

tc1

Procedure tc1

waitResult

dcl score
 res Integer :=0;

set
(t_resp)

Win

fpar
 in/out verdict Boolean;

Probe

reset
(t_resp)

score :=
score + 1

Lose

reset
(t_resp)

score :=
score - 1

t_resp

verdict :=
false

res :=
call getCount

verdict :=
(res = score)

signalset
Win, Lose;

dcl verdict Boolean;

timer t_resp :=10;

imported procedure getCount;
returns Integer;

Figure 15 The process type
user that test_toss is an
instance of and the test
procedure tc_1

171Telektronikk 4.2000

ful. The timer t_resp is introduced to ensure
progress of the simulation if the tested system
does not respond with an expected behaviour.
The test process behaviour may be extended
with call to additional test procedures, allowing
for a complete test suite to be executed in one
simulation.

When a simulation of the test system is per-
formed the signal exchange may be viewed as
an MSC. Figure 16 shows the MSC view of a
successful test simulation of test system for the
toss process.

This example only illustrates one approach to
use SDL for testing an SDL specification. Ob-
viously, there is a number of ways in which the
support for simulating combined SDL systems
and test processes can be utilised to validate a
system specification and document the valida-
tion performed. For example, different parts of
an SDL specification may be included in differ-
ent test systems to do module testing of these
parts. The designed SDL test processes may also
be used as a basis for implementation of the test
for the implementation of the system.

5 Implementation Generation
After finalizing the system design, defining the
test environment and testing the system design
against the test environment, the next step is to
generate a system implementation. An imple-
mentation for the test environment may also be
generated and used for testing the system imple-
mentation after it has been deployed.

To generate an implementation, you need a code
generator that is customized to meet your re-
quirements to the target environment. Due to
target environment dependencies (e.g. C++/Java,
CORBA/threads/DCOM/RMI), code generation
is not a built-in feature in Cinderella SDL. To
have code generation support, you should either:

• Generate SDL-PR and use one of the existing
commercial PR-based code generators;

• Use one of the existing commercial code gen-
erators which can be “plugged-into” Cin-
derella SDL by means of the API;

• Build your own “plug-in” code generator,
based on the source text skeletons that come
with Cinderella SDL.

You can make your own plug-in by utilizing the
SDL API, which comes with Cinderella SDL.
Through the API you have access to all the inter-
nal SDL structures in the tool – both those repre-
senting the SDL syntax tree, and also the entity
descriptors that contain all necessary informa-
tion about SDL entities.

6 Conclusion
Cinderella, which was founded in 1995, ann-
ounced the first release of Cinderella SDL in
April 1998. Since then, a large number of users
have downloaded Cinderella SDL, evaluated it
and given valuable feedback. A considerable
number of developers were not familiar with
SDL beforehand. They used Cinderella SDL
to get familiar with SDL and the tool in a low-
cost way, only investing their time.

Due to the amount of new features in SDL-2000,
a similar situation may occur when Cinderella
SDL version 2.0 is released – existing SDL-92
users and new users will use Cinderella SDL to
get familiar with SDL-2000.

However, since the tool will support the new
SDL-2000 standard in a way, which is appealing
both to traditional SDL users, UML users and to
users new to formal specification languages, the
target of Cinderella SDL is much broadened.

The tool is expected to be available in the sec-
ond quarter of 2001, together with a supplemen-
tary MSC-2000 editor. These future releases will
be based on the same principles as for the cur-
rent release of Cinderella SDL. This means sup-
port for different system development method-
ologies and options to configure the tool accord-
ing to user preferences.

However, evolution does not stop here. In a few
years, it is likely that a merge of SDL, MSC and
UML will take place. It is the responsibility of
the tool vendors to assure that new evolutions do
not create new problems in terms of backward
compatibility or restrict the development
methodologies that may be used for system
development.

For more information on Cinderella SDL and
other Cinderella products, please visit www.
cinderella.dk.

lest_toss:6

probe

win

getcount(UNDEFINED)

getcount(1)

toss:7 Figure 16 An MSC view of the
result of a successful test

simulation

Telektronikk 4.2000

1 History of SDL
In 1968, “stored program control” (SPC) sys-
tems were just coming into use for telecommuni-
cations. CCITT (replaced by ITU-T in 1993)
decided that its Study Group 11, which dealt
with signalling and switching, should assess the
impact of SPC on telecommunications standards.
At the end of the 4 year study period in 1972,
the result was to launch studies on languages for
human machine interaction (called at that time
“man-machine language” – MML), specification
and description, and programming.

1.1 SDL-84 Evolution
The study continued on the specification and
description language (SDL) and the first Recom-
mendation (23 pages containing some symbols
for “state transition diagrams”, definition of con-
cepts and a few examples) was published in the
CCITT Orange book in 1976. It was assumed
that the rules for use and semantics were intui-
tively understood, as many organisations were
using different forms of state transition dia-
grams. The 1980 CCITT Yellow book had the
first real description of today’s SDL in 72 pages.
This was still very informal but recognised that
the need to find errors at the specification stage
and to provide good tool support, the SDL draw-
ings needed their meaning to be defined more
formally than in the 1976 Recommendation.

The metamorphosis from a graphical drawing
technique with loose semantics to a formal de-
scription technique took place in the following
four years, so that the 1984 CCITT Red Book
contained an interpretation model that treated the
drawings as the basis of mathematical graphs.
Additional language features were added, so that
the drawings represented process graphs (with
several concurrent process instances, which
might be created or stopped dynamically), and
such that branching in the graphs and passing
information by signals between processes de-
pended on data. The basic language of states
and transitions triggered by signals between

processes did not change, but the 1984 version
enriched the language with many features. Data
and a textual form were added to the language.
User guidelines were published.

1.2 SDL-88
The increasing importance of software was
reflected in the creation of Study Group 10
(Languages for telecommunication applications)
which between 1984 and 1988 improved the for-
mal basis for SDL. An added incentive was
given by work on support tools. The semantics
were defined in an abstract way independent of
whether the concrete language was the textual
Phrase Representation (PR) form, or the Graphi-
cal Representation (GR) form. The infrastructure
(abstract syntax, textual and graphical gram-
mars, semantics and models) of the current
SDL-2000 [1] and previous SDL-92 [2] Recom-
mendations were established. Work was acceler-
ated to complete the formalisation in two years
by early 1987. The SDL-88 Recommenda-
tion [3] in the CCITT Blue book was about
200 pages (not including the formal definition
in VDM or the user guidelines). During this
period the data definitions part was aligned with
the evolving ISO standard LOTOS [4] using the
same algebraic model. This required few
changes to the syntax of the language, and gave
data a sound mathematical basis.

SDL-88 is the foundation of all the subsequent
versions. Articles [5], [6], [7] or [8] provide tuto-
rial material.

1.3 SDL-92
At the start of the next period, 1988 to 1992,
there was a requirement to keep the language
stable, but it was also realised that there were
major user benefits if the language could allow
for re-usable objects. The main evolution in this
period was the addition of object features as an
extension. A block (or process) type can be
used to define a different block (or process
respectively) at each place where it is used.

The Evolution of SDL-2000
R I C K R E E D

In November 1999 SDL-2000 became the latest international Recommendation of the ITU-T
in force for specification and description of telecommunications systems and standards
replacing the previous version. SDL is a language that has evolved to meet changing
years over a period of more than a quarter of a century. This article recounts the history
of SDL-2000, tracking the previous versions from 1976. An account is given of the latest
changes to the language, followed by the author’s opinions of the direction of evolution for
the future.

Rick Reed’s (53) work in soft-
ware support systems (see page
20) led to his participation in the
ITU group on CHILL 1977–80.
His work on software methods
from 1982 onwards led to his
participation in the ITU SDL
group while still in ITU-T SG11.
He was associate rapporteur for
data 1984–1988 and for method-
ology 1992–1996, and rappor-
teur for the whole of SDL 1996–
2000. For the 2001–2004 study
period he is chairman of the
Modelling Languages Working
Party, which includes SDL and
MSC. Rick Reed has been head
of the UK delegation since 1988.
He has been involved in several
projects at ETSI concerning
SDL. He was a founding mem-
ber of the SDL Forum Society,
its first Treasurer, and as Secre-
tary he is now actively organis-
ing the 10th SDL Forum for
26–29 June, 2001.

rickreed@tseng.co.uk

172

173Telektronikk 4.2000

Remote procedure calls and non-determinism
were also added to meet user needs. The SDL-92
Recommendation [2] was about 10 % larger than
the SDL-88 standard [3]. Significant work was
also done in the period on methodology, which
is a difficult area to handle within the framework
of standardisation since many aspects are organi-
sation dependent. The result was issued as meth-
odology guidelines to replace the user guidelines
of the Blue book. There is an overview of SDL-
92 in [9].

1.4 SDL Combined with ASN.1
After 1993, ITU encouraged publication of
Recommendations at any time. Work was pro-
gressed rapidly on using SDL in combination
with ASN.1 in Z.105 [10].

ASN.1 was widely used for defining data struc-
tures on protocol interfaces: that is protocol data
units conveyed by messages between systems:
in standards and sometimes in real systems.

ASN.1 allows data values to be defined, but does
not define any operators between those values.
For example, ASN.1 defines the Integer values
1 and 2, but does not define “+” or any way of
writing expressions and therefore cannot be used
to describe behaviour. SDL can be used to de-
scribe structure and behaviour, and in particular
can define operators for data. Z.105 brings these
two worlds together, and an overview was pub-
lished in [11].

Z.105 was approved in March 1995 [12], and as
far as possible was an extension of SDL-92.

Z.105 allowed data used within SDL processes
and in signals to be defined using a subset of
the ASN.1 notation. This then also implied that
ASN.1 encoding can be used, at least for signals
to and from the SDL system. This is an advan-
tage over SDL, because SDL does not define
encoding of data.

Another advantage is that ASN.1 has been
widely used to define protocol data units con-
veyed by messages between systems: in stan-
dards and sometimes in real systems.

1.5 SDL-96
Apart from the development of Z.105, stability
was the major objective in the 1992 to 1996
period, and allowed tools to catch up with the
Recommendation.

A common graphical interface between tools
was standardized in Z.106 [13], and a new
methodology framework document was pro-
duced as Supplement 1 to Z.100 [14], based to

some extent on work done (but never published)
by ETSI. Some extensions to SDL-92 were
agreed to meet user needs, generally relaxing
rules of SDL-92 to make it easier to use and
some corrections were made to the language
definition where it was unclear, ambiguous or
inconsistent. These were collected into the
35 pages of Addendum 1 to Z.100 [15] which
together with SDL-92 defines what became
known as “SDL-96”. The texts of Z.100, Z.106,
Addendum 1, and Methodology Supplement
were approved for publication in 1996.

SDL-96 was essentially a superset of SDL-92
which in turn was a superset of SDL-88, so that
valid SDL-88 was still valid in SDL-96, except
in a few obscure cases that were unlikely to arise
in practice. SDL-96 can therefore be considered
as SDL-92 with some corrections and a few
extensions. The extensions simplified SDL by
harmonizing concepts and improved the expres-
sive power of SDL. There were no changes to
the underlying models.

1.5.1 Harmonized Communication
Remote procedure definitions, remote variable
definitions all defined communication primi-
tives, but in SDL-92 remote procedures and
remote variables could not be used:

• to show the communication on channels
and gates;

• for communication with the environment
of the system.

The use of remote procedures and remote vari-
ables was harmonized with signals, such that
whenever a signal can be mentioned, a remote
procedure or remote variable can also be men-
tioned (with a few exceptions that do not make
sense). If a remote procedure or remote variable
is mentioned on a gate or communication path of
a diagram then the diagram need not include an
imported specification. To use remote proce-
dures and variables for communication with the
environment, they must be mentioned on a chan-
nel connected to the environment.

A related improvement was to allow a signal list
identifier (in brackets) in input.

The possible clash of names between signals,
remote procedures and remote variables is
resolved by taking first a visible signal with the
name. A procedure (or variable) with the same
name as a signal must be preceded by proce-
dure (or remote respectively).

174 Telektronikk 4.2000

1.5.2 External Behaviour
SDL-96 enabled the use of procedures and oper-
ators defined outside the SDL-description by
adding the keyword external at the end of the
operator or procedure heading to show that the
body of the procedure is defined external to the
SDL.

1.5.3 Simplified Paths
Channels have names that are used in output
via, and to connect a path outside a diagram
when the inner diagram is drawn separately (that
is it is referenced – the term “linked” is used in
this article). When an inner diagram is the in-
stantiation of a type, the outer path is connected
to the inner gate name and the outer path name
is not needed. SDL-96 allows the names to be
dropped when not needed, and similarly signal
lists do not have to be repeated on both the outer
and inner path.

In SDL-96 the use of channel and signallist
names in diagrams can be restricted to just those
places where they are needed (that is if they are
referred to in some part of the description), or if
they serve a useful explanatory function.

1.5.4 Paths to Self
In SDL-92 it was not allowed to draw a commu-
nication path from one process instance-set back
to the same one, or from a block-set and back to
itself. Therefore, it was not possible to denote
the communication between one member of the
set and another. This restriction was removed in
SDL-96. So that the construct is not ambiguous,
it must be a one-way communication path, but
two or more distinct one-way paths are allowed
so by this means two-way communication is
possible.

1.5.5 Agents as Systems
SDL-96 allows a service, process, or block to
be considered as a system with the surrounding
constructs (that is for a service the process,
block and system) implied. This simplifies the
specification of simple systems, and makes it
easier to consider a larger system as a number
of communicating smaller system

1.5.6 Extended Use of Packages
The SDL-92 restriction that packages can only
be attached to packages or the system diagram
was removed. Packages can be attached to any
diagram. This has the advantage that the visibil-
ity of the items in the package can be restricted
to just those diagrams where they are used.

1.5.7 State Expression
An additional imperative operator, STATE, was
added, which returns the name of the current
state as a charstring expression.

1.5.8 Nullary Operators
These are operators without arguments. The
implicit ordering rules of SDL for ordering liter-
als do not apply to nullary operators, therefore
they are useful for defining sorts of data with the
ordering property. Otherwise, they are the same
as data literal values.

1.5.9 Common Interchange Format (CIF)
SDL has had both a textual phrase representation
(SDL/PR) and a graphical representation (SDL/
GR) since 1984. The two forms have a large tex-
tual part that is common to both, but graphical
constructs also have an equivalent textual repre-
sentation. Originally, the objective was to pro-
vide a form like a programming language to en-
able SDL to be more easily processed and anal-
ysed by computers. At that time processing of
graphics was slow and suitable equipment was
expensive. SDL/PR was designed to be machine
processed, and therefore although it is readable,
its grammar is not very “user-friendly”.

SDL/PR found other roles as enabling SDL to be
interchanged between tools, and as an intermedi-
ate language within tools supporting SDL/GR.
However, if SDL is transferred from one tool to
another using SDL/PR, the diagrams are often
unrecognisable because graphical layout infor-
mation is lost.

The objective of the CIF is to enable SDL to be
transferred between tools and be “recognisably
the same”. CIF is an extension of SDL/PR that
contains the additional graphical information in
comments of SDL/PR.

1.5.10 Methodology
This is not part of the Z.100 standard: the 1992
guidelines are in an appendix and are therefore
informative (as compared to an Annex such as
Annex F Formal definition which is normative).
The methodology associated with Z.100 can
only suggest approaches, but SDL can be used
validly in many other ways. The work done in
the 1992–96 period on methodology is published
in Supplement 1 to Z.100 – “SDL+ methodol-
ogy: use of MSC and SDL (with ASN.1)”.

The SDL+ methodology did not replace the
1992 guidelines, but provides a more detailed
framework that can be elaborated for a particular
use to develop a formal specification in SDL. It
covers to some extent MSC and use of ASN.1,
and can be applied from the level of requirement
capture. It suggests the use of the OMT object
model notation for forming the initial classes.
An overview, published in [16], was presented
at the SDL’95 Forum.

175Telektronikk 4.2000

1.6 MSC and UML
The Message Sequence Chart (MSC) language
was first standardized in Z.120 in 1992 as MSC-
92, although they had been suggested since 1984
as auxiliary diagrams to be used with SDL. MSC
tools now exist that are linked to SDL tools.

MSC has continued to evolve, and a variant has
appeared as part of the UML set of notations in
OMG.

Ivar Jacobson of Rational, who is well known
for use cases and promoting UML, participated
in the SDL group in the early 1980s and
acknowledges the common origins for ideas in
his work and in SDL. However, he ceased to
participate in the group before the creation of
the MSC standard and the development of SDL
as it is today. In fact, SDL-2000 and MSC-2000
could easily be taken as UML profiles by OMG.

1.7 Recommendations in Force
and Availability

The standards in force at the end of 1999 related
to SDL were:

• SDL: Z.100 (11/99) [1] and Supplement 1
(10/96); [15];

• SDL combined with ASN.1 modules: Z.105
(11/99); [17];

• Common interchange format: Z.106 [13];

• SDL with embedded ASN.1: Z.107 [18];

• SDL combined with UML: Z.109 [19];

• Use of FDT’s: Z.110 (11/99) [20].

The 11/99 standards were available as the
English drafts immediately to members of the
Study Group and the SDL Forum Society, and
in pre-publication form via the ITU subscription
service (ITU-T Recommendations Online)
mid-December 1999. The published English
version may differ in page numbers and minor
changes in wording, but the technical content
should be the same.

2 The SDL-2000 Standard
SDL is a living language, which means it is used
frequently with new applications in new areas. If
SDL were a natural language, new applications,
features and vocabulary would arise, while some
language constructs would become unused, un-
familiar or even unknown. Similarly SDL users
have new needs, and have innovative ideas for
changing SDL. However, SDL is a formal lan-
guage that needs to be well defined and machine
processable, so that all users and tools can

understand and manipulate designs in SDL.
Changes to SDL need to be carefully managed.
Formally, this was the task of ITU-T Study
Group 10 under Q.6/10 in the period 1996 to
2000, but the work was done in close collabora-
tion with the SDL Forum Society.

SDL is quite complex. This means that there was
plenty of scope for clarifying the language defi-
nition so that it is not misinterpreted, and there
were still some ambiguities, inconsistencies or
just defects in the language (that is “bugs”) that
needed correcting. The study therefore specifi-
cally included defect correction. Maintenance
also includes the possibility to change the lan-
guage, and for SDL the rules for maintenance
(including the change procedure) were defined
in Addendum 1 of Z.100. Similar rules are now
part of SDL-2000.

The scope of the study question for SDL-2000
was (phrases copied direct from Q.6/10):

... corrections, ease of use and ease of main-
tainability, new uses of SDL – especially in
conjunction with other languages, and simpli-
fication – both by decommitting non-used fea-
tures of SDL and by combining similar con-
cepts of the language.

SDL is mainly used for implementing systems.
More focus was therefore given to constructs for
using SDL for design and implementation.

2.1 SDL Simplification
and Maintenance

There were differing opinions on the precise
meaning and scope of “simplification” objective
for the 1996–2000 study period: it could just be
deletion of some language concepts, or it could
extend to modelling blocks and processes (and
the SDL-92 services) all as variants of some
building block object. The definition was ad-
opted that change meant “removal of unneces-
sary restrictions and differences in language con-
cepts and perhaps unnecessary, unused features”.
Simplification has encompassed both the above
changes.

Z.100 for SDL-2000 consolidates Z.100 (03/93)
[2] with Z.100 Addendum 1 (10/96) [15] and
many features of Z.105 (03/95) [12] into one
Recommendation [1]. This also incorporates
the Master List of Changes maintained by the
Q.6/10 experts’ group according to the rules
Recommended in [15].

As noted above, the maintenance rules allowed
features to be removed and the following fea-
tures were deleted:

176 Telektronikk 4.2000

• Alternative block partitioning (that is the pos-
sibility to give two different versions of a
block, one where the block is described using
processes and one where the block is de-
scribed using a block substructure);

• Structural graphical macros (that is macros in
block diagrams);

• Behavioural graphical macros;

• View/reveal;

• Channel substructure;

• Signal refinement;

• Axiomatic data type definition.

Taking such a step is difficult because there is
always a call for backward compatibility. A pro-
cedure for deleting features was defined and fol-
lowed. Essentially, it was possible to remove
these features because they were seldom used.

The service feature was not deleted from the
language but was harmonized with blocks, pro-
cesses and composite states, so the keyword ser-
vice is no longer used.

2.2 New Features in Z.100
A long list of open items was considered for
inclusion in SDL-2000, ranging from trivial
items such as allowing the keyword call to be
optional, to major changes such as the introduc-
tion of block identities similar to Pids.

The new features covered by Z.100 for
SDL-2000 are:

• Exceptions;
• Textual algorithms;
• New data model;
• Nested packages;
• Mixing blocks and processes;
• Type based creation of processes;
• Typed Pid sorts;
• Interfaces;
• PR/GR harmonization;
• Composite states;
• Object modelling support.

These features are described briefly below, with
the exception of object modelling support, which
is related to UML and is treated in 2.4.

2.2.1 Exceptions
Exceptions were a specific topic of study and a
short requirements list was:

• Handle run time errors (which implies there
are language defined errors);

• Compatibility with Z.130 Object Definition
Language [21];

• Avoid any conflicts between exceptions in
SDL and in other languages (such as
IDL/ODL, Java);

• User defined exceptions and causing excep-
tions;

• Provide a mechanism to enable non-respond-
ing remote procedures to be trapped.

It was also recognized that there could be some
improvement in the handling of timers.

The new mechanism provides the ability to raise
an exception, which can have a handler not con-
sidered to be part of the usual behaviour. This is
an important feature for the use of SDL with the
ITU ODL and with CORBA.

2.2.2 Textual Algorithms
The mechanism allows algorithms to be written
textually within graphical diagrams. Most users
prefer SDL/GR most of the time, but in some sit-
uations, SDL/GR leads to additional diagrams,
unnecessary complexity, unnecessary indirection
and lack of conciseness. SDL/PR is not a good
alternative, because it is verbose, tool oriented
and may still require indirection. Textual algo-
rithms introduce a user-oriented mechanism for
combining text with SDL/GR. It was already
supported by one tool before the SDL-2000
was approved.

2.2.3 New Data Model
There have been a number of problems associ-
ated with the SDL data model based on the alge-
braic approach using ACT ONE. In addition, the
SDL-92 inheritance model for data was not con-
sistent with other types in SDL. The algebraic
approach to define new kinds of data has not
proved popular with users, and it is considered
difficult to use and difficult to implement fully.
Most users used only the language-defined kinds
of data, and wanted data similar to object ori-
ented programming languages. It was therefore
agreed that the data model for SDL could be
changed to support new features, to have typing
similar to other types in SDL and to support
most of the current use of data in SDL-92.

The specific rationale for change was:

• It had not been possible to properly incorpo-
rate error! in the existing ACT ONE model;

177Telektronikk 4.2000

• The algebraic approach for defining new sorts
of data was difficult to master and it is diffi-
cult to make efficient implementations from
ACT ONE;

• The existing model produces some undesir-
able language rules (such as not permitting
a struct field as an in/out parameter).

The new model brings SDL data more in line
with the other object/type features of SDL
(block type, process type etc.). It makes data in
SDL easier to understand for someone who is
familiar with data in a (so-called) object oriented
programming language such as C++ or Java.

SDL-92 data models (newtype sorts of data in
the old terminology; “value types” in the new
terminology) are still valid in SDL-2000, except
where they rely on full implementation of
axiomatic descriptions.

value types in SDL-2000 are either the lan-
guage-defined types, or composite value types
(such as Array, Struct, String ...) constructed
using other non-composite or composite types.
Operators can still be defined with a value type
(as is possible in SDL-96), with the body of the
operator described in algorithmic SDL or as
external (as allowed in SDL-96).

The SDL-2000 model introduces “object types”
for data that can refer to “value types” and have
polymorphic operators and methods.

Methods introduced with a type are applied to
instances of the type using the dot notation
familiar from other languages. For example:

counter.increment(10) /* counter is a variable
and increment is a method */

Although user definition of axioms in the new
model is not supported, the built-in data types
still have a description that uses axioms. These
data types therefore still have the formal descrip-
tion as before. Other data types are constructed
from these types and the features of SDL-2000.

2.2.4 Nested Packages
Nested packages are allowed. This provides a
more flexible packaging mechanism, and makes
it easier to mix SDL with some other languages.

2.2.5 Mixed Blocks and Processes
The restriction that blocks and processes could
not be mixed in one diagram is removed. Many
users have requested this change, and there
seems to be no good reason for maintaining
it, especially without block partitioning.

The harmonization has gone further with agents
as a concept that covers the system, blocks and
processes. Processes can also be nested within
processes, and the service concept is replaced
by composite states that are state aggregations
(see 2.2.10).

When a process is defined within another pro-
cess definition, then each instance of the outer
process contains a number of instances of the
inner process. All these instances are scheduled
to run in an alternating way, and the inner pro-
cess instances can access the data of the outer
process instance directly.

When a process definition is directly contained
within a block, instances of the process run con-
currently, and concurrently with any other in-
stances in the block, including the instance that
owns any variables of the block. Processes with-
in a block access block variables by implicit
remote procedure calls to the instance for the
variables.

2.2.6 Type Based Creation
An agent instance may be created from an agent
type. In SDL-2000, it is not necessary to have an
explicit definition of the agent instances in the
case that there is only one set in the context of
the creation and there are no initial instances.
Also because no instance name is needed in this
case, create can be used in another process type
which would be impossible otherwise.

2.2.7 Typed Pid Sorts
These are similar to the Pid sort, except that the
actual Pid value must belong to the correct pro-
cess type. The benefit is additional security and
confidence that a Pid actually identifies a pro-
cess of a specific process type when used as a
destination after to for an output, import or a
remote procedure call.

2.2.8 Interfaces
An interface is a type that contains the definition
of a number of signals, remote variables and
remote procedures and may be associated with
channels, gates, connections or signal sets. Be-
cause an interface is a type it can have context
parameters. An interface is a scope unit for the
contained definitions, which nevertheless are
visible outside the interface (like operators de-
fined with a sort of data). An interface can in-
herit from one or more other interfaces.

2.2.9 PR/GR Harmonization
In SDL-92 there are some inconsistencies be-
tween the text in SDL/PR and the text in
SDL/GR, where the same grammar could be
used in both cases (for example punctuation
and whether items are optional). These were
made consistent wherever possible.

178 Telektronikk 4.2000

2.2.10 Composite States
This introduces a hierarchical state mechanism.
One benefit is the ability to hide sub-states
within a super-state, so that the details are hid-
den and it is easy to have an overview of process
behaviour. Another benefit is that when a design
is elaborated, a state may be split into sub-states
without losing the original state.

A composite state can consist of just one set of
sub-states.

2.3 Incorporation of Z.105 and
the Data Model

Use of ASN.1 is strongly related to the data
model of SDL. As it was agreed to change the
underlying data model of SDL-92, the Z.105
Recommendation had to be updated, because it
relied on the algebraic model.

The old Recommendation Z.105 introduced
some inconsistencies between SDL with and
without ASN.1. These inconsistencies are
removed in Z.100 for SDL-2000. One conse-
quence is that SDL-2000 is case sensitive,
which also has some benefits when using SDL
with other languages (for example, SDL is often
translated by tools for implementation into C
which is case sensitive).

Consideration was given to incorporating Z.105
completely into Z.100, but the view was taken
that Z.105 should remain a separate document
describing how the ASN.1 syntax can be used
with SDL. However, it was also agreed that
some functionality of Z.105 should be incorpo-
rated into Z.100 as SDL concepts so that choice,
optional and default fields are now part of SDL.

Z.105 (11/99) is a mapping of ASN.1 to Z.100
(11/99) features, so that a data type specified in
ASN.1 has an equivalent specification according
to Z.100 (11/99). This is not the case between
SDL-92 and Z.105 (03/95): for example,
SDL-92 allows “[” and “]” in names whereas
Z.105 (03/95) does not, and CHOICE required
some change to the SDL model.

Another change has been to separate the use of
ASN.1 modules with SDL, and the definition of
ASN.1 embedded in SDL. The use of ASN.1
modules as SDL packages is still within the
scope of Z.105 (11/99)[17], but ASN.1 embed-
ded within SDL is now in the Z.107 (11/99)
Recommendation [18].

2.4 SDL with UML
Partly because of some common heritage (see
1.6), it was always the case that UML and the
ITU set of languages had similarities and com-
plemented each other. Even before UML
existed, it was recognised [16] that object mod-

elling was needed in conjunction with SDL. The
suggested technique (in [14]) was OMT, the
basis of object modelling in UML. There are
small differences between MSC and UML
sequence diagrams.

UML defines language meaning allowing some
semantic variations, and leaves open the nota-
tion, so that various different notations may be
used. The ITU standard for SDL defines both the
notation and the meaning. UML allows a set of
notations to be considered together. There seems
to be no reason why SDL cannot be considered
to define state machines within UML.

On the other hand, the Z series Recommenda-
tions had no language for class diagrams and
there was no reason not to adopt the widely
accepted UML notation for this. By making this
notation part of SDL, it binds the object models
closely to SDL and also makes the notation read-
ily available to SDL users not otherwise using
UML.

The standard Z.109 goes one step further and
details the use of SDL combined with UML. It
defines a UML profile for SDL, and in that way
defines how UML can be mapped to SDL. Of
course, this mapping only applies for that part of
UML that is relevant to SDL [9]. The sequence
diagram part of UML would map to MSC.

One change to SDL has been to allow the refer-
ence symbols that link to SDL diagrams (such
as block type, process type, and procedure) to be
shown as generic class symbols: a three partition
box for the object identity, its attributes and be-
haviour. These can be used wherever a linking
symbol is valid. A further change is that multiple
occurrences of a these linking symbols are
allowed in the same context, provided they are
consistent. This enables an object model at one
level to be presented as a number of pages of an
SDL diagram showing different associations on
different pages.

SDL is also extended to show more relationships
between objects. The communication paths and
creation relationships have always been part of
SDL. SDL-2000 has named association symbols
(lines with various ends such as arrows and dia-
monds) with text at each end describing a rela-
tionship between two objects. The usual object
models of UML are now part of the SDL syntax.
The SDL standard [1] puts constraints on the
syntax and the use of names, but does not further
define the meaning of the relationships. The
meaning otherwise defined by the SDL standard
should be changed by the inclusion or deletion
of associations: they do not have any impact on
the SDL defined semantics.

179Telektronikk 4.2000

3 Open Issues for
Further Study

When the first version of SDL was produced,
some of the originators thought that the language
was finished and no changes would be needed.
In retrospect, it is easy to understand why this
was not the case, and why there has been user
demand for more features and new paradigms in
the language. On the other hand, the basic graph-
ical notation and the extended finite state
machine (EFSM) paradigm at the core of SDL
have stood the test of time. Even in 1980 it was
difficult to foresee the relative low cost and high
performance of commodity computers available
in 2000, that can run complex SDL tools. It is
therefore difficult to predict precisely how SDL
will develop through the first century of the third
millennium.

The best guess for the future is that SDL will
continue to exist with EFSM at its core. The
language is still evolving and use is growing.

The ITU-T study programme in the short term is
addressing for 2001 the open issues of revised
formal definition of SDL-2000, revised Com-
mon Interchange Format (CIF) for SDL-2000
and a methodology update. There is an ongoing
study of time and performance issues that could
lead to changes to SDL, or some way of linking
requirements such as time deadlines to SDL
models. There needs to be a binding of MSC
data to SDL, and there is a need to be able to
define encoding of SDL data on interfaces.

One known area of difficulty is the composition
of services on a mix and match basis during sys-
tem implementation. For example, with three
telecommunication services (A, B and C), it
should be possible to define the base system,
the service A, the service B and the service C.
It should then be possible to generate an imple-
mentation for any combination. That is: base,
base+A, base+B, base+C, base+A+B,
base+A+C, base+B+C, base+A+B+C. It is a
methodology issue to define how this can be
done (if it can) in SDL-2000. If it cannot be
done, it is an unresolved language issue.

The previous examples are known user needs,
but even in the relatively short period of 1996 to
1999 the focus, general environment and expec-
tation changed so that the issue of object mod-
elling changed from being considered as an aux-
iliary notation, to requiring integration into SDL.
It is therefore difficult to predict what SDL-2004
may or may not include. It is only certain that it
should be user driven: it is proposed that lan-
guage development is carried out by the SDL
Forum Society (www.sdl-forum.org) and the
results submitted to ITU-T for approval and pub-
lication. It is easy for individuals or organiza-

tions to participate in the SDL Forum Society,
which has its objectives focussed on SDL/MSC
and can be flexible. The ITU-T by comparison
has authority and the infrastructure for publish-
ing Recommendations and maintaining them
over a long period. There is the opportunity to
utilise the strengths of both organisations.

Other possible issues to be tackled for the future
are the development of IP protocols in SDL and
the adoption of MSC with SDL as a UML pro-
file. IP in SDL is likely, because of the telecom-
munications over IP projects that are in progress,
and MSC-2000 with SDL-2000 technically
meets the UML profile requirements, whether
officially recognised or not.

The SDL Forum Society

The SDL Forum Society is a non-profit making organization formed in order to

promote the Specification and Description Language (SDL) and Message

Sequence Chart (MSC).

The Society has existed since June 1990 and, as well as promoting the knowl-

edge and usage of MSC/SDL and providing information on the development and

use of SDL/MSC, one of its major functions is to promote and organise the SDL

Forum which takes place once every two years.

The SDL Forum provides an opportunity for experts, users, toolmakers and even

some critics of MSC and SDL to meet, engage in useful discussion and socialise.

It is called a ‘Forum’ because it is a ‘meeting place’ for the exchange of ideas and

a chance for people to meet others who are involved in the use of MSC and SDL.

The plans for the Tenth SDL Forum are already under way, and it will be held in

Copenhagen in June 2001.

The SDL Forum Society also supports the SDL and MSC Workshop – SAM –

and this addresses three topics: language issues; the relation to other Lan-

guages or Techniques; Design, Methodology and Applications. Those involved

in the workshop include researchers, users of the languages, and members of

standardization bodies. The event is less formal than the SDL Forum. It enables

intensive discussion of the languages, and evolution of ideas on the future devel-

opment and application of SDL and MSC.

When joining the Society one of the benefits is discounted access to either the

Forum or the Workshops, and discounted copies of the proceedings. There are

also free updates on ITU-T activities related to MSC/SDL including access to

ITU-T documents on studies in progress. The Society has recently been given

permission from the ITU-T to distribute a version of the SDL-2000 and MSC-2000

Recommendations via its web site.

Other activities have included a Grant for student work on related research, and

specific support for the continuing evolution of SDL and MSC, changing to meet

current and future needs and technologies.

If you would like any further information on the Society, including information on

how to join and details of the inexpensive membership fees, visit the web site at

http://www.sdl-forum.org.

180 Telektronikk 4.2000

Some SDL models are available for sale as com-
ponents and this market may increase. One fac-
tor is that the major SDL tool supplier has about
one third of the world real time development
market (in all fields, not just telecommunica-
tions). SDL-2000 should give excellent support
for producing components. With the continued
growth of the telecommunications market and
increase in SDL use in other areas, an SDL com-
ponent market seems likely.

References
1 ITU-T. Specification and Description Lan-

guage (SDL). Geneva, ITU-T, 2000. (Z.100
(11/99).)

2 ITU-T. CCITT Specification and Description
Language (SDL). Geneva, ITU-T, 1994.
(Z.100 (03/93).)

3 ITU-T. Functional Specification and
Description Language (SDL). Geneva,
ITU-T, 1989. (Z.100(1989).)

4 ISO. Information Processing Systems –
Open Systems Interconnection – LOTOS –
a Formal Description Technique based on
the Temporal Ordering of Observational
Behaviour. Geneva, ISO. (ISO/IEC 8807.)

5 Introduction to SDL-88. (2000, September
06) [online] – URL: http:///www.sdl-
forum.org/sdl88tutorial/

6 Bræk, R. SDL Basics. Computer Networks
and ISDN Systems, 28, 1585–1602, 1996.

7 Færgemand, O, Olsen, A. Introduction to
SDL-92. Computer Networks and ISDN
Systems, 26, 1143–1167, 1994.

8 Sarma, A. An introduction to SDL-92.
Computer Networks and ISDN Systems,
28, 1603–1615, 1996.

9 Møller-Pedersen, B. SDL-92 as an object
oriented notation. Telektronikk, 89 (2/3),
71–83, 1993.

10 ITU-T. Data networks and open system com-
munications – OSI networking and system
aspects – Abstract Syntax Notation One
(ASN.1). Geneva, ITU-T. (X.680-681.)

11 Verhaard, L. An introduction to Z.105.
Computer Networks and ISDN Systems,
28, 1617–1628, 1996.

12 ITU-T. SDL Combined with ASN.1 (SDL/
ASN.1). Geneva, ITU-T, 1995. (Z.105
(03/95).)

13 ITU-T. Common Interchange Format for
SDL. Geneva, ITU-T, 1997. (Z.106 (10/96).)

14 ITU-T. Use of MSC and SDL (with ASN.1).
Geneva, ITU-T, 1997. (Supplement 1
(04/96) to Rec. Z.100 (03/93) SDL+
Methodology.)

15 ITU-T. Corrections to Recommendation
Z.100 (03/93). Geneva, ITU-T, 1997. (Z.100
Addendum 1 (10/96).)

16 Reed, R. Methodology for Real Time Sys-
tems. Computer Networks and ISDN Sys-
tems, 28, 1685–1701, 1996.

17 ITU-T. SDL combined with ASN.1 modules.
Geneva, ITU-T, 2000. (Z.105 (11/99).)

18 ITU-T. SDL with embedded ASN.1. Geneva,
ITU-T, 2000. (Z.107 (11/99).)

19 ITU-T. SDL combined with UML. Geneva,
ITU-T, 2000. (Z.109 (11/99).)

20 ITU-T. Criteria for the use of formal
description techniques by ITU-T. Geneva,
ITU-T, 2000. (Z.110 (11/99).)

21 ITU-T. Object definition Language. Geneva,
ITU-T, 1999. (Z.130 (02/99).)

181

Introduction
Recently, someone approached me about tech-
niques and tools for specification, testing and
validation. I asked whether he had considered
TTCN or knew about SDL and MSC, and the
response was that these were old-fashioned con-
cepts for the non-IT world. This was not the first
time that I sensed the underlying opinion that we
should dump the old telecom stuff and look at
these great things from the IT side instead, as it
was they that would provide the solutions of the
future.

I agree with one side of the story. Cheap com-
puters, Information Technology and the Internet
are opening a whole new world of opportunities
and ideas. There are great new ideas from the IT
industry that we should keenly look at. So on
this count the opinions may well be justified.
On the other hand, telecommunications has pro-
duced a large number of solutions and products
that do not need to be reinvented in a new con-
text. This also applies to languages and software.
Organisations such as OMG recognise the con-
tributions that individuals and companies from
the Telecom side can make in the software area.

History
The era of telecommunication software began
for the predecessor of ITU-T in the late sixties,
CCITT, when computer-controlled switches
began to emerge as a replacement for earlier
electro-mechanical switches. Whereas the latter
were hardwired and less troubled by logical
errors, a need was seen to use techniques to
make the software of the new switches as reli-
able as the old hardware. Industry and the opera-
tors required the same sort of robustness for pro-
gramme-controlled switches and for the proto-
cols that influenced the behaviour of the
switches. CCITT embarked on defining lan-
guages that would guarantee these quality
requirements.

Initially, three domains were identified, where
the use of languages and software techniques
should apply:

• For the specification and description of what
these switches and protocols were supposed to
do. The aim was to reduce error and increase
robustness. SDL (current version [1]) was the
answer to this, though the SDL of the time
was quite different from the language today.

• For programming switches able to handle
complex protocols and functions, for which
the existing languages were considered inade-
quate for distributed switches able to process
complex protocols. The answer to this was
CHILL (current version [2]).

• To describe what one would call a GUI these
days. For this, the Man Machine Language
(MML) [3], [4], was considered the appropri-
ate answer.

These languages were developed initially in a
Working Group of Study Group XI, which later
became a separate Study Group, Study Group X,
and finally Study Group 10.

In parallel, the languages ASN.1 [5] for describ-
ing protocol formats and TTCN [6] as a testing
language were developed jointly by ITU and
ISO. Here Study Group 7 was the driving force.

In the 90s, Study Group 10 developed Message
Sequence Charts [7] as a formalised and much
more extended version of time sequence dia-
grams. This language was especially useful to
show scenarios and to show examples of the
flow of signals between parts of a system or dif-
ferent systems. In 1999 finally, the ITU Object
Definition Language (ODL) was defined as an
extension of the Interface Definition Language
IDL from the Object Management Group
(OMG).

Perspectives on Language and
Software Standardisation
A M A R D E O S A R M A

This paper presents the history of formal languages and software standardisation in the
International Telecommunication Union (ITU) and their use in various application areas.
It looks both into applications within standardisation bodies, and into the increasing use in
industry. By looking at other, sometimes competing, languages, a view is developed into
what the key differentiating features of standard ITU languages are. Special emphasis is
placed on the Specification and Description Language (SDL) and Message Sequence
Charts (MSC), as the two driving forces in the ITU language family. Finally, a perspective
is offered on which critical factors may determine future development and use.

Amardeo Sarma (45) received
his B.Tech. degree from the
Indian Institute of Technology,
Delhi, in 1977 and his Master’s
degree (Dipl.Ing.) from the Tech-
nical University of Darmstadt in
1980, both in Electrical Engi-
neering. In 1981 he joined the
Research Institute of Deutsche
Telekom AG’s Technology Cen-
tre, where he was Head of
Research Groups 1990 – 1995.
He participated in several pro-
jects dealing with signalling, pro-
tocols and specification tech-
niques. In 1995 he joined
EURESCOM as Project Supervi-
sor in the area of software tech-
nologies, middleware and ATM.
In 1999 he returned to Deutsche
Telekom as Head of Department
for Technology and Methods
Management, focusing on
strategic selection and promo-
tion of technologies and meth-
ods. Within ITU-T he has been
involved in Study Group 10
since 1987. His current special
interests lie in R&D strategies
and business development, and
his focus lies in the areas of
broadband networks and ser-
vices, specification languages
and formal methods.

sarma@telekom.de

Telektronikk 4.2000

182 Telektronikk 4.2000

Coverage of Languages
by ITU-T
SDL, MSC, TTCN and ASN.1 enjoy success
and wide areas of application. While MML
seems dwarfed by modern GUI techniques, it
should be recognised that MML were used in
many products and provided a lot of valuable
guidelines for user interface design. Z.361 [8]
from this Study Period can be considered a con-
tinuation of the MML work. MML provides
line-based dialogues, menus, form-filling, win-
dowing (i.e. GUI) and online help. CHILL has
been successfully applied by telecom vendors to
develop many products and had a large installa-
tion base during the 1980s, but has not spread
much outside the telecom domain. Since most
companies used proprietary CHILL compilers
and tools the market for commercial CHILL
tools became too small to face the competition
from languages like C, PASCAL and C++.
However, CHILL-2000 is a modern object-ori-
ented language for real-time systems, see the
article by Jürgen Winkler in this issue.

Most of the above mentioned ITU-T languages
are either already object-oriented or plan to
become so soon, thereby being part of the con-
temporary object-oriented paradigm. The move
towards object-orientation was not always easy,
since the large number of existing users always
placed a strong requirement on backwards com-
patibility.

Study Group 10 has also dealt with areas such as
Human Machine Interface (HMI) data, Quality
issues, Methodology, Guidelines for the use of
languages, etc.

Since the mid-90s, ITU-T Study Group 10 has
intensified its co-operation with ETSI MTS
(Methods for Testing and Specification) and the
SDL Forum Society. With human resources for
standardisation activities becoming increasingly
scarce, this co-operation has led to fruitful
results for all parties. ETSI MTS has been espe-
cially active in the area of ASN.1 and TTCN,
and ITU has adopted much of the work done
there. The SDL Forum Society has been able to
address a wide range of users of SDL and MSC
and has thus been able to promote the languages
in ways normally not open to an organisation
such as ITU. The SDL Forum Society is organis-
ing Workshops and Conferences on the ITU-T
languages.

Use of ITU-T Languages

Standardisation Bodies
Use in other standards was the main motive for
developing SDL, ASN.1 and TTCN. A glance
into many of the existing Q series Recommenda-
tions by ITU shows the widespread use of SDL,

though this use has often been quite informal.
Standardisation bodies, such as ETSI and ITU,
offered tool support for their Rapporteurs to be
able to create “good” SDL, MSC, TTCN and
ASN.1. ETSI went even further, providing pro-
fessional support for SDL, ASN.1 and TTCN
via a team of employed experts, the permanent
expert team, who provided invaluable help to
the Rapporteurs.

The dual use of SDL and MSC as both informal
graphical techniques and as formal languages
has helped the acceptance of these languages.
In a first step, they may be used as informal
graphical techniques that help engineers to
express their ideas in a systematic way. This in
itself provides greater clarity than plain text
could provide. Initial uses of SDL for service
descriptions (I.200 series) or protocols (e.g.
Q.931) were of this informal kind, allowed SDL
to gain acceptance for use within the body of the
Recommendations. This paved the way for more
formal uses of SDL and MSC, which became
apparent when tool support could be provided,
not only to draw diagrams, but to check for con-
sistency and help in validating the specifications.

The use of SDL in the Intelligent Network
domain is an example of a success story in using
“formal” SDL. With IN’s Capability Set 2, the
formal use of SDL in standards began in ETSI
with Frans Haerens recognising the value of the
formalism available. His approach turned out to
yield the results expected: Far from being a for-
mal nuisance, the development of IN CS2 proto-
cols allowed the concerned to reason about their
specifications and detect errors early. The result
was not only a machine-readable SDL specifica-
tion, but also a reduction in time to develop the
recommendation while simultaneously detecting
more errors than was possible in the earlier ver-
sion, CS1. The success has been taken up by
ITU using SDL in a more formal way, as well.

Industry
In the 80s, manufacturers of telecommunications
equipment realised the potential, not only of the
programming language CHILL, but of other
ITU-T languages as well. AT&T (now Lucent),
SIEMENS, Nortel, ECI, Alcatel, Ericsson and
Nokia are examples of companies that have ven-
tured on their use. Some, such as SIEMENS and
AT&T, developed their own tools. Others used
commercially available tools, such as those from
the market leaders Telelogic and Verilog, now
merged into a single company. It turned out that
standardisation bodies on their own would never
have offered a market large enough for good,
commercial tools to develop. It is this “other”
industrial market, not the original focus of the
language standardisation that provided the criti-
cal mass for the tool vendors.

183Telektronikk 4.2000

Today, SDL and MSC are widely used in the
telecommunications industry, especially in the
mobile phone business, and have been shown
to cut development time, improve quality and
reduce cost. Beyond the telecommunications
industry, the automobile and aircraft industry
are further examples where SDL and MSC are
used, especially when dealing with distributed,
communicating systems.

The IP and Internet area provides potential large
application areas for ITU languages. This use
has been taken up in the ETSI project TIPHON,
and here is a potential for the definition of IP-
based protocols. Many of the requirements ex-
pressed for IP-based protocols are no different
in principle from traditional telecommunications
protocols.

The take up of the ITU-T languages by industry
has been and will remain critical for their overall
success. It therefore remains a crucial issue to
identify new areas and domains where the
unique strengths of the ITU-T languages can be
used (see following section). Wherever dis-
tributed and interacting systems exist, there is an
opportunity for ITU-T languages to play a role.

Comparison with
Other Languages
An early motivation for developing program-
ming and specification languages within ITU
and ISO was to provide formal languages that
were independent of short-term interest of spe-
cific big companies or vendors. The develop-
ment of internationally standardised languages
ensured stability and maintenance. This argu-
ment still remains a critical issue for some com-
panies that state this as a reason for using ITU-T
languages in preference over others.

Specifically, the ITU languages SDL and MSC
also used a unique mix of features to address
their particular market. These are:

• A graphical syntax in addition to a textual
syntax, allowing users to visualise the be-
haviour of systems and processes in an in-
tuitive way.

• Formal semantics that provides the basis for
ensuring that the systems are well-defined,
less susceptible to reasoning errors, and pro-
vides the means to ensure consistency and
correctness.

• Intrinsic capability for verification and valida-
tion of the systems, that follows as a result of
the formal semantics, which makes it possible
to simulate the behaviour of systems before
they are actually implemented and built.

• Conceptual suitability for distributed commu-
nicating systems, like those encountered in the
telecommunications domain, and in other
domains, as well.

• Implementability, in the sense that efficient
implementations can be derived from specifi-
cations.

• Commercial tool support by independent ven-
dors and a common interchange format allow-
ing portability between tools.

Many of these features are provided by other
languages, but not in totality. For example,
LOTOS [9], Estelle and Petri Nets provide a for-
mal basis with many of the advantages listed.
But LOTOS and Estelle do not have a graphical
basis that is easy to read and understand or they
moved towards a graphical syntax too late, while
none have the crucial commercial tool support.
Even the graphical notation of Petri Nets does
not follow the thinking pattern of engineers, the
main users that are addressed by SDL and MSC.
Tools provide translation facilities between ITU-
T languages and implementation code, for exam-
ple generating C or C++ from SDL. SDL thus
becomes suitable as a specification, design and
implementation language.

ASN.1 and TTCN, on the other hand, address
very specific and unique needs encountered in
the telecommunications domain. They address a
clearly defined and sustainable niche that other
techniques and languages do not address as well.
They too have adequate tool support, and clearly
address the needs of the involved engineers.
ASN.1 is used to define the syntax of protocol
data, while TTCN is used to specify test suits
– which may be generated automatically from
SDL specifications and MSCs.

ODL was developed within ITU as a superset
of IDL because the organisation responsible for
IDL (OMG) did not comply fully with the needs
of the telecommunications domain (see also the
paper on “Object Definition Language” by Marc
Born and Joachim Fischer in this issue). The
work in this area is however done in close co-
operation with OMG to make sure that any
maintenance of ODL does not come into conflict
with the needs of the users.

GDMO [10] (Guidelines for the definition of
managed objects) is developed by the Interna-
tional Standardization Organisation (JTC 1/ISO
TC 97/SC 21/WG 4) and has been used within
ITU-T in the TMN area. It provides the defini-
tion of information models for Telecommunica-
tions Management Networks (TMN), defining
information at the Q3 interface. The original
GDMO has an alphanumeric syntax only. The

184 Telektronikk 4.2000

methodology for the use of GDMO is contained
in Recommendation M.3020 [11].

Within ITU, two lines of work were started on
GDMO. One was to provide GDMO with a
graphical syntax, and the other to enrich GDMO
with behaviour based on SDL. These activities
were stopped due to lack of commitment to use
the approaches. Perhaps the added value of hav-
ing a graphical syntax and a formal behaviour
component for this language was not apparent
enough. Today, CORBA IDL is increasingly
being seen as an alternative to GDMO. For a
while, GDMO was also seen as a possible candi-
date for data descriptions within SDL, as the
abstract data type (ADT) formalism used in
SDL-96 was seen as rather academic and was
scarcely used in practice. Today, ASN.1, which
is closely related to GDMO, is used jointly with
SDL as described in Recommendation Z.105
[12] [13].

The Unified Modelling Language (UML) has
received much attention. The language was ini-
tially created as a merger of various popular
object-oriented techniques for analysis (e.g.
OMT) and later standardised by OMG. It has
gained wide acceptance and is now supported
by commercial tools. Various large companies
now use UML and the often-associated Unified
Process as their internal development standard.

ITU-T encourages joint use of SDL and UML
to make maximum use of the strengths of both.
The paper SDL Combined with UML by Birger
Møller-Pedersen in this issue, which corresponds
to the title of the ITU Recommendation Z.109
[14], addresses this topic.

This joint use of SDL and UML is just one of
the examples of using ITU-T languages in com-
bination with each other or with non-ITU lan-
guages. Recommendations Z.105 and Z.107 that
allow joint use of SDL and ASN.1, are further
examples. Beyond these standardised combina-
tions, it is up to the tool vendors to support fur-
ther combinations, for example of SDL, MSC,
ASN.1, TTCN and UML.

In future, joint use will be supported at three
levels. Tool vendors will provide support for
the joint use of languages as required due to the
immediate demand of their customers, including
the need for code generation to programming
languages. Whenever the demand turns out to be
of a more general nature, ITU-T will seek to pro-
vide standard guidelines as part of a methodol-
ogy document or go even further and issue Rec-
ommendations for the support of further combi-
nations, such as the joint use of SDL, MSC,

ASN.1, TTCN and UML. The approach for the
future should be pragmatic, catering for the level
of the requirements of the users of the languages.

Tools
When we discuss the prospects of languages and
software in standardisation, it helps to compare
the success stories with the failures. The real key
to success appears to me to lie in the commercial
use and tool support. Users need a simple and
efficient way to use the languages, and they need
to be able to do so faster and better, to be con-
vinced that the languages are useful. If they do
not have efficient language-sensitive editors,
checking and validation facilities, as well as the
ability to eventually generate a running system,
a technique is bound to gain little support.

This is in my view clearly the reason why
CHILL remained a niche language, even though
the niche consisted of several major companies.
Companies using CHILL preferred to keep their
“competitive advantage” over others by not shar-
ing or selling their tools, and tool vendors did
not see a perspective because their prospective
users had their own tools. Non-proprietary tools
were not able to make ground over the propri-
etary ones used by the major companies in-
volved and failed to convince a broad base of
users outside these companies. Tools for a lan-
guage that intends to have a major impact must
be available even to students at universities at
competitive cost.

The same I believe is true for the ISO languages
LOTOS and Estelle, as well as for Petri Pets.
Though these languages were well conceived
and may even have been partially superior from
a theoretical point of view, their lack of commer-
cial tools support have confined them to being
an academic exercise. Also, LOTOS and Petri
Nets have not been used in a distributed environ-
ment in the whole cycle from specifications to
efficient implementations. Being thus unsuitable
as a design and implementation language and
not having intermediate supporting techniques
towards implementations is the reason for their
relative failure.

This brings me to a central point in the strategy
for a language or a family of languages to be
successful: The availability of tools for SDL,
MSC, TTCN, ASN.1 and ODL is the issue for
their future survival and well-being. The day a
language fails to be supported by powerful and
commercially available tools at reasonable price
and with a perspective for the future, the death
sentence for the language has been spoken. The
more market and competition there is for provid-
ing tools to the customer, the brighter the
prospect of success.

185Telektronikk 4.2000

A Perspective on Standardised
Languages in the Coming Years
At the start of a new Study Period, as now for
the Period 2001 – 2004, it is now time to re-
assess the need for activities on language and
software standardisation. In the competitive
environment of today, where clear needs must
be identified, and nice-to-have is just not
enough, a sober assessment is essential. The
current situation is:

• With the growing IT orientation for telecom-
munications, ITU-T Recommendations will
increasingly require the adoption of specifica-
tion languages in the Recommendation text,
especially SDL and ASN.1, but also TTCN
and MSC.

• New areas, such as IP-related protocols, have
come into focus for ITU languages, and this
tendency will increase over the coming years.

• Many companies continue to prefer ITU lan-
guages, and the fact that the languages are
standardised is seen as providing a substantial
benefit.

• Results from the TINA Consortium need stan-
dardisation. ODL is an example of standardis-
ation within ITU based on TINA and OMG
results Other areas, such as the standardisation
of DPE, are continuing and this has been iden-
tified as an important issue for the future
activities in ITU. Whether or not other results
from TINA are taken up will depend on the
market demand for them.

• The vendors of tools supporting ITU lan-
guages, especially SDL tools at the moment,
are experiencing unprecedented growth, indi-
cating that there is a strong market.

As a result, there seems to be a clear case for
continuing work on standardising languages and
generic software. This work is in my view best
done in a single Study Group within ITU-T. By
bringing the work done on all ITU languages
into a single Study Group, we will achieve the
required critical mass to pursue effective work of
high quality to the benefit of all the languages.
The synergy by utilising the capacity of lan-
guage experts of various fields has already been
demonstrated by taking up TTCN within Study
Group 10. Distributing this scarce resource over
various standardisation groups would diminish
the effectiveness of work.

However, the ITU community must also react
and properly address current developments in
other areas, such as on UML, IDL and XML.
SDL and MSC experts must continue to max-
imise their efforts to make concepts from ITU-T

languages a part of the next major UML release,
UML 2.0. It has been very helpful for all sides
that users of SDL and MSC as well as tool ven-
dors have been active within OMG by address-
ing issues related to the strengths of ITU-T lan-
guages. This is often a very practical question.
Several issues that now come up within UML
have been addressed for a long time within SDL
and MSC and become parts of the languages.
They need not be invented again, but can rather
be reused in the context of other languages.

At the same time, efforts to develop SDL 2004
and MSC 2004 should continue to keep pace
with technology and contemporary trends.
Whether SDL and MSC concepts at some future
point become part of an all-embracing UML, or
whether specialised languages continue to exist
for a long time, is an open issue. Many previous
efforts to find a single, all-embracing language
that solves all problems, have failed. Some time
ago, some enthusiastic proponents of the lan-
guage thought that SDL might fulfil this role.
It has turned out again and again that generalisa-
tion may reduce the key strengths of a language.
Rather than diversify and try to solve all prob-
lems, the development in the last years have
rather concentrated on the specific strengths of
the language and made them the best solution for
a particular application domain. The strategy for
ITU-T languages thus remains: Concentrate on
the strengths and remain the best solution for the
particular domain, and at the same time co-oper-
ate with other languages that have their strengths
in other areas. Do not try to beat them on their
battlefield. That is bound to fail. Rather provide
frameworks for the joint use of languages to give
the customer, and not one or the other language,
the maximum benefit.

As a result, ITU will continue the work and
maintain its languages. As separate languages,
SDL and MSC will be maintained to cater for
use within and outside ITU-T, addressing all
sides of their current customer base. The need
remains to provide support for protocol specifi-
cation within the telecommunications domain,
considering that a large number of Recommen-
dations and standards use SDL and MSC. Far
from weakening, this use has gained momentum
in the past few years, showing a growing need of
customers for ITU-T languages.

At the same time, ITU-T should even more
strongly take industrial needs into consideration,
and thereby make use of other organisations that
support these languages. One such example is
the SDL Forum Society, which organises Con-
ferences and Workshops on SDL and MSC and
promotes these languages to a wider audience
than ITU-T could access on its own. It is becom-
ing clear that standardisation bodies as the only

186 Telektronikk 4.2000

users alone will no longer be able to provide the
critical mass needed to keep work on SDL tools
going. A clear focus on industrial customers is
essential to keep a wide interest in the languages
alive.

Apart from the users, tool support, especially
commercial tool support, is the crucial item for
ITU-T languages, and I think it is fair to say the
statement applies to any language. Tools must be
powerful and cheap at the same time, and must
therefore address as wide an audience as possi-
ble. Here, a clear trade-off must be made. It is
not too good to have too broad a scope, which
means that the language is not particularly good
in any specific domain. On the other hand, a lan-
guage should not be so specific that it addresses
a very small market only, which makes tools too
expensive and does not allow for the economies
of scale to provide high power and low price at
the same time. The latter may be a major reason
for the relative failure of the programming lan-
guages CHILL and ADA, as well as for the
specification languages LOTOS and Estelle. All
have very clear technical benefits and are per-
haps even superior to today’s success languages,
but good and cheap tools that were widely avail-
able have never supported them. Specialisation
alone has not been the dominant problem. The
problem was to create a broad enough customer
base to make commercial tools viable.

Outlook
Some strategic issues have already been add-
ressed, such as the need for a focus on industrial
customers, the availability of powerful and
cheap commercially available tools and the con-
centration on the strengths, not the weaknesses
of the languages. For the latter, the strategy
should be co-operation with other languages
that are strong in these areas. UML is the most
important language in this context, and the com-
bined use of UML with ITU-T languages is one
of the new Questions identified within ITU-T
Study Group 10.

In addition, some shortcomings of ITU-T lan-
guages – where other languages do not already
have a technological advantage – have been
identified for future work. An example of this is
the area of time and performance, where activi-
ties have been identified for the coming years.
Languages for user requirements as well as for
configuration and deployment were identified
as a new need. Many solutions for data in SDL
have been standardised in the past, from abstract
data types (ADT) to the integration of ASN.1
within SDL. A new Question will deal with data
in SDL.

Middleware and Distributed Platforms remains
to be an issue, especially with the prospect of
being able to adopt and reuse much of the results
emanating from work on TINA in the past.

Finally, Quality has received much attention in
ITU during the last years, in particular in view
of quality of protocol-related Recommendations.
As quality is an area where ITU-T is seen by
other organisations, such as the Internet Engi-
neering Task Force (IETF), to have a high level
of competence, and since formal languages is
one method with which quality can be ensured,
this topic has been taken up in two Questions,
each with a different view on the subject.

Closing Remarks
The future for languages and software in stan-
dardisation I believe lies in the development
and maintenance aligned to market needs in
close co-operation with tool vendors. The ability
to penetrate the IP market will be critical. And
if the critical mass of software and language
experts and tool designers work together in as
close a co-operation within ITU as in the past,
ITU will continue to support further work on
languages.

Important web addresses that readers are encour-
aged to look up are:

• http://itu.int
• http://etsi.fr
• http://sdl-forum.org

Questions for the Study Period 2001 – 2004

Q1/10: Quality assurance, methodology and use of description techniques

(revised)

Q2/10: ODL: Object Definition Language (revised)

Q3/10: Software Platforms and Middlewares for the Telecom Domain (revised)

Q4/10: Unified Modelling Language (UML) Combined with ITU-T Languages

(new)

Q5/10: Encoding of data in SDL (new)

Q6/10: Specification and Description Language – SDL (revised)

Q7/10: Time Expressiveness and Performance Annotations in ITU-T Modelling

Languages for SDL and MSC (new)

Q8/10: Testing Languages and Validation based on Formal Models (new)

Q9/10: Message Sequence Chart – MSC (revised)

Q10/10: Data binding of Specification and Description Language (SDL) to Mes-

sage Sequence Charts (MSC) (new)

Q11/10: DCL: Deployment and configuration Language (new)

Q12/10: URN: User Requirements Notation (new)

Q13/10: Quality Aspects of Protocol-related Recommendations (new)

187Telektronikk 4.2000

References
1 ITU-T. Specification and Description Lan-

guage (SDL). Geneva, International
Telecommunication Union, 1999. (Recom-
mendation Z.100.)

2 ITU-T. CHILL – The ITU-T Programming
Language. Geneva, International Telecom-
munication Union, 1999. (Recommendation
Z.200.)

3 ITU-T. Man Machine Language (MML).
Geneva, International Telecommunication
Union, 1988. (Recommendation Z.301
–Z.341.)

4 ITU-T. Man Machine Language, Data Ori-
ented Human-Machine Interface Specifica-
tion Technique – Scope, Approach, and Ref-
erence Model. Geneva, International
Telecommunication Union, 1993. (Recom-
mendation Z.352.)

5 ITU-T. Abstract Syntax Notation One.
Geneva, International Telecommunication
Union, 1997. (Recommendation X.680.)

6 ITU-T. The Tree and Tabular Combined
Notation (TTCN)Tree and Tabular Com-
bined Notation. Geneva, International
Telecommunication Union, 1998. (Recom-
mendation X.292.)

7 ITU-T. Message Sequence Chart (MSC).
Geneva, International Telecommunication
Union, 1999. (Recommendation Z.120.)

8 Design guidelines for Human Computer
Interfaces (HCL) for the management of
telecommunications network. Geneva, 1999.

9 ISO. Information processing systems – Open
Systems Interconnection – LOTOS – A for-
mal description technique based on the tem-
poral ordering of observational behaviour.
Geneva, International Organization for Stan-
dardization (ISO), 1989.

10 ITU-T. Information technology – Open Sys-
tems Interconnection – Structure of manage-
ment information: Guidelines for the defini-
tion of managed objects. Geneva, Interna-
tional Telecommunication Union, 1992.
(Recommendation X.722 (01/92)/ISO/IEC
10165-4:1992.)

11 ITU-T. TMN interface specification method-
ology. Geneva, ITU, 2000. (Recommenda-
tion M.3020.)

12 ITU-T. SDL combined with ASN.1 Modules
(SDL/ASN.1). Geneva, International
Telecommunication Union, 1999. (Recom-
mendation Z.105.)

13 ITU-T. SDL with embedded ASN.1. Geneva,
International Telecommunication Union,
1999. (Recommendation Z.107.)

14 ITU-T. SDL Combined with UML. Geneva,
International Telecommunication Union,
1999. (Recommendation Z.109.)

188 Telektronikk 4.2000

Special

Telektronikk 4.2000 189

190 Telektronikk 4.2000

191

Introduction
Voice over IP (VoIP) is a service that captures
the imagination of many people. It started out as
a tool for hobbyists on the Internet, who could
talk to each other without incurring long dis-
tance costs. And now there is probably no tradi-
tional telecommunications operator who does
not offer VoIP services in some form, and to
some community.

The ETSI TIPHON project has been working
on standardisation of VoIP issues (the project
is now on its fourth year) in the very changing
environment of IP networks. An aspect that was
included right from the beginning is Quality of
Service (QoS), which was identified as a major
factor in the VoIP service offer.

Very early, TIPHON defined four Quality
Classes, each with a different requirement on
the carrying IP network and each (presumably)
being priced differently. However, over time
there have been underlying problems, which
has prevented these Quality Classes from being
deployed in a large scale.

This paper discusses some of these problems
and the efforts made by the TIPHON Working
Group 5 to overcome them.

QoS Issues
For QoS to be a deployable (and sellable) prop-
erty of a VoIP network, a number of issues need
to be solved. Some of these are:

1. The customer must be able to decide which
Quality Class to select. A possible solution
would be to only let customers decide when
they order the service. Several research pro-
jects are working on solutions where the cus-
tomer selects in real-time. In a previous article
in Telektronikk [1], some principles for how
this can be done are outlined. A EURESCOM
project has investigated solutions which are
close to these ideas. Some documents describ-
ing results of that work can be found at [2].
The TIPHON group has not addressed this
issue explicitly.

2. The VoIP application needs to be able to sig-
nal to the network its QoS requirements (and
the network needs to be able to signal back the

achieved QoS). The TIPHON project has done
significant work on the first issue, as we shall
see below. The second issue is targeted for the
near future.

3. The Network needs to be able to provide dif-
ferentiated levels of Quality. While TIPHON
has been active, the IETF (Internet Engineer-
ing Task Force) has worked on solutions for
this (e.g. the DiffServ architecture [3]), which
is now becoming available in equipment from
major manufacturers. However, the compo-
nents of DiffServ need to be put together into
services that are provided end-to-end. Work
on this issue is ongoing in many places. The
outcome of this work may affect the TIPHON
solutions.

4. Networks belonging to different operators
need to be able to agree on how traffic travers-
ing from one network to another should be
treated. The EURESCOM Project EQoS [4]
has looked at this issue. (Results from that
project related to TIPHON are presented in
another place in this issue of Telektronikk).
While related to the issue described in the
item above, inter-provider issues are wider
than the inter-network issues. Work on these
issues is also ongoing in several places (also
in EURESCOM).

5. The network and service need to be manage-
able, i.e. a management system must be in
place, so that network management systems
can perform traffic control actions and (when
this fails) customers can be informed when the
requested quality level cannot be reached.
This is an important area and the TIPHON
group will do some work here.

6. How to measure the different aspects of QoS
is also an area where complete understanding
is lacking. The TIPHON group provides valu-
able contribution to this subject. But, as is
indicated below, there is much more to
be done. Maybe there is a possibility for
TIPHON to take onboard more efforts in this
direction. If so, this would be appreciated. If
there are no such possibilities, the outcome of
work in other groups will hopefully comple-
ment the work done by the TIPHON group.

Quality of Service in the
ETSI TIPHON Project
M A G N U S K R A M P E L L

Magnus Krampell (45) is Project
Supervisor at EURESCOM
GmbH, supervising projects in
the areas of IP/Internet and
QoS. He is presently on leave
from Telia AB, where he has
been employed since 1990.
Experiences include: Develop-
ment of TMN systems, TINA
work at Bellcore in USA and
research and development of
broadband systems and ser-
vices. Mr. Krampell received his
BSc in Mathematics in 1984 and
his LicSc in Computer Science
in 1988.

krampell@eurescom.de

Telektronikk 4.2000

192 Telektronikk 4.2000

TIPHON Working Group 5
Documents
Those who have followed TIPHON WG 5 for
some time may remember the first version of the
document TR 101 329. This was a good docu-

ment, but it contained many things. Because of
this it was issued as a TR – Technical Report.
However, an analysis revealed that some parts
were actually specifications, while others were
pure comments.

Figure 1 TIPHON WG 5
document structure

Generic QoS Definitions

Introductions
Definitions
Explanations
Discussions...

Definition
of the 4 TIPHON
classes

TR 101329-7

Design
Guide-
lines

REPORT

TR 101329-6

Actual
Test

Results

REPORT

TS 101329-5

Measure-
ment

Methods

SPEC

TS 101329-4

QoS
Manage-

ment

SPEC

TS 101329-3

QoS
Control

SPEC

TS 101329-2

QoS
Class
Spec´

SPEC

TR 101329-1

General
Aspects
 of QoS

REPORT

Specific aspects of TIPHON QoS

QoS signalling
requirements

Reporting on
QoS Achieved

Measurement
methodologies

Repository of
real results

Useful info
for designers

TS/TR 101329 Title First approved Current version

Part 1 General Aspects of Quality of Service TIPHON18 V3.1.1

(May 2000)

Part 2 Definition of Quality of Service Classes TIPHON18 V1.1.1

(May 2000)

Part 3 The signalling and control of End-to-end Quality of TIPHON21 V0.9.5

Service in TIPHON Systems (Dec 20001))

Part 4 Quality of Service Management in TIPHON Systems –2) –

Part 5 Quality of Service measurement methodologies TIPHON20 V0.2.6

(Sep 2000)

Part 6 Actual measurements of network and terminal TIPHON18 V1.1.1

characteristics and performance parameters in (May 2000)

TIPHON networks and their influence on voice quality

Part 7 Design Guide for Elements of a TIPHON connection TIPHON20 V0.2.1

from an End-to-end speech transmission performance (Sep 2000)

point of view

Table 1

1) Planned date.
2) No approved document exists yet.

193Telektronikk 4.2000

The working group realised this and created a
structure, which is shown in Figure 1. Document
101 329 now consists of seven parts. The first
two parts relate to high level generic issues. The
other five are more specific in their nature.

A reader should always start with parts 1 and 2,
but may then select among the other parts, de-
pending on interest.

Table 1 shows the status of the different docu-
ments and when they were first approved.

Overview of Document
Contents
This section provides a short overview of the
contents of the different documents.

Part 1: General Aspects of
Quality of Service
Since QoS is a concept with different meanings
to different people, the TIPHON group has gone
back to some safe ground and provides in the
first part some very basic definitions and de-
scriptions of the scenarios that the project looks
at. Even the experienced researcher/engineer
should browse through this document.

Part 2: Definition of
Quality of Service Classes
One of the highlights of the TIPHON project is
that they have defined a set of concrete Quality
Classes! Four classes are described in this docu-
ment, together with some explanation on how
they differ, and which parameters affect them
mostly. The four Classes are presented briefly
in Table 2 (see the document for details).

The concept of Terminal Modes and Network
Classes also help to explain how the Quality
Classes can be provided using different termi-
nals and networks. The Network Classes are
presented briefly in Table 3 (see the document
for details).

The document contains a discussion on which of
the three parameters (Delay, Jitter and Loss) plus
Codec Type are associated with which compo-

nent (i.e. terminal or network). The conclusion
of this is that Codec Type is associated with the
terminal only, while Loss is associated with the
network only. The remaining parameters (Delay
and Jitter) are associated with both the terminal
and the network. The “budget” for these para-
meters must thus be split between the two end
terminals and the intermediate network.

Part 3: The Signalling and Control
of End-to-end Quality of Service in
TIPHON Systems
This is an important document! The ideas pre-
sented here are perhaps not revolutionary, but
provide a path towards a system architecture,
where the application layer can negotiate the
Quality Class end-to-end and then negotiate this
information to the network. The descriptions of
Reference points, Interfaces, Primitives and
QoS Parameter Groups provide a very coherent
framework. It remains to be seen if it holds true
when put to the test in a real system.

As a bonus information, a conversion table is
provided, mapping the TIPHON functional ele-
ments to functional elements used in other fora.
The reader is thus relieved of the effort of trying
to find the difference between e.g. a TRM
(Transport Resource Manager) and a Bandwidth
Broker.

Part 4: Quality of Service
Management in TIPHON Systems
This document remains to be written! When part
3 is approved (assumed to happen in Novem-
ber/December 2000), work will commence on
this work item. The work started over a year
ago, but major changes to the TIPHON architec-

4 (Best) 3 (High) 2 (Medium) 1 (Best Effort)

Speech Quality Better than G.711 Equivalent or better than Equivalent or better than Not defined

G.726 at 32 kb/s GSM-FR

Reasoning behind Better than today’s SCN, Equivalent to today’s SCN Equivalent to analogue Equivalent to today’s

Quality Class i.e. probably conference wireless Internet. Usable but

quality with 7 kHz Codecs possibly degraded

End-to-end Delay < 100 ms < 100 ms < 150 ms < 400 ms

(2, 3, and 4 are guaranteed; 1 is not.)

Table 2

Network Class Packet Loss Delay Variation (Jitter)

I < 0.5 % < 10 ms

II < 1 % < 20 ms

III < 2 % < 40 ms

Table 3

194 Telektronikk 4.2000

ture has prevented work on Service Management
to start from a stable foundation. Also the work
going into the part 3 document has cleared up
many of the open issues related to how inter-
provider QoS will be handled. When discussing
Service Management (which of course must be
done by each provider along the chain of pro-
viders a call goes through) the responsibilities
of each provider must be clear.

It seems likely that now that these issues are
being removed, work on Service Management
will provide useful results in a reasonably short
time.

Part 5: Quality of Service
Measurement Methodologies
Measurements are very much the basis for the
management of a service and managing QoS is
no exception. One can assume that SLAs (Ser-
vice Level Agreements) will specify how mea-
surements are being done, in order to avoid dis-
putes when interpreting measurement data
related to QoS.

As always, standards are useful in these cases.
One would expect that a document like part 5
would contain a complete set of references to
different standard definitions that leave no room
for misunderstanding.

However, the document in its present version
does not really live up to that goal! Regarding
Voice Quality, if seems to fulfil the role (even if
I am not an expert on Voice Quality matters).
On measurement on the Transport Layer (i.e.
measurements on Delay, Jitter/delay variation,
and Loss) it should probably be regarded as a
contribution to the ongoing discussion, rather
than as a normative reference document (even if
the sections are labelled “Normative”).

As a contribution to a general understanding of
Measurements in IP networks it even contains
some new aspects. One such aspect is the con-
cept of Packet Loss Correlation, which is a mea-
sure of the “Burstiness” of packet loss. The doc-
ument contains a comprehensive section with
material on this subject.

In the cases where the proposed methodology
differs from state-of-the-art in other fora (e.g.
IETF – the Internet Engineering Task Force) it
remains to be proven that the methodology pro-
posed by the TIPHON group is of higher value.
This can only be done through practical tests.
Results from such tests will be met with great
interest.

Part 6: Actual Measurements of
Network and Terminal Character-
istics and Performance Parameters
in TIPHON Networks and their
Influence on Voice Quality
As indicated already by the document title, the
content is very focused on Voice Quality. A set
of measurements has been performed (both sub-
jective as well as objective), which report on the
effects of Delay and Packet Loss on the per-
ceived Voice Quality.

Since the nature of packet transportation in an
IP network is somewhat different from packet
transportation in a “traditional” PCM (Pulse
Coded Modulation) system, these measurements
are extremely valuable. If heuristics can be built
up on how the three parameters (Delay, Jitter
and Loss) affect Voice Quality, the perceived
quality can be predicted in different situations.
The provisioning of the four Quality Classes
defined by TIPHON (see part 2 above) can per-
haps be reduced to a matter of measuring/moni-
toring and managing the values of these three
parameters in the transport network. The people
behind these measurements also assisted in the
development of the E-model (ITU-T Rec.
G.107/G.109). A motivation for that model is
to allow comparisons in a simpler manner.

However, the voice quality measurements are
only one type of measurement that is interesting.
As was indicated in the section above, results of
measurements on the network level parameters
will certainly be welcome.

Part 7: Design Guide for Elements
of a TIPHON Connection from an
End-to-end Speech Transmission
Performance Point of View
The four Quality Classes of TIPHON are de-
scribed in terms of Voice Quality equivalents,
and are presented with some values for end-to-
end Delay and Packet Loss. As was described in
the section presenting part 2 above, the design of
a terminal must take into account the target val-
ues for the main parameters, and how the budget
for them can be split between the terminal and
the network.

The part 7 document goes into some detail on
e.g. how the delay is a function of codec type
and how delay can be split into a set of realistic
scenarios (a discussion on how each of the
TIPHON Quality Classes can be reached is
also given).

Being a designers guide, the documents contain
a comprehensive bibliography.

195Telektronikk 4.2000

Conclusion
When the TIPHON project started in the spring
of 1997, the ambition was to profile (i.e. decide
on how to use some of the options) the H.323
recommendation in order to enable interworking
between H.323 terminals, H.323 Gatekeeper
(where applicable) and terminals connected to
the circuit switched network. This sounded like
a not too difficult task and the estimated time-
table was set at one year.

Now, three and a half years later, there are more
open issues than ever. However, TIPHON has
changed with the world around it, and has
adopted a much more generic approach to how
VoIP systems will be deployed on a broad scale.

The TIPHON architecture has changed several
times (version 3 is now being finalised), but it
is nice to see that the Quality Classes that were
defined very early, still seem to be useful. The
description of them has changed over the years,
but the basic concept remains (i.e. having a dis-
crete set of Quality Classes) and seems to gain
increasing industry acceptance.

In Working Group 5 (QoS), the work has been
concentrated around a limited set of work items.
This approach, together with the division of the
original document into seven parts, seems to
have worked well.

Readers not acquainted with QoS work in
TIPHON are recommended to read the different
parts in the right order. Readers with knowledge
on the Quality Classes and with an interest in a
specific area can find useful material in the indi-
vidual part documents. However, even experi-
enced researchers/engineers should browse
through the first part.

Since my primary interest is in architectures for
QoS support in transport networks, I found the
part 3 a very interesting document. From reading
the other documents as well, I have the impres-
sion that the people behind the TIPHON QoS
work should be commended for their good
work!

References
1 Krampell, M. The ETSI project TIPHON as

a way towards a Harmonised User-Oriented
Quality Model. Telektronikk, 94 (2), 88–92,
1998.

2 EURESCOM Project QUASIMODO –
QUAlity of ServIce MethODOlogies and
solutions within the service framework:
Measuring, managing and charging QoS.
2000, November 3 [online] – URL: http://
www.eurescom.de/public/projects/
p900-series/P906/P906.htm

3 Blake, S et al. An Architecture for Differen-
tiated Services. 1998. (IETF RFC 2475
(12/98).)

4 EURESCOM Project EQoS – A Common
Framework for QoS/Network Performance
in a multi-Provider Environment. 2000,
November 3 [online] – URL: http://www.
eurescom.de/public/projects/p800-series/
P806/P806.htm

5 ETSI. Telecommunications and Internet
Protocol Harmonization Over Networks
(TIPHON); End to End Quality of Service
in TIPHON Systems. (ETSI TR/TS 101 329
– parts 1 through 7.)
[http://www.etsi.org/tiphon/]

Telektronikk 4.2000

1 Introduction
The EURESCOM QoS (EQoS) framework pro-
vides a unified understanding of Quality of Ser-
vice (QoS) related to all entities engaged in
multi-provision [see the “Understanding EQoS”
in this article]. A procedure for how to establish
a system of Service Level Agreements / QoS-
agreements for any scenario has been outlined in
[20]. The procedure itself explains the practical
implementation of the EQoS generic principles,
which results in a set of agreements and relation-
ships relevant for a provider running it. The
granularity and variants of input required to run
the procedure are also discussed in [20]. The
input may vary including information like (1)
the description of the service to be provided,
(2) selection of relevant QoS parameters (and
related values) as a basis for negotiations
between the user and the primary provider, (3)
the knowledge of potential business/technical
configurations, (4) other relevant inputs, e.g.
regulatory concerns, economic issues, business
strategy, etc.

An application of the procedure was exemplified
for the case of Voice over IP (VoIP) provided
according to the ETSI TIPHON Scenario 1 [see
“TIPHON” in this article]. Several reasons made
VoIP service case “win” over other IP-based ser-
vices, e.g. IP Virtual Private Network (VPN), e-
commerce, etc., like:

• VoIP combines the traditional telecommunica-
tions and Internet worlds;

• VoIP enables voice, video and data transfer in
the same session via packet networks;

• VoIP stresses a universal presence of IP, now-
adays enhanced with the introduction of initial
traffic engineering mechanisms, and advanced
applications;

• VoIP recognises the mature technologies
involved in the provision of the voice services
over packet-based networks (e.g. Digital Sig-
nal Processors – DSPs, codecs, access tech-
niques – high-speed modems, xDSL, etc.);

• VoIP leads to multi-provision, especially
when interconnecting to circuit-switched net-
work.

In addition, the material available on VoIP (or
more particular IP telephony) achieved in the

ETSI Project TIPHON [21] composed a well-
established basis for investigating the SLA struc-
ture. Although other solutions are feasible in the
example elaborated here, Scenario 1 from the
TIPHON was considered as a basis. Some other
scenarios, such as more “realistic” scenario for
today’s IP telephony provision – where an Inter-
net Service Provider (ISP) is identified as one of
the leading actors – could be discussed. But,
since an ISP can be considered as a merger of
IPNPs and ICPs, comprising their functionality
(see below), the more complex case was chosen
for this study. The business relationships, along
with the technical realisation of the service for a
given scenario are described below.

Before analysing the VoIP service case itself, it
would be useful to first discuss the term – what
is considered under VoIP? The brief explanation
would be “the technology enabling the transmis-
sion of voice traffic in packets”. More details on
VoIP can be found in “Understanding VoIP” in
this article.

The necessary service components, the main ele-
ments of the system supporting this service, and
possible scenarios are discussed in the next
chapter. The viewpoints of different actors in-
volved in the scenario studied are elaborated into
more details in Sections 3.1–3.4, followed by the
content of each of the relevant agreements in
Sections 4.1–4.4.

2 TIPHON VoIP – Service,
Business Model

The VoIP service is provided to a user, who is
connected through an H.323 terminal to an IP
network. The service enables the calling user to
initiate and receive the telephony service pro-
vided over the IP network. The premises for the
user are: a LAN supporting the TCP/IP suite
realising the access to the public IP network, and
an H.323 terminal attached to it. The scenario
examined here is TIPHON Scenario 1 [21],
where the phone call is originated by an IP-
based user (H.323 user), and terminates at a
user of the Switched Circuit Network (SCN).
The SCN may include both public and private
networks like PSTN/ISDN/GSM. As stated in
[22] the services provided by a TIPHON compli-
ant system should enable:

• the setup of calls which originate at an H.323
client on an IP–based network and terminate
at terminals on PSTN/ISDN/GSM networks;

QoS and SLA Structure
in a VoIP Service Case
I R E N A G R G I C , O L A E S P V I K , T E R J E J E N S E N A N D
M A G N U S K R A M P E L L

Irena Grgic (29) is Research Sci-
entist at Telenor R&D, Kjeller.
She is mainly involved in activi-
ties related to QoS and charging
for different networks and sys-
tems, and studies related to net-
work evolution, both in interna-
tional and national projects. She
holds an MSc in Electrical Engi-
neering from the University of
Zagreb in 1999. She was Task
Leader of Task 5 in EURES-
COM P806-GI.

irena.grgic@telenor.com

Ola Espvik (57) is Senior Re-
search Scientist and Editor of
Telektronikk. He has been with
Telenor R&D since 1970 doing
research in traffic engineering,
simulation, reliability and mea-
surements. His present research
focus is on Quality of Service
and Quality Assurance mainly
related to various EURESCOM
projects. He holds an MSc in
physics from the Norwegian Uni-
versity of Science and Technol-
ogy 1968. He was Project
Leader of EURESCOM 806-GI.

ola.espvik@telenor.com

196

197

• backward call clearing;

• forward call clearing;

• detection of a non–recoverable failure of any
of the critical resources involved in the call
which initiates the clearing of the call;

• user services which make use of end–to–end
bidirectional and unidirectional Dual Tone
Multi Frequency (DTMF) signalling;

• inability to complete the call within the
PSTN/ISDN/GSM network shall be detected
and communicated to the calling party (e.g.
busy tone);

• ability for inband audio tones and announce-
ments to be received by the caller (e.g. special
information tones, referral messages, etc.).

Also, some supplementary services like choos-
ing the level of QoS per call or per subscription,
the address translation between IP address and
E.164 number including additional information,
e.g. calling line identification presentation, mali-
cious call tracing for calls initiated from an IP-
based terminal, etc.

The network architecture and reference configu-
ration supporting the delivery of telephone calls
originated in an IP network and terminated in
SCN includes the following elements1) [24]:

H.323 terminal2) is an end-user device that pro-
vides real-time two-way voice, video or data
communications.

GateWay (GW) is the element that ensures the
interworking between IP and SCN domains. It
consists of three parts – Media Gateway (MG)
which provides translation of the transmission
formats between the terminals (e.g. G.729 to
G.711), Media Gateway Controller (MGC)

which provides call handling, controls the MG,
receives Signalling System No. 7 (SS7) sig-
nalling from SG and IP signalling from GK, and
Signalling Gateway (SG) which assures inter-
operability of signalling between IP and SCN
domain (e.g. H.323/H.245 to Q.931).

GateKeeper (GK) is the element responsible for
control and management of various elements
within the configuration. A single GK can man-
age a collection of terminals, GWs, and it pro-
vides address translation and call control ser-
vices, as well as resource management.

The IP access, IP network, SC network, and
SCN terminal (i.e. ordinary telephony set) are
also necessary elements, but since they are tradi-
tionally present on the market their description
is omitted. An important element of VoIP provi-
sion is Back End Services (BES) (e.g. authenti-
cation, billing, address resolution), but in our
example they are considered to be distributed to
other elements like GW and GK, as described
later.

The reference configuration as shown in Figure
1, and described in [25] indicates the reference
points relevant when exchanging information
between different elements i.e. entities that own
them. The reference points relevant for the sce-
nario investigated here are:

A – between the H.323 terminal and its GK;

B – between the H.323 terminal and the GW
(MG);

C – between the GW (MGC) and the GK;

D – between two GKs;

Ea – between the GW (MG) and the SCN;

Eb – between the GW (SG) and the SCN.

Terje Jensen (38) is Research
Manager at Telenor R&D,
Kjeller, responsible for co-ordi-
nating projects in the area of
QoS and network design. He
earned his PhD degree in 1995
from the Norwegian University of
Science and Technology. Other
activities include performance
modelling and analysis, dimen-
sioning and network evolution
studies. He was Task Leader in
EURESCOM P806-GI.

terje.jensen1@telenor.com

Magnus Krampell (45) is Project
Supervisor at EURESCOM
GmbH, supervising projects in
the areas of IP/Internet and
QoS. He is presently on leave
from Telia AB, where he has
been employed since 1990.
Experiences include: Develop-
ment of TMN systems, TINA
work at Bellcore in USA and
research and development of
broadband systems and ser-
vices. Mr. Krampell received his
BSc in Mathematics in 1984 and
his LicSc in Computer Science
in 1988.

krampell@eurescom.de
1) Detailed lists of functional blocks included in a particular element for Scenario 1 are given in [24].
2) Note that a PC with implemented H.323 and TCP/IP protocol stacks can be used, but the charac-

teristics of it must be considered when evaluating the QoS.

H.323
terminal

GK GK

MGC

MG

BES

SG

SCN

A

B Ea

EbJ

D G

C

N

F

GW

Figure 1 The reference configuration for basic call in TIPHON

Telektronikk 4.2000

198 Telektronikk 4.2000

The EURESCOM QoS (EQoS) framework was developed by the

EURESCOM P806-GI project [http://www.eurescom.de/public/pro-

jects/p800-series/P806/P806.htm], which run from 1998 to 2000.

It is a QoS framework generally applicable for multi-provider en-

vironment, and it is independent of service, technology, network

configurations seen in several service provision situations. This

framework may be used also for QoS control, measurement and

QoS assessment purposes. Requirements stated by the Open

Network Provisioning (ONP) directives issued by EU are consid-

ered by the EQoS framework, as well as principles of other exist-

ing QoS frameworks.

One of the main achievements is an unambiguous terminology

where the terms relevant for the service provision in general and

QoS are defined. The Quality of Service (QoS) is defined as the

degree of conformance with an agreement between user and

provider. QoS is described through the selection of a set of QoS

parameters, specification of QoS target values and the choice of

QoS measurements and evaluation mechanisms. A QoS parame-

ter is a variable that is used to assess QoS. The above given QoS

definition arose as a result of investigating the extensive amount

of documentation published by different fora, e.g. International

Telecommunication Union (ITU-T), European Standardisation

Institute (ETSI), TeleManagement Forum (ex Network Manage-

ment Forum, NMF), International Standards Organisation (ISO) /

International Electrotechnical Commission (IEC) documents, etc.

One may say that this definition is a strengthening of the QoS defi-

nition given in ITU-T E.800 Recommendation [E.800] as illustrated

in Figure A.1. The ITU-T E.800 relates QoS to a user’s satisfac-

tion. This allows for a certain level of subjective evaluation taking

into account that different users would likely have different expec-

tations and understanding of the service provisioning. In principle,

expectation and understanding may neither be completely cov-

ered (or covering) the area of satisfaction. Compared to this,

EQoS relates QoS to an agreement in order to introduce more

objective considerations. There might not be complete overlap

between the area of satisfaction and the agreement. As seen from

a provider’s point of view, the area of satisfaction for an individual

user may vary during time, e.g. depending on a user’s equipment,

mood, etc., making it too volatile to follow closely. Therefore an

agreement is used as reference for QoS.

An entity is a generic unit characterised by its set of states and

transitions. A number of entities can be composed into a new

entity. Here, the behaviour of an entity is described as seen from

an outside observer. An interface is a logical boundary between

two entities that envelops a set of interaction points. An interaction

point is a point where two entities exchange information. Here, a

boundary should be understood in a wider sense than a physical

point. A service is the result from executing a set of functions and

is provided at the interface. A provider is an entity that provides

service to another entity. A user is an entity that makes use of a

service provided by another entity.

A EQoS Basics

Figure A.1 QoS references (agreement and satisfaction)

Figure A.2 Provider, user, service, interface, agreement

Figure A.3 QoS related to interfaces between (groups of) entities

Agreement

QoS

Satisfaction

EQoS

ITU-T Rec. E.800

The basic set of definitions developed in EQoS includes also the

terms: entity, service, user, provider, and agreement, as explained

in the following and depicted in Figure A.2.

interface
(interaction points)

User Provider

entityentity Service

Agreement

Apart from terminology, the EQoS achievements include its main

concepts, i.e. the one-stop responsibility and its recursive applica-

bility enabling an entity to tackle QoS issues. Simply, in a multi-

provision environment, the QoS provided by an entity might

depend on adequate operation of other entities. Thus, there may

be a need for relating the QoS levels obtained for the different

interfaces, see Figure A.3.

User

entity

QoSu

QoSs

(sub) providers

Provider
L_QoS

entity

Naturally, multiple interaction points may exist between one pair

of actors in an actual configuration. However, due to the potential

dependencies between interfaces, mechanisms for supporting the

delivered QoS at the interface may be implemented in a number

of ways. In principle, the QoS provided/delivered at the interface

between entity Provider and entity User can be formulated as a

function f:

QoSu = f(QoSs, L_QoS) (1)

where:

• QoSu is the QoS experienced by User on the interface between

entity User and entity Provider;

199Telektronikk 4.2000

• QoSs is the QoS experienced by Provider on the interface

between entity Provider and entities Sub Providers;

• L_QoS are QoS mechanisms involved, which are present

“locally” to entity Provider.

It should be emphasised that although dependencies are identified

between QoS referring to different interfaces, a single provider is

responsible for the aggregated QoS towards a certain user. That

is, in Figure A.3, Provider is the main one responsible for QoS

towards User, even though this depends on other Sub Providers

as exemplified by (1). This is named the one-stop responsibility

concept. Naturally, a user may see various levels of services (and

service components) that may be composed.

The QoS is expressed by assigning values (e.g. target values or

actual, measured values) to a number of QoS parameters. Differ-

ent viewpoints and instances may be referred to, like the re-

quested QoS, offered QoS, contracted QoS, delivered QoS, per-

ceived QoS, and so forth (see [ETR003]). Considering the various

phases of service life cycles, various relevance of parameters is

assumed for the phases. Furthermore, the actors involved may

change their roles as the various service life cycle phases evolve.

A generic structure for interconnection agreements can be identi-

fied by describing possible aspects that should be included. One

motivation for this is to allow more rapid, accurate and automatic

establishments of such agreements. In particular, this is requested

because of the multitude of providers that could be involved.

The considered issues include:

• Interface description;

• Traffic patterns expected including relevant traffic parameters

and values;

• QoS parameters and related target values;

• Measuring mechanisms and scheme description;

• Reaction pattern to apply in case agreed restrictions on traffic

patterns or QoS parameter values are not fulfilled.

Several of the terms (like traffic patterns) could be generalised in

order to be applicable for every service life cycle phase. The cor-

responding terms might then be adapted in order to describe bet-

ter the relevant aspects.

The actors/entities must also be seen to behave according to the

intentions behind the agreement. Therefore, enforcing the be-

haviour sought for the actors, adequate reactions should be imple-

mented. The nature of reactions would be multiple, depending on

the phenomena on which the reaction is to “regulate”. That is, load

control, charging schemes, legal actions, etc., which all may be

covered by the reaction patterns.

More details on EQoS framework can be found in Telenor R&D

Note 33/99 [TN3399].

References
E.800 ITU. Terms and definitions related quality of service

and network performance including dependability.

Geneva, 08/94. (ITU-T E.800.)

ETR003 ETSI TC-NA. Network Aspects : general aspects of

Quality of Service and Network Performance. ETSI

Technical Report ETR 003 (ref. RTR/NA-042102),

October 1994. (ETR 003.)

TN3399 Espvik, O et al. EQoS : a generic framework for Quality

of Service (QoS). A QoS approach to Internet and IN

multiprovison. Kjeller, Telenor R&D, 1999. (N 33/99.)

The remaining reference points, i.e. G, F, J, N
are not relevant considering the assumptions
made for this case study.

There are numerous possibilities for the user to
be connected to the IP network like: dial up
access, LAN, leased line, etc., (ref. [24]), but the
scenario studied here is limited to a LAN access
via LAN owned by the user. Therefore, the role
of the IP Access Provider (IPAP) is omitted
here. Also, since the destination SCN may have
an impact on the QoS associated to the service
[26], the scenario is further restricted to the
choice of a particular SCNP i.e. ISDN provider.

The entities taking part in the service provision
in the case considered here are identified as
actors taking certain roles, and owning certain
functionality (Figure 2). Those entities are
briefly described below in the sense of the func-
tionality and role(s) they have in the service pro-
vision configuration. Note that the symbols on

arrows identify QoS agreements (QoSA) to be
described using the EQoS framework.

Figure 2 identifies the entities to be considered
in the service delivered to the end-user A (see
also Figure A.1 in [23]). Note that neither IPAP
nor Back End Service Provider (BESP) are iden-
tified in the figure.

User A: an end-user, who uses an H.323 termi-
nal for VoIP; the terminal also supports H.225
(call control) and H.235 (security). The user
directly accesses the IP network provider
through a private IP network, i.e. a LAN.

ITSP (IP Telephony Service Provider): A ser-
vice provider who offers telephony services over
IP networks [22]. The major service component
directly realised by the ITSP are the Registra-
tion, Admission and Status (RAS) services
offered to the user within the gatekeeper func-
tion with which the user is registered. The GK

200 Telektronikk 4.2000

also provides the address resolution functions
between H.323 alias addresses and E.164
addresses (this may be delivered by the ITSP,
which relies on services provided, e.g. by the
SCNP or BESP). Call Acceptance Control
(CAC), including path selection and traffic con-
trol functions are also realised by the ITSP,
although part of them may also be sub-con-
tracted to a BESP. The gatekeeper function in
the ITSP may be realised through a “gatekeeper
cloud” within which several gatekeepers collab-
orate. The ITSP also relies on service compo-
nents provided by the IP Network Provider
(IPNP) and by the Inter Connectivity Provider
(ICP).

IPNP (IP Network Provider): A provider of IP
interconnection between IP service providers
and users. It relies on layer 2 network providers
to physically realise the IP transfer services. The
LAN on which the H.323 user is connected,

routes external communications on the IP net-
work controlled by the IPNP. The service
offered by the IPNP is IP transfer, including
routing and local traffic control in routers. The
IPNP may optionally support advanced traffic
mechanisms that allow supporting intserv and/or
diffserv IP transfer. Whenever this is the case,
traffic control functions are also realised in the
IPNP. The ITSP should take care that enough
resources are provisioned in the IPNP such that a
call that is accepted by the ITSP within its CAC
function can indeed be supported by the IPNP
with the appropriate QoS.

ICP (InterConnectivity Provider): A service
provider who offers services for access between
IP and SCN [22]. The main functions realised
by the ICP are a gatekeeper and a gateway func-
tions, which provide for real-time, two-way
communications between H.323 terminals on an
IP-based network and terminals on SCNs. The
GW realises the interconnection between SCN
and IP telephony signalling functions; it also
provides the coding functions that are used to
translate IP packets into information streams
suitable for circuits.

SCNP (Switched Circuit Network Provider):
An entity that provides the PSTN and/or ISDN
and/or GSM network services to the ICP. On the
other hand, it is also a provider of the telephony
service to a User B, i.e. called party, but since
the QoS issues at this interface are well de-
scribed in a number of standards, that relation-
ship is not elaborated here.

An overview of functionality present in each of
the entities identified in the chain is given in
Table 1.

An illustration of both network configuration
and business model, with the interfaces (busi-
ness/technical) to be considered in a particular
agreement is given in Figure 3. All roles in-
volved in VoIP service provision/usage for Sce-
nario 1, along with the elements/functionality
they own, are depicted in that figure.

The business relationships are indicated with
the double-lined arrows with the agreements
attached. Technical relationships show the actual
flow of traffic/information exchange, both for
control (Tc) and speech (Tu) traffic. Note that
the illustration of one element, e.g. a router (R),
may indicate the actual presence of a number of
similar elements.

User A

ITSP

User B

Provider

User

ICP

Provider

User

SCNP

Provider

User

IPNP

Provider

User
ITSP - IP Telephony Service Provider
ICP - Interconnectivity Provider
IPNP - IP Network Provider
SCNP - Switched Circuit Network Provider

Figure 2 QoS agreements for
the IP telephony service

Table 1 Identification of func-
tionality within entities

Entity Functionality within entity

Calling user A H.323 terminal

Supports H.225 (call control) and H.235 (security)

LAN

ITSP GateKeeper (GK)

IPNP IP transfer (includes IP routing)

ICP GateKeeper (GK)

Signalling Gateway (SG)

Media Gateway Controller (MGC)

Media Gateway (MG)

SCNP ISDN signalling

Circuit switching

Called user B Telephony terminal

Supports ISDN signalling

201Telektronikk 4.2000

3 Viewpoints of Different
Actors

In this chapter each of the providers involved in
the VoIP service provision/usage, their view-
points on agreements and issues they should
consider when agreeing on QoS are focused on.
The viewpoints of providers, i.e. ITSP, ICP,
IPNP, and SCNP are tackled in the following
sections, while the end-user viewpoint is omit-
ted. Each of the sections describes the examples
of input (service description, QoS parameters
and objectives, business model), procedure, and
the output as pointers to the various agreements
relevant for a particular provider the section is
devoted to.

3.1 ITSP
Considering the elements of input for this pro-
vider, the following is needed:

Service description – the service provided by
the ITSP to its user is a telephony service over
IP network. In the scenario studied here, user A
initiates the call and realises voice communica-
tion with any user being connected to the SCN.
The constraints on the user are: ownership of
LAN and an H.323 terminal connected to the
LAN. The user will be enabled to phone any
user attached to the SCN3).

In order to provide this service, the ITSP has to
rely on the following services:

• The transport of IP packets provided by IPNP,
including the management, monitoring, meter-
ing for accounting purposes, etc.;

• Call connection and call management pro-
vided by the ICP, which realises the IP-SS7
interworking (e.g. H.245-Q.931) and voice
decoding/transcoding (e.g. by applying
G.711). The address translation from IP to
E.164 number is also included into the ser-
vice.

QoS parameters and objectives – The QoS
parameters and objectives to be considered must
be derived from the end-user requirements. The
QoS parameters of main concern are delay, jitter
and loss, presented to and agreed with the user.
The objectives may be achieved after performing
subjective tests, e.g. acceptability tests. As a re-
sult, e.g. Mean Opinion Score (MOS), reliability
and availability depending on Network Perfor-
mance (NP) parameters would be achieved.
Those objectives can be used as a basis when the
ITSP is making its list of requirements for the
sub-providers – IPNP and ICP. Some examples

of the relevant QoS parameters, their objectives,
and related measurements can be found in the
ITU-T Recommendations for PSTN voice qual-
ity, e.g. for:

• Connection quality:

- Intrusive measurements: [E.434] for con-
nectivity, [E.431] for call establishment/
clearing delay, and [E.428] for connection
retention

- Non-intrusive measurement: [E.425] for
connectivity

• Call clarity:

- Intrusive measurement: [P.861] Intrusive
Perception Model, [G.107], [G.108],
[G.109] for E-model

- Non-intrusive measurement: [P.561] for
objective measurement.

The constraints on the user domain should be
included as a part of its profile within the agree-
ment with the end-user – on the type of access
used (in this example it is a LAN), type of termi-
nal used for realising the connection (in this
example it is an H.323 terminal) and bit-rate for
the traffic expected to be inserted by the end-
user to the ITSPs domain (this may vary if user

User A

ITSP

User B

ICP

SCNPIPNP

R

GK GK GWVoIP

VoIP

IP

IP+

ISDN

Tc
Tu

Tu

Tc

B

B

B

B

B

Tc

Tc
Tc

Tu

Tc

Tu

Tu
Tu

B = business
Tc = technical-control
Tu = technical-user

Figure 3 Network
configuration and

business model for
the scenario chosen

User A
H.323

ITSP

Provider

User

ICP

Provider

User

ITSP - IP Telephony Service Provider
ICP - Interconnectivity Provider
IPNP - IP Network Provider

IPNP

Provider

User

Scope

Figure 4 The ITSP’s
scope of relevant

agreements

3) Note: no value added services e.g. IN services
have been considered here, only basic service.

202 Telektronikk 4.2000

Voice over packet-based networks has been discussed but never

realised on a large scale until the Internet Protocol (IP), on which

the Internet is built, inspired enthusiasts to try to save money

avoiding long-distance phone-call charges.

Lately, the development of the IP technology evolved so it can

support voice applications to an extent close to the traditional

PSTN speech quality. Still numerous issues are open to be

solved.

What is VoIP, IP Telephony,
Internet Telephony, etc.?
A brief explanation of VoIP would be “the technology enabling the

transmission of voice traffic in packets”. Simply, VoIP technology

is a technology that allows voice traffic to be transported across

any IP-based network (e.g. LAN, WAN, MAN, etc.). On the other

hand, IP telephony is a practical application of VoIP technology for

building a complete telephony infrastructure that provides features

and capabilities comparable to (and interacting with) today’s

PSTN over an IP infrastructure. Usually, IP telephony refers to the

voice communication realised in the controlled environment of e.g.

managed intranet. In addition, Internet telephony is an application

that allows general transport of voice calls over the public Internet.

IP Telephony
As mentioned above, Internet telephony is the transport of tele-

phone calls over the Internet, no matter whether traditional tele-

phony devices, multimedia PCs or dedicated terminals take part

in the calls and no matter whether the calls are entirely or only

partially transmitted over the Internet.

How does IP Telephony Work?
The analogue voice signal is first converted into a Pulse Code

Modulation (PCM) digital stream. The PCM stream is analysed,

where echo, silence are removed, and tone detection is per-

formed. Remaining PCM samples are forwarded to CODEC,

where voice frames are created. Different CODECs may com-

press PCM steam, e.g. ITU-T G.711 (traditionally used for PSTN

telephony) generates 64 kb/s, G.723.1 generates between 5.3

and 6.4 kb/s, etc. Each frame has its length and contains certain

amount of “speech”. These frames are further packetised, and the

Real Time Protocol (RTP) header is added. In addition 8 bytes of

the User Datagram Protocol (UDP) header (information on source,

destination and port) are attached and the IP header containing

the IP address of both source and destination is added. Recall

that the UDP does not implement guaranteed message delivery,

meaning that the recipient does not automatically acknowledge

the sender when a message is received, as it is mandatory in the

TCP. Hence, a UDP datagram can get “lost” on the way from

sender to receiver, and the protocol itself does nothing to detect or

report this condition. Another way in which UDP works unreliably

is in the receipt of a burst of multiple datagrams. Unlike TCP, UDP

provides no guarantees that the order of delivery is preserved.

Since the original was created in real-time, a missing packet can-

not be re-sent, and thus creates a gap in the data stream, which

the recipient hears as clipped words or run-together speech (Fig-

ure B.1). In addition, the packet sequence may not be kept and

the reconstituted bit-stream does not conform with the original.

Some VoIP applications use algorithms to overcome the effect of

lost and delay of packets. Forward Error Correction (FEC) and

advanced encoding schemes are used to alleviate some of these

problems.

B VoIP Basics

Figure B.1 Possible effect of packet lost in VoIP

Internet

1 2 3 4 5 6 7 8 9 Voice data packets

Hell o Ho w a re you

Out of order

2 1 4 5 8 9 7
Packets
received

Lost in cyberspace

Phone / network
software

2 1 4 5 7 8 9

Hello Ho w re you
Re-constituted
bit stream voice

3
6

203Telektronikk 4.2000

Why VoIP?
Well, the advantages could be significant. In traditional circuit

switched networks, when a connection is established, a channel

is dedicated end-to-end for the duration of the communication. In

a packet switched world, the resources (e.g. bandwidth) can be

shared, which implies more effective usage of e.g. link capacity.

Speech in its nature has many so-called “silent” periods, which

can be compressed by different compression techniques, and also

save some bandwidth. The charging and the price of a VoIP call

versus traditional PSTN call is still an open issue, but it certainly

attracts attention with the ability to reduce toll charges.

Another reason making VoIP attractive is the fact of having digital

last mile, which opens for more services easily implemented.

Merging of data and voice, in addition, would eliminate different

systems supporting different services. Therefore, a single link

would be suitable for all services.

However, there remain significant technical issues (e.g. quality,

access portion capacity) that must be addressed before VoIP will

be widely accepted, both in residential and business market.

VoIP and H.323
Now, in order to make an IP telephony service using VoIP technol-

ogy, a number of issues need to be considered. The ITU-T Rec-

ommendation H.323 provides a framework for this. The H.323

covers technical requirements for audio and video communica-

tions services in Local Area Networks (LANs). H.323 references

the T.120 specification to enable conferences, which include a

data capability. The scope of H.323 does not include the LAN or

the transport layer used to connect various LANs. Elements

needed for interaction with the Switched Circuit Network (SCN)

are within the scope of H.323. More details on H.323 are given

in the “Understanding H.323” in this article.

Having H.323 does not solve all the issues. Some of the issues to

be resolved before an IP telephony service, capable of competing

(or interacting) with PSTN, can be provided commercially are:

• Service interoperability, e.g. call on demand, failure detection,

appropriate tones/signalling, call tracing, caller id, etc.

• Call control procedures, information flows and protocols for

e.g. call setup and release, gatekeeper discovery, endpoint

registration, user authentication, Dual Tone Multi Frequency

(DTMF) signalling.

• Address translation between E.164 and IPv4/v6 addresses

– since IP networks are dynamic addressing environments, it

is not possible to look up users by IP address

• Technical aspects of charging/billing – charges must be based

on particular methods such as collect call, credit card call or

basic call and on particular parameters such as time of day,

type of service and duration of call.

• Technical aspects of security – in the first place a protection of

the network against accidental or malicious failures, including

congestion and signalling problems. And authentication, autho-

risation, encryption and privacy of calls, as well.

• End-to-end QoS aspects, including transcoding and echo-can-

cellation – both for connection/session setup and speech qual-

ity. In telecommunications a very detailed definition of the QoS

has been applied and requested by the regulators. The end-

user expects VoIP to deliver a speech quality and reliability

comparable to today’s PSTN telephony.

• Mobility aspects – a roaming user can access the VoIP service

by using different techniques like mobile IP and application

roaming.

There are a lot of activities world-wide e.g. in standardisation bod-

ies, industrial fora, research projects, etc. trying to solve the open

issues. One of them – the ETSI project TIPHON [http://www.

etsi.org/tiphon] – is working closely with ITU-T towards standardis-

ing solutions to these issues. The work is going on, and there are

still many details to attend to.

would make only a call, or have an additional
option of sending data, video).

Business model – The ITSP is the primary
provider for the end-user. On the other hand, the
ITSP, as a user, depends on the services pro-
vided by IPNP and ICP. Therefore, from the
ITSP viewpoint, three agreements are relevant
(Figure 4):

• End-user – ITSP, where ITSP provides the
VoIP service;

• ITSP-IPNP, where ITSP uses the service of
transport of IP packets;

• ITSP-ICP, where ITSP uses the call connec-
tion and management towards SCN.

The procedure for considering the QoS by ITSP
should take into account the objectives agreed
with the end-user, while having in mind the
expenses and characteristics of the services pro-
vided by ICP and IPNP. Additionally, the mech-
anisms and functionality implemented in the
ITSP domain, e.g. the performance characteris-
tics for the GK, should be taken into account.

For example, if ITSP agreed to offer the end-
user the speech quality of MOS = 4, then the
end-to-end delay of max 300 ms should be
assured (one-way delay is 150 ms [3]). That
implies the delay portions introduced by a GW
should be no greater than 20 ms (total serving
time and queuing time of ca. 10 ms), and the ser-
vice provided by IPNP has to consider the prop-
agation delay of 40 ms per 5000 miles. Serv-

204 Telektronikk 4.2000

ing/queuing delays for high-speed routers could
be neglected.

After running the procedure by means of e.g.
techno-economic analysis guiding the decision
the output is given as the resulting set of QoS
agreements described in Sections 4.1, 4.2, and
4.3 for the end-user, ICP and IPNP, respectively.

3.2 ICP
Considering the elements of input for this
provider, the following is needed:

Service description – Call management in the
ICP domain and Call connection to the SCNP
network including decoding/coding are the main
functions of the ICP’s services. The service pro-
vided by the ICP for the ITSP consists of:

Call management and call set-up:

• Authentication;
• Registration;
• Status;
• Security;
• Number/address translation;
• Signalling to SCN (ISDN in the example here).

The billing information exchange might also be
considered and may depend on BESP.

• Call connection towards non-IP network, e.g.
SCN (i.e. ISDN) network;

• Decoding and transcoding;

• Digital audio data transfer.

QoS parameters and objectives – The QoS
parameters and objectives to be considered could
be derived from the end-user requirements i.e.
the User-ITSP agreement. The parameters for
e.g. delay and speech quality have to be trans-
lated to the portions and dependencies coming
from the ICP domain.

Considering for example the delay, only the por-
tion in the ICP network is to be considered. The

objective for total delay for call setup should
belong to the range of 3–5 s [1].

Speech quality on the other hand can be affected
by delay, jitter and loss at IP-level in ICP-net-
work (if the ICP uses the IPNP as a provider of
this network the requirements has to be included
in the ICP-IPNP agreement). Also the codec
behaviour will affect speech quality. Subjective
measurement of speech quality can be made
using MOS. Such target values will then have
to be mapped to the ITSP-ICP interface.

Overall reliability and availability may also be a
requirement.

Business model – The ICP acts as a provider
towards the ITSP, having an agreement on the
service to be delivered by the ICP. In order to
provide the service described above, the ICP as
a user depends on the services provided by the
SCNP and the IPNP. Agreements have to be
made with them for the services, as follows:

• SCNP – call setup and call connection/switch-
ing in the SCN network;

• IPNP – access, transport and routing of IP-
packets in the IP-network.

The QoS parts of the agreements to be consid-
ered by ICP when making decisions on QoS are
shown in Figure 5.

After having the input as defined above the
procedure for agreeing on the QoS should be
applied as follows:

The ICP has to make a decision on which (range
of) target values for QoS parameters of e.g.
delay, jitter and loss it can assure. The decision
would be made based on three types of informa-
tion – the QoS of services delivered by SCNP,
delivered by IPNP, and the mechanisms/func-
tionality implemented in ICP's domain. The
techno-economic analysis relating those three
factors and other criteria, e.g. economic aspects,
would enable the ICP to find the better solution.

The output is given as the resulting set of QoS
agreements relevant for the ICP-service, and are
outlined in Section 4.2, 4.3, and 4.4 for ITSP,
IPNP, and SCNP, respectively.

3.3 IPNP
Considering the elements of input for this
provider, the following is needed:

Service description – the service provided by
the IPNP to ITSP and ICP includes IP-based
transport network services. Other functions may
also be needed in order to support this service,

ICP

Provider

User

SCNP

Provider

User

ITSP - IP Telephony Service Provider
ICP - Interconnectivity Provider
IPNP - IP Network Provider
SCNP - Switched Circuit Network Provider

IPNP

Provider

User

ScopeITSP

Provider

User

Figure 5 The ICP's scope of
relevant agreements

205Telektronikk 4.2000

e.g. DNS. For the ITSP the IPNP provides a ser-
vice originating calls within the IP network
domain. This covers the transfer of signalling
from the users to the ITSP and between the ITSP
and ICP (in both directions), and the transfer of
the encoded speech flows over the IP network.
The transferred payload is in the form of IP
packets. In the scenario examined here, only one
IPNP is considered to be present. More than one
entity may play the IPNP role, but in that case
they could be looked upon as a merger where
internal agreements between two IPNPs are not
considered here. Such agreements, e.g. peer-to-
peer agreements were studied in [10]. When
identifying relevant interfaces, it is important to
notice that in this case study there is no business
relationship between the IPNP and the end-user,
but only between ITSP and IPNP. On the other
hand there is a technical relationship between
the end-user and IPNP domain, and not between
the end-user and ITSP.

The service specification may differ depending
on the implementation, and in that case addi-
tional features like virtual Point of Presence
(POP) service and/or web hosting for ITSP by
IPNP could be included.

QoS parameters and objectives – The relevant
QoS parameters and objectives should be given
for two separate service components – one for
network access towards the end-user, and the
other on the IP packets transport for the ITSP
and ICP. For the latter, a permanent IP connec-
tion might be the solution, but it is also possible
to use virtual carrier channels i.e. IP PVCs. The
parameters relevant for IP transfer could be
found in [8] and IETF’s RFCs [16], [17], [18],
[19]. Also, some suggestions on the objectives
for the performance of IP transport could be
found in the first draft of ITU-T I.381 Recom-
mendation [9]. Overall reliability and availabil-
ity may also be a requirement.

The traffic pattern to be considered should
include both the traffic generated by end-users,
and the one generated by ITSP and ICP itself.

Business model – As shown on Figure 6 in the
scenario studied here, the IPNP plays only a
provider role. Note that IPNP may depend on the
network service(s) provided by Layer 2, Layer 1
network operators, ATM, FR retailers, etc. Since
the scenario elaborated here focuses on IP, such
relationships are out of scope. In our scenario,
the IPNP has business relationships with the
ITSP and ICP. It has, as mentioned above, tech-
nical relationships with the end-user, ITSP and
ICP. The agreements IPNP should take care of
are depicted in Figure 6 (i.e. ITSP-IPNP, ICP-
IPNP).

Considering the procedure, when agreeing the
QoS with ITSP an IPNP has to consider two seg-
ments i.e. the access provision towards end-users
and the IP network service towards ITSP. Apart
from the mechanisms implemented in IPNP
domain, the QoS delivered by sub-providers
from L2, and L1 (if any) should be taken into
account when deciding on the value/range of
QoS parameters. When considering the service
towards ICP, the support of both signalling and
user generated traffic (i.e. voice) should be taken
care of. The means of achieving the decision
may include different types and tools of techno-
economic analysis, regulatory issues, as well as
other criteria.

The output of running the procedure is the set of
agreements done with ITSP and ICP, as given in
Section 4.3.

3.4 SCNP
Having a viewpoint of SCNP, the following
input is needed:

Service description –The service provided by
SCNP to ICP covers the “termination of calls”
originated in an IP-based network. When the
ICP is presenting the signalling and the encoded
speech conversation type traffic in the SCNP
domain applicable format, the case is the same
as for any incoming call - thus the service is also
the same.

The service includes both the call connection
(speech samples transfer) and call management
(signalling and control) i.e. both the user pay-
load and signalling traffic will be taken care of
in order to realise the connection with any ISDN
based. The ISDN service provided by SCNP to
user B is assumed to be traditionally dealt with,
so although it should be considered by SCNP, it
is not considered in this article.

QoS parameters and objectives – The QoS
parameters and objectives to be considered as
seen from the SCNP do not differ too much from
those traditionally used when agreeing on QoS
with any other network provider. A set of ITU-T
recommendations relevant for SS7, different

IPNP

Provider

User

ITSP - IP Telephony Service Provider
ICP - Interconnectivity Provider
IPNP - IP Network Provider

ScopeITSP

Provider

User

ICP

Provider

User

Figure 6 An IPNP’s scope of
relevant agreements

206 Telektronikk 4.2000

ETSI VoIP activity is centred on the TIPHON (Telecommunica-

tions and Internet Protocol Harmonisation Over Networks) project.

The mission of TIPHON is to combine IP with other telecommuni-

cation technologies to enable voice communication IP networks to

interwork with Switched Circuit Networks (SCN). TIPHON is devel-

oping service-oriented solutions that a variety of operators can

use. Wherever possible, TIPHON makes use of available stan-

dards, of which the most important one is H.323 (version 2). Even

though ETSI is working in Europe, TIPHON deliverables are

aimed at gaining world-wide acceptance. Companies supporting

TIPHON are, e.g., AT&T, Cisco, Ericsson, Lucent, Intel, Microsoft,

Motorola, Nokia, Nortel, Siemens, Philips.

Main work items of TIPHON are:

• Requirements for service interoperability.

• Global TIPHON architecture, interfaces and functions.

• Call control procedures, information flows and protocols.

• End-to-end QoS parameters.

• Address translation between E.164 and IP.

• Technical aspects of billing and accounting.

• Security profiles and procedures.

The objective of this project is to support a market that combines

telecommunications and Internet technologies to enable communi-

cation over IP–based networks to work with existing Switched Cir-

cuit Networks (SCNs) and vice versa. The interoperability between

those two networks is of interest, but not actual individual network

itself.

Following scenarios have been within the scope of the TIPHON:

Scenario 1: communication between IP-based users and SCN-

based users, where the initiator is the IP network user (Figure C.1).

Scenario 2: communication between IP-based users and SCN-

based users, where the initiator the SCN based user (Figure C.1).

Scenario 3: communication between SCN-based users, using IP-

based networks for the connection/transport between the involved

users (Figure C.2).

Scenario 4: communication between IP-based users, using SCNs

for the connection/transport between the involved users (Figure

C.3).

C TIPHON Basics

Figure C.1 Scenario 1 and Scenario 2

Figure C.2 Scenario 3

H.323
Terminal

Scenario 1

IWF

Call Initiated from
SCN to IP Network

IP
access IP Network

Scenario 2

SCN

PSTN

IWF = Interworking
Function

Call Initiated from
IP Network to SCN

Scenario 3

IWF

IP Network

SCN

IWF

SCN

207Telektronikk 4.2000

SCNP

Provider

User

ICP - Interconnectivity Provider
SCNP - Switched Circuit Network Provider

ScopeICP

Provider

User

User B

Figure 7 The SCNP's scope
of relevant agreements

Figure C.3 Scenario 4

Scenario 4

IWF

SCN

IP Network

IWF

IP Network

H.323
Terminal

IP
access

H.323
Terminal

IP
access

Note that the IP network does not have to be the Internet, but any

IP network, e.g. intranet. IP-based user has H.323 terminal. Also,

SCN can include both private and public networks, like PSTN,

ISDN, GSM, etc. Interworking functions (IWF) can be imple-

mented separately from or integrated into the existing SCN or

IP–based network in order to provide the required interoperability.

In order to ensure an acceptable service provision, a number of

issues has to be solved. Some of these include:

1 Requirements for service interoperability – enabling e.g. call on

demand, detection of failures, appropriate tones/signalling, QoS

selection, call tracing, caller id.

2 Global architecture, i.e. reference configurations, functional

models, location of functionality, e.g. gateway functions

between IP networks and SCNs and interfaces at these gate-

ways.

3 Call control procedures, information flows and protocols, navi-

gating the call setup and teardown, gatekeeper discovery, end-

point registration, user authentication, Dual Tone Multi Fre-

quency (DTMF) signalling.

4 Address translation between E.164 and IPv4/v6 addresses.

5 Technical aspects of accounting, charging, billing.

6 Security - technical aspects like protection of the network

against accidental or malicious failures, including congestion

and signalling problems. Also, authentication, authorization,

encryption and privacy of calls.

7 End–to–end QoS aspects – both voice quality and call setup

quality are investigated. In addition effects of transcoding and

echo–cancellation are considered.

8 Mobility aspects.

codecs, traditional telephony service, etc. can
be considered as appropriate for this case. The
parameters (e.g. delay and speech quality) have
to be translated to the portions and dependencies
within the SCNP domain.

Business model – In the scenario presented
here, the SCNP acts as an interconnect service
provider, offering “termination of calls” and SS7
based connection control for ICP. On the other
hand, the SCNP is a provider of traditional tele-
phony service to user B, but that relationship is
not analysed here. The SCNP should support
the ICP’s requests for call connection in the
switched network domain.

The QoS agreements to be considered by SCNP
are shown in Figure 7.

After having the input as defined above, the pro-
cedure for agreeing on the QoS should include
making the decision on which (range of) target
values for QoS parameters of e.g. delay, jitter
and loss the SCNP can assure to the ICP. The
decision may depend on the other SCNPs in-
volved, but basically all the relevant QoS objec-

208 Telektronikk 4.2000

tives can be found in the existing ITU-T stan-
dards. Also, the expenses introduced by imple-
menting different QoS mechanisms should be
considered compared to the price of similar ser-
vices offered by other co-operating companies.
A techno-economic tool could perform such a
calculation.

The output is the agreement made with the ICP
as described in Section 4.4.

4 Output – QoS Agreements’
Contents

The following sections cover particular agree-
ments made between actors involved in the VoIP
provision/usage.

4.1 End User – ITSP
In this section the content of the agreement made
between an end-user and an ITSP is described.
As shown in Figure 2 for the example scenario,
the ITSP is a primary provider responsible for
delivery of VoIP service to the end-user. The
service provided by the ITSP to the end-user, as
well as the functionality it owns are described in
Section 3.1. One important issue when making
an agreement with the human end-user is the
“understandability” of the language the state-
ments in QoSA are described with. Generally
speaking a goal may be to offer the voice service
of same quality to the IP-based user A as it is
provided to the SCN-based user B. However, the
content of the agreements for those two services
(IP telephony and traditional telephony) would
be different. Using the experience gained for
providing traditional telephony, one may notice
that transmission quality of speech communica-
tions has been dominated by three classes of

impairments, as given in Table 2. Table 2 is an
approach to match SCN and VoIP impairments.

Other types of subjective impairments are the
availability and security that is related to the
route possible for the ICP GK/GW and user
validation and/or data encryption respectively.

The possible content of the end-user and ITSP
agreement is given in the following.

Interface Description
Referring to the reference model (Figure 1), the
information exchange between user A and ITSP
is supported via A-interface for call-management
functions and between user A and ICP via the B-
interface for the digital speech traffic channels.
The physical location of the service delivery
point is actually realised via IPNP.

At the A-interface the RAS, H.225 and H.245
protocols together with UDP/IP are involved
in the call setup process. At the B-interface the
RTP/UDP and IP are involved. The IPv4 is used,
as well as H.323 version 2.

Traffic Patterns
The traffic pattern can be described in terms
of the average and maximum data rate and the
intensity of signalling. Also, maximum and aver-
age number of calls/hour (or time interval cho-
sen) should be specified. Maximum and average
number of simultaneous calls from the end-user
could be specified together with maximum and
average bandwidth. Variation during day and
week may also be specified.

In addition, as the service covers speech conver-
sation type end-to-end user communication, the
average call duration may also be considered for
the real time, interactive speech conversation
payload, as well as the payload structure, i.e. the
protocol stack, codec dependent data units, pos-
sible header decompression, etc.

QoS Parameters and Objectives
The constraints on the equipment located in
user’s domain could be given as minimum
requirements on the H.323 terminal type (or
PC/audio input output device is used), type of
application and codec used, effects of tandeming
codecs etc. Also, LAN configuration/perform-
ance must be conformant to the requested mini-
mum specified by the ITSP. Factors affecting
QoS in case of LAN access are transmission
delays through Network Interface Card (NIC)
and jitter in data buffers related to the NIC.

Considering call set-up quality, the relevant
parameters are mainly related to the A-reference
point. The QoS parameters to be considered
include:

Table 2 Matching SCN voice
communication and VoIP
impairments

SCN impairments VoIP impairments

Loss (also known as loudness loss) Loss

Reduction in signal strength that This can be due to the type of head set

results in a received speech energy used on H.323 terminal or echo cancel

level that is too low software

Noise Noise

Circuit noise and other noise-like This can be due to the IP network per-

artefacts introduced by the formance parameters such as jitter or

transmission system loss.

Echo Echo

Either talker echo, where the talker This can be due to the type of trans-

has experience of his/her voice mission between user and H.323 terminal

returned after transmission delay, or errors on echo canceller software due

or listener echo, where the listener to packet delay.

has the experience of hearing an

echo of the talker

209Telektronikk 4.2000

D H.323 Basics

The H.323 is an ITU-T Recommendation that encompasses audio,

video, and data communications across packet-switched net-

works, including the Internet. This standard enables the inter-

operability between multimedia applications produced by different

vendors. Originally, it was a superset of recommendations setting

standard for multimedia communications over Local Area Net-

works (LANs), which provide no guaranteed Quality of Service

(QoS). In 1996 the scope was broaden to include not only LAN,

but all packet-based networks, e.g. IP-based networks. The stan-

dard envelops many issues like stand-alone devices, embedded

personal computer technology as well as point-to-point and multi-

point conferences. The H.323 also addresses call control, multi-

media management, bandwidth management, interfaces between

LANs and other networks, security and supplementary services.

The H.323 is part of a larger series of communications standards.

It is a part of the H.32X series that enables videoconferencing

across a range of networks, e.g. H.320 addressing ISDN and

H.324 addressing PSTN communication. Two versions of H.323

are published – version 1 in January 1996, version 2 in September

1998, while version 3 is under development in ITU-T SG 16.

Why H.323?
First of all, the environment is getting more mature for the H.323

applications – PCs are enhanced for multimedia (MMX CPUs),

IP LANs are faster (10 Mb/s Ethernet to GigaEthernet). Second,

important players have recognised this standard and its advan-

tages – companies like Microsoft, Cisco, VocalTec, IBM, Intel

have joined efforts in different fora dealing with H.323, e.g. iNOW,

TIPIA, pulver.com.

Some of the H.323 advantages are:

Platform and Application Independence – H.323 is not tied to

any hardware or operating system; it is applicable in wide spectra

of equipment like voice-only handsets, full multimedia video-con-

ferencing stations, multimedia PCs;

Network Independence – It is designed to run on top of common

network architectures, can provide additional benefits when more

network services are available, e.g. RSVP-aware domains, ATM

QoS, etc.;

Standard Codecs – H.323 envelops different standards for han-

dling audio/video streams, so the compatibility and interoperability

between the devices/applications from different vendors are

assured;

Bandwidth Management – The number of simultaneous calls

can be managed ensuring sufficient bandwidth available for the

traffic classes. An example is the Automatic Bandwidth Manage-

ment mechanism that may increase and decrease bitrate accord-

ing to the network behaviour – changes in delay, jitter, and packet

loss.

Security – This is a version 2 feature. It refers to the H.235 that

addresses: Authentication (the identity of conference participants

is checked), Integrity (data received is indeed the data sent – the

representation of data is not changed), Privacy (protection of data

from eavesdropping by encryption), and non-Repudiation (assur-

ing that participants in the conference can not deny participation

later on).

Supplementary Services – These features are included in ver-

sion 2. Fast Call Setup reduces the delay between the control

and media streams, Call Transfer and Call Diversion, as defined

by the H.450 series. H.450.1 defines the signalling protocol

between H.323 endpoints for the control of supplementary ser-

vices. H.450.2 defines Call Transfer and H.450.3 Call Diversion.

Call Transfer allows a call established between endpoint A and

endpoint B to be transformed into a new call between endpoint B

and a third endpoint, endpoint C. Call Diversion provides the sup-

plementary services Call Forwarding Unconditional, Call Forward-

ing Busy, Call Forwarding No Reply and Call Deflection.

Multipoint Support – H.323 supports conferencing between mul-

tiple end-points, by introducing the Multipoint Control Unit (MCU)

it can support conferencing of three or more end-points;

Multicast Support – H.323 may support multipoint multicasting1)

if any group management protocol is implemented, e.g. IGMP;

Internetworking – It assures the communication not only within a

pure H.323 environment, but also between packet-switched with

circuit-switched networks (applying H.320, H.324);

Flexibility – Terminals with different capabilities can participate in

the same conference, although information may include different

type of media, e.g. only audio, multimedia - video, data and audio,

only data-terminals, etc.

Interoperability – H.323 establishes methods to exchange infor-

mation between end-points for setting common capabilities for

the conference, establishes also call setup and control protocols.

Hence, users do not have to worry about the compatibility at the

receiving point. Version 2 enhances the T.120/H.323 integration.

Having such features, H.323 enables multimedia applications

usage on the existing IP-based infrastructure with no QoS guaran-

tees. Some of the H.323 applications (e.g. videoconferencing,

Internet telephony, video telephony, whiteboard, business confer-

encing, distance education, support and help desk applications,

interactive shopping, audio/video mail, video on demand (VoD),

telemedicine) are expected to be drivers of future communications

market.

1) Multicast sends a single packet to a subset of destinations on the network without replication. On the other hand, unicast sends multi-

ple point-to-point transmissions, while broadcast sends to all destinations.

210 Telektronikk 4.2000

• Delays in call processing and number transla-
tion;

• Delays in access, authorisation, registration,
etc.;

• Availability of GK;

• Call rejection probability.

Considering call connection/speech quality, the
parameters are mainly related to the B-reference
point. The QoS parameters to be considered
there are, e.g.:

• Delay, jitter and loss at IP-level;

• Codec delay (could be given as constraint on
user’s domain);

• Availability of GW;

• Speech quality.

Measurements
Measurements have to be established in the GK
in order to monitor the call management related
parameters. This may be done by logging the
call set-up attempts and other call management
activities. The GW log can contain the informa-
tion on the established and completed calls.
Some parameters do not have to be measured,
but are matter of design, e.g. codec delay. Also,
measurements related to the IP-level QoS
parameters needs to be devised.

Reaction Patterns
Considering non-technical reactions, the cus-
tomer support interface should be defined, e.g.
phone number, web-site, mail address. Such an
interface may be at the ITSP premises, or sub-
provided by the IPNP, as well. The trouble tick-
eting process is to be specified, and the failure
definitions (network connectivity/accessibility
outage criteria, ITSP availability related outage
criteria, call set up success ratio etc.) is to be
considered for fault reporting, for escalation in
case of service restoration time objectives not
fulfilled, etc.

From the ITSP (or IPNP) the traffic related prob-
lems may be reported, and even a connectivity
or service outage purpose related “alarm sig-
nalling”, feedback signalling may be introduced,
using the web interface of the user A.

Compensation schemes may also be specified,
e.g. making the ITSP assuring discount for the
users involved.

4.2 ITSP – ICP
In this section the content of the agreement made
between an ITSP and an ICP is described. As
shown for the example scenario (Figure 2), the
ITSP has to set up a QoS agreement with the
ICP, in order to ensure the delivery of the
parameters agreed with the end-user.

Overview of Functionality Involved
The functions involved in this QoS agreement
(i.e. ICP and ITSP) are described in Chapter 2.
The ICP has GW in its domain; thus it provides
the following services:

• Call management and set-up to SCN users
(authentication, registration, status, security,
number/address translation, signalling to SCN,
billing information exchange;

• Call connection to SCN (decoding and
transcoding, digital audio data transfer).

QoS Affecting Factors
Considering the elements involved (i.e. GK and
GW) several factors can affect the QoS, e.g. in
the GK:

• Call processing delays;

• Processing and look-up delays associated with
security issues;

• Delays in accessing back-end services, and in
the GW;

• The choice of speech codec;

• Transcoding(s) or Tandem Free Operation
with the SCN;

• The performance of the speech codec to vari-
ous types of network degradation (including
effects of any error concealment mechanisms
present in the coder);

• Signal processing delays;

• Call processing delays;

• The packetisation method used;

• Processing delays associated with security issues;

• The design of jitter buffers;

• Delays through the audio or digital media
paths;

• The performance of network echo-cancelling
devices;

• DTMF tone handling.

211Telektronikk 4.2000

Interface Description
Referring to the reference model (Figure 1), the
information exchange between ITSP and ICP is
supported via D-interface for call-management
functions and the B-interface for the digital
audio traffic channels.

At the D interface the RAS, H.225 and H.245
protocols together with TCP/IP are involved in
the call setup process. At the B interface the
codec protocols, e.g. G.723, G.729 or G.711
together with RTP and UDP/IP are involved.

A choice necessary to be made is which level of
the Open Systems Interconnection Reference
Model (OSIRM) [27] to chose for specifying
QoS parameters. For a full description of e.g. the
setup time at the border of the D interface, the
actual data element signals in the protocol will
have to be used to specify the QoS parameters.

Traffic Patterns
The traffic pattern can be described in terms of
the average and maximum data rate and the in-
tensity of signalling.

At the D interface maximum and average num-
ber of calls/hour (or chosen time interval) should
be specified. Variation during day and week
should also be specified.

At the B interface maximum and average num-
ber of simultaneous calls should be specified
together with maximum and average bandwidth.
Variation during day and week should also be
specified.

QoS-Parameters and Objectives
QoS parameters to be considered in this QoS
agreement are mainly those related to the GK
and GW functionality. The ICP internal network
has to be taken into account as well. Considering
call set-up quality, it is mainly related to the D-
reference point. The QoS parameters to be con-
sidered are:

• Delays in call processing and number transla-
tion;

• Portion of call set-up time relevant for the
ITSP domain;

• Availability of GK (ICP);

• Call rejection probability.

Considering speech quality, it is mainly related
to the B-reference point. The QoS parameters to
be considered there are:

• Delay, Jitter, Loss at IP-level in ICP-network;
• Codec delay;
• End-to-end delay;
• Availability of GW;
• Speech quality;
• Transmission Quality (E-model).

This interface will carry the main traffic; there-
fore throughput, speed and delay are important
QoS parameters. Organising QoS parameters by
applying the adapted 3x3 matrix from I.350
results in Table 4.

Some examples of objectives and measuring
points related to the QoS parameters are given in
Table 5.

For a very strict approach when defining the
QoS parameters, the signals in each protocol at
D and B interfaces could be used. For example,
it may be required to measure when a specific
request signal is sent and when the acknowledge
signal is received. The result of measurements
should be mapped further to the “higher level”
QoS parameter like setup time.

Measurements
Measurements have to be established in the GK
in order to monitor the call management related
parameters. This may be done by logging the
call set-up attempts and other call management
activities. According to that, in the GW, the
established and completed calls can be logged.

Not all parameters have to be measured if they
are mainly fixed by design. This could for exam-
ple be the codec delay. Also, some of the param-
eters may not be possible to measure at the D
and B interaction points. For example, speech
quality must be measured at the user interface.
But, since the codec and GW design affect this
parameter a relationship between these parame-
ters has to be determined. Some indications on
the measurements and measuring points are
given in Table 5.

Reaction Patterns
An escalation scheme for fault and degradation
management can be used to trigger actions
according to specified thresholds of each param-
eter. The severity of the degradation/fault will
determine the actions. It can be linked to a trou-
ble ticketing system to ensure a structured way
of managing upcoming deviations. The reactions
may be both ways. For the provider, if the QoS
threshold is exceeded, a reaction is triggered.
For the user, if allowed traffic patterns are
exceeded a reaction is triggered. Reaction pat-
terns may not only be manually executed, but
also implemented in the network and automati-
cally performed.

212 Telektronikk 4.2000

4.3 ITSP – IPNP, IPNP – ICP
Since IPNP is providing similar service to ITSP
and ICP, both of the related agreements are pre-
sented in this section. The main difference is

related to the interface description, since the
description of the interface towards ITSP has to
include also the interconnection points for end-
user's access to the IP network. The transport of
both signalling traffic and speech traffic is sup-
ported by routers and links in the IPNP's infras-
tructure.

Therefore both of the agreements made by IPNP
(i.e. ITSP-IPNP, and ICP-IPNP) are described in
the same section, and the possible content is as
given in the following.

Interfaces
The network access and transport carrier service
delivery interface is implemented by customer
premises networks edge routers or gateway
router units. IPv4 is used.

The measurement interface for the link layer
traffic can be the path end points, or the gate-
keepers and call control signalling access point
in the user’s domain.

QoS measurement interfaces: at the path end-
points for the IP layer reference event based
(ITU-T I.380 or IETF RFCs [16], [17], [18],
[19] measurements.

QoS data conveyance, reporting, alarm monitor-
ing, trouble ticketing and problem handling
interfaces could be negotiated between the par-
ties.

Table 4 The 3x3 matrix for
the ITSP-ICP QoS agreement;
(B) and (D) indicate related
interfaces

Function Access Information transfer Disengagement

Perform-
ance Criterion

Speed Call setup time (D) Delay at IP-level (B) Disengagement delay (D)
Jitter at IP-level (B)

Delay from request to Mean disengagement
acknowledge in H225/ time (D)
/RAS /Q.931 protocols
(D) Maximum

disengagement time (D)

Accuracy Misrouted call Severely errored Disengagement
probability (D) period ratio (B) denial ratio (D)

Missequenced packet
delivery ratio (B)

Dependability Call rejection Loss at IP-level (B) Premature disconnect
probability (D) probability (D)

GK availability Call loss probability GK availability
(B,D)

GW availability GK availability GW availability

GW availability

Table 3 An example of QoS
objectives for the end-user-
ITSP agreement

QoS parameter Objectives Measurements Traffic pattern

Call set-up time 3–5 s [1] GK log at D Low traffic
(end-to-end)

GK Availability ≥ 99.7 % GK log

Call rejection < 0.3 % GK log
probability

Delay of IP-packets At B High traffic
One-way < 100 ms [8]

Jitter of IP-packets < 20 ms [8] At B High traffic

Loss of IP-packets < 2 % [8] At B High traffic

End-to-end speech < 150 ms Portion of total
delay delay at D

Codec delay < 67.5 ms No
Note: codec type
dependent

Speech quality MOS > 3.5 MOS can be
measured only at
user interface.

GW Availability > 99.97 % GW log

213Telektronikk 4.2000

Traffic Patterns
For all the possible IP transport links, the traffic
is to be characterised by:

• The purpose of use, type of traffic payload,
e.g. signalling link, link for encoded and pack-
etised speech-flows;

• The maximum available bandwidth (commit-
ted bit-rate);

• Average packet length (size);

• In case of handling multiple communication
sessions, maximum and average number of
simultaneous calls.

Variation during day and week can be specified.

QoS Parameters
The relevant QoS parameters can be organised in
3x3 matrix, as illustrated in Table 6.

The relevant QoS parameters and their objec-
tives are given in Table 7.

Also non-technical/administrative parameters
(e.g. availability of maintenance and QoS sup-
port related human resources) could be consid-
ered between the entities.

Measurements
Measurements have to be identified for the IP
network access provisioning (e.g. interface avail-
ability/established network access point accumu-
lated down time, average and worst case time to
restore), as well as for the IP transfer service
provisioning (e.g. bit-rate, number of completed
simultaneous calls).

Call management related parameters may be
measured by logging the call set-up attempts and
other call management activities. In the GW the
established and completed calls can be logged.

Reaction Pattern
In case of observation of relevant problems in
QoS delivery, or the risk of non-compliance, for
a period of time (e.g. 5, 10, 30 minutes), depend-
ing on the failure/problem event definition, the
parties should agree to initiate appropriate reac-
tions, i.e. processes with specified procedure
(chain of activities), using defined tools/tech-
niques and presenting outcomes of the following
type:

• Apply “alarm monitoring based alarm sig-
nalling” in case of increased blocking proba-
bility or implement a traffic control process;

• Specify the acceptable trouble ticketing pro-
cess and fault administration, create the docu-
mentation;

• Specify troubleshooting for major problems;

• Specify an escalation procedure;

• Define service restoration process and fault
clearing time related information exchange;

• Initiate “helpdesk” activation.

4.4 ICP – SCNP
This section elaborates the content of the QoS
agreement to be found at the interface between
ICP and SCNP. Such a configuration can be
considered similar to the “traditional” intercon-
nection of two SCNPs, implying that relevant
QoS parameters as well as related measure-
ments, traffic patterns and even reaction patterns
are specified as in existing recommendations and
standards for a particular SCN.

Overview of Roles (Functionality) Involved
According to the scenario and reference model
presented in Chapter 2, there is a relationship
between SCNP and ICP. In general, the SCN
refers to either public networks (e.g. PSTN,
ISDN, PLMN) or private networks. Here, the
assumption is that SCNP provides ISDN, con-
sisting of Customer premises Equipment (CPE),
Access Network (AN), and the Core Network
(CN) [23]. The CPE is connected via the AN to
the CN via User-Network-Interface (UNI), but
this problem is considered to be out of scope,
since standards are already widely available and
operable. Simply, SCNP envelops SCN network
provider and SCN access provider. The func-
tionality relevant for this example is ISDN sig-

Table 5 An example of
QoS objectives

QoS parameter Objectives Measurements Traffic pattern

Call set-up time A portion of GK log at D Low traffic

3–5 s [1]

GK Availability ≥ 99.95 % GK log

Call rejection < 0.05 % GK log

probability

Delay IP-packets A portion of At B High traffic

100 ms [8]

Jitter IP-packets A portion of At B High traffic

20 ms [8]

Loss IP-packets ≤ 2 % [8] At B High traffic

GW Availability ≥ 99.95 % GW log

214 Telektronikk 4.2000

An illustration of the architecture of IP telephony network based on

H.323 is given in Figure E.1. The network architecture consists of

four types of network elements: terminals, Gatekeepers (GKs),

Gateways (GWs), and Multipoint Control Units (MCUs). Theoreti-

cally, communication can be realised between two terminals con-

nected to a LAN. However, practically, an efficient communication

system capable of connecting to the outside world (e.g. SCN) can

be built only by introducing some of the other elements. The func-

tionality of each network element is introduced below.

E H.323 Architecture

Figure E.1 H.323 network architecture

Terminal

Gatekeeper

TCP/IP

Gateway

PSTN

Terminal

Router

TCP/IP

Terminal

Router

MCU

Terminal

Terminal
IP phone

Zone

Terminals are end-points capable of receiving/initiating calls.

They generate and receive bi-directional real-time information

streams. A terminal can be either software running in a computer

or dedicated equipment. Support of voice communication is

mandatory, while video and data are optional. In addition, all

H.323 terminals must include, so-called System Control part,

which includes H.245 control used to negotiate channel usage

and capabilities, “stripped” version of Q.931 for call signalling and

setup, as well as Registration/Admission/Status (RAS) interface.

Gatekeeper manages a so-called zone (see Figure E.1) which

is a collection of terminals, GWs, and MCUs. A number of zones

build an H.323 network. GK act as a central points managing all

the calls within its zone. It performs numerous functions, like:

1. Address resolution and call routing, where address translation

means translation of alias addresses to transport addresses

using translation table.

2. Admissions control used to determine whether an endpoint is

allowed to terminate or originate a call. It may be based on

authorisation, bandwidth or some other criteria.

3. Bandwidth control assures a certain amount of bandwidth to be

reserved for H.323 traffic and distributed between the connec-

tions. When the limit is reached no more connections can be

opened, so other traffic has enough capacity.

4. Zone management - Terminals within a zone register to their

GK, which adds the corresponding address to the registration

table.

5. Call control signalling, call authorisation, bandwidth manage-

ment, and call management. Call control signalling means that

the gatekeeper may process the control signals (Q.931) in point

to point conferences instead of passing them directly between

terminals. Call authorisation allows the GK to reject a call

depending on its properties. The reasons for rejection can be

user defined, e.g., restricted access from/to particular terminals

or GWs, or restricted access during certain periods. Bandwidth

management is closely related to bandwidth control allowing the

gatekeeper to reject calls from a terminals if the available band-

width is low. In call management the gatekeeper keeps a list of

on-going calls to indicate that a terminal is busy or to provide

information for the bandwidth management function.

Optionally, GK may route H.323 calls, which allows more effective

call control and service providers can bill for calls in their network.

The routing service may also be used to redirect calls to other ter-

minals if a called terminal is unavailable. Additionally, gatekeepers

can balance the load among multiple gatekeepers based on some

routing logic. The GK acts like an interface to other H.323 net-

works. Gatekeepers are optional elements but if they are present

terminals have to use them.

Gateway is responsible for connecting IP telephone network to

other type of networks, e.g., PSTN, ISDN. The gateway performs

translation between different transmission formats and communi-

cation procedures. Also, it is responsible to set up and clear calls

on both sides. Terminals communicate with gateways using the

H.245 and Q.931 protocols.

MCU is needed only if centralised and hybrid multipoint multime-

dia conferences are used. An MCU consists of Multipoint Con-

215Telektronikk 4.2000

nalling. The interworking between IP and SCN
is realised via ICP functionality, i.e. GK, GW.

Interface Description
Relating reference points and the functionality as
described above, the Ea, and Eb reference points
are used for exchanging the information between
ICP and SCNP. The Ea is used for exchanging
speech traffic, while Eb is used for exchange of

the signalling information. The signalling proto-
col used is SS7 [15], while the codec used for
speech is G.711 [4].

Traffic Pattern
Considering the fact that the call is originated in
H.323 terminal, the traffic generated (i.e. coming
from ICP domain into SCNP domain) can be ex-
pressed like, e.g.:

troller (MC) and a number of Multipoint Processors (MP). The MC

handles control information and the MPs handles the streams.

Often it is possible to combine several different network elements

into the same physical unit. For example, GK functionality might

be incorporated into the GW and MCU, or MCU could be imple-

mented into the terminals in order to allow multipoint conferences

without any separate MCU unit.

The H.323 traffic can be considered as a mixture of audio, video,

data, and control signals. Control communication includes sig-

nalling for call setup, capability exchange, signalling of commands

and indications, and messages to open and describe the content

of logical channels. All audio, video, and control signals pass

through a control layer that formats the data streams into mes-

sages for output to the network interface. The reverse process

takes place for incoming streams. This layer also performs logical

framing, sequence numbering, error detection, and error correc-

tion as appropriate to each media type. The Q.931, RAS, and

RTP/RTCP protocols perform these functions. Audio signals con-

tain digitised and compressed speech. The mandatory algorithm

is ITU-T G.711 (64 kb/s PCM codec), while the rest are optional,

e.g. G.729a, G.723.1, G.728, etc. Choice of a codec affects qual-

ity and should be a trade-off between speech quality, bit rate,

computer power, and signal delay. Video signals are optional in

general, but if implemented then H.261 is a default, while support

for H.263 is optional. Video information is transmitted at a rate no

greater than that selected during the capability exchange.

Data conferencing is optional, but when supported enables app-

lications like shared whiteboards, application sharing, and file

transfer. H.323 supports data conferencing through the T.120

specification, which addresses point-to-point and multipoint data

conferences. It provides interoperability at the application, net-

work, and transport level. A recommendation for multicast support

in T.120 is known as T.125 Annex A or the Multicast Adaptation

Protocol.

H.323 protocol architecture is illustrated in Figure E.2.

T.Share

Data

T.126 T.127

H.245
Q.931
RAS

T.124

T.122, T.125

T.123

TCP

IP

Conference control
Call signalling

RTP, RTCP

UDP

G.711
G.722
G.728
G.723
G.729

H.261
H.263

Audio Video

Figure E.2 H.323 protocol architecture

Additional information on H.323 can be found in [H.323], as well

as on [http://www.databeam.com/h323].

Reference
H.323 ITU. Packet-based multimedia communications systems.

Geneva, 09/99. (ITU-T H.323.)

216 Telektronikk 4.2000

• Max number of calls and traffic volume dur-
ing a reference period;

• Average number of calls and traffic volume
during a reference period;

• Variations in number of calls and traffic vol-
ume during agreed time period, e.g. day, week;

• Bit-rate for both signalling and speech traf-
fic/payload type;

• Prediction on the geographic distribution of
the traffic.

QoS-Parameters
The 3x3 generalised matrix from EQoS can be
used to categorise the QoS parameters investi-
gated in [26]. The parameters relevant for this
interface are:

• Call set up time in the SCN affecting call set
up quality;

• Network transmission delays in SCN affecting
end-to-end delay; and

• Speech quality.

The QoS parameters to be considered in this
agreement are those related to the service pro-
vided by SCN, i.e. ISDN.

Some of the QoS considerations associated to
the SCN are related to echo cancellation4)

(which affects call quality), since it is assumed
that the echo canceller is located in the PSTN
exchange.

The QoS parameters relevant for this agreement
are given in Table 8.

Table 6 The 3x3 matrix for
ITSP-IPNP and ICP-IPNP
agreements

Table 7 An example of QoS
parameters/objectives/mea-
surement points

Function Access Information transfer Disengagement

Perform-
ance Criterion

Speed Call setup time IP packet transfer Disengagement delay

delay [8], [16]

IP packet transfer Mean disengagement

jitter [8], [16] time

Maximum disengage-

ment time

Accuracy Misrouted call ratio Severely errored Disengagement denial

period ratio ratio

Call failure probability Missequenced packet Call premature

delivery ratio disconnect ratio

Dependability Call rejection Loss at IP-level Call clearing failure

probability ratio

GK availability Call loss probability GK availability

GW availability GK availability GW availability

Edge-router GW availability

availability

QoS parameter Objectives Measurement points

Call set-up time A portion of 3-5 s [1] GK at D

GK Availability ≥ 99.95 % GK

Call rejection probability < 0.05 % GK

Delay IP-packets At B

One-way A portion of 100 ms [8]

RTT ≤ 200 ms

Jitter IP-packets A portion of 20 ms [8] At B

Loss IP-packets A portion of 2 % [8] At B

GW Availability ≥ 99.95 % GW

Mean service interruption

duration < 1 h
4) If SCN is considered to be GSM or ISDN, no

echo cancellation is needed.

217Telektronikk 4.2000

Table 8 The 3x3 matrix for the
ICP-SCNP QoS agreement

Function Access Information transfer Disengagement

Criterion

Speed Delay (call set up, Delay Delay

number translation,

authorisation, etc.) Jitter Mean disengagement

time

Mean access time Maximum disengage-

ment time

Maximum access time

Accuracy Incorrect access ratio Severely errored Premature

period ratio disengagement

Dependability Access denial ratio Call loss probability Disengagement denial

(call rejection Misrouted call ratio ratio

probability, malicious

calls ratio, etc.) Missequenced packet

delivery ratio

The recommendations and standards related to
the call set up delay are mainly referred to the
ITU-T standards for SS7, and those contributing
to the call speech quality are mainly taken from
ITU-T G.711.

Considering the performance of the signalling in
ISDN, the application call control part is
described in [14], while [1] and [7] bring some
more details on the ISDN performance. In [12]
the Message Transfer Part (MTP) performance is
described. In [14] the following parameters and
their objectives are defined:

Availability
• Of a signalling route set [13] should not be

less than 0.99998. This corresponds to a total
downtime for a user signalling relation of ten
minutes per year maximum

• Of the signalling network should be suffi-
ciently high as to meet the signalling route set
downtime objectives stated above.

Dependability
• False operation will be avoided if no more

than one in 108 of all signal units transmitted
is accepted (error detection [11], transmission
fault indication [5], [6])

• Signalling malfunction should cause no more
than 2 in 105 (provisional value) of all ISDN
calls to be unsuccessful.

Delay
• Signalling delay with the components (see

Figure 1 in [14]).

Considering the objectives for the traffic pattern,
the bit-rate might be observed, as well as the
availability and reliability.

Measurement Schemes
The points of observation are as depicted in Fig-
ure 1, i.e. Ea and Eb, where relevant QoS param-
eters values and traffic characteristics should be
measured. The location of points would be de-
cided when exact implementation is dealt with.
There are various ways to perform measures,
both on the ICP and SCNP side. Since this con-
figuration can be considered similar to the inter-
connection of two SCNPs, the relevant measure-
ment schemes can be adopted from the stan-
dards/recommendations, e.g. [2].

Reaction Patterns
Technical reactions should be identified and
agreed upon, both for cases when the ICP in-
jected non-conformant traffic, and the SCNP did
not provide agreed QoS. Examples of such reac-
tions are load control, call logging, resource
management, warnings, error messages and
alarm signalling/reporting. Problem indication
purpose interactions and escalation procedure
based on the implemented fault handling/man-
agement process may be specified.

Other Issues
The non-technical parameters related to e.g.
help-desk availability (365/24), reparation time,
etc. are not treated within the QoS agreement,
but are very important elements of each inter-
connection agreement.

218 Telektronikk 4.2000

5 Concluding Remarks
Multiprovision configuration for supporting
VoIP case based on the ETSI TIPHON Scenario
1 (communication between H.323-based user
and SNC-based user) is analysed, giving the pic-
ture of responsibilities of all users and providers
involved end-to-end. The viewpoints and consid-
erations of various providers have been investi-
gated for each of the providers recognised in the
VoIP service provisioning. At the interfaces
identified between entities related QoS agree-
ments have been elaborated into details, i.e. end-
user-ITSP, ITSP-ICP, ITSP-IPNP, IPNP-ICP
and ICP-SCNP QoS parts of SLAs are pre-
sented. As part of establishing the QoS parts
of SLAs at each interface, it is necessary to
describe:

• Roles/functionality;
• Interface description;
• Traffic pattern;
• QoS parameters and their objectives;
• Measurements; and
• Reaction patterns.

This study has demonstrated the practical value
of applying the EQoS, which enables a har-
monised understanding of QoS for any provider
involved in the multi-provision of a service.
Thus, the procedure proposed in [20] outlines to
service providers an approach used when estab-
lishing agreements with both users and sub-
providers.

Acknowledgements
Although the text is the sole resonsibility of the
listed authors, it has been composed of results
from the EURESCOM P806-GI project. The
fruitful discussions and contributions from all
parties involved in that project are greatly appre-
ciated.

References
1 ITU-T. Network grade of service parameters

and target values for circuit-switched ser-
vices in the evolving ISDN. Geneva, ITU,
05/99. (ITU-T Recommendation E.721.)

2 ITU-T. Framework for service quality
agreement. Geneva, ITU, 10/96. (ITU-T
Recommendation E.801.)

3 ITU-T. One-way transmission time. Geneva,
ITU, 02/96. (ITU-T Recommendation
G.114.)

4 ITU-T. Pulse code modulation (PCM) of
voice frequencies. Geneva, ITU, 10/88.
(ITU-T Recommendation G.711.)

5 ITU-T. Characteristics of primary PCM
multiplex equipment operating at 2048

kbit/s. Geneva, ITU, 11/88. (ITU-T Recom-
mendation G.732.)

6 ITU-T. Characteristics of primary PCM
multiplex equipment operating at 1544
kbit/s. Geneva, ITU, 11/88. (ITU-T Recom-
mendation G.733.)

7 ITU-T. Network performance objectives for
connection processing delays in an ISDN.
Geneva, ITU, 03/93. (ITU-T Recommenda-
tion I.352.)

8 ITU-T. Internet Protocol Data Communica-
tion Service – IP Packet Transfer and Avail-
ability Performance Parameters. Geneva,
ITU, 1998. (ITU-T Recommendation I.380.)

9 ITU-T. Internet Protocol Communication
Service – IP Performance Objectives and
Allocations, Draft 10/99. Geneva, ITU.
(Draft ITU-T Recommendation I.381.)

10 IN/Internet interconnect scenarios and har-
monised agreements. Heidelberg, EURES-
COM, 1999. (EURESCOM P806-GI Deliv-
erable 2.)

11 ITU-T. Signalling link. Geneva, ITU, 07/96.
(ITU-T Recommendation Q.703.)

12 ITU-T. Message transfer part signalling per-
formance. Geneva, ITU, 03/93. (ITU-T Rec-
ommendation Q.706.)

13 ITU-T. Hypothetical signalling reference
connection. Geneva, ITU, 03/93. (ITU-T
Recommendation Q.709.)

14 ITU-T. Performance objectives in the inte-
grated services digital network application.
Geneva, ITU, 03/93. (ITU-T Recommenda-
tion Q.766.)

15 ITU-T. ISDN user-network interface layer 3
specification for basic call control. Geneva,
ITU, 05/98. (ITU-T Recommendation
Q.931.)

16 IETF. Paxon, V et al. Framework for IP Per-
formance Metrics. 1998. (IETF RFC 2330.)

17 IETF. Mahdavi, J, Paxson, V. IPPM Metrics
for Measuring Connectivity. 1999. (IETF
RFC 2679.)

18 IETF. Almes G et al. A One-way Packet
Loss Metric for IPPM. 1999. (IETF RFC
2680.)

19 IETF. Almes G et al. A Round-trip Delay
Metric for IPPM. 1999. (IETF RFC 2681.)

219Telektronikk 4.2000

20 Jensen T et al. Managing QoS in Multi-
Provider Environment – a Framework and
Further Challenges. Telektronikk, 96 (2),
71–79, 2000

21 ETSI. Telecommunications and Internet
Protocol Harmonisation Over Network
(TIPHON); Description of Technical Issues.
Valbonne, 1998. (TR 101 300 V1.1.5
(1998-12).)

22 ETSI. Telecommunications and Internet
Protocol Harmonisation Over Network
(TIPHON); Service Requirements for service
interoperability, Scenario 1. Valbonne,
1998. (TR 101 306 V1.2.3 (1998-02).)

23 ETSI. Telecommunications and Internet
Protocol Harmonisation Over Network
(TIPHON); Service Requirements for service
interoperability, Phase II. Valbonne, 1998.
(TR 101 307 V1.2.3 (1998-02).)

24 ETSI. Telecommunications and Internet
Protocol Harmonisation Over Network
(TIPHON); Network architecture and refer-
ence configurations, Scenario 1. Valbonne,
1998. (TR 101 312 V1.3.2 (1998-06).)

25 ETSI. Telecommunications and Internet
Protocol Harmonisation Over Network
(TIPHON); Network architecture and refer-
ence configurations, Phase II: Scenario 1 +
Scenario 2. Valbonne, 1999. (TR 101 313
V0.4.2 (1999-02).)

26 ETSI. Telecommunications and Internet
Protocol Harmonisation Over Network
(TIPHON); General Aspects of Quality of
Service (QoS). Valbonne, 1998. (TR 101 329
V2.2.2 (1998-10).)

27 ITU-T. Information technology – Open Sys-
tems Interconnection – Basic reference
model: The basic model. Geneva, ITU,
07/94.(ITU-T Recommendation X.200.)

Telektronikk 4.2000

Introduction
Propagation of electromagnetic waves has in
many ways been mathematically described since
the first successful experiments by Hertz in
1887. However, what physically happens when
electromagnetic waves are propagated into space
seems to have been of less interest.

However, there is one figure which has been
used in some textbooks, and this figure is shown
in Figure 1. Even this figure does not explain
what happens when the waves start to radiate
from an antenna element.

In this paper a few physical examples are dis-
cussed. A half-wave antenna is used as reference
for the considerations, but other antenna ele-
ments may also be used.

When we want to look at the radiation from an
antenna, it is necessary to observe the direction
for the field power Pf (power per area) in an
electromagnetic field. The direction is perpen-
dicular to both the electric field component E
and the magnetic field component H in an elec-
tromagnetic field, and in such a way that a right-
handed corkscrew rotated the minor angle from
E to H moves in the direction of Pf. This law of
nature coincides with the directions in vector
calculations (Poynting vector).

Figure 3 of this paper is intended to explain how
we get radiation from a standing wave in a half-
wave antenna. However, we also have radiation
from an antenna wire (travelling wave antenna)
which is terminated with its characteristic im-
pedance, and where we consequently have no

Some Physical Considerations Concerning
Radiation of Electromagnetic Waves
K N U T N . S T O K K E

After graduating from the Nor-
wegian Technical University
(Trondheim) in 1958, Knut N.
Stokke (71) worked from 1959 to
1969 in the Planning Division of
the Broadcasting Office of the
Norwegian Telecom Administra-
tion, and thereafter with the
Transmission Section where his
activities included specifications
and regulations for broadcasting
transmitters and transposers. In
1987 he joined the new regula-
tory organisation, the Norwegian
Telecommunications Regulatory
Authority, where he was head of
the Section for Broadcasting.
Knut Stokke has been a member
of the Norwegian delegation to
the major broadcasting confer-
ences, and has also participated
in various ex-CCIR Study
Groups and more specifically
Study Groups 5 and 6 (now
St.Gr. 3). Knut Stokke retired 1
March 1999.

Electric field E.
Some electric
field lines in a
plane through
the centre line
of the antenna
element.

Magnetic field H.
Some magnetic
field lines in a
plane through
and transverse to
the antenna
element.

Figure 1 Propagation from an
antenna element

220

221Telektronikk 4.2000

the opposite moving charges +e/2 and –e/2 go
in the same direction.

It is in principle not so important if we here use
e/2 or only e. We may for instance have started
with two electrons instead of one, and consid-

Figure 2 Voltages and cur-
rents in a resonant conductor

Direct
current
component

B

-e

i

-u
2

-u

-e
E

0

A

0

λ/2

C

i

Direct current
component equally
distributed over
the λ/2 element

-u
2

-u

-e

+u
2

D

i

u

+u
2

+u
2

-u
2

-u
2

±e
2

±e
2

E

+e
2

-e
2

standing wave. Figure 5 indicates how the radia-
tion may be initiated.

Examples of combination of radiation from a
standing wave and a travelling wave are also
described (Figures 6 and 7).

Electron Charge, Field
Lines, and Radiation from
a Standing Wave
If we want to study what happens when electric
current is sent into a conductor, we have to con-
sider an immense flow of electrons. However, it
is often more convenient to consider one or a
few electrons and assume that the other electrons
behave in almost the same manner.

An electron has a mass, 9.108 ⋅ 10-31 kg, and a
charge, 1.602 ⋅ 10-19 coulomb, and it is the
charge that is most important concerning elec-
tromagnetic wave propagation.

As a basis for the considerations Figure 2 may
be used. In Figure 2 A we have an electron at a
certain distance from a conductor, in this case a
λ/2 conductor. The λ/2 element is neutral, that
is, at zero (0) voltage level, this element is on a
positive level referred to the negative charge of
the electron. We then have an electric field with
direction from the conductor to the electron.

In the left part of Figure 2 B is indicated just the
moment when the electron (and thereby the
charge of the electron) is put into the λ/2 con-
ductor causing a voltage u at this end of the con-
ductor. The direct current component accelerates
the electron along the conductor, and the static
energy of this component is transformed into
velocity energy of the electron (= current). At
the right end of the conductor the direct current
component is 0, and thereafter we get conditions
as shown in Figure 2 D. We then have a stand-
ing wave in the element, and a standing wave
have high values for voltage and current when
we operate at resonance lengths.

In practice the conditions are not ideal, and the
direct current component will most probably dis-
appear after several periods.

We could also have used Figure 2 C to see that
the direct current component has to disappear
in order to get symmetrical conditions for the
dynamic voltage and current in the element.

Looking at Figure 2 D, the voltages at the ends
of the λ/2 element will swing between +u/2 and
–u/2. These voltages are caused by the charges
+e/2 and –e/2. Then we may look at the whole
phenomenon as if we have two charges +e/2 and
–e/2 always moving in opposite directions, as
indicated in Figure 2 E. The currents caused by

222 Telektronikk 4.2000

ered one positive and one negative electron
charge.

And in the next figure, Figure 3, we assume to
have one positive and one negative charge mov-
ing in opposite directions in a λ/2 conductor.
The movements of the charges are symmetrical
relative to the equilibrium point, that is, relative
to the centre of the conductor.

It is important to choose the right starting point
for our considerations. Here we choose the
moment when the two charges pass each other
at the centre of the element. In addition we
choose the start of a charging or retardation
part of the period, that is, when the current
moves in opposite direction of the voltage. This

may be compared with a pendulum just leaving
the lowest point and being retarded by the gravi-
tation. We will later on look at what happens if
we start at any other point.

In Figure 3 A the two oscillating charges are at
the equilibrium point of the element. At this
moment we have no electric field E near the ele-
ment because the two charges neutralise each
other.

In Figure 3 B where the charges have moved
away from the equilibrium point, we have elec-
tric field lines E from the positive to the negative
charge. And as the charges move away from
each other, they are in a charging period.

Figure 3 Fields
around an antenna element

C

H

E

+

-

B

+

-

H

E

+-i H

A

-

+

D

H

E

Pf

P f́

P f́

P f́

P f́

Pf

H

H

+-

E

H

H

H

E

Pf

H

E

G

E

-

+

H

H

H

E

H

H

H

E
E

Direction out
from the paper

+

-

H

H

H

E

E

H

H

H

E

F
Direction into
the paper

223Telektronikk 4.2000

A moving charge is a current. Around this
charge we have a magnetic field H with the
same direction as the rotation of a right-handed
corkscrew screwed along the positive current
direction, or as the rotation of a left-handed
corkscrew screwed along the negative current
direction. We therefore already have a magnetic
curl field.

Field lines are often used to describe a field.
However, if we then should describe a field
completely, we have to take account of an infi-
nite number of field lines, and this is of course
impossible. Here we will look only at a few field
lines in order to get an impression of what hap-
pens to the fields between and around charges.

If we then further on follow the movement of
charges in Figure 3 [1], the charges move
towards the ends of the λ/2 conductor where
they stop. At that moment we have only poten-
tial energy and no current in the conductor, and
therefore no magnetic field near the conductor
(Figure 3 C). Thereafter the charges will move
towards each other because of the potential dif-
ference, that is, we are in the discharging part
of the period. We now get a new magnetic field
near the conductor, but this magnetic field has
an opposite direction compared to the first mag-
netic field.

How the power moves out perpendicular to the
conductor is indicated by the Poynting vectors Pf

shown in Figure 3 D. At the same time the field
lines move outwards in space, as also shown in
Figure 3 D. We also see that the rotating mag-
netic field may move away from the conductor
into space.

However, this magnetic field H is dependent on
the electric field E (or the electric displacement
D = ε ⋅ E) to move away from the conductor.
And when the charges come to the centre of the
conductor as indicated in Figure 3 E, we have a
very interesting case. Then the charges are neu-
tralised, and there is therefore no potential dif-
ference between the ends of the electric field
line. The ends may be tied together, and we have
an electric curl field that may, together with the
magnetic field, move away from the conductor.

There are other examples where objects may be
tied together because of small or no potential
differences. We may for instance mention what
happens when a soap bubble is leaving a thin
tube.

In Figure 3 F we have new electric and magnetic
fields. Because they have the same direction as
the nearest part of the old fields, they repulse
each other, and the conditions may be as indi-
cated in Figures 3 F and 3 G. We have now got a
radiating element or an antenna element because
of the standing wave in the conductor, and we
may then say that a standing wave is an antenna.

What happens further on may be seen in Figure
1. We observe that the wavelength near the an-
tenna element varies. It is important to be aware
of this phenomenon when we want to measure
the wavelength of a frequency.

We may now look at what happens when we do
not start at the beginning of the charging part of
the period.

If we start somewhere else in the charging part
of the period, we get a reduced first period. But
if we start in the discharging part of the period,
the Poynting vector points towards the conduc-
tor. We then have no radiation, and nothing hap-
pens before the beginning of the charging part of
the next period.

We also have to look into the problems concern-
ing the length of an antenna. If we have a λ/2
element as indicated in Figure 4, the charges
may move unobstructed. But if the antenna ele-
ment is shorter, the charges will move to the
ends of the element and remain there until the
next λ/2 change (between + and –, or between –
and +). The concentration of charges at the ends
of the short element dl will increase until the
middle of the λ/2 period, and will thereafter de-
crease until the next λ/2 change. This is because
the two elements are fed with the same fre-
quency f or wavelength λ.

An especially interesting situation we have for a
Hertzian dipole where there is only an infinitesi-
mal difference dl in the +/– or –/+ changes. We

λ/2 dl

Figure 4 Movement of
charges in antenna elements

224 Telektronikk 4.2000

then have a sudden change of polarity at the
changes, and we may consider the changes
to follow a square pulse series.

Radiation from
a Travelling Wave
The radiation from the antenna elements we
have considered until now, is caused by the
standing waves on the elements. However, there
is another phenomenon which causes radiation,
and that is the travelling wave effect [2].

If we look at Figure 5 A, a forward travelling
wave is initiated because the antenna is termi-
nated by its characteristic impedance. Conse-
quently there is no standing wave on the
antenna.

In Figure 5 A is also indicated the conditions
when a positive and a negative charge move
along the conductor. As the charges move along
the conductor, we get an electric field as indi-
cated by only two field lines. But at the same

I=3λ

B

2

1

-1

-2

1 2 3

P, P,

E

E

H
HH

E

E

P

- +

R,

A

C
0.5

1

-1

I=0.5λ
1

0.5

-0.5

0.5

1

-1

I=0.25λ
1

0.5

-0.5

D

Figure 5 Travelling
wave antenna

225Telektronikk 4.2000

time a charge creates a magnetic field which
moves out from the conductor with about the
same velocity as the velocity of the charge along
the conductor (dependent on the electric and the
magnetic conditions in the surroundings). In free
space or homogeneous conditions the resulting
movement of the magnetic field is 45° out from
the conductor, and a part of this magnetic field
may be combined with a part of the electric field
and cause radiation. The Poynting vector is at
right angle to both the electric and the magnetic
field where the field lines cross each other.

For short conductor lines the travelling wave
effect is rather weak, but when the antenna wire
is several wavelengths, we may have some gain
relative to a short monopole over ideal conduct-
ing plane. In fact, the travelling wave antenna is
one of the few antenna types which may have
some gain at very low frequencies.

The antenna pattern for a travelling wave an-
tenna may be calculated by using the assumption
that the antenna is an end-fire array of collinear
Hertzian dipoles coupled in series. The equation
for the antenna pattern will then be [3]:

(1)

where I0 is the r.m.s. value of the current along
the antenna wire, r is the distance to the measur-
ing site, θ is the angle to the antenna wire, l is
the length of the antenna wire, and λ is the
wavelength.

In free space the antenna pattern is a rotation
diagram. When the antenna is near the ground,
the antenna pattern will because of reflections
and influence of the ground constants get
another form.

The antenna pattern is measured at constant dis-
tance, and the first part of Equation (1) may
therefore also be considered constant. The equa-
tion for the relative antenna pattern may there-
fore be written as:

(2)

In Figure 5 B is shown the pattern for a travel-
ling wave antenna 3λ long. However, we should
observe that there is a certain travelling effect
for short antennas, as for instance indicated in
Figures 5 C and 5 D.

Er = sinθ
1− cosθ

⋅sin
πl

λ
1− cosθ()

E =
60 ⋅ I0

r
⋅ sinθ
1− cosθ

⋅sin
πl

λ
1− cosθ()

Combination of Radiation
from a Standing Wave and
a Travelling Wave
We have looked especially at what happens
when we put some electrons or charges into
a half-wave radiator. If the radiator does not
receive more energy, the radiation will be atten-
uated oscillations. In order to keep the radiation
going, we have to feed the radiating wire with
power from a generator or transmitter.

The best place to feed a λ/2 radiator is in the
middle of the radiator. There we have current
maximum and voltage minimum, and therefore
a well defined and relatively low impedance
(73.2 ohm). And because we now have divided
the half-wave radiator into two parts, we have
a half-wave dipole.

If we feed a λ radiator in the middle, we get very
high impedance because of minimum current
and maximum voltage.

It is assumed that the current distribution in the
half-wave dipole is a cosine function (referred
to the centre of the dipole). It is therefore also
assumed that the feed current distribution is a
cosine function, as indicated in Figure 5. These
assumptions are in good agreement with practi-
cal measurements.

If the feeder and the dipole have the same im-
pedance (73.2 Ω), both the current and the volt-
age in the dipole are Q times higher than in the
feeder. It is important to be aware of this fact
especially when constructing insulators for nar-

Standing wave current in
a half-wave dipole (=If • Q)

Feed current If
(travelling wave)

Feed current If

Feeder

Figure 6 Current distribution
in feeder and half-wave dipole

227Telektronikk 4.2000

In Figure 8 B is shown a single-wire antenna fed
at one end of the wire. When we have a wire of
several wavelengths, we get conditions like we
have for a travelling wave antenna of the same
length.

When we have non-resonant antenna wires, we
get a similar effect, but then at a much lower
intensity.

It may be mentioned that long telephone cables
or long power lines may act as travelling wave
antennas for low frequencies. This may for in-
stance cause problems for telephone carrier sys-
tems.

If for instance we have a mismatched cable, we
may have a situation as indicated in Figure 9.
The forward travelling wave and the reflected
wave interfere with each other, giving a standing
wave in the cable.

The outer conductor of a coaxial cable is rela-
tively very thin compared to the wavelength. A
standing wave in the cable will therefore pene-
trate the outer conductor, and we therefore also
get a standing wave on the outer side of the outer
conductor. It has already been said that a stand-
ing wave is an antenna. A mismatched cable is
therefore capable of both receiving and radiat-
ing electromagnetic energy.

Another interesting phenomenon takes place
when we bury a mismatched coaxial cable into
lossy ground. The losses will then reduce the

standing wave on the outside of the outer con-
ductor, and therefore also reduce the standing
wave in the cable. The result is lower standing
wave ratio in the cable, and consequently better
signal quality.

If we put some energy into an antenna and there-
after disconnect the antenna from the energy
source, we get damped oscillations as indicated
in Figure 10. If we want to have continuous radi-
ation of for instance a carrier frequency, the
transmitter has to feed the antenna with a certain
amount of energy each period. The ratio between
this amount of energy and the energy already in
the antenna, is dependent on the Q value of the
antenna.

Standing wave

Reflected wave

Forward travelling wave

Figure 9 Standing wave

The radiated energy is
compensated by energy
from the transmitter

A

0
Time

Without compensation
= damped oscillations

Figure 10 Radiation
and compensation

228 Telektronikk 4.2000

Radiation from Noise Sources
The maximum available thermal noise power at
a site is:

Pm = kTB (4)

where k is Boltsmann’s constant (1.38 ⋅ 10-23

J/K), T is the absolute temperature of the objects
in the surroundings, and B is the bandwidth in
Hz.

Increased thermal influence causes an increase
in electron movement. An increase in electron
movement also gives more free moving or “trav-
elling” electrons. And travelling electrons may
give radiation in the same manner as in a travel-
ling wave. However, dependent on the surround-
ings we may have reflections and standing
waves, and consequently noise radiation from
these standing waves.

Because of high travelling electron densities in
lightening and other atmospheric discharges, we
may have high electromagnetic noise radiation
from such sources. The background electromag-
netic noise at low frequencies is dominated by
these discharges. Due to high thunderstorm
activities in continental areas, the noise at low
frequencies is higher inland than in coastal areas.

If we exclude man-made noise (industrial noise,
sparks, etc.), the background noise above about
20 MHz in a communication system is normally
dominated by thermal noise.

Conclusion
In trying to understand radiation of electromag-
netic waves, it may be of some interest to have a
physical explanation of what happens. However,
in order to describe the phenomenon, it may
often be necessary to simplify the explanations.

References
1 Stokke, K N. Radiotransmisjon. Oslo, Uni-

versitetsforlaget, 1971. (In Norwegian.)

2 Stokke, K N. Travelling wave antennas.
Telektronikk, 90 (4), 63–66, 94.

3 Glazier, E V D, Lamont, H R L. The Ser-
vices Textbook of Radio, Transmission and
Propagation. London, Her Majesty’s Sta-
tionary Office, 1958.

4 ITU. Propagation in non-ionized media. ITU
1994 Series Volume. Geneva, ITU, 1995.
(Rec. ITU-R PN.341-3.)

229Telektronikk 4.2000

Telektronikk (96) 1, 2000
– Broadband Radio Access

Guest editorial; T Tjelta 1

Broadband radio access for multimedia services;

T Tjelta, A Nordbotten, H Loktu 2–10

The development of an open interactive multimedia

services delivery platform in Europe; L van Noorden 11–16

Towards the next generation LMDS systems architecture;

J R Norbury 17–27

An interactive return link system for LMDS;

O Koudelka, V Matic, M Schmidt, R Temel 28–35

Cellular radio access for broadband services:

propagation results at 42 GHz; K H Craig, T Tjelta 36–44

Virtual classroom using interactive broadband radio

access at 40 GHz; F Papa, S Spedaletti, S Teodori,

V del Duce 45–53

Techno-economics of broadband radio access;

M Lähteenoja, L Aa Ims 54–67

User reactions to interactive broadband services;

R Ling, S Nilsen 68–81

Interactive broadband services over satellite; P Brodal 82–90

Introduction; P H Lehne 93

MExE and WAP overview; E Aslaksen 94–101

Overview of UMTS security for Release 99; G Køien 102–107

Telektronikk (96) 2, 2000
– The Economy of Internet Services

Guest Editorial; B Hansen 1

The Internet and the New Economy – an Introduction;

B Hansen 2–7

A Business Model for Electronic Commerce; L B Methlie 8–19

Quality Matters: Some Remarks on Internet Service

Provisioning and Tariff Design;

J Altmann, B Rupp, P Varaiya 20–25

Interconnection and Competition Between Portals

Offering Broadband Access; Ø Foros, B Hansen 26–37

Market Managed Multiservice Internet;

H Oliver, D Songhurst 38–44

The Internet Market Structure: Implications for

National and International Regulation; Ø Foros, H J Kind 45–58

Pricing and Admissions Policies for IP Networks;

J A Molka-Danielsen, K Danielsen 59–67

Managing QoS in Multi-Provider Environment

– a Framework and Further Challenges;

T Jensen, I Grgic, O Espvik, M Røhne 71–79

Some Quality and Coverage Problems in Audio

Broadcasting; K N Stokke 80–84

Converging Broadcasting and Telecom; P H Lehne 87–88

DVB with Return Channel via Satellite; V Paxal 89–92

Tore Olaus Engset’s Wave Mechanical Discussion

of the Hydrogen Atom; K Gjötterud, B Jensen 95–98

Telektronikk Index 2000

230 Telektronikk 4.2000

Telektronikk (96) 3, 2000
– Security

Guest Editorial; Ø Eilertsen 1

An Introduction to Cryptography; Ø Eilertsen 2–9

Advanced Encryption Standard (AES), Encryption for

our Grandchildren; L R Knudsen 10–12

Development of Cryptographic Standards for

Telecommunications; L Nilsen 13–20

Show Me Your Public Key and I will Tell Who You Are;

L Arneberg 21–25

Security in a Future Mobile Internet;

H W Hansen, D Tandberg 26–33

Mobile Agents and (In-)security; T Brekne 34–46

An Overview of Firewall Technologies; H Abie 47–52

CORBA Firewall Security: Increasing the Security

of CORBA Applications; H Abie 53–64

Telenor’s Risk Management Model; E Wisløff 65–68

Risk Analysis in Telenor; E Wisløff 69–75

Telektronikk (96) 4, 2000
– Languages for Telecommunications
Applications

Guest Editorial; R Bræk 1–3

The ITU-T Languages in a Nutshell; A Meisingset, R Bræk 4–19

SDL-2000 for New Millennium Systems; R Reed 20–35

SDL Combined with UML; B Møller-Pedersen 36–53

MSC-2000: Interacting with the Future; Ø Haugen 54–61

A Tutorial Introduction to ASN.1 97; C Willcock 62–69

CHILL 2000; J F H Winkler 70–77

Object Definition Language; M Born, J Fischer 78–84

Conformance Testing with TTCN;

I Schieferdecker, J Grabowski 85–95

On Methodology Using the ITU-T Languages and UML;

R Bræk 96–106

Descriptive SDL; S Randall 107–112

Combined Use of SDL, ASN.1, MSC and TTCN;

A Wiles, M Zoric 113–120

Implementing from SDL; R Sanders 120–129

Validation and Testing;

D Hogrefe, B Koch, H Neukirchen 130–136

Distributed Platform for Telecommu-

nications Applications; A Gavras 137–145

Formal Semantics of Specification Languages; A Prinz 146–155

Telelogic SDL and MSC Tool Families;

P Leblanc, A Ek, T Hjelm 156–163

Cinderella SDL – A Case Tool for Analysis and Design;

A Olsen, F Kristoffersen 164–171

The Evolution of SDL-2000; R Reed 172–180

Perspective on Language and Software Standardisation;

A Sarma 181–187

Quality of Service in the ETSI TIPHON Project;

M Krampell 191–195

QoS and SLA Structure in a VoIP Service Case;

I Grgic, O Espvik, T Jensen, M Krampell 196–219

Some Physical Considerations Concerning Radiation

of Electromagnetic Waves; K N Stokke 220–228

